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Abstract: The authors proposed a method for order reduction of linear dynamic systems 
using the advantages of the Interpolation criterion and Routh method. The denominator 
polynomial of the reduced order model is determined by using the Routh method while 
the numerator coefficients are computed by minimizing the integral square error 
between the original and the reduced system using Interpolation method. The proposed 
method guarantees stability of the reduced model, if the original high order system is 
stable system. A PID controller is designed for the high order original systems through 
its low order model proposed. Some numerical examples were considered to explain the 
effectiveness of the method. 
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1. Introduction 
    The approximation of linear systems plays an important role in many engineering 
applications, especially in control system design, where the engineer is faced with controlling a 
physical system for which an analytic model is represented as a high order linear system.  
 In many practical situations a fairly complex and high order system is not only                       
tedious but also not cost effective for on-line implementation. It is therefore desirable that a 
high system be replaced by a low order system such that it retains the main qualitative 
properties of the original system. 
   Several order reduction techniques for linear dynamic systems in the frequency domain are 
available the literature [1-4]. Further, some methods have also been suggested by combining 
the features of two different methods [5-7]. To overcome these problems model order reduction 
techniques are implemented. It is desirable to reduce higher order transfer function to low order 
model which are expected to approximate the performance of original high order system. 
     A mixed method is proposed for the reduction of high order continuous systems. This 
method is developed from the method [1] available in literature and it overcomes the 
limitations and drawbacks of some existing methods. In the present paper, Interpolation 
method is used for obtaining the numerator and Routh method is used for obtaining the 
denominator of the reduced order model. 
 Then an optimum model (with minimum ISE) is obtained by varying the interpolation points. 
Using the proposed method a PID controller is designed for the high order original systems. 
 
2. Stability & Choice of The Interpolation Points 
     Because the above method cannot ensure the reduction model stable, it is required to 
choose its denominator such that the reduction model is stable. In order to produce the 
dominator polynomial, the following two famous methods:  
    The retaining dominant poles and the Routh method [1, 3, and 5] will be introduced. Then 
its numerator can be produced by using the above method, and at this time, the number of 
points is .1)ˆ( +∂ p   
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 By the way, the above method is similar to the classical Pade approximation when all the 
interpolation points are zeros; it only takes advantage of information of G(s) at zero. Usually, 
interpolation points chosen had beer reflect the features of the original model G(s) well 
According to experience, we can choose the points which are located in the disk centered at the 
origin with radius: the distance between origin and the furthest poles; or besides some 
dominant poles; or besides origin. 
 
3. Reduction Procedure 
 Let the transfer function of a higher order system be represented by [6], [7] 
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Where di, i=0, 1… n-1and ei, i=0, 1… n are constants.

 For the high order system a reduced k th order model is proposed as given below,  
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Where the ai, i=0, 1… k-1 and bi, i=0, 1…. k are constants.  
 
Reduced order denominator: 

Step 1: The denominator b k (s) of reduced model can be obtained from the Routh Stability 
array of the denominator of the original system as given below:  
The Routh array is formed by using the eqn. (4):  
The Routh table for the denominator of the system is given below: 
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 b k (S) may be easily constructed from the (n+1-k) th and (n+2-k) th and (n+2-k) t h rows of the 
above to give 
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Reduced order numerator: 
The reduced order numerator polynomial is derived in the following sequence: 
1) Choose 2k point’s s0, s1… s2k-1, s2k ∈C (they can be multiple) from the location of the poles 
of the original systems and obtain g(s) as given below: 
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2) Divide )()( sbsd kn by g(s) to get the quotient e(s) and the remainder f(s).

 
3) Divide )()( sase kn by g(s) to get the quotient l(s) and the remainder h(s). It yields, 
 

 
)()()()()( sfsesgsbsd kn +=   (7)

   
  )()()()()( shslsgsase kn +=   (8)

   
Where both f(s) and h(s) are polynomials of degree at most (2k-1), 
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By using the basic theorem of algebra, it is obtained that [1], 
    

  ).()( shsf ≡  
 
 It is found that the coefficient of each term in f(s) is the linear combination of 121,0 ...., −kaaa

and the coefficient of each term in h(s) is the linear combination of  1210 ...,, −Kbbb  . A linear 
system with 2k+1 unknowns and 2k equations is formed. Hence,  bk is assumed as ‘1’ to make 
the no. of equations equal to the no. of unknowns.  
    If the coefficient matrix of the above linear system is non-singular, then its solution 

1110 ...,,...,, −kk aabbb can be uniquely determined by using the Crammers rule.  
 
Numerator reduction procedure: 
Step 1: Choose 2k point’s s0, s1… s2k-1, s2k ∈C (they can be multiple) from the location of the 
poles of the original systems and obtain g(s) as given below: 
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Step 2: Compute dn(s)bk(s) and en(s)ak(s), respectively, 
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Step 3: Divide )()( sbsd kn by g (s) to get f(s): 
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Thus get the recursive relations 
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Divide )()( sase kn by g (s) to get h(s): 
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Thus get the recursive relations: 
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    When k <0, let go=0. In the above the recursive relations, the superscript n in )(n

ic represent 
the coefficients which are obtained after carrying out the algorithm n steps. And the subscript 

‘i’ in )(n
ic represents the corresponding degree about the variables.

  
Step 4: By using the basic theorem of algebra, it is obtained that [1], [10] 
   ).()( shsf ≡  
 
 It is found that the coefficient of each term in f(s) in is the linear combination of 

121,0 ...., −kaaa and the coefficient of each term in h(s) is the linear combination of ....,, 1210 −Kbbb   
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       A linear system with 2k+1 unknowns and 2k equations is formed assuming .1=kb Thus, 
the reduced model is obtained as given equation (2). 
 
4. Optimized Reduced Order Model (OROM) 
Steps to obtain an optimum ROM: 

 Obtain reduced order denominator by using Routh method.  
 Obtain reduced order numerator by using Interpolation method. 
 Calculate ISE (Integral Square error) 
 Change the set of Interpolation points randomly for obtaining another reduced order 

numerator. 
 Again calculate ISE (Integral Square error) with the new numerator. 
 Repeat the above steps with different sets of interpolation points.  
 Pick the minimum ISE of all and the corresponding reduced order model is selected as 

an optimized model. 
 
5. Advantages of The Proposed Method 
 The following are the advantages of the proposed method: 

 This method always gives stable reduced order models for the stable original Systems. 
 This method gives zero steady state error. 
 This method is simple and efficient. 
 This method gives very low ISE comparing to some other existing methods. So, reduced 

order model is better approximation of the original system. 
 This method retains both initial time moments and Markova parameters. 

 
6. Numerical Examples 
Example 1:   consider the sixth order system as given  
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 A Second order reduced model is obtained for the above higher order system, in following 
steps, using the proposed method given in section-3.

 

 
)(
)()( 2

210

10
2 sb

sa
sbsbb

saasR
k

k=
++

+
=  

 
Step 1: Reduced Order denominator is obtained by using Routh method as below: 

 505.212318223815.14)( 23456 ++++++= sssssssen  
 
Routh Table:  
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Hence, the reduced order denominator is: 

505.1656.218)( 2 ++= sssb k  
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By normalizing the above, the reduced order denominator is:  
 
 
Step 2: The numerator of reduced order model is obtained by the interpolation method as given 
in proposed procedure. 
 For a 2nd order model the 4 required interpolation points are selected randomly as:  
  
 0, 0.6, 2, 3  

 sssssg 6.396.5)( 234 −+−=  
 
Where g(s) is the polynomial obtained by the selected interpolation points. 

From original order numerator and reduced order denominator,
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Divide knae by g(s) to get the quotient l(s) and the remainder h(s). 
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From equn (1) & equn (2), we get
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Figure 1. Comparison of step response of original and 
 
 

 
 
Example 2: Consider the 8th order system as follows: 
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 A Second order reduced model is obtained for the above higher order system, in following 
steps, using the proposed method given in section-3. 
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 By normalizing the above, the reduced order denominator is(by applying routh method): 

 0186..007881.0)( 2 ++= sssb k  
 
Reduced order numerator (by applying Interpolation method): 
Using the procedure the optimum reduced order model is obtained as, 
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Figure 2. Step response of original and reduced order systems. 

 
 
Design of PID controller for reduced order model is, 
Let transfer function of the PID controller is, 
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Now to obtain the closed-loop transfer function for reduced order

  
 
The tuned PID values are  
   
௣ܭ       ൌ െ9.1331, ௜ܭ ൌ 7.654 ,     ௗܭ ൌ 23.899 
  
Comparing characteristic equation of compensated system to the optimum ITAE characteristic 
equation as, 
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 The PID controller is added to the forward path and the closed loop transfer function with 
unity feedback of the system is given as: 
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Where G(s) is the high order system and Gc(s) is the PID controller transfer function. 
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Figure 3. Step response of compensated system and uncompensated systems 

 
Comparing With Existing Methods:   
Example 3: Consider the 6th order original transfer function is given by [13], 
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The reduced second order models obtained by using proposed method is:         
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The reduced 2nd order models obtained by using Routh approximation method   
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The reduced 2nd order models obtained by using Continued fraction method                  
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The step responses of the reduced models obtained by proposed method, routh approximation 
method (r2) and continued fraction method (c2) Figure 4. 
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Figure 4. Step response of different existing methods 
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Conclusion 
    In this paper, a new method is proposed for the reduction of high order continuous systems. 
The proposed method uses the application of Interpolation method for obtaining the numerator 
and Routh method for obtaining the denominator of the reduced order model. An optimum 
model (with minimum ISE) is derived by varying the interpolation points. Using the proposed 
method a PID controller is designed for the high order original systems. A computer program is 
developed for the proposed continuous systems reduction method.  
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