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Abstract

There are at least three reasons why hydrogen cyanide is likely to be significant for at-
mospheric chemistry. The first is well known, HCN is a product and marker of biomass
burning. However, if a detailed ion chemistry of lightning is considered then it is almost
certain than in addition to lightning producing NOx, it also produces HOx and HCN. Un-5

like NOx and HOx, HCN is long-lived and could therefore be a useful marker of lightning
activity. Observational evidence is considered to support this view. Thirdly, the chem-
ical decomposition of HCN leads to the production of small amounts of CN and NCO.
NCO can be photolyzed in the visible portion of the spectrum yielding N atoms. The
production of N atoms is significant as it leads to the titration of nitrogen from the atmo-10

sphere via N+N→N2. Normally the only modelled source of N atoms is NO photolysis
which happens largely in the UV Schumann-Runge bands. However, NCO photolysis
occurs in the visible and so could be involved in titration of atmospheric nitrogen in the
lower stratosphere and troposphere. HCN emission inventories are worthy of atten-
tion. The CN and NCO radicals have been termed pseudohalogens since the 1920s.15

They are strongly bound, univalent, radicals with an extensive and varied chemistry.
The products of the atmospheric oxidation of HCN are NO, CO and O3. N+CH4 and
N+CH3OH are found to be important sources of HCN. Including the pseudohalogen
chemistry gives a small increase in ozone and total reactive nitrogen (NOy).

1. Introduction20

Since the discovery of the Antarctic ozone hole by Farman et al. (1985) the importance
of halogen radicals in determining the concentrations of atmospheric ozone has been
clearly demonstrated. However, it was only in the mid 1970s that the halogen radicals
were first recognized as a potential threat to ozone. In like manner, there may be
other radicals which play a role in ozone photochemistry. There are many natural and25

anthropogenic sources of compounds containing CN which can be released into the
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atmosphere. Many CN reactions are already considered when studying combustion
chemistry and interstellar clouds. This paper considers their importance in our own
atmosphere.

1.1. Properties

HCN (also called formonitrile) is a highly volatile, colorless, and extremely poisonous5

liquid (boiling point 26◦C, freezing point −14◦C). A solution of hydrogen cyanide in
water is called hydrocyanic acid, or prussic acid. It was discovered in 1782 by the
Swedish chemist, Carl Wilhelm Scheele, who prepared it from the pigment Prussian
blue (Britannica, 2003).

1.2. Observations10

It is surprising that HCN is so often overlooked as it has been observed on numerous
occasions over the last two decades (Yokelson et al., 2003; Singh et al., 2003; Zhao
et al., 2002; Rinsland et al., 2001, 2000; Zhao et al., 2000; Rinsland et al., 1999; Brad-
shaw et al., 1998; Rinsland et al., 1998a,b; Schneider et al., 1997; Mahieu et al., 1997;
Rinsland et al., 1996; Notholt et al., 1995; Mahieu et al., 1995; Toon et al., 1992b,a;15

Kopp, 1990; Jaramillo et al., 1989; Zander, 1988; Carli and Park, 1988; Jaramillo et al.,
1988; Abbas et al., 1987; Smith and Rinsland, 1985; Coffey et al., 1981). Recently
it has sometimes been considered as an “interference” for NOy observations, for ex-
ample, Bradshaw et al. (1998); Thompson et al. (1997); Kliner et al. (1997). How-
ever, regarding it as an “interference” overlooks its potential importance in atmospheric20

chemistry, particularly as Cicerone and Zellner (1983) deduced that HCN has a very
long residence time against rainout.

Figure 1 shows all the HCN observations made by the Atmospheric Trace Molecule
Spectroscopy Experiment (ATMOS) on the missions ATLAS-1, ATLAS-2, and ATLAS-3
(Rinsland et al., 1998a,b, 1996) together with a typical mid-latitude NOy profile. In the25

upper troposphere and lower stratosphere the HCN abundance is comparable to the
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NOy present and should not be neglected. It is tantalizing that some of the tropical
vertical profiles seem to have a large peak in HCN close to the tropopause which may
be produced by lightning in regions of strong convective activity.

1.3. Likely sources

HCN is produced by biomass burning (Lobert et al., 1990; Hurst et al., 1994b; Yokelson5

et al., 1997b; Holzinger et al., 1999; Rinsland et al., 1999, 2000; Barber et al., 2003;
Li et al., 2003; Singh et al., 2003; Yokelson et al., 2003) since nitrogen in plant ma-
terial is mostly present as amino acids and upon combustion this nitrogen is emitted
as a variety of compounds including NH3, NO, NO2, N2O, organic nitriles and nitrates
(Holzinger et al., 1999; Yokelson et al., 1997a; Lee and Atkins, 1994; Hurst et al.,10

1994b,a; Kuhlbusch et al., 1991). There are many naturally occurring substances
yielding cyanide in their seeds, such as the pit of the wild cherry. It usually occurs
in combination with plant sugars. The tuberous edible plant of the spurge family called
cassava (also known as manioc, mandioc, or yuca) were used by primitive peoples to
produce HCN for poison darts and arrows. HCN is produced by other plants, bacteria15

and fungi.
In addition, aliphatic-amines are produced from animal husbandry and may be a

source of HCN (Schade and Crutzen, 1995). Schade and Crutzen (1995) measured
the emissions of volatile aliphatic amines and ammonia produced by the manure of
beef cattle, dairy cows, swine, laying hens and horses in livestock buildings. The amine20

emissions consisted almost exclusively of the three methylamines and correlated with
those of ammonia. Schade and Crutzen (1995) showed possible reaction pathways for
atmospheric methylamines. These included the speculative but possible production of
HCN.

There are many anthropogenic sources of compounds containing CN which can be25

released into the atmosphere. Cyanides are used in a variety of chemical processes
including fumigation, case hardening of iron and steel, electroplating and in the con-
centration of ores. Hydrogen cyanide is a highly volatile and extremely poisonous gas
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that is used in fumigation, ore concentration, and various other industrial processes.
Cyanogen, or oxalonitrile, (CN)2, is also used as a chemical intermediate and a fu-
migant. Hydrogen cyanide is used to prepare polyacrylonitrile fibres (known by the
generic name of acrylic) synthetic rubber, plastics, and in gas masers to produce a
wavelength of 3.34 mm (Britannica, 2003). Acrylic fibres are spun from polymers con-5

sisting of at least 85% by weight of acrylonitrile units produced from ethylene oxide and
hydrocyanic acid.

Hydrogen cyanide is a combustion product which is a human hazard during domestic
and industrial fires. Some catalytic converters in bad repair can produce large amounts
of Hydrogen cyanide. Hydrogen cyanide is produced in large quantities for laboratory10

and commercial use by three principal methods: Treatment of sodium cyanide with
sulphuric acid, catalytic oxidation of a methane-ammonia mixture, and decomposition
of formamide (HCONH2).

We suggest that it is timely to compile HCN emission inventories.
It is interesting to note that the atmospheric measurements of HCN reported by15

Zander (1988) gave a mixing ratio for HCN in the Southern Hemisphere which was
approximately 5% higher than that for the Northern Hemisphere. This may be due to
biomass burning. It seems that in addition to HCN being a marker of biomass burning
it is also a marker for lightning.

1.4. HCN, HOx and lightning20

Emissions from CN radicals are occasionally observed from lightning disturbed air (Ci-
cerone and Zellner, 1983). In the atmosphere of Jupiter HCN is present with a con-
centration of about 2 ppbv and is thought to be produced by lightning in the convective
regions of Jupiter’s atmosphere (Britannica, 2003; Borucki et al., 1988, 1991). On Titan
HCN is also thought to be produced by lightning (Borucki et al., 1988). It may well be25

that lightning is a significant source of HCN, particularly due to its resistance to uptake
by aqueous media.

Lightning produces large scale ionisation in the atmosphere with temperatures of
5385
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around 30 000 K produced within a few microseconds. Both the ionisation and high
temperatures are significant for atmospheric chemistry, and the full implications are
usually completely overlooked, with attention paid almost exclusively to NOx. Ionisation
produced by cosmic rays and precipitating particles is well known to produce NOx and
HOx(Brasseur and Solomon, 1987). The ionisation associated with lightning is between5

six and fifteen orders of magnitude greater than that associated with cosmic rays (Boldi,
1992). It is therefore likely that elevated HOx should be associated with lightning (Hill,
1992). This has been both calculated (Boldi, 1992) and hinted at by observations of
elevated HOx in the vicinity of convective outflow (Jaegle et al., 1999). Calculations
suggest that there is a 5–6% increase in global lightning for every 1◦C of warming10

(Price and Rind, 1994), so if there is a lightning source of HOx global warming could
lead to a significant change in the oxidizing capacity of the atmosphere due to lightning
produced HOx alone.

Equilibrium thermodynamic calculations (Boldi, 1992) show that for the conditions
associated with a lightning strike in the terrestrial atmosphere we would expect be-15

tween 0.7 to 1 ppbv of HCN. If HCN is produced by lightning, then in the surrounding
air we would simultaneously expect elevated concentrations of both NOx and NOy. This
is exactly what ATMOS observed (ATMOS). For example, around a thousand observa-
tions of HCN were made during November 1994 as part of ATLAS3 (ATMOS). Among
these observations there were six anomalously high HCN observations of greater than20

0.7 ppbv, for which elevated concentrations of both NOx and NOy were also observed.
If one plots a scatter diagram of the HCN against NOx concentrations (Fig. 2), we find
that there is a strong correlation between HCN and NOx for high HCN concentrations.
This corresponds to the air parcels that have probably recently encountered lightning.
There is not a strong correlation for the lower HCN and NOx concentrations as NOx25

and HCN are not in chemical equilibrium.
There are several satellites which observe global lightning, but these had not been

launched at the time of the last ATMOS mission. However, for the six locations with
HCN concentrations greater than 0.7 ppbv visible satellite images show cloud cover
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as do the NCEP analyses (NCEP). Each of the six locations were in a costal region
or over land which is where most lightning activity occurs. The vertical structure of
the HCN profile may provide a good test for the hypothesis that HCN is produced by
lightning. During thunderstorms we expect a “C” shaped NOx profile (Pickering et al.,
1998), and so should also expect a “C” shaped HCN profile with enhanced HCN in the5

region between 5 and 14 km.

1.5. Previous modelling work

The only previous modelling studies of atmospheric HCN appear to be those of Ci-
cerone and Zellner (1983); Brasseur et al. (1985); Li et al. (2003); Singh et al. (2003)
who considered the earth’s current atmosphere and the studies of Zahnle (1986a,b)10

who presented a study of the likely HCN chemistry in the earth’s early atmosphere.
Cicerone and Zellner (1983) identified the major atmospheric losses of HCN. Li et al.
(2003) and Singh et al. (2003) showed that the main HCN loss is due to oceanic uptake.

This study expands the previous work by considering many N, CN and NCO re-
actions which are known to be important in flame chemistry. These reactions are15

considered for conditions relevant to the current atmosphere. Including these reac-
tions provides additional sources of HCN, not included by Cicerone and Zellner (1983);
Brasseur et al. (1985), and some of which were not included by Zahnle (1986a,b) ei-
ther. HCN photolysis is shown to be a minor loss for HCN.

2. Reasons to consider HCN20

Before systematically examining atmospheric CNx chemistry let us examine at least
three reasons why we should consider atmospheric HCN chemistry.

5387

http://www.atmos-chem-phys.org/acpd.htm
http://www.atmos-chem-phys.org/acpd/4/5381/acpd-4-5381_p.pdf
http://www.atmos-chem-phys.org/acpd/4/5381/comments.php
http://www.copernicus.org/EGU/EGU.html


ACPD

4, 5381–5405, 2004

Atmospheric

pseudohalogen

chemistry

D. J. Lary

Title Page

Abstract Introduction

Conclusions References

Tables Figures

� �

� �

Back Close

Full Screen / Esc

Print Version

Interactive Discussion

© EGU 2004

2.1. Abundance

Figure 1 shows that in the upper troposphere and lower stratosphere the HCN abun-
dance is comparable to the NOy present.

2.2. Tracer

HCN is a long lived, low solubility (Cicerone and Zellner, 1983) gas. If as it seems5

HCN is produced by lightning (Britannica, 2003; Cicerone and Zellner, 1983; Borucki
et al., 1988, 1991) then as it is not rained out it may well prove to be an effective
tracer of lightning activity. Such a marker could be extremely valuable to complement
observations (Huntrieser et al., 1998; Kawakami et al., 1997; Hauf et al., 1995).

2.3. N atom source10

The main stratospheric sink of NOy is the reaction of N with NO

N + NO −→ N2 + O(3P) (1)

with the main source of N atoms generally accepted to be the photolysis of NO

NO + hν −→ N + O(3P) λ≤189 nm . (2)

However, the photolysis of NCO is also a source of N atoms. The rate of N production15

due to NCO photolysis is calculated to be faster than that due to NO photolysis below
about 10 km.

NCO + hν −→ N + CO λ≤342 nm .

Consequently, when pseudohalogen chemistry is included in the model there is a sig-
nificant increase (more than an order of magnitude) in the N atom concentration below20

10 km (Fig. 4).
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3. Atmospheric CNx chemistry

Let us now consider the HCN chemistry depicted in Fig. 3 as simulated using the ex-
tensively validated AutoChem model (Lary et al., 1995; Fisher and Lary, 1995; Lary,
1996; Lary et al., 2003). The model is explicit and uses the adaptive-timestep, error
monitoring, Stoer and Bulirsch (1980) time integration scheme designed by Press et al.5

(1992) for stiff systems of equations. Photolysis rates are calculated using full spheri-
cal geometry and multiple scattering (Anderson, 1983; Lary and Pyle, 1991a,b; Meier
et al., 1982; Nicolet et al., 1982) corrected after Becker et al. (2000). The photolysis
rate used for each time step is obtained by ten point Gaussian-Legendre integration
(Press et al., 1992). In this study the model described a total of 49 species including10

CN, NCO and HCN. The model kinetic data is based on DeMore et al. (2000) with the
cyanide reactions coming from a variety of sources.

The eventual fate of most HCN released into the atmosphere is NO. Since HCN has
a long lifetime against rainout (Cicerone and Zellner, 1983), whereas NOx does not,
HCN can be transported from the regions where it is emitted and slowly release NOx15

away from the source regions. The net effect of HCN oxidation is summarized by the
following reaction sequence shown in the following:

HCN + OH −→ H2O + CN (3)
CN + O2 −→ NCO + O (4)
NCO + hν −→ N + CO (5)20

N + O2 −→ NO + O (6)
2O + 2O2 −→ 2O3 (7)
O3 + hν −→ O(1D) + O2 (8)
O(1D) + H2O −→ 2OH (9)

Net : HCN + 3O2 + 2hν −→ CO + O3 + NO + OH.25

Therefore including HCN chemistry provides a small additional source of NOx, O3 and
5389
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CO. If there is a heterogeneous conversion (oxidation) of HCN then it may be more
important than described here, particularly in the upper troposphere.

3.1. HCN

Figure 1 shows the observed HCN profiles from ATMOS. Cicerone and Zellner (1983)
and Brasseur et al. (1985) were able to reproduce the tropospheric portion of the profile5

but not the stratospheric portion. They suggested that the discrepancy may be due to
an inappropriate OH concentration or HCN photolysis rate. The HCN photolysis rate
calculated by assuming HCN has the same absorption cross-section as HCl will be too
fast as Herzberg and Innes (1957) report a predissociation limit of 179 nm for HCN,
which means that the HCN photolysis rate is very small. This is confirmed by the10

calculations of Huebner et al. (1992).
Another likely possibility for the discrepancy is in-situ atmospheric production of

HCN. Such production can occur by several routes, most of which are very slow as
they involve the CN radical which is quickly removed by reaction with O2. For this
reason, an effective production will probably not involve CN. Zahnle (1986a) included15

the production of HCN caused by the reaction of N with CH2 and CH3. Since CH2 is
produced mainly by Lyman-α CH4 photolysis, this source of HCN will be small in the
troposphere and stratosphere (these source are included in the model). The reaction
of N with CH4 is the most important source of HCN in the model, and has a noticeable
effect on the calculated HCN concentration above 25 km. It was not included by Ci-20

cerone and Zellner (1983); Brasseur et al. (1985); Zahnle (1986a,b). The rate constant
was measured by Takahashi (1972) at 298 K with N2 as the bath gas as 2.5×10−14

molecules−1 cm3 s−1.

N + CH4 −→ HCN + H2 + H . (10)

Ocean uptake is the dominant sink for HCN (Singh et al., 2003; Li et al., 2003). The25

main atmospheric loss of HCN is reaction with OH.

HCN + OH −→ H2O + CN .
5390
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If the HCl cross-section is used to calculate the HCN photolysis rate as was done by
Cicerone and Zellner (1983) and Brasseur et al. (1985) then above 35 km photolysis is
the most important loss of HCN. However, Herzberg and Innes (1957) report a predis-
sociation limit of 55 900 cm−1, 179 nm. This means that no photolysis would occur in
the important UV window and HCN photolysis is very slow.5

HCN + hν −→ H + CN λ≤179 nm . (11)

There is also a minor loss due to reaction with O(3P) and O(1D) (Fig. 4).

HCN + O(3P) −→ H + NCO (12)
HCN + O(1D) −→ OH + CN (13)

3.2. The cyanide radical, CN10

In the sunlit atmosphere CN is in photochemical equilibrium. CN has a very short
lifetime because of the very fast reaction of CN with O2. The lifetime varies between
about 10 ns and 60µs. The calculated CN profile is shown in Fig. 4.

The most important production channel for CN in the model km is

HCN + OH −→ H2O + CN .15

The reaction is slightly endothermic at 298 K, however, the reverse reaction is not a
significant source of HCN. In the upper atmosphere the reaction of HCN with O(1D)
and HCN photolysis each contribute a few percent to the overall production of CN.

HCN + O(1D) −→ OH + CN .

The main loss of CN at all altitudes in the model is the rapid reaction of CN with O220

which has two channels

CN + O2 −→ NCO + O(3P)
∆HR=−173.4 kJ Mole−1
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branching ratio=0.94
−→ CO + NO
∆HR=−455.6 kJ Mole−1

branching ratio=0.06 . (14)

The branching ratio quoted was determined by Schmatjko and Wolfrum (1978). In the5

laboratory Basco (1965) found that there was a production of ozone due to the first
channel of this reaction in an excess of oxygen because it can be followed by

O(3P) + O2
M−→ O3 .

Such a production of O3 does occur in the model to a very small extent, but it is only
a small source of O3 as the CN radicals are present in such small concentrations. In10

addition, the NO formed can then take part in catalytic destruction of O3.
Since CN is a pseudohalogen it might be expected that, like the halogens, it could

take part in the catalytic destruction of ozone, for example

CN + O3 −→ NCO + O2

∆HR=−565.4 kJ Mole−1 (15)15

(16)

NCO + O(3P) −→ CN + O2

∆HR=173.4 kJ Mole−1 (17)

Net : O3 + O(3P) −→ O2 + O2.20

Clearly the important difference between the pseudo-halogen CN and halogens such
as Cl and Br, involved in stratospheric ozone destruction, is the very marked difference
in their reactions with O2. Chlorine and bromine form weakly bound peroxides on
reaction with O2

Cl + O2 + M ↔ ClOO + M (18)25
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Br + O2 + M ↔ BrOO + M , (19)

which rapidly decompose to give back the halogen, whereas CN reacts rapidly with
O2, as we have mentioned previously

CN + O2 −→ NCO + O
CN + O2 −→ CO + NO .5

Yielding primarily NCO and O. If Cl or Br atoms reacted with O2 in a similar way to CN,
there would be no ozone loss. So the CN radical behaves in a crucially, very different
manner to the halogens, preventing it from participating in an efficient ozone loss cycle.

The reaction CN+O3 is thermodynamically very favorable but its rate constant has
not been determined. The NCO+O reaction to give CN as a product occurs in flames10

(Tsang, 1992). This reaction is endothermic at room temperature by 173 KJ/Mole. So
this reaction has not been included in the reaction scheme. Consequently, with the
current chemical scheme the only way to convert the NCO formed by the reaction of
CN with O3 back to CN is via HCN photolysis. Since HCN has a lifetime of about
5 months (Singh et al., 2003; Li et al., 2003) and HCN photolysis is extremely slow this15

is not an effective loss of O3.
The CN+O2 reaction has a second channel which produces CO+NO and so can

either enhance the NO/NO2 catalytic cycle, or enhance the production of odd oxygen
if it is followed by the formation and photolysis of NO2. Unlike the photolysis of NO2 or
ClO, the photolysis of NCO, does not yield an oxygen atom20

NCO + hν −→ N + CO

and so is not a source of odd oxygen. However, it is a source of N atoms.

3.3. The NCO radical

NCO is in photochemical equilibrium throughout the sunlit atmosphere. The lifetime
varies from about 6 s at the surface down to about a second at 65 km. The calculated25
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NCO profile can be seen in Fig. 4. By far the most important production of NCO is due
to the fast reaction

CN + O2 −→ NCO + O(3P) .

The main loss of NCO in the model is

NCO + O2 −→ NO + CO2 . (20)5

In the upper atmosphere the reaction with O(3P) also plays a role.

NCO + O(3P) −→ CO + NO (21)

4. Conclusions

In addition to NOx lightning it is suggested that it is also producing significant amounts
of HCN and possibly HOx. HCN is a stable, long-lived, sparingly soluble molecule with10

a long residence time against rain-out. Unlike NOx, HCN can act as a relatively inert
“marker” of lightning activity, and may thereby serve as a proxy for the total amount
of lightning activity in the atmosphere. The vertical structure of HCN observed during
thunderstorms may provide a good test for the hypothesis that HCN is produced by
lightning.15

NCO photolysis enhances the N atom concentration, and hence, enhances the rate
of NOy loss due to the reaction of N with NO. This additional source of N atoms is more
important than NO photolysis below 10 km. The NCO absorption cross-section does
not appear to have been measured and is one of the largest uncertainties in this study.
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Fig. 1. All HCN observations made by the Atmospheric Trace Molecule Spectroscopy Experi-
ment (ATMOS) on the missions ATLAS-1 (1992), ATLAS-2 (1993), and ATLAS-3 (1994) shown
together with a typical mid-latitude NOy profile. The ATMOS data is publically available from
the web site http://remus.jpl.nasa.gov/.
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Fig. 2. Scatter diagram of the HCN and NOx concentrations observed by ATMOS ATLAS3.
The left hand panel shows all the available HCN and NOx observations made. The right hand
panel is an enlargement showing just the high NOx and HCN concentrations which are probably
associated with lightning (notice the log-log scale).

5403

http://www.atmos-chem-phys.org/acpd.htm
http://www.atmos-chem-phys.org/acpd/4/5381/acpd-4-5381_p.pdf
http://www.atmos-chem-phys.org/acpd/4/5381/comments.php
http://www.copernicus.org/EGU/EGU.html


ACPD

4, 5381–5405, 2004

Atmospheric

pseudohalogen

chemistry

D. J. Lary

Title Page

Abstract Introduction

Conclusions References

Tables Figures

� �

� �

Back Close

Full Screen / Esc

Print Version

Interactive Discussion

© EGU 2004

Fig. 3. The CN, NCO, HCN reaction scheme used in the model.
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Fig. 4. Panel (a) shows the calculated contributions for the various loss terms of HCN. Panel (b)

shows the effect on the nitrogen atom v.m.r. when cyanide chemistry is included. The red line
shows the calculation with pseudohalogen chemistry the blue line shows the calculation without
pseudohalogen chemistry. Panels (c) and (d) show calculated diurnal cycles for CN and NCO.
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