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Abstract

Starting from the working hypothesis that both physics and the corre-
sponding mathematics have to be described by means of discrete concepts
on the Planck-scale, one of the many problems one has to face is to find
the discrete protoforms of the building blocks of continuum physics and
mathematics. In the following we embark on developing such concepts
for irregular structures like (large) graphs or networks which are intended
to emulate (some of) the generic properties of the presumed combinato-
rial substratum from which continuum physics is assumed to emerge as
a coarse grained and secondary model theory. We briefly indicate how
various concepts of discrete (functional) analysis and geometry can be
naturally constructed within this framework, leaving a larger portion of
the paper to the systematic developement of dimensional concepts and
their properties, which may have a possible bearing on various branches
of modern physics beyond quantum gravity.

1Invited paper to appear in the special issue of the Journal of Chaos, Solitons and Fractals
on: “Superstrings, M, F, S . . . Theory” (M. S. El Naschie, C. Castro, Editors)
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1 Introduction

There exists a certain suspicion in parts of the scientific community that nature
may be discrete or rather “behaves discretely” on the Planck scale. But even
if one is willing to agree with this “working philosophy”, it is far from being
evident what this vague metaphor actually has to mean or how it should be
implemented into a concrete and systematic inquiry concerning physics and
mathematics in the Planck regime.

There are basically two overall attitudes as to “discreteness on the Planck
scale”, the one comprising approaches which start (to a greater or lesser degree)
from continuum concepts (or more specifically: concepts being more or less
openly inspired by them) and then try to detect or create modes of “discrete
behavior” on very fine scales, typically by imposing quantum theory in full or
in parts upon the model system or framework under discussion.

There are prominent and very promising candidates in this class like e.g.
‘string theory’ or ‘loop quantum gravity’. Somewhat intermediate is a more
recent version (or rather: aspect) of the latter approach, its ‘polymer’ respec-
tively ‘spin network’ variants. As these approaches are widely known and will
probably get their fair share in this volume anyhow, we refrain from citing from
the vast corresponding literature. We only recommend, as more recent reviews
to the latter approach, containing some cursory remarks about the former to-
gether with a host of references, [5] and [6] and, as a beautiful introduction to
the whole field, [7].

On the other hand one could adopt an even more speculative and radi-
cal attitude and approach the Planck regime from more or less the opposite
direction by developing a framework almost from scratch which has “discrete-
ness” already built in into its very building blocks and then try to reconstruct,
working, so to speak, “bottom up”, all the continuum concepts of ordinary
space-time physics as sort of ‘collective quantities’ like e.g. ‘collective excita-
tions’ via the cooperation of many microscopic (discrete) degrees of freedom.
If one is very bold one could even entertain the idea that the quantum phe-
nomena as such are perhaps not the eternal and irreducible principles as they
are still viewed today by the majority of physicists but, to the contrary, may
emerge as derived and secondary concepts, together with gravitation, from a
more primordial truly discrete and ‘combinatorial’ theory.

It goes without saying that such a radical approach is beyond the reach of
direct experimental verification in the strict sense for the foreseeable future (as
is the case with the other frameworks mentioned above). As a substitute one
rather has to rely on inner theoretical criteria, among other things the capability
to generate the hierarchy of complex patterns we are observing in nature or
in our present day ‘effective theories’ of the various regimes many orders of
magnitude away from the Planck scale while introducing as few simple and
elementary assumptions as possible. More specifically, one would like such a
framework to provide clues how the continuum concepts of ordinary space-time
physics/mathematics may emerge in a natural manner from their respective
‘discrete protoforms’.

Another more aesthetic criterion would be a kind of natural convergence of
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the different approaches towards a common substructure which is discrete in a
really primordial way. Indications for such a convergence can, in our view, be
detected in the various lines of research going on presently. ‘spin networks’ or
‘polymer states’ are e.g. cases in point where modes of discreteness do emerge
from a at first glance continuous environment. Furthermore it may well be that
‘string field theory’ will turn out to live on a more discrete and singular sub-
stratum than presently suspected (some speculative remarks pointing in this
direction can e.g. be found at the end of [8]), a catchword being ‘fractal geom-
etry’. A brief but illuminating analysis concerning such a possible convergence
in the future towards a decidedly discrete and ‘combinatorial’ common limit
has been given in section 8 of [7]. A bundle of related ideas with which we
sympathize is developed by Nottale (see e.g. [16]).

In the following we will try to give a very brief survey over our personal
variant of Planck scale physics and mathematics, which has a pronouncedly
combinatorial flavor (employing, among other things, tools from ‘algebraic com-
binatorics’ and ‘(random) graph theory’). Interesting enough, there exist also
close ties to ‘noncommutative geometry’ (a general source being [9]).

2 The Cellular Network Environment

In this section we will sketch the type of model systems on which the following
analysis will be based. As already said in the introduction we will start from
a rather primordial level, trying to make no allusions whatsoever to continuum
concepts. We will then show how protoforms of ideas and notions, playing
a key role in ordinary continuum physics/mathematics emerge in a relatively
natural and unforced way from this framework. Cases in point are e.g. con-
cepts like ‘dimension’, ‘differential structure’, the idea of ‘physical points’ (being
endowed with an internal structure), the web of which establishes the substra-
tum of macroscopic space-time, and other geometrical/topological notions. The
framework turns out to be even rich enough to support a full fledged kind of
‘discrete functional analysis’, comprising e.g. ‘Laplace-, Dirac operators’ and
all that. It is perhaps particularly noteworthy that an advanced structure like
‘Connes’ spectral triple’ shows up in a very natural way within this context.

Besides the reconstruction of basic concepts of continuum physics/ mathe-
matics another goal is to describe the micro dynamics going on in this discrete
substratum over (in) which macroscopic space-time is floating as a kind of coarse
grained ‘superstructure’, the formation of ‘physical points’ and their mutual en-
tanglement, yielding the kind of ‘near-/far-order’ or ‘causal structure’ we are
used to from continuum space-time.

To this end we view this substratum as, what we like to call, a ‘cellular
network’, consisting of ‘nodes’ and ‘bonds’. The nodes are assumed to represent
certain elementary modules (cells or “monads”) having a discrete, usually sim-
ple, internal state structure, the bonds modeling elementary direct interactions
among the nodes. As an important ingredient, these bonds are dynamical in-
sofar as they are capable to be in a (typically limited) number of ’bond states’,
thus implementing the varying strength of the mutual interactions among the

2



cells.
It is a further characteristic of our model class that these interactions are

not only allowed to vary in strength but, a fortiori, can be switched off or
on, depending on the state of their local environment. In other words, bonds
can be, stated in physical terms, created or annihilated in the course of net-
work evolution, which (hopefully) enables the system to undergo ‘geometric
phase transitions’ being accompanied by an ‘unfolding’ and ‘pattern forma-
tion’, starting e.g. from a less structured chaotic initial phase. To put it briefly:
in contrast to, say, ‘cellular automata’, which are relatively rigid and regular
in their wiring and geometric structure (in particular: with the bonds typically
being non-dynamical), our cellular networks do not carry such a rigid overall
order as an external constraint (e.g. a regular lattice structure); their “wiring”
is dynamical and thus behaves randomly to some extent. The clue is that order
and modes of regularity are hoped to emerge via a process of ‘self-organization’.

Definition 2.1 (Class of Cellular Networks).

1. “Geometrically” our networks represent at each fixed ‘clock time’ a ‘la-
beled graph’, i.e. they consist of nodes {ni} and bonds {bik}, with the
bond bik connecting the nodes (cells) ni, nk. We assume that the graph
has neither elementary loops nor multi-bonds, that is, only nodes with
i 6= k are connected by at most one bond.

2. At each site ni we have a local node state si ∈ q · Z with q, for the
time being, a certain not further specified elementary quantum. The bond
variables Jik, attached to bik, are in the most simplest cases assumed to
be two- or three-valued, i.e. Jik ∈ {±1} or Jik ∈ {±1, 0}

Remark.

1. In the proper graph context the notions ‘vertex’ and ’edge’ are perhaps
more common (see e.g. [10]). As to some further concepts used in graph
theory see below.

2. These are, in some sense, the most simple choices one can make. It is
an easy matter to employ instead more complicated internal state spaces
like, say, groups, manifolds etc. One could in particular replace Z by one
of its subgroups or impose suitable boundary conditions.

3. In the following section we will give the bonds bik an ’orientation’, i.e.
(understood in an precise algebraic/geometric sense) bik = −bki. This
implies the compatibility conditions Jik = −Jki.

In a next step we have to impose a dynamical law on our model network.
In doing this we are of course inspired by ‘cellular automaton laws’ (see e.g.
[11]). The main difference is however that in our context also the bonds are
dynamical degrees of freedom and that, a fortiori, they can become dead or
alive (active or inactive), so that the whole net is capable of performing drastic
topological/geometrical changes in the course of clock time.
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A particular type of a dynamical ’local law’ is now introduced as follows:
We assume that all the nodes/bonds at ’(clock) time’ t + τ , τ an elementary
clock time step, are updated according to a certain local rule which relates for
each given node ni and bond bik their respective states at time t + τ with the
states of the nodes/bonds of a certain fixed local neighborhood at time t.

It is important that, generically, such a law does not lead to a reversible
time evolution, i.e. there will typically exist attractors in total phase space (the
overall configuration space of the node and bond states).

A crucial ingredient of our network laws is what we would like to call a
’hysteresis interval’. We will assume that our network starts from a densely
entangled ’initial phase’ QX0, in which practically every pair of nodes is on
average connected by an ’active’ bond, i.e. Jik = ±1. Our dynamical law
will have a built-in mechanism which switches bonds off (more properly: sets
Jik = 0) if local fluctuations among the node states become too large. Then
there is hope that this mechanism may trigger an ’unfolding phase transition’,
starting from a local seed of spontaneous large fluctuations towards a new phase
(an attractor) carrying a certain ’super structure’, which we would like to relate
to the hidden discrete substratum of space-time (points).

One example of such a law is given in the following definition.

Definition 2.2 (Local Law). At each clock time step a certain ’quantum’ q

is transported between, say, the nodes ni, nk such that

si(t + τ) − si(t) = q ·
∑

k

Jki(t)(1)

(i.e. if Jki = +1 a quantum q flows from nk to ni etc.)
The second part of the law describes the back reaction on the bonds (and is,
typically, more subtle). This is the place where the so-called ’hysteresis interval’
enters the stage. We assume the existence of two ’critical parameters’ 0 ≤ λ1 ≤
λ2 with:

Jik(t + τ) = 0 if |si(t) − sk(t)| =: |sik(t)| > λ2(2)

Jik(t + τ) = ±1 if 0 < ±sik(t) < λ1(3)

with the special proviso that

Jik(t + τ) = Jik(t) if sik(t) = 0(4)

On the other side

Jik(t + τ) =

{

±1 Jik(t) 6= 0
0 Jik(t) = 0

if λ1 ≤ ±sik(t) ≤ λ2 .(5)

In other words, bonds are switched off if local spatial charge fluctuations are too
large, switched on again if they are too small, their orientation following the
sign of local charge differences, or remain inactive.
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Remark.

1. The reason why we do not choose the ”current” q ·Jik proportional to the
”voltage difference” (si − sk) as e.g. in Ohm’s law is that we favor a non-
linear (!) network which is capable of self-excitation and self-organization
rather than self-regulation around a relatively uninteresting equilibrium
state! The balance between dissipation and amplification of spontaneous
fluctuations has however to be carefully chosen (“complexity at the edge
of chaos”)

2. We presently have emulated these local network laws on a computer. It
is not yet clear whether this simple network law already does what we
expect. In any case, it is fascinating to observe the enormous capabil-
ity of such intelligent networks to find attractors very rapidly, given the
enormous accessible phase space

3. In the above class of laws a direct bond-bond-interaction is not yet im-
plemented. We are prepared to incorporate such a contribution in a next
step if it turns out to be necessary. In any case there are not so many
ways to do this in a sensible way. Stated differently, the class of possible
physically sensible interactions is perhaps not so numerous.

4. Note that – in contrast to e.g. Euclidean lattice field theory – the so-called
‘clock time’ t is, for the time being, not standing on the same footing
as potential “coordinates” in the network (e.g. curves of nodes/bonds).
Anyhow We suppose that so-called ‘physical time’ will emerge as sort of a
secondary collective variable in the network, i.e. being different from the
clock time (while being of course functionally related to it).

In our view 4 is consistent with the spirit of relativity. What Einstein was
really teaching us is that there is a (dynamical) interdependence between what
we experience as space respectively time, not that they are absolutely identical!
In any case the assumption of an overall clock time is at the moment only made
just for convenience in order to make the model system not too complicated. If
our understanding of the complex behavior of the network dynamics increases,
this assumption may be weakened in favor of a possibly local and/or dynamical
clock frequency. A similar attitude should be adopted concerning concepts like
‘Lorentz-(In)Covariance’ which we also consider as ‘emergent’ properties. It is
needless to say that it is of tantamount importance to understand the way how
these patterns do emerge from the relatively chaotic background which will be
attempted in future work.

As can be seen from the definition of the cellular network, a full scale in-
vestigation of its behavior separates quite naturally into two parts of both a
different mathematical and physical nature. The first one comprises its more
geometric/algebraic content in form of large static graphs and their intricate
structure (at, say, arbitrary but fixed clock time), thus neglecting the details of
the internal states of bonds and nodes, the other one conveys a more dynamical
flavor, i.e. analyzing topological/geometrical change and pattern formation in
the course of clock time.
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Due to lack of space we cannot treat all these different aspects in any detail,
as their proper discussion would require, among other things, the development
of a fair amount of relatively advanced (discrete) mathematics. Therefore we
prefer to make only a couple of provisional remarks as to some of the necessary
building blocks of our framework in the following section, referring to our other
papers for more details, and using the remaining space for a discussion of one
single aspect in slightly more depth. This aspect is the development of a suitable
concept of ‘dimension’ on graphs and similar erratic structures.

3 A brief Discussion of various Geometric and Topo-

logical Concepts on Graphs and Networks

In a first step we would like to have something like a ‘discrete differential cal-
culus’ and ‘functional analysis on graphs’ as kind of protoforms of the corre-
sponding continuum concepts. We recently have shown, that this is in fact
possible and leads to quite interesting mathematical structures. As to differ-
ential calculus and related aspects see the corresponding sections in [12] and
references given there as well as [17] for a complimentary but slightly different
approach. Functional analysis on graphs is developed in [13]. As to some other
aspects of discrete noncommutative geometry refer to the work of Sorkin and
Balachandran et al [18], [19] .

The starting point of our approach is the introduction of a differential cal-
culus on ‘node-’ and ‘bond functions’ as elements of the ’node-’ and ‘bond space’
of a given fixed graph G. To put it briefly, one can define the derivative of ele-
mentary node functions ni (the function with the value one on the node ni, zero
elsewhere) and extend it by linearity to general node functions f :=

∑

fi · ni,
the sum taken over the set of nodes. It is then an easy matter to define e.g.
Lp-spaces etc. The crucial point is that the derivative dni is represented as the
sum over the oriented bonds being incident with ni, i.e.

dni :=
∑

k

bki(6)

(where the ni’s and bik are viewed to generate complex vector spaces). In other
words, d maps the node space into the bond space.

It turns out to make sense to introduce in addition to the oriented bonds,
bik, ‘directed bonds’, dik, having a fixed direction, pointing from node ni to node
nk with

bik := dik − dki(7)

This yields:

df =
∑

ik

(fk − fi)dik(8)

If one develops this discrete calculus further quite a few interesting aspects will
emerge with links to various areas of modern mathematics, catchwords being:
‘non-commutative geometry’, ‘modules’, ‘groupoids’ etc. ([12]).
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It is also possible to develop something like discrete functional analysis on
graphs ([13]). Among other things a ‘graph Laplacian’ does exist which turns
out to be intimately related with the ‘adjacency matrix’ of graph theory.

−∆f := −
∑

i

(
∑

k

(fk − fi))ni and − ∆ = V − A ,(9)

with A the adjacency matrix of a graph (entries aik = 1 or 0 depending on
whether the nodes ni and nk are connected by a bond or not). V is the ‘vertex
degree matrix’, its diagonal elements vii counting the number of bonds being
incident with ni (for more details see the literature cited in [13]). It is partic-
ularly noteworthy that −∆ or A encode many geometric/combinatorial graph
properties being of general interest.

4 The Random Graph Aspect of the Dynamical Net-

work and the Notion of Physical Points

We again have to be very brief; for more details we refer to [14], which repre-
sents, however, given the rapid development of this new field, only a preliminary
draft. A more up to date version is forthcoming. The underlying idea is the
following: Instead of studying the extremely complicated network dynamics in
full, it is tempting to try to catch only its generic qualitative behavior. Fol-
lowing this idea a statistical approach suggests itself. One could e.g. assume
that the network dynamics is sufficiently random so that ‘graph properties’ can
be modeled as ‘random functions’ over a certain probability space. In a com-
pletely different spirit similar ideas have been developed quite some time ago
by Erdős and Renyi and more recently by e.g. Bollobás (see [15]). It was then
an important observation that many graph properties have a so-called ‘thresh-
old function’, which is very reminiscent of a ‘phase transition line’ in statistical
physics.

We already remarked above that we are particularly interested in the possi-
bility of geometric phase transitions in our network. Our hope is that something
like a protoform of space-time may emerge as kind of a superstructure in the
network. The elementary building blocks of this fabric, which we like to call
‘physical points’ we expect to be made up of densely wired ‘sub-clusters’ of
nodes/bonds. These, on their side, are then assumed to establish a kind of
near-/far-order in the network, thus generating something like a causal struc-
ture. One possibility to associate what we like to call ‘physical points’ with
a certain class of subgraphs is it to define them as the ‘maximally connected
subgraphs’ (i.e. subgraphs which are maximal simplices) or what graph theorist
call a ‘clique’. Such cliques can be constructed or found in an algorithmic way
starting from an arbitrary node ([14]).

5 More Graph Theoretical Definitions

In this section we give some more definitions of ordinary graph theory to discuss
one of the aspects mentioned above, the dimensional concept on graphs, in more
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detail in the next section. Most of the notions are well known in graph theory
but we nevertheless want to repeat them to avoid any confusion concerning the
exact definitions.

We already introduced the undirected simple graph as the geometric aspect
of a cellular network. In the following G = (N,B) will always be an undirected
simple graph. We also need the notion of the degree of a node ni ∈ N .

Definition 5.3 (Degree). The degree of a node ni ∈ N is the number of bonds
incident with it, i.e. the number of bonds which have ni at one end. We count
bik and bki only once as we interpret them as the same bond.

We assume the node degree of any node ni ∈ N of the graphs under consider-
ation to be finite. The next step is to define a metric structure on G. To this
end we need to define paths in G and their length.

Definition 5.4 (Path). A path γ of length l in G is an ordered (l+1) tuple of
nodes ni ∈ N , i ∈ I, I = {0, . . . , l} with the properties ni+1 6= ni and bi i+1 ∈ B.

A single node ni ∈ N is a path of length 0. This definition encodes the obvious
idea of a path in G allowing multiple transversals of nodes or bonds. Jumps
across non-existent bonds and stays at a single node are not allowed. Sometimes
this notion of a path is also called a bond sequence.

We will call a path with the property that all ni ∈ γ are pairwise different
a simple path.

The concept of paths on G now leads to a natural definition for the distance
of two nodes ni and nj ∈ N , namely the length of the shortest path connecting
ni and nj.

Definition 5.5 (Metric). Let l(γ) denote the length of γ. A metric d on G is

d(ni, nj) :=

{

min{l(γ) : ni, nj ∈ γ} if such γ exist
∞ otherwise.

(10)

That this actually defines a metric is easily established. Finally we need the
notion of neighborhoods which follows canonically from the metric.

Definition 5.6 (Neighborhood). Let ni ∈ N be an arbitrary node in G. An
n- neighborhood of ni is the set Un(ni) := {nj ∈ N : d(ni, nj) ≤ n}.

Remark. The topology generated by the n-neighborhoods is the discrete topol-
ogy as should be expected from the construction and the discreteness of graphs.

We will denote the surface or boundary of the neighborhood Un(ni) as ∂Un(ni) :=
Un(ni) \ Un−1(ni), ∂U0(ni) = {ni} and the cardinality of Un(ni) and ∂Un(ni)
as |Un(ni)| and |∂Un(ni)| respectively.
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6 Dimensions of Graphs and Networks

Definition 6.7 (Internal Scaling Dimension). Let x ∈ N be an arbitrary

node of G. Consider the sequence of real numbers Dn(x) := ln |Un(x)|
ln(n) . We say

DS(x) := lim infn→∞ Dn(x) is the lower and DS(x) := lim supn→∞ Dn(x) the
upper internal scaling dimension of G starting from x. If DS(x) = DS(x) =:
DS(x) we say G has internal scaling dimension DS(x) starting from x. Finally,
if DS(x) = DS ∀x, we simply say G has internal scaling dimension DS .

A second notion of dimension we want to introduce is the connectivity dimension
which is based on the surfaces of neighborhoods ∂Un(ni) rather than on the
whole neighborhoods Un(ni).

Definition 6.8 (Connectivity Dimension). Let x ∈ N again be an arbi-

trary node of G. We set D̃n(x) := ln |∂Un(x)|
ln(n) +1 and DC(x) := lim infn→∞ D̃n(x)

as the lower and DC(x) := lim supn→∞ D̃n(x) as the upper connectivity di-
mension. If lower and upper dimension coincide, we say G has connectivity
dimension DC(x) := DC(x) = DC(x) starting from x. If DC(x) = DC for all
x ∈ N we call DC simply the connectivity dimension of G.

One could easily think that both definitions are equivalent. This is however not
the case as one definition is stronger than the other. We will discuss this in 6.2.

The internal scaling dimension is rather a mathematical concept and is
related to well known dimensional concepts in fractal geometry as we will see in
7.2. The connectivity dimension on the other hand seems to be a more physical
concept as it measures more precisely how the graph is connected and thus how
nodes can influence each other.

6.1 Basic Properties of the Internal Scaling Dimension

The first lemma gives us a criterion for the uniform convergence of DS(x) or
DS(x) to some common DS or DS for all nodes x in G.

Lemma 6.9. Let x,y ∈ N be two arbitrary nodes in G with d(x, y) < ∞. Then
DS(y) = DS(x) and DS(y) = DS(x).

Proof. Let a := d(x, y) be the distance of the nodes x and y. We have

Un−a(y) ⊆ Un(x) ⊆ Un+a(y)(11)

=⇒
ln |Un−a(y)|

ln(n)
≤

ln |Un(x)|

ln(n)
≤

ln |Un+a(y)|

ln(n)
(12)

=⇒
ln |Un−a(y)|

ln(n − a) + ln
(

n
n−a

) ≤
ln |Un(x)|

ln(n)
≤

ln |Un+a(y)|

ln(n + a) − ln
(

n+a
n

)(13)

=⇒ DS(x) = lim inf
n→∞

ln |Un(x)|

ln(n)
= lim inf

n→∞

ln |Un(y)|

ln(n)
= DS(y) .(14)

Similarly we get DS(x) = DS(y).
2
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Another rather technical lemma provides us with a convenient method to
calculate the dimension of certain graphs, e.g. the self-similar or hierarchical
graphs we construct in 7.2. It shows that under one technical assumption the
convergence of a subsequence of Dn(x) is sufficient for the convergence of Dn(x)
itself.

Lemma 6.10. Let x ∈ N be an arbitrary node of G and let (|Unk
(x)|)k∈N

be a subsequence of (|Un(x)|)n∈N. There may exist a number 1 > c > 0

such that nk

nk+1
≥ c holds for all k ≥ K ∈ N. Then lim infk→∞

ln |Unk
(x)|

ln(nk) =

lim infn→∞ Dn(x) = DS(x) and similar for DS(x).

Proof. The sequence of the neighborhood sizes |Un(x)| is monotone such that
|Unk

(x)| ≤ |Un(x)| ≤ |Unk+1
(x)| for nk ≤ n ≤ nk+1. A short calculation yields

ln |Unk
(x)|

ln(nk) + ln(1
c
)
≤

ln |Un(x)|

ln(n)
≤

ln |Unk+1
(x)|

ln(nk+1) + ln(c)
,(15)

which implies the conjecture. 2

This result is well known in the context of calculation schemes for dimensions
in fractal geometry, see e.g. [2].

Naturally one also may ask how the internal scaling dimension behaves
under insertion of bonds into G. We were able to show that it is pretty much
stable under any local changes. We state this in the following lemma.

Lemma 6.11. Let k ∈ N be a positive natural number and x ∈ N a node in
G. Insertion of bonds between arbitrary many pairs of nodes (y, z) obeying the
relation d(y, z) ≤ k does not change DS(x) or DS(x).

Proof. We denote the new graph built by insertion of new bonds into G as G′ and
accordingly the neighborhoods in G′ as U ′

n(·). Being a node in G, x is also a
node in G′. The restriction on the choice of additional bonds in G′ implies that
even if we connect every node y ∈ N with every node in Uk(y), which is the
maximum we are allowed to do, we still can’t get beyond Un(x) with less or
equal ⌊n

k
⌋2 steps,

U⌊n

k
⌋(x) ⊆ U ′

⌊n

k
⌋(x) ⊆ Un(x) .(16)

A short calculation yields the equality lim infn→∞
ln |U ′

n(x)|
ln(n) = lim infn→∞

ln |Un(x)|
ln(n) .

The same holds for lim sup. 2

Remark. Obviously the insertion of a finite number of additional bonds between
nodes y and z with d(y, z) < ∞ doesn’t change the internal scaling dimension
either. Therefore we can slightly generalize lemma 6.11 by changing our re-
quirements to the following. Only bonds between nodes of finite distance and
only finitely many bonds between nodes of distance d(y, z) > k are inserted
into G to form G′. Then G′ still has the same internal scaling dimensions DS

and DS as G.

2The floor-symbol, ⌊x⌋, denotes the largest integer below x, see e.g. [4]
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Conclusions. We have seen that the internal scaling dimension does not de-
pend on the node from which we start our calculation and that under not too
strong conditions even the convergence of a subsequence of the relevant se-
quence Dn(x) is sufficient to calculate DS and DS . Furthermore the dimension
is stable under local changes in the wiring of the graph. This is a very desirable
feature for physical reasons. Furthermore it shows that a mechanism inducing
dimensional phase transitions has to relate nodes of increasing distance, i.e. has
to change the graph non-locally.

6.2 Relations Between Internal Scaling Dimension and Connec-

tivity Dimension

As already stated above the two concepts of dimension we introduced are not
equivalent. In the following lemma we show that the existence of the connectiv-
ity dimension implies the existence of the internal scaling dimension and that
they then have the same value.

Lemma 6.12. Let x ∈ N again be an arbitrary node in G. In the case that
the limit limn→∞

ln |∂Un(x)|
ln(n) =: DC(x)−1 exists with DC(x) > 1, G has internal

scaling dimension DS(x) = DC(x) starting from x.

Proof. The rather lengthy proof is given in detail in [1]. The main idea is
that |Un(x)| =

∑n
j=0 |∂Uj(x)| such that |Un(x)| can be approximated with the

knowledge of the behavior of |∂Un(x)|. After some calculations one gets the
desired result from this.

2

Inversely, the existence of the internal scaling dimension does not imply the
existence of the connectivity dimension. There are examples in which the scaling
dimension has a well defined value but the connectivity dimension does not
exist. Even neither the upper nor the lower connectivity dimension need to
coincide with the scaling dimension. In [1] we gave an example in which DS =
D,DC = 0 and DC = D + 1.

The only always valid assertion is DC + 1 ≤ DS(x).

7 Construction of Graphs

In the following we want to show how to construct graphs of arbitrary real
internal scaling dimension. We also want to investigate the connections between
the internal scaling dimension of graphs and the box counting dimension of
fractal sets. As will been seen below there is a strong relationship between self
similar sets and what we also want to call self similar graphs with non-integer
internal scaling dimension.

7.1 Conical Graphs with Arbitrary Dimension

For the sake of simplicity we concentrate our discussion on graphs with dimen-
sion 1 ≤ D ≤ 2. Graphs with higher dimension are easily constructed using a
nearly identical scheme.
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Figure 1: Example of a 5
3 dimensional conical graph

Let 1 ≤ D ≤ 2 be an arbitrary real number. Now we construct the graph
like in figure 1. On level m we use a height of ⌊(2m − 1)D−1⌋ boxes. The
construction is continued “to the right” infinitely. To calculate the dimension
we observe that starting from x0 we reach level m after n = 2m−1 steps. Thus
we get with nk := 2k − 1

|∂Unk
(x0)| = ⌊nD−1

k ⌋ =⇒ lim
k→∞

ln |∂Unk
(x0)|

ln(nk)
= D − 1 .(17)

Using lemmas 6.12, 6.9 and 6.10 we see that this graph has internal scaling
dimension DS = D. If we close the construction vertically, i.e. introduce bonds
between the uppermost and the lowest nodes on each level we even can achieve
a completely homogeneous node degree d = 3.

Remark. Locally the constructed conical graph is completely isomorphic to a
two-dimensional lattice. The non-integer dimension is only implemented as a
global property of the graph.

7.2 Self-Similar Graphs

It is well known in graph theory that it is notoriously difficult to construct large
graphs with prescribed properties. It also proved quite difficult to construct
graphs with a prescribed (internal scaling) dimension DS = D which don’t
exhibit the disadvantages of the conical graphs described above. The main idea
which solves the problem is to use the well known theory of self similar sets
or fractals and their dimension theory. In the following we want to show how
this works and that we indeed can construct adjoint graphs to self similar sets
which have internal scaling dimension equal to the box counting dimension of
the self similar sets.

12



Given a strictly self similar set in R
p we canonically construct an adjoint

graph which also will be called self-similar. The construction principle is based
on an algorithm to compute the box counting dimension of a self-similar set.

For details concerning self-similar sets and dimensions of fractals see [2].

7.2.1 Construction Based on Self-Similar Sets

Let M be a strictly self-similar set with similarity transforms Si, i ∈ I, I ⊂ N

and |I| < ∞. The contraction factors ci of Si may all be equal, ci = c ∈ (0, 1).
Now we cover M with cubic lattices Ln ⊂ R

p with closed cubes of edge length
cn, n ∈ N, and replace every cube which has non-void intersection with M by a
node. Nodes will be connected iff the corresponding cubes in the covering cubic
lattices have a non-void intersection, i.e. have a common corner or edge.

By this construction we get a finite graph Gn for each n ∈ N. The degree of
these Gn is uniformly bounded because an n-dimensional cube can only touch a
finite number of neighbor cubes in the cubic lattice. The graph we are interested
in is G∞, the graph we get through infinite continuation of our construction.

Remark.

1. No problems arise from the infinite continuation of the construction steps.

2. The self-similarity of M transfers to G in the sense that we can also define
an equivalent of the similarity transforms of the self-similar set M .

3. Connected self-similar sets produce connected self-similar graphs. The
inverse is not true in general though.

7.2.2 Self-Contained Construction Algorithm

There also are self-contained construction algorithms for self-similar or hierar-
chical graphs. One possibility is the following algorithm:

1. We start with a single node, G0 = ({n0}, ∅).

2. G1 is the so-called generator, some finite graph.

3. We construct Gn+1 from Gn by replacing every node in Gn by the gen-
erator G1 and interpret the original bonds in Gn as bonds between some
“marginal” nodes of the different copies of G1.

The construction is not unique. The result strongly depends on the choice of
the nodes in Gn+1 which carry the bonds of Gn. In our example all “marginal”
nodes of the generator are equivalent because of the symmetry of the generator
and therefore the construction is unique.

A slightly different construction algorithm with identical results is also pos-
sible. We will not describe it here for lack of space. Refer to [1] for more
details.
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7.2.3 Dimension of Self-Similar Graphs

Now we calculate the dimension of the graphs we get by the above construction
using some self-similar set M . For the sake of simplicity we assume that G1

has a central node x0 in the sense that all “marginal” nodes which carry the
“outer” bonds have all the same distance r to this node. We further assume
that 1

c
(c the contraction parameter) is a natural number which is true in most

of the well known examples of self-similar sets and finally that the self-similar
set produces a connected adjoint graph. Then it is easy to see that starting
from node x0 we can exactly reach all nodes of construction step k + 1 after
nk+1 = r + 2r nk + nk = (2r + 1)nk + r steps in the graph, with n0 = 0.
Thus |Unk

(x0)| is equal to the number of nodes in construction step k, i.e.
|Unk

(x0)| = Nδk
= Nck .3 Explicitly we get for nk

nk =
k−1
∑

j=0

(2r + 1)j r = r
(2r + 1)k − 1

2r
∀k ≥ 1 .(18)

Now let us relate r to the contraction parameter c of the self-similar set. We
assumed that the graph constructed from the self-similar set is connected. This
implies that there are 1

c
nodes on the “diagonal” of the generator, i.e. 2r+1 = 1

c
.

Now we have for the internal scaling dimension of G

lim
k→∞

Dnk
(x0) = lim

k→∞

ln(Nck)

ln
(

r
(2r+1)k−1

2r

)(19)

= lim
k→∞

ln(Nck)

ln((2r + 1)k) + ln
(

1−(2r+1)−k

2r

)(20)

= lim
k→∞

ln(Nck)

− ln(ck) + ln
(

1−(2r+1)−k

2r

) = dimB(M)(21)

in which dimB(M) is the box counting dimension of M . Of course lemmas 6.9
and 6.10 provide us with the knowledge that this is the dimension of G starting
from any node.

Thus we established equality of the box counting dimension of self-similar
sets and the internal scaling dimension of the adjoint self-similar graphs under
the assumptions stated above.

Remark. The assumed existence of a central node x0 is not essential for the
equality of the dimensions of the fractal and the graph. The equality still holds
in a more general context, e.g. for fractals like the Sirpinski Triangle. It is
difficult though to give a general proof for arbitrary self-similar sets.

7.2.4 Approximation of a Two Dimensional Lattice

In this paragraph we want to show how it now becomes possible to do a di-
mensional approximation of a n-dimensional cubic lattice. Again, for the sake

3
Nδk

is the number of cubes of edge length δk intersecting M, see the calculation of the
box counting dimension in e.g. [2].
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Figure 2: Some generators to approximate Z
2

of simplicity, we discuss the idea only with a two-dimensional lattice but the
generalization to n dimensions is obvious.

We introduce generators as shown in figure 2. With these we get graphs of
dimensions

D
(l)
S =

ln(2l2 + 2l + 1)

ln(2l + 1)
(22)

in which l is the number which labels the generators in figure 2. Obviously we
have

lim
l→∞

D
(l)
S = lim

l→∞

ln(2l2 + 2l + 1)

ln(2l + 1)
= lim

l→∞

2 ln(l) + ln(2 + 2
l
+ 1

l2
)

ln(l) + ln(2 + 1
l
)

= 2 .(23)

In this sense we have a dimensional approximation of a two-dimensional lattice
as alleged above. This might have some relevance in connection with the di-
mensional regularization used in many renormalization approaches to quantum
field theory.

Remark. The generators above correspond to fractal sets known as “sponges”,
see e.g. [3]. We can construct such “sponges” for any dimension n, we just need
to modify the generators appropriately.
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