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Abstract. Babai and Sos have asked whether there exists a constant c > 0 such that

every finite group G has a product-free subset of size at least c|G|: that is, a subset X

that does not contain three elements x, y and z with xy = z. In this paper we show that

the answer is no. Moreover, we give a simple sufficient condition for a group not to have

any large product-free subset.

§1. Introduction.

The starting point for this paper is a well-known result of Erdős, which states that for

every n-element subset X of Z there is a subset Y ⊂ X of size at least n/3 that is sum-free,

in the sense that if y1 and y2 belong to Y then y1 + y2 does not belong to Y . The proof

is so simple that it can be given in full here. First, choose a prime p such that X lives in

the interval [−p/3, p/3]. A subset Y ⊂ X is then sum-free if and only if it is sum-free mod

p. But if r is any integer not congruent to 0 mod p, then Y is sum-free mod p if and only

if rY is sum-free mod p. But a simple averaging argument shows that one can find r such

that at least a third of the elements of rX lie in the interval [p/3, 2p/3] mod p. That is,

X has a subset Y of size at least n/3 such that rY , and hence Y , is sum-free.

Using the classification of Abelian groups it is easy to see that the same result holds if

X is a subset of an Abelian group, but the situation for non-Abelian groups is less clear. In

1985, Babai and Sos [1] noted that if H is a subgroup of G of index k, then any non-trivial

coset of H is product-free. From the classification of finite simple groups it can be shown

that every finite simple group of order n has a subgroup of index at most Cn3/7 and hence

a product-free set of size at least cn4/7. Combining that with the fact that a product-free

subset of a quotient of G lifts to a product-free subset of G, one can deduce the same result

for all finite groups. In 1997, Kedlaya [8] (see also [9]) improved this bound to cn11/14 by

showing that if H has index k then one can in fact find a union of ck1/2 cosets of H that

is product free.

In the other direction, nothing much was known. Indeed, Babai and Sos asked whether

the lower bound could be improved to cn for some positive constant c, and Kedlaya repeated

this question, while also asking the weaker question of whether, for every ε > 0, one can

obtain a bound of c(ε)n1−ε. This paper answers these questions in the negative, by showing

that, for sufficiently large q, the group PSL2(q) has no product-free subset of size Cn8/9,
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where n is the order of PSL2(q). In fact, we prove the stronger result that if A, B and C are

three subsets of PSL2(q) of size at least Cn8/9, then there is a triple (a, b, c) ∈ A×B ×C

such that ab = c.

The proof has three stages. First, we briefly review some facts about quasirandom

bipartite graphs and quasirandom subsets of groups – detailed proofs of most of these can

be found elsewhere, and we give simple proofs of those that cannot. Secondly, we prove

that the “bipartite Cayley graph” associated with PSL2(q) and one of the three sets under

consideration is quasirandom. Finally, we show that this quasirandomness immediately

implies our result.

Having proved this theorem, we step back and look at what we have done from a

more abstract point of view. The property of PSL2(q) that makes it suitable for results of

this kind is that it has no non-trivial irreducible representations of low dimension. This

property has been used in a similar way before: it is an important ingredient in the famous

construction of Ramanujan graphs by Lubotzky, Phillips and Sarnak [10] (see also [5]), and

it has recently been used by Bourgain and Gamburd [2] to show that certain Cayley graphs

are expanders.

Our main result is rather easier than theirs. However, this very fact may make it

useful to readers who do not have a background in representation theory and who would

like to see how information about representations can be used. If a group has no non-

trivial low-dimensional representations, it seems appropriate to call it quasirandom since,

as we show later in the paper, this property is equivalent to several other properties, some

of which state that certain associated graphs are quasirandom. Once we have stated and

proved various equivalences of this kind, we prove some further results. The first of these is

a partial converse to our main theorem: if a finite group G contains no large product-free

subset, then it is quasirandom. The reason this is a “partial” converse is that the bounds

we obtain are not very good: for most of the results in the paper there is a power-type

dependence of one constant on another, but for this one it is exponential/logarithmic.

Section 4 ends with another weak equivalence. It is easy to prove that a group is

not quasirandom if it has a non-trivial quotient that is either Abelian or of small order.

We show that, in the absence of these obvious obstructions, a group G is quasirandom.

In particular, non-Abelian finite simple groups are quasirandom. Again, we obtain expo-

nential/logarithmic bounds, but for this result it is unavoidable because the dimension of

the smallest non-trivial representation is a power of n for some finite simple groups and

logarithmic in n for others.
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In Section 5 we prove a generalization of the main theorem to more complicated sets

of equations. The theorem itself allows one to place a, b and ab into specified dense subsets

of a quasirandom group. It turns out that one can do the same with more variables: for

example, the next case says that a, b, c, ab, bc, ac and abc can be placed into specified

sets.

The final section of this paper collects together some open problems that have arisen

during the paper, and adds a few more.

§2. Quasirandom graphs and sets.

As promised, let us briefly review some of the standard theory of quasirandomness,

concentrating in particular on the definitions of a quasirandom graph, a quasirandom

bipartite graph and of a quasirandom subset of an Abelian group. The first few results of

this section will not be used later, so we shall not give their proofs. However, they put the

later results into their proper context.

The notion of a quasirandom graph was introduced by Chung, Graham and Wilson

[4], though a similar notion (of so-called “jumbled” graphs) had been defined by Thomason

[11]. If x is a vertex in a graph, we shall write Nx for its neighbourhood. The adjacency

matrix A of a graph G is defined by A(x, y) = 1 if xy is an edge of G and A(x, y) = 0

otherwise.

Theorem 2.1. Let G be a graph with n vertices and density p. Then the following

statements are polynomially equivalent, in the sense that if one statement holds for a

constant c, then all others hold with constants that are bounded above by a positive power

of c.

(i)
∑

x,y∈V (G) |Nx ∩Ny|2 6 (p4 + c1)n4.

(ii) The number of labelled 4-cycles in G is at most (p4 + c1)n4.

(iii) For any two subsets A,B ⊂ V (G) the number of pairs (x, y) ∈ A × B such that

xy ∈ E(G) differs from p|A||B| by at most c2n
2.

(iv) The second largest modulus of an eigenvalue of the adjacency matrix of G is at

most c3n.

A graph that satisfies one, and hence all, of these properties for a small c is called

quasirandom. If one wishes to be more precise, then one can say that G is c-quasirandom

if it satisfies property (i) (or equivalently (ii)) with constant c1 = c. A random graph with

edge probability p is almost always quasirandom with small c, and quasirandom graphs

3



have many properties that random graphs have. In particular, if H is any fixed small

graph, and φ is a random map from V (H) to V (G), then the probability that φ(x)φ(y)

is an edge of G whenever xy is an edge of H (in which case φ is a homomorphism) is

roughly what one would expect, namely p|E(H)|, and the probability that in addition no

non-edge of H maps to an edge of G (in which case φ is an isomorphic embedding) is

roughly p|E(H)|(1− p)(
|V (H)|

2 )−|E(H)|.

A quasirandom bipartite graph is like a quasirandom graph but with some obvious

modifications. As above, we state a theorem that serves as a definition as well.

Theorem 2.2. Let G be a bipartite graph with vertex sets X and Y and p|X||Y | edges.

Then the following statements are polynomially equivalent.

(i)
∑

x,x′∈X |Nx ∩Nx′ |2 6 (p4 + c1)|X|2|Y |2.
(i)

∑
y,y′∈Y |Ny ∩Ny′ |2 6 (p4 + c1)|X|2|Y |2

(ii) The number of labelled 4-cycles that start in X is at most (p4 + c1)|X|2|Y |2.
(iv) For any two subsets A ⊂ X and B ⊂ Y the number of pairs (x, y) ∈ A×B such

that xy ∈ E(G) differs from p|A||B| by at most c2|X||Y |.

We call a bipartite graph c-quasirandom if it satisfies condition (i) (and therefore the

exactly equivalent conditions (ii) and (iii)) with constant c1 = c.

Note that we have not given an eigenvalue condition. This is because the bipartite

adjacency matrix (that is, the obvious 01-function defined on X×Y as opposed to (X∪Y )2)

is not symmetric. However, as we shall see later, there is a natural analogue of this

condition.

To continue our quick survey of known results, let us define quasirandom subsets of

Abelian groups. This is a straightforward generalization of a definition of Chung and

Graham for the case Z/pZ. Again, we present it as a theorem rather than a definition.

Recall that if G is an Abelian group, f is a function from G to C and γ : G → C is a

character of G, then the Fourier transform of f , evaluated at γ, is the number f̂(γ) =

|G|−1
∑

g∈G f(g)γ(g). If f1 and f2 are two functions defined on G, then their convolution

f1 ∗ f2 is defined by f1 ∗ f2(g) =
∑

x+y=g f1(x)f2(y). If A is a subset of G we shall use

the letter A also for the characteristic function of A. That is, A(x) = 1 if x ∈ A and 0

otherwise.

Theorem 2.3. Let G be an Abelian group of order n and let A ⊂ G be a set of size pn.

Then the following are equivalent.
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(i)
∑

g∈G |A ∩ (A + g)|2 6 (p4 + c1)n3.

(ii) There are at most (p4 + c1)n3 solutions in A of the equation x + y = z + w.

(iii)
∑

g∈G |A ∗A(g)|2 6 (p4 + c1)n3.

(iv) For every subset B ⊂ G,
∑

g∈G |A ∗B(g)|2 6 n−1|A|2|B|2 + c2n
3.

(v) The graph with vertex set G and with x joined to y if and only if x + y ∈ A is

c1-quasirandom.

(vi) The bipartite graph with two copies of G as its vertex sets and with x joined to

y if and only if y − x ∈ A is c1-quasirandom.

(vii) |Â(γ)| 6 c3n for all non-trivial characters γ.

It is often convenient to replace Theorems 2.2 and 2.3 with “functional” or “analytic”

versions, as follows.

Theorem 2.4. Let X and Y be two finite sets and let f : X × Y → C be a function that

takes values of modulus at most 1. Then the following properties of f are polynomially

equivalent.

(i)
∑

x,x′∈X

∑
y,y′∈Y f(x, y)f(x, y′)f(x′, y)f(x′, y′) 6 c1|X|2|Y |2.

(ii) For any two functions u : X → C and v : Y → C taking values of modulus at

most 1, ∣∣∣∑
x,y

f(x, y)u(x)v(y)
∣∣∣ 6 c2|X||Y |.

(iii) For any two sets A ⊂ X and B ⊂ Y ,∣∣∣∑
x∈A

∑
y∈B

f(x, y)
∣∣∣ 6 c3|X||Y |.

A function f with one, and hence all three, of the above properties is called quasirandom.

More precisely, we call it c-quasirandom if property (i) holds with constant c.

Theorem 2.4 is closely related to Theorem 2.2. Indeed, if G is a bipartite graph with

vertex sets X and Y and density p, then G is quasirandom if and only if the function

f(x, y) = G(x, y) − p is quasirandom, where we have written G for the characteristic

function of the graph as well (so f(x, y) is 1 − p if (x, y) is an edge and −p otherwise).

This is particularly easy to show if G is regular, in the sense that every vertex in X has

degree p|Y | and every vertex in Y has degree p|X|. Then a quick calculation shows that

G is c-quasirandom if and only if f is c-quasirandom.

Now let us give a functional version of Theorem 2.3. Instead of trying to give as many

equivalences as possible, we shall restrict our attention to ones that will be of interest later
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(in Section 4, when we come to define quasirandom groups). These apply to subsets of an

arbitrary group. They are not deep equivalences, as one might suspect from the fact that

they all hold with the same constant.

Theorem 2.5. Let G be a group of order n and let f : G → C be a function taking values

of modulus at most 1. Then the following are exactly equivalent.

(i)
∑

x∈G

∣∣∣∑y∈G f(x)f(yx)
∣∣∣2 6 cn3.

(ii)
∑

ab−1=cd−1 f(a)f(b)f(c)f(d) 6 cn3.

(iii) The function F (x, y) = f(xy−1) is a c-quasirandom function on G×G.

Proof. To see that (i) and (ii) are equivalent, note that the sum on the left-hand side of

(i) is equal to ∑
x,y,z∈G

f(x)f(yx)f(z)f(yz).

The result now follows from the obvious one-to-one correspondence between quadruples

(a, b, c, d) such that ab−1 = cd−1 and quadruples of the form (x, yx, z, yz).

To see that (ii) and (iii) are equivalent, note that∑
x,x′

∑
y,y′

F (x, y)F (x, y′)F (x′, y)F (x′, y′) =
∑
x,x′

∑
y,y′

f(xy−1)f(xy′−1)f(x′y−1)f(x′y′−1) .

Now for each x, x′, y and y′ we have (xy−1)(x′y−1)−1 = (xy′−1)(x′y′−1)−1. In the other

direction, if ab−1 = cd−1 and g is any group element, then let y = g, x = ag, y′ = c−1ag

and x′ = dc−1ag = bg. Then xy−1 = a, x′y−1 = b, xy′−1 = c and x′y′−1 = d. This

gives us an n-to-one correspondence between quadruples (xy−1, x′y−1, xy′−1, x′y′−1) and

quadruples (a, b, c, d) such that ab−1 = cd−1, which proves that (ii) holds if and only if∑
x,x′

∑
y,y′

F (x, y)F (x, y′)F (x′, y)F (x′, y′) 6 cn4,

that is, if and only if (iii) holds. �

For more details about quasirandom graphs, sets and functions, including proofs of

most of the previous results, the reader is referred to the early sections of [7]. (This is by

no means the only reference, but is chosen because the presentation there harmonizes well

with the presentation in this paper.)

Let us now return to the question of a “spectral theory” for bipartite graphs. For an

ordinary graph G, one observes that the adjacency matrix is symmetric and can therefore
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be decomposed as
∑n

i=1 λiui ⊗ ui for some orthonormal basis (ui) of eigenvectors, with

λi the eigenvalue corresponding to ui. (Here we write u ⊗ v for the matrix that takes

the value u(x)v(y) at (x, y). If v and w are elements of inner product spaces V and W ,

then we write w ⊗ v for the linear map from V to W defined by x 7→ 〈x, v〉w. Notice

that these two definitions are consistent.) For a bipartite graph, the adjacency matrix is

no longer symmetric, so this result is no longer true. However, what we can do instead is

decompose it as a sum
∑n

i=1 λiui⊗vi, where (ui) and (vi) are two orthonormal bases. This

is called the singular value decomposition of the matrix, which was discovered in the late

19th century and is important in numerical analysis. For the convenience of the reader,

we give a proof that it always exists (in the real case).

Theorem 2.6. Let α be any linear map from a real inner product space V to a real inner

product space W . Then A has a decomposition of the form
∑k

i=1 λiwi ⊗ vi, where the

sequences (wi) and (vi) are orthonormal in W and V , respectively, each λi is non-negative,

and k is the smaller of dim V and dim W .

Proof. To begin, let v be a non-zero vector such that ‖αv‖/‖v‖ is maximized. (For this

proof, ‖.‖ is the standard Euclidean norm and 〈, 〉 the standard inner product, either on

Rm or Rn.) Now suppose that w is any vector orthogonal to v and let δ be a small real

number. Then ‖α(v + δw)‖2 = ‖αv‖2 + 2δ〈αv, αw〉+ o(δ), and ‖v + δw‖2 = ‖v‖2 + o(δ).

It follows that 〈αv, αw〉 = 0, since otherwise we could pick a small δ with the same sign

as 〈αv, αw〉 and we would find that ‖α(v + δw)‖/‖v + δw‖ was bigger than ‖αv‖/‖v‖.
Let X and Y be the subspaces of Rn and Rm orthogonal to v and αv, respectively.

They can be given orthonormal bases, and α maps everything in X to Y . Let β be the

restriction of α to X. By induction, β has a decomposition of the required form. That

is, we can write β =
∑k

i=2 λiwi ⊗ vi with vi ∈ X and wi ∈ Y . Now set v1 = v/‖v‖,
w1 = αv/‖αv‖ = αv1/‖αv1‖ and λ1 = ‖αv1‖. Then αv1 = λ1w1, from which it follows

that α =
∑k

i=1 λiwi ⊗ vi, as required. �

The claim made just before Theorem 2.6 is the matrix interpretation of the theorem.

Next, let us note a simple, but for our purposes very important, fact that follows from the

above argument. In the statement, if G is a bipartite graph with vertex sets X and Y of

not necessarily the same size, we call it regular if every vertex in X has the same degree

and every vertex in Y has the same degree.

Lemma 2.7. Let G be a regular bipartite graph with vertex sets X and Y . Let α be the

linear map from CX to CY derived from the bipartite adjacency matrix of G. (That is, if
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f : X → C then αf(y) =
∑

x∈X,xy∈E(G) f(x).) Then the set of all functions f : X → C
such that

∑
x∈X f(x) = 0 and ‖αf‖/‖f‖ is maximized forms a linear subspace of CX .

Proof. Let us first check, using the regularity of G, that the maximum of ‖αf‖/‖f‖
over all functions is attained when f is a constant function. Let every vertex in X have

degree p|Y |, so that every vertex in Y has degree p|X|. Then, settting G(x, y) to be 1 if

xy ∈ E(G) and 0 otherwise,

‖αf‖2 =
∑

y

∣∣∣∑
x

f(x)G(x, y)
∣∣∣2

=
∑
x,x′

f(x)f(x′)
∑

y

G(x, y)G(x′, y)

6
1
2

∑
x,x′

(
|f(x)|2 + |f(x′)|2

) ∑
y

G(x, y)G(x′, y)

=
∑

x

|f(x)|2
∑
x′

∑
y

G(x, y)G(x′, y)

=
∑

x

|f(x)|2p2|X||Y | = p2|X||Y |‖f‖2 .

It follows that ‖αf‖/‖f‖ never exceeds p|X|1/2|Y |1/2. This bound is attained when f is

the constant function 1: then ‖f‖ = |X|1/2, and ‖αf‖ = p|X||Y |1/2 since αf takes the

value p|X| everywhere on Y .

The proof of Theorem 2.6 now tells us that the restriction of the linear map α to

the space of functions that sum to zero can be decomposed as
∑n

i=2 λiwi ⊗ vi. Without

loss of generality, λ2 > . . . > λn > 0. Choose k such that λ2 = . . . = λk > λk+1 and

let X be the subspace of GC generated by v2, . . . , vk. Then the restriction of α to X is

λ2

∑k
i=2 wi ⊗ vi. This map is orthogonal on to its image, so ‖αf‖ = λ2‖f‖ for every

f ∈ X. Since α
(∑n

i=2 µivi

)
=

∑n
i=2 λiµiwi, it is clear that ‖αf‖ < λ2‖f‖ whenever∑

x∈G f(x) = 0 and f /∈ X. �

In the next two results we shall see that the numbers λi play a very similar role for

bipartite graphs that eigenvalues play for graphs.

Lemma 2.8. Let G be a bipartite graph with vertex sets X and Y and identify G with its

bipartite adjacency matrix
∑k

i=1 λiwi⊗vi, where (vi) and (wi) are orthonormal sequences.

Then
∑

i λ2
i is the number of edges in G and

∑
i λ4

i is the number of labelled 4-cycles that

start in X.
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Proof. The number of edges in G is tr(GT G). But GT is
∑

i λivi⊗wi. It is easy to verify

that (vi ⊗wi)(wj ⊗ vj) = vi ⊗ vj . But tr(vi ⊗ vj) = 1 if i = j and 0 otherwise, so the first

statement of the lemma follows.

The second part is similar. The number of labelled 4-cycles that start in X is

tr(GT GGT G). If we expand G and GT then once again the only terms that survive are

those that use a single i. But in this case we have four terms, so the answer is
∑

i λ4
i . �

The next result gives a further condition that is equivalent to quasirandomness for

regular bipartite graphs.

Theorem 2.9. Let G be a regular bipartite graph with vertex sets X and Y , p|X||Y | edges

and identify G with its bipartite adjacency matrix. Then the following are polynomially

equivalent.

(i) G is c1-quasirandom.

(ii) The maximum of ‖Gf‖/‖f‖ over all non-zero functions f such that
∑

x∈X f(x) = 0

is at most c2|X|1/2|Y |1/2.

Proof. By Theorem 2.6 we can write G =
∑k

i=1 λiwi ⊗ vi for orthonormal sequences (vi)

and (wi). By Lemma 2.8, the number of labelled 4-cycles in G that start in X is
∑k

i=1 λ4
i .

Suppose that the decomposition is chosen so that u1 and v1 are constant functions, which

implies that λ1 = p|X|1/2|Y |1/2. Then, if (ii) holds, we find that

k∑
i=1

λ4
i 6 p4|X|2|Y |2 + c2

2|X||Y |
k∑

i=2

λ2
i .

By Lemma 2.8,
∑k

i=2 λ2
i 6 p|X||Y |, so this is at most (p4 +pc2

2)|X|2|Y |2, which establishes

(i) with c1 = pc2
2.

Conversely, if (i) holds, then
∑k

i=1 λ4
i 6 (p4 + c1)|X|2|Y |2. Since λ1 = p|X|1/2|Y |1/2,

it follows that every other λi is at most c
1/4
1 |X|1/2|Y |1/2. Since the maximum of these

other λi is precisely the maximum in (ii), we have established (ii) with c2 = c
1/4
1 . �

§3. A group with no large product-free subset.

In this section we give a quick proof that the density of the largest product-free subset

of the group PSL2(q) tends to zero as q tends to infinity. Recall that PSL2(q) is the 2-

dimensional projective special linear group over Fq, that is, the group of all 2× 2 matrices

over Fq with determinant 1, quotiented by the subgroup consisting of I and −I. It is
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natural to look at this family of groups, since it is one of the simplest infinite families of

finite simple groups; simple groups themselves are natural to look at because if G′ is a

quotient of a group G, then any product-free subset of G′ lifts to a product-free subset

of G. As we have already mentioned, our proof will depend on one basic fact about

representations of PSL2(q), which we state without proof.

Theorem 3.1. Every non-trivial representation of PSL2(q) has dimension at least (q −
1)/2. �

The proof of Theorem 3.1, due to Frobenius, is not especially hard, though it isn’t trivial

either. A nice presentation of it can be found in [5]. To put this result in perspective, the

order of PSL2(q) is q(q2 − 1)/2, so the lowest dimension of a non-trivial representation is

proportional to the cube root of the order of the group. This tells us that, in a certain

sense, PSL2(q) is very far from being Abelian.

As mentioned in the introduction, we shall in fact prove that, given any three large

subsets A, B and C of PSL2(q), there is a triple (a, b, c) ∈ A×B×C such that ab = c. In

order to prove this, it will be convenient (though not essential) to express the number of

such triples in terms of the following bipartite Cayley graph G. The two vertex sets of G

are copies of PSL2(q) and xy is an edge if and only if there exists a ∈ A such that ax = y.

(Note that if xy is an edge, it does not follow that yx is an edge – this is why we have to

consider bipartite graphs.) Then the number of triples we are trying to count is the number

of edges from the copy of B on one side of this bipartite graph to the copy of C on the

other. Let Γ =PSL2(q), let n = |Γ| and let r = |A|/n. Then we know from Theorem 2.2

that the number of edges between these copies of B and C will be approximately r|B||C|
if G is sufficiently quasirandom.

We shall make this argument precise later in the section. But first, let us prove that

the graph G actually is quasirandom.

Lemma 3.2. Let A be any subset of Γ and let G be the bipartite Cayley graph defined

above. Let α be the corresponding linear map defined in the statement of Lemma 2.5. Let

f : Γ → C be any function such that
∑

x∈Γ f(x) = 0. Then ‖αf‖/‖f‖ 6 (2|A|n/(q−1))1/2.

Proof. Note first that, for any x and y in Γ, there exists a ∈ A such that ax = y if and

only if yx−1 ∈ A. Thus, this is another way of stating which pairs xy are edges of G.

Writing A for the characteristic function of the set A, we now have

αf(y) =
∑

x

G(x, y)f(x) =
∑

x

A(yx−1)f(x) =
∑

uv=y

A(u)f(v) = A ∗ f(y) ,
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where the last equality is true by the definition of the convolution of two functions defined

on an arbitrary group. That is, αf = A ∗ f .

Let λ be the maximum of ‖αf‖/‖f‖ over all functions f that sum to zero, and let

X be the set of all functions f that achieve this maximum. Then X is a linear subspace

of CΓ, by Lemma 2.7 (of course, we count 0 as belonging to X). Now if we choose any

f ∈ X and any group element g ∈ Γ, then the function Tgf , defined by Tgf(x) = f(xg),

also belongs to X, since

αTgf(u) =
∑

xy=u

A(x)Tgf(y) =
∑

xy=u

A(x)f(yg) =
∑

xy=ug

A(x)f(y) = αf(ug) ,

from which it follows that ‖αTgf‖ = ‖αf‖. Obviously, ‖Tgf‖ = ‖f‖ as well.

Since any non-zero f in X is non-constant, there exists g ∈ Γ such that Tgf 6= f ,

from which it follows that the right-regular representation of Γ acts non-trivially on X.

Therefore, the dimension of X is at least (q − 1)/2, by Theorem 3.1.

It follows from Theorem 2.6 and Lemma 2.8 that (q − 1)λ2/2 is at most the number

of edges in G, which is |A|n. That is, λ 6 (2|A|n/(q − 1))1/2, as stated. �

We have shown that G satisfies condition (ii) of Theorem 2.9, with c2 = (2|A|/(q −
1)n)1/2, as stated. This may make it look as though G becomes more quasirandom as the

cardinality of A decreases, but that is just an accident arising from the way the condition

is formulated. The point is that when A is smaller, the graph is less dense, which makes it

hard for c2 to be small enough for condition (iv) of Theorem 2.2 to say anything non-trivial.

Nevertheless, we have more or less proved the main result of this paper. All that

remains is to put together the results we have stated or proved already.

Theorem 3.3. Let Γ =PSL2(q), let n = |Γ| and let A, B and C be three subsets of Γ

such that |A||B||C| > 2n3/(q − 1). Then there exist a ∈ A, b ∈ B and c ∈ C with ab = c.

In particular, this is true if all of A, B and C have size greater than 2n8/9. Furthermore,

if η > 0 and |A||B||C| > 2n3/η2(q − 1), then the number of triples (a, b, c) ∈ A × B × C

such that ab = c is at least (1− η)|A||B||C|/n.

Proof. Let |A| = rn, |B| = sn and |C| = tn. As in the previous lemma, let α be the

linear map f 7→ A ∗ f . Let B stand for the characteristic function of the set B, and for

each x ∈ Γ let f(x) = B(x)−s. Then
∑

x f(x) = 0, and ‖f‖2 = (1−s)2|B|+s2(n−|B|) =

s(1− s)n 6 sn.

It follows from Lemma 3.2 that ‖αf‖2 6 2rn2sn/(q−1). But A∗B(y) = A∗(f+s)(y) =

αf(y) + rsn, so whenever A ∗B(y) = 0 we have |αf(y)| = rsn. It follows that the number
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m of y for which A ∗ B(y) = 0 satisfies the inequality m(rsn)2 6 2rsn3/(q − 1), or

m 6 2n/rs(q − 1). But if rst > 2/(q − 1), then this is less than tn, which implies that

there exists c ∈ C such that A ∗B(c) 6= 0. Equivalently, there exist a ∈ A and b ∈ B such

that ab = c, as claimed. The next statement follows from the fact that q − 1 > n1/3.

As for the final claim, the number of triples in question is 〈A ∗ B,C〉 = 〈αf,C〉 +

rsn|C|. But |〈αf,C〉|2 6 2rn2sn|C|/(q−1) = 2|A||B||C|n/(q−1), by the Cauchy-Schwarz

inequality and the estimate for ‖αf‖ obtained earlier, while rsn|C| = |A||B||C|/n. The

result is therefore true provided

2|A||B||C|n/(q − 1) 6 η2|A|2|B|2|C|2/n2 ,

and this inequality follows from our assumption. �

§4. Quasirandom groups.

The property that made PSL2(q) a good group for not containing a large product-free

set was that every large subset gives rise to a directed Cayley graph that is quasirandom.

We deduced this property from the fact that PSL2(q) has no non-trivial low-dimensional

representations. Now we shall show that these two properties, as well as several others,

are in fact equivalent. We shall use the word “quasirandom” for any group that has one,

and hence all, of these properties, but there is a limit to how seriously this word should

be taken. In particular, we do not have a model of random groups for which we can

show that almost every group is quasirandom. (Gromov has, famously, defined a notion of

random group, by taking a set of n generators and a certain number of random relations

of prescribed length. However, his groups are infinite: to define a random finite group one

would need enough relations to make it finite, but not enough to make it trivial, or very

small. This could be a delicate matter.)

A second difference between this notion of quasirandomness and the usual ones for

graphs and subsets of groups is that we do not have a “local” characterization, where

we count small configurations of a certain kind. (For graphs and subsets of groups these

configurations are 4-cycles and quadruples ab−1 = cd−1, respectively.) Indeed, it seems

quite likely that no such characterization exists, and to see why, consider the case of the

group Sn. This is not quasirandom, since An is a subgroup of index 2, but if you choose

a small number of permutations π1, . . . , πk at random (here k should be thought of as

an absolute constant), then they will not have any small relations, so one will not have
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any “local” evidence that they are not all even permutations. That is, Sn appears to be

“locally indistinguishable” from An, which is quasirandom.

This may not be the end of the story, however, because there is a sense in which the

non-quasirandomness of Sn is at least “polynomially detectable.” Suppose that you are

given the multiplication table of Sn, but you are given it abstractly and not told the order

in which the permutations appear. Now suppose that you want an algorithm that will

partition the elements into even and odd permutations in polynomial time (in n!). You

can do it with a randomized algorithm as follows. Choose k elements at random from the

group. Then the probability that they all happen to be even permutations is 2−k, and it is

known that if they are all even then they almost surely generate An, while if they are not

all even then they almost surely generate Sn. The time it takes to find the subgroup they

generate is easily seen to be polynomial, so after a few attempts one will almost certainly

generate An (and we will know that we have done so, since An is the only subgroup of Sn

of index 2).

Now let us begin the process of proving the main result of the section, the statement

that various properties of groups are equivalent. Before we get to the statement itself, we

shall need some mostly standard lemmas.

Lemma 4.1. Let S be the unit sphere in Cn in the standard Euclidean norm, and let µ be

the standard rotation-invariant probability measure on S. Then
∫ ∫

|〈v, w〉|2dµ(v)dµ(w) =

n−1.

Proof. The integral in question is the mean square of the inner product of two random

unit vectors. This average is clearly unaffected if we fix one of the vectors. But if (ei)n
i=1 is

an orthonormal basis of Cn, then
∫

S

∑n
i=1 |〈v, ei〉|2dµ(v) =

∫
S

1dµ(v) = 1, so by symmetry∫
S
|〈v, e1〉|2dµ(v) = n−1. This proves the lemma. �

Lemma 4.2. Let α be a linear map from Cn to Cn. Then tr(α) = n
∫

S
〈αv, v〉dµ.

Proof. Let (ei)n
i=1 be an orthonormal basis. Then the trace of the matrix of α with

respect to this basis, and hence of α itself, is
∑n

i=1〈αei, ei〉. Since this is true for any

orthonormal basis, we may average over all of them. The result follows immediately. �

Lemma 4.3. Let v1 and v2 be two vectors in Cn. Then 〈v1, v2〉 = n
∫

S
〈v1, w〉〈w, v2〉dµ(w).

Proof. The proof is basically the same as that of Lemma 4.2, since for any orthonormal

basis 〈v1, v2〉 =
∑n

i=1〈v1, ei〉〈ei, v2〉, and once again we can average over all of them. �
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Lemma 4.4. Let v1, . . . , vn be unit vectors in Cm. Then
∑

i,j |〈vi, vj〉|2 > m−1n2.

Proof. The trick here is to notice that |〈vi, vj〉|2 = 〈vi ⊗ vi, vj ⊗ vj〉, where vi ⊗ vi is the

m×m matrix with entries vi(p)vi(q), and the inner product is the standard inner product

on Cm2
. It follows that ∑

i,j

|〈vi, vj〉|2 =
∥∥∥ n∑

i=1

vi ⊗ vi

∥∥∥2

.

Now tr(vi ⊗ vi) = 1 for each i, so the trace of
∑n

i=1 vi ⊗ vi is n, from which it follows that

the right hand side is at least m−1n2, which proves the lemma. �

Note that Lemma 4.4 is sharp. Basically any sufficiently symmetric example shows

this, but one simple one is when m|n and the vectors vi consist of n/m copies of some

orthonormal basis. Lemma 4.1 proves that the result is sharp for a “continuous set” of

vectors. Given a set for which the lemma is sharp, the proof above shows that
∑n

i=1 vi⊗vi

is n/m times the identity matrix. That is, the vectors vi give us a representation of the

identity, which is a well-known way of saying that they are nicely distributed round the

unit sphere.

With these lemmas in place, we are ready for our main result of the section.

Theorem 4.5. Let G be a finite group. Then the following are polynomially equivalent.

(i) For every subset A ⊂ G, the directed Cayley graph with generators in A is c1-

quasirandom.

(ii) For every subset A ⊂ G and every function f : G → C that sums to 0, ‖A ∗ f‖ 6

c2n
1/2|A|1/2.

(iii) Every function f from G to the closed unit disc in C such that
∑

g f(g) = 0 is

c3-quasirandom.

(iv) For every function f from G to the closed unit disc in C such that
∑

g f(g) = 0,

the function F (x, y) = f(xy−1) is c3-quasirandom on G×G.

(v) Every non-trivial representation of G has dimension at least c−1
4 .

Proof. The proof that (v) implies (i) and (ii) is essentially contained in the argument

of the previous section. Indeed, suppose that the smallest dimension of a non-trivial

representation is k, and let A ⊂ G. Let Γ be the directed Cayley graph of A and let X be

the space of all functions f such that
∑

f(x) = 0 and ‖A ∗ f‖/‖f‖ is maximized (together

with the zero function). Let λ be the maximum value of this ratio. Then X is invariant

under the right-regular representation of G, so by hypothesis it has dimension at least k.
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Lemma 2.8 implies that kλ2 6 |A|n, so λ 6 (n|A|/k)1/2. This means that if (v) holds then

(ii) holds with c2 = c
1/2
4 .

From this and Lemma 2.8 it follows that the number of appropriately directed 4-cycles

in G is at most |A|4 + n2|A|2/k. In particular, whatever the cardinality of A, the graph is

at least k−1-quasirandom.

We proved that (iii) and (iv) were equivalent in Theorem 2.5.

Now let us prove that (iii) implies (v). That is, given a non-trivial representation

of dimension m, let us construct from it a function f that fails to be c-quasirandom for

some c that depends polynomially on m. This we do by an averaging argument, which

will exploit the lemmas we have just proved. To simplify the notation, we shall write the

average of a function f defined on the sphere S as Evf(v) instead of
∫

S
f(v)dµ(v).

A standard and easy lemma of representation theory tells us that if G has a represen-

tation ρ then there is an inner product on the vector space V on which G acts such that

the representation is unitary. Therefore, we may assume that ρ already has this property.

Also, it will be convenient to assume, as we obviously can, that ρ is irreducible. To simplify

the notation yet further, if v ∈ V and g ∈ G we shall write gv instead of ρ(g)(v).

Given any two vectors v and w in the unit sphere S of V , let fv,w : G → C be defined

by fv,w(g) = 〈gv, w〉. Notice that |fv,w(g)| 6 1 for every g. Furthermore, for any g′ we

have ∑
g

gv =
∑

g

g′gv = g′
(∑

g

gv
)

.

Since ρ is irreducible, it follows that
∑

g gv = 0 (or it would generate a 1-dimensional invari-

ant subspace of V and ρ would not be irreducible). Therefore,
∑

g fv,w(g) =
∑

g〈gv, w〉 =

0. Our averaging argument will show that at least one of these functions fv,w fails to have

the property in (iii), if c4 < m−3.

By Lemma 4.3 (for the second equality),

EwEgfv,w(g)fv,w(gh) = EgEw〈gv, w〉〈w, ghv〉 = m−1Eg〈gv, ghv〉 = m−1〈v, hv〉 .

Therefore, by Lemma 4.2,

EvEwEgfv,w(g)fv,w(gh) = m−2 trh .

Therefore, by the Cauchy-Schwarz inequality,

EvEw

∣∣∣Egfv,w(g)fv,w(gh)
∣∣∣2 > m−4| trh|2 .
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From this it follows that

EvEwEh

∣∣∣Egfv,w(g)fv,w(gh)
∣∣∣2 > m−4Eh| trh|2 ,

and hence that there exist v and w such that

Eh

∣∣∣Egfv,w(g)fv,w(gh)
∣∣∣2 > m−4Eh| trh|2 .

We now have the task of bounding Eh| trh|2 from below. But Eh| trh|2 =

EgEh| tr(gh−1)|2 = EgEh|〈Ag, Ah〉|2, where Ag and Ah are the unitary matrices corre-

sponding to g and h and the inner product comes from considering Ag and Ah as vectors

in Cm2
and taking the standard inner product there. Since these vectors have norm

√
m,

Lemma 4.4 implies that EgEh|〈Ag, Ah〉|2 > m. Putting all this together, we find that

Eh

∣∣∣Egfv,w(g)fv,w(gh)
∣∣∣2 > m−3 ,

completing the proof that (iii) implies (v).

All that remains to prove the theorem is to show that (i) implies (iii). That is, given

a non-quasirandom function defined on G, we would like to construct from it a 01-valued

function that gives rise to a Cayley graph that is also not quasirandom. Since this argument

is standard, we shall be slightly sketchy about it.

It can be shown that the formula

‖F‖ =
(∑

x,x′

∣∣∣∑
y

F (x, y)F (x′, y)
∣∣∣2)1/4

defines a norm ‖.‖ on the space of functions F : G×G → C. (This is a fairly easy lemma:

a proof can be found in [7].) It follows from the triangle inequality that if F fails to be

c-quasirandom, then either Ref or Imf fails to be (c/16)-quasirandom. Therefore, if f is

a function for which (ii) fails, then there must exist a function u with values in [−1, 1] and

average 0 such that ∑
g

(∑
h

u(h)u(gh)
)2

> c3|G|3/16 .

Now let v(g) = (1 + u(g))/2 for every g ∈ G. Then a standard argument shows that

∑
g

(∑
h

v(h)v(gh)
)2

> |G|3/16 + c3|G|3/256 = (1 + c3/16)|G|3/16 .
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(The argument is to expand the left-hand side into a sum of sixteen terms and observe

that ∑
g,g′

(∑
h

v(h)v(gh)
)2

− |G|3

16
− 1

16

∑
g,g′

(∑
h

u(h)u(gh)
)2

is a sum of squares.)

Now choose a subset A ⊂ G randomly, putting g into A with probability v(g), making

all choices independently. Writing A also for the characteristic function of the set A, we

wish to estimate the sum∑
g

(∑
h

A(h)A(gh)
)2

=
∑

g

∑
h,h′

A(h)A(gh)A(h′)A(gh′) .

The number of choices of (g, h, h′) for which the elements h, gh, h′ and gh′ are not all dis-

tinct is O(|G|2), and for all other choices the expected value of A(h)A(gh)A(h′)A(gh′)

is v(h)v(gh)v(h′)v(gh′). Therefore, the expected value of the sum is at least (1 +

c3/20)|G|3/16 when |G| is sufficiently large. Also, with very high probability A has cardi-

nality at most (1+c3/1000)|G|/2 (again, if |G| is sufficiently large). It follows that there ex-

ists a set A such that the directed Cayley graph defined by A is not c3/32-quasirandom. �

We end this section with two further characterizations of quasirandom groups. The

first one states that the quasirandom groups are precisely those that do not contain a large

product-free set. In one direction this is a very simple adaptation of Theorem 3.3 to a more

general context. (This is an exercise, but the details can be found in the next section, in

Lemma 5.1 and the remarks immediately following it.) So we shall concentrate on the other

direction. As commented in the introduction, this final equivalence is not a polynomial

one: we shall show that if the largest product-free subset of G has size δ|G|, then G has

no non-trivial representation of dimension less than C log(1/δ) for some absolute constant

C.

Theorem 4.6. Let G be a group of order n and suppose that G has a non-trivial rep-

resentation of dimension k. Then G has a product-free subset of size at least ckn, where

c > 0 is an absolute constant.

Proof. Let φ : G → Ck be a unitary representation of G. Without loss of generality φ is

irreducible, since otherwise we can find a representation with a smaller k. Also, without

loss of generality it is faithful, since otherwise we can replace G by G/ ker φ. Therefore,

without loss of generality the elements of G are themselves unitary transformations of Ck.
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Now for any vector v ∈ Ck we have
∑

α∈G αv = 0, since it is invariant under left

multiplication by any β ∈ G and the representation is irreducible. It follows from Lemma

4.2 that the average trace of an element of G is 0. Since the trace of a unitary operator

has modulus at most k, it follows that the number of elements α ∈ G such that tr α has

real part greater than k/2 is at most 2n/3. That is, at least n/3 elements of G have trace

with real part less than or equal to k/2.

Now the trace is the sum of the eigenvalues, so if trα has real part at most k/2, there

must be an eigenvalue ω with real part at most 1/2.

Let X be the set of all α ∈ G such that tr α 6 k/2 and for each α ∈ X let v(α) be a

unit eigenvector with eigenvalue ω(α) that has real part less than 1/2.

Now let δ > 0 be an absolute constant to be chosen later. By a standard volume

argument the unit sphere of Ck has a δ-net of cardinality at most (3/δ)2k, so we can

choose at least (δ/3)2k|X| elements α of X such that all the vectors v(α) lie within δ of

some point and hence within 2δ of each other. Therefore, we can choose at least (δ/4)2kn

elements α of X such that all the v(α) are within 2δ of each other and all the ω(α) are

within δ of each other as well. Let Y be a subset of X with this property.

We would now like to show that, for any α and α′ in Y , the vectors αv(α) and α′v(α)

are close. This we deduce from the following equalities and inequalities, which all follow

from the properties of Y and the fact that the elements of G preserve distance: αv(α) =

ω(α)v(α); ‖ω(α)v(α) − ω(α′)v(α)‖ 6 δ; ‖ω(α′)v(α) − ω(α′)v(α′)‖ 6 2δ; ω(α′)v(α′) =

α′v(α′); ‖α′v(α′)−α′v(α)‖ 6 2δ. Therefore, by the triangle inequality, ‖αv(α)−α′v(α)‖ 6

5δ.

Now let α′′ be another element of Y . Then ‖αv(α) − α′′v(α)‖ 6 5δ as well. Also,

from the previous inequality and the fact that α is unitary, we can deduce that ‖α2v(α)−
αα′v(α)‖ 6 5δ. Therefore, if αα′ = α′′ it follows that ‖α2v(α)− αv(α)‖ 6 10δ, and hence

that ‖αv(α) − v(α)‖ 6 10δ, and finally that |ω(α) − 1| 6 10δ. But we know that ω(α) is

a complex number with modulus 1 and real part at most 1/2, from which it follows that

|ω(α) − 1| > 1. Therefore, Y is product free as long as we choose δ to be less than 1/10.

Therefore, we can find a product-free subset Y of G of size at least ckn with c a positive

absolute constant (in fact, 1/2000 will do), which proves the theorem. �

Our final characterization of quasirandom groups states that a group G is quasirandom

if and only if every quotient of G is large and non-Abelian. We start with a natural

special case of this, showing that all non-cyclic finite simple groups are quasirandom.

One could presumably prove this result with a better bound than we obtain by using
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the classification of finite simple groups and simply looking up the dimensions of their

irreducible representations. However, our proof is elementary. (Even this elementary

argument may well be known, but we have had trouble finding it in the literature.)

Theorem 4.7. Let G be a non-cyclic finite simple group of order n. Then every non-trivial

representation of G has dimension at least
√

log n/2.

Proof. Let φ : G → U(k) be an irreducible unitary representation of G. Since G is simple,

φ has trivial kernel, so without loss of generality G itself is a finite subgroup of U(k).

Let α be any element of G other than the identity. We claim first that α has a

conjugate that does not commute with α. To see this, suppose that all conjugates do

commute with α. Then for any β and γ in G we have

(βαβ−1)(γαγ−1) = γ(γ−1βαβ−1γ)αγ−1 = γα(γ−1βαβ−1γ)γ−1 = (γαγ−1)(βαβ−1) .

That is, all conjugates of α commute with each other. But the subgroup of G generated

by conjugates of α is easily seen to be normal, and therefore all of G, which implies that

G is Abelian. But in that case the only irreducible representations of G are 1-dimensional,

which implies that k = 1 and G is cyclic, contradicting our hypothesis.

Suppose now that α is the closest element of G, in the operator norm on B(Ck), to

the identity (apart of course from the identity itself), and let ‖α − ι‖ = ε. Let β be a

conjugate of α that does not commute with α. Then ‖β − ι‖ = ε as well, since G consists

of unitary transformations. Write α = ι + γ and β = ι + η. Then αβ − βα = γη − ηγ.

Therefore, since α−1β−1 is unitary, ‖ι − αβα−1β−1‖ = ‖γη − ηγ‖. Since α and β do not

commute, and are closest elements to the identity, it follows that ‖γη − ηγ‖ > ε. But we

also know that ‖γη− ηγ‖ 6 2‖γ‖‖η‖ = 2ε2. Therefore, ε > 1/2, which implies that no two

elements of G are closer than 1/2 in the operator norm.

It remains to determine an upper bound for the size of a 1/2-separated subset of U(k).

But U(k) is contained in the unit ball of B(Ck). The volume argument mentioned in the

previous lemma shows that for any d-dimensional real normed space and any ε > 0 the

largest ε-separated subset of the unit ball has size at most (1 + 2/ε)d. The normed space

B(Ck) is a k2-dimensional complex space, so, setting d = 2k2 and ε = 1/2, we deduce

that a 1/2-separated subset of U(k) has cardinality at most 25k2
. That is, n 6 25k2

, from

which the theorem follows. �

Note that the alternating groups An have representations of dimension n − 1 (since

they act on the subspace of Cn consisting of vectors whose coordinates add up to 0).

Therefore, the bound in Theorem 4.7 cannot be improved to more than log n/ log log n.
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Theorem 4.8. Let G be a group of order n and suppose that for every proper normal

subgroup H of G, the quotient G/H is non-Abelian and has order at least m. Then G

has no non-trivial representation of dimension less than
√

log m/2. Conversely, if G has

an Abelian quotient, then G has a 1-dimensional representation, and if G has a quotient

of order m, then G has a representation of dimension
√

m.

Proof. Let us quickly deal with the converse, since this is easy and not the main point of

interest. Any representation of a quotient of G can be composed with the quotient map so

that it becomes a representation of G of the same dimension. Therefore, the result follows

from two standard facts of representation theory: that the irreducible representations of

Abelian groups are 1-dimensional (and exist!), and that every group of order m has a

representation of dimension at most
√

m. (This second fact follows from the result that

the sum of the squares of the dimensions of the irreducible representations is m.)

Now let us turn to the more interesting direction of the theorem. Let H be a maxi-

mal proper normal subgroup of G. Then the quotient group G/H is simple and, by our

hypothesis, non-Abelian. Let φ : G → U(k) be a unitary representation of G. If we knew

that the kernel of φ was H, then we would have a representation of G/H to which we

could apply Theorem 4.7. However, this does not have to be the case, so instead we must

imitate the proof of Theorem 4.7, as follows.

We may clearly assume that φ is a faithful representation (or else we look at the

quotient of G by its kernel). Therefore, we shall think of the elements of G itself as unitary

maps on Ck. Let us now define a metric on G/H by taking d(αH, βH) to be the smallest

distance (in the operator norm again) between any element of αH and any element of

βH. Let α be an element of G \H such that the distance from αH to H, with respect to

this metric, is minimized, and note that this distance is just the smallest distance in the

operator norm from any element of αH to the identity. Without loss of generality, α itself

is an element of αH for which this minimum is attained.

Now G/H is simple and non-Abelian. Hence, by the argument of the last section, we

can find a conjugate βH of αH in G/H that does not commute with αH. It is easy to

see that we can choose the representative β to be a conjugate of α in G, so let us do this.

Then β is a conjugate of α such that not only do α and β not commute, but they do not

even belong to the same coset of H. Moreover, the distance from β to the identity is the

same as the distance from α to the identity. As in the proof of Theorem 4.8, let ε be this

distance, and let α = ι + γ and β = ι + η.

Once again, the distance between αβ and βα is ‖γη − ηγ‖, and therefore so is the
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distance between ι and αβα−1β−1. Since αβα−1β−1 does not belong to H, it follows from

our minimality assumption that ‖γη − ηγ‖ > ε, as before, and it is also at most 2ε2 for

precisely the same reason as before. Therefore, no two elements of different cosets of H

can be within 1/2 of each other in the operator norm, so, by the upper bound given in the

proof of Theorem 4.7 for the size of a 1/2-separated subset of U(k), there can be at most

25k2
cosets of H. This proves the theorem. �

A good example to bear in mind in connection with Theorem 4.8 and its proof is the

following family of groups. Let p and k be positive integers and let G(p, k) be the subgroup

of U(k) generated by all diagonal matrices with pth roots of unity as their diagonal entries,

and all permutation matrices corresponding to even permutations. Thus, a typical element

of G(p, k) is a permutation matrix of determinant 1 with its 1s replaced by arbitrary pth

roots of unity. The subgroup H(p, k) generated by just the diagonal matrices in G(p, k)

is normal, and the quotient is isomorphic to the alternating group Ak. Therefore, these

groups are quasirandom as k tends to infinity, despite being of arbitrarily high order for

any fixed k. The reason this can happen is that, as the proof of Theorem 4.8 shows is

necessary, the cosets of H(p, k) are well-separated.

In practice, Theorems 4.6 and 4.8 are not particularly useful characterizations of

quasirandomness because the equivalences are not polynomial equivalences. In other words,

they are fine if all one wants is qualitative statements (such as that no subset of positive

density is product free) but too crude if one is interested in bounds of the kind obtained

in this paper. However, sometimes a qualitative statement is interesting – for example, if

one is wondering whether a particular family of groups is quasirandom and wants to make

a preliminary check. For instance, Theorem 4.8 tells us that SL2(p) is quasirandom, since

{ι,−ι} is a maximal normal subgroup of very high index. However, this particular group

is much more quasirandom than Theorem 4.8 guarantees.

§5. Solving equations in quasirandom groups.

The purpose of this section is to prove a double generalization of Theorem 3.3. One

direction of generalization is that the result applies to all quasirandom groups, but this

is easy since the argument of Theorem 3.3 carries over word for word if one interprets

(q − 1)/2 to be the smallest dimension of a non-trivial representation of the group one is

talking about. The other direction is more interesting: instead of finding a and b such that

a, b and ab each lie in specified sets, we shall find a1, . . . , am such that for every non-empty
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subset F ⊂ {1, 2, . . . ,m} the product of those ai with i ∈ F lies in a specified set. In

other words, perhaps surprisingly, we can choose m elements of the group in such a way

that exponentially many conditions are satisfied simultaneously, using only the fact that a

reasonable number of elements satisfy each condition individually.

Underlying the argument is the following basic lemma, which is implicit in the proof

of Theorem 3.3. The proof of the main theorem of this section will use this lemma to drive

an inductive argument.

Lemma 5.1. Let G be a group of order n such that no non-trivial representation has

dimension less than k. Let A and B be two subsets of G with densities rn and sn,

respectively and let δ and t be two positive constants. Then, provided that rst > (δ2k)−1,

the number of group elements x ∈ G for which |A ∩ xB| 6 (1− δ)rsn is at most tn.

Proof. Let C be the set {x−1 : x ∈ B}. Then

|A ∩ xB| =
∑

y

A(y)(xB)(y) =
∑

y

A(y)B(x−1y) =
∑

y

A(y)C(y−1x) = A ∗ C(x) .

By Theorem 4.5, if f : G → R sums to zero, then ‖A ∗ f‖ 6 (r/k)1/2n‖f‖. Applying this

result in the case f(x) = C(x)− s and noting that ‖f‖2 = s(1− s)n 6 sn, we deduce that

‖A ∗C − rsn‖2 6 rsn3/k. It follows that the number of x such that A ∗C(x) 6 (1− δ)rsn

is at most n/δ2rsk. If rst > (δ2k)−1, then this is at most tn, as required. �

Note the following easy consequence of Lemma 5.1, which shows that it is indeed

effectively the same as most of the proof of Theorem 3.3. Suppose that rst > 1/k and that

C is a subset of G with density t. Lemma 5.1 with δ = 1 tells us that the number of y

such that A∩ y−1B = ∅ is less than tn, from which it follows that there exists y ∈ C such

that A ∩ y−1B 6= ∅. But then, if x ∈ A ∩ y−1B, we have x ∈ A, y ∈ C and yx ∈ B.

In order to make the proof of our general theorem more transparent, we begin with

the special case m = 3.

Theorem 5.2. Let G be a group of order n such that no non-trivial representation has

dimension less than k. Let A1, A2, A3, A12, A13, A23 and A123 be subsets of G of densities

p1, p2, p3, p12, p13, p23 and p123, respectively. Then, provided that p1p2p12, p1p3p13,

p1p23p123 and p2p3p23p12p13p123 are all at least 16/k, there exist elements x1 ∈ A1, x2 ∈ A2

and x3 ∈ A3 such that x1x2 ∈ A12, x1x3 ∈ A13, x2x3 ∈ A23 and x1x2x3 ∈ A123.

Proof. We start by choosing x1, noting that there are certain conditions it will have

to satisfy if there is to be any hope of continuing the proof. For example, later we shall
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need to choose x2 ∈ A2 such that x1x2 ∈ A12. Equivalently, we shall need x2 to belong

to A2 ∩ x−1
1 A12. Similarly, we shall need x3 ∈ A3 ∩ x−1

2 A13 and x2x3 ∈ A23 ∩ x−1
1 A123.

Therefore, we want these sets to be not just non-empty, but reasonably large.

By Lemma 5.1, the number of x1 such that |A2∩x−1
1 A12| < p2p12n/2 is at most p1n/4,

provided that p1p2p12 > 16/k. Similarly, if p1p3p13 > 16/k and p1p23p123 > 16/k, then

the number of x1 such that |A3 ∩ x−1
1 A13| < p3p13n/2 is at most p1n/4 and the number

of x1 such that |A23 ∩ x−1
1 A123| < p23p123n/2 is at most p1n/4. Therefore, provided these

inequalities hold, we can choose x1 ∈ A1 such that, setting B2 = A2 ∩A12, B3 = A3 ∩A13

and B23 = A23∩A123, q2 = p2p12/2, q3 = p3p13/2 and q23 = p23p123/2, we have |B2| > q2n,

|B3| > q3n and |B23| > q23n.

At this point we could quote our results about product-free sets, but instead let us

repeat the argument (which is more or less an equivalent thing to do). We would like to

choose x2 ∈ B2 such that B3∩x−1
2 B23 is non-empty. Lemma 5.1 implies that the number of

x2 such that B3∩x−1
2 B3 is empty is at most q2n/2, provided that q2q3q23 > 2/k. Therefore,

provided we have this inequality, which, when expanded, says that p2p3p23p12p13p123 >

16/k, there exist x2 ∈ B2 and x3 ∈ B3 such that x2x3 ∈ B23. But then x1, x2 and x3

satisfy the conclusion of the theorem. �

It is clear that the above argument can be generalized. The only thing that is not

quite obvious is the density conditions that emerge from the resulting inductive argument.

Here is what they are. Suppose that for every subset F ⊂ {1, 2, . . . ,m} we have a subset

AF of a group G with density pF and suppose that no non-trivial representation of G

has dimension less than k. Now let h be an integer less than m and let E be a subset of

{h + 1, . . . ,m}. Let Ah,E be the collection of all sets of the form U ∪ V , where max U < h

and V is either {h}, E or {h}∪E. We shall say that the sets AF satisfy the (h, E)-density

condition if
∏

F∈Ah,E
pF is at least 23m/k. We shall say that they satisfy the density

condition if they satisfy the E-density condition for every h < m and every non-empty set

E ⊂ {h + 1, . . . ,m}.
To get an idea of what this means, notice that the inequalities we assumed in Theo-

rem 5.2 are the (1, {2})-condition, the (1, {3})-condition, the (1, {2, 3})-condition and the

(2, {3})-condition, respectively, except that there we had a slightly better dependence on

m.

Theorem 5.3. Let G be a group of order n such that no non-trivial representation has

dimension less than k. For each non-empty subset F ⊂ {1, 2, . . . ,m} let AF be a subset
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of G of density pF , and suppose that this collection of sets satisfies the density condition.

Then there exist elements x1, . . . , xm of G such that xF ∈ AF for every F , where xF stands

for the product of all xi such that i ∈ F , written with the indices in increasing order.

Proof. By the density condition, for every non-empty subset F ⊂ {2, . . . ,m} we have the

inequality 2−mp1pF p1F > 22m/k. (Here we use the shorthand 1F to stand for {1} ∪ F .)

Therefore, by Lemma 5.1, for each F the number of x1 such that |AF ∩ x−1A1F | 6

pF p1F (1−2−m) is at most p1n/2m. Therefore, the number of x1 such that |AF ∩x−1
1 A1F | 6

pF p1F (1 − 2−m) for at least one non-empty F ⊂ {2, . . . ,m} is at most p1n/2. It follows

that there exists x1 ∈ A1 such that, if for every non-empty F ⊂ {2, . . . ,m} we set BF =

AF ∩A1F , then every BF has density at least qF = pF p1F (1− 2−m).

We claim now that the sets BF satisfy the density condition (after a relabelling of the

index set). Let h < m and let E be a non-empty subset of {h + 1, . . . ,m}. Define Bh,E to

be the set of all F of the form U ∪ V with U ⊂ {2, . . . , h − 1} and V equal to {h}, E or

{h} ∪ E. Then∏
F∈Bh,E

qF > (1− 2−m)2
m ∏

F∈Bh,E

pF p1F = (1− 2−m)2
m ∏

F∈Ah,E

pF .

But (1 − 2−m)2
m

> 1/4 and
∏

F∈Ah,E
pF > 23m/k, so this implies that

∏
F∈Bh,E

qF >

23(m−1)/k. Therefore, the sets BF satisfy the density condition.

This proves the inductive step of the theorem. To be on the safe side, we take as our

base case the case m = 2. (We do this so that we do not have to worry about the definition

of the density condition when E cannot be non-empty.) This follows easily from the remark

following Lemma 5.1 if one sets A1 = C, A2 = B and A12 = A. The density condition in

this case is stronger than the hypothesis we needed to guarantee the existence of x1 and

x2 such that x1 ∈ A1, x2 ∈ A2 and x12 ∈ A12. Therefore, the theorem is proved. �

We now give a couple of corollaries of Theorem 5.3. They are special cases of the

theorem: the only extra content is that we need to do a small amount of calculation to

optimize certain densities while preserving the density condition.

Corollary 5.4. Let G be a group of order n such that no non-trivial representation has

dimension less than k. For each non-empty subset F ⊂ {1, 2, . . . ,m} let AF be a subset

of G of density p. Then, provided that p3.2m−2
> 23m/k (which is true if p > 2k−1/22m

),

there exist x1, . . . , xm such that xF ∈ AF for every F .

Proof. Since all the densities are the same, all we have to do is look at which set Ah,E is

largest. Obviously they get larger as h gets larger, so the largest one is when h = m− 1.
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This has size 3.2m−2 since there are 2m−2 possibilities for U and 3 possibilities for V . The

result now follows from Theorem 5.3. �

Corollary 5.5. Let G be a group of order n such that no non-trivial representation has

dimension less than k. For every pair 1 6 i < j 6 m let Aij be a set of density p. Then,

provided that p > 4k−1/(2m−3), there exist x1, . . . , xm such that xixj ∈ Aij for every i < j.

Proof. We shall apply Theorem 5.3 again, setting AF to be G whenever F has cardinality

other than 2. Then pF = p if F has cardinality 2, and pF = 1 otherwise. Now let us work

out how many sets of size 2 are contained in Ah,E . If E has cardinality greater than 1

then there are h− 1 such sets, since then V must equal {h} and U must be a singleton. If

E has cardinality equal to 1 then there are 2h − 1 sets, since either U is a singleton and

V is {h} or E, or U is empty and V is {h} ∪ E. Since the largest possible value of h is

m− 1, this tells us that the sequence exists provided that p2m−3 > 23m/k, which implies

the corollary. �

It is possible to generalize Theorem 5.3 slightly further by exploiting two facts about

Lemma 5.1. Instead of giving full details, we shall merely state two results and briefly

explain how they are proved.

Theorem 5.6. Let G be a group of order n such that no non-trivial representation has

dimension less than k. For every pair 1 6 i < j 6 m let Aij be a set of density p. Then,

provided that p > 4k−1/(2m−3), there exist x1, . . . , xm such that xix
−1
j ∈ Aij for every

i < j.

Theorem 5.7. Let G be a group of order n such that no non-trivial representation has

dimension less than k. Let A1, A2, A3, A12, A13, A23 and A123 be subsets of G of densities

p1, p2, p3, p12, p13, p23 and p123, respectively. Then, provided that p1p2p12, p1p3p13,

p1p23p123 and p2p3p23p12p13p123 are all at least 16/k, there exist elements x1 ∈ A1, x2 ∈ A2

and x3 ∈ A3 such that x1x2 ∈ A12, x3x1 ∈ A13, x2x
−1
3 ∈ A23 and x2x

−1
3 x−1

1 ∈ A123.

To prove statements like this, one exploits Lemma 5.1 and its method of proof to the

full. Not only can one show that A ∩ xB is nearly always about the same size (when A

and B are large enough), but also A ∩ x−1B, A ∩Bx and A ∩Bx−1. The inductive proof

of Theorem 5.3 works as long as at each stage of the inductive process the variable one

is trying to choose, or its inverse, appears either at the beginning or at the end of each

product. So, for example, in Theorem 5.7 one starts by choosing x1 such that A2∩x−1
1 A12,
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A3 ∩ A13x
−1
1 and A23 ∩ A123x1 are all large. One is then left needing to place x2, x3 and

x2x
−1
3 into these sets, which can clearly be done.

Remarks. Although it may at first seem surprising that one can cause so many equations

to be satisfied simultaneously, there is an intuitive explanation for this, at least for readers

familiar with the notion of higher-degree uniformity for subsets of Abelian groups. (See [6,

Section 3] for a definition of this.) In that terminology, Lemma 5.1 shows that all dense

subsets of G have a property very similar to uniformity. But if that is the case, then

almost all intersections of a dense set A with a translate of itself will still be dense, and

will therefore be uniform as well, which shows that A has a sort of non-Abelian version

of quadratic uniformity. But if uniformity implies quadratic uniformity, then it implies

uniformity of all degrees. In the Abelian case, the higher the degree of uniformity a set

has, the more linear equations one can hope to solve simultaneously in that set, so it is

not too surprising after all that one can solve large numbers of equations simultaneously

in subsets of a group where every dense set is uniform.

Another interesting aspect of Theorem 5.3 is that under certain circumstances it can

yield very good bounds. For simplicity let us consider the case where all the sets AF have

density either p or 1, and let F be the set of F such that the density is p. Suppose that no

element of {1, 2, . . . ,m} is contained in more than r of the sets F ∈ F . Then no set Ah,E

can contain more than 2r elements of F , so we can satisfy all the conditions simultaneously

if p2r > 23m/k. That is, for fixed r we can contain a power that is independent of m. (With

a bit of care, the exponential dependence of the constant on m can be improved as well.)

This situation would arise if, for example, we wanted xixj to belong to Aij whenever ij

was an edge of a certain graph H of maximal degree 10.

§6. Open questions.

The results of this paper leave several questions unanswered. One that has been

mentioned already is whether there is a good model for “typical” large finite groups with

the property that typical groups are quasirandom. Another that has been touched on is

whether Theorem 4.6 can be improved. More precisely, if G has a non-trivial representation

of dimension k, does G have a product-free subset of size cn for some c that depends

polynomially on k−1? In view of the fact that every group of order n contains a product-

free subset of polynomial size, it seems at least possible that the answer is yes. A closely

related question is to find good bounds for the largest Haar measure of a product-free
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subset of SU(n). The methods of this paper, suitably adapted, ought to prove that this is

at most Cn−1/3, but the largest product-free subsets of SU(n) that we know of are in the

spirit of the construction of Theorem 4.6 and are therefore exponentially small.

A question that arises naturally in the light of Theorem 4.8 is the following. Suppose

that G has a normal subgroup H and that the quotient G/H is quasirandom. Does

it follows that G is quasirandom? The answer is yes, in a qualitative sense, but the

following proof we have is unsatisfactory and gives a bad bound. Suppose that the smallest

non-trivial representation of G/H has dimension m. Extend H to a maximal normal

subgroup J . Then there is a homomorphism from G/H to G/J , so G/J has no non-

trivial representation of dimension less than m. In particular, G/J has order at least m2.

But G/J is simple, so it must be non-Abelian, and therefore, by the proof of Theorem

4.8 (which shows that a group with a large non-Abelian simple quotient is quasirandom),

G is quasirandom. The trouble with this argument is that the quasirandomness of G

that it guarantees is much weaker than the quasirandomness of G/H. However, it is not

immediately obvious how to fix this, since a representation of G doesn’t naturally yield

a representation of G/H. So the question we end up with is this: suppose that G has a

normal subgroup H and that G has a non-trivial representation of dimension m? How

large can the smallest non-trivial representation of G/H be? The argument above gives a

bound of Cm2
. Is the correct bound polynomial?

Several problems arise when one starts to think about the following broad question:

which equations have solutions in large subsets of PSL2(q), or of other quasirandom groups?

The most general answer we have been able to find is Theorem 5.3 (and the slight gener-

alization mentioned at the end of the last section), but it is not obvious that that is the

end of the story. Here are two questions that give some idea of what further results might

or might not be true. The first has an easy negative answer: if A, B and C are three large

sets, can one find a ∈ A, b ∈ B and c ∈ C such that ab = ca? The answer is no, since if

ab = ca, then b = a−1ca. Thus, b and c are conjugate, so to find a counterexample all one

has to do is make B and C disjoint unions of conjugacy classes.

However, for a very similar question it is much less clear what the answer is. If A is a

quasirandom subset of an Abelian group, then A contains approximately the same number

of arithmetic progressions of length 3 (defined to be sequences of the form (a, a+d, a+2d)

with d 6= 0) as a random set of the same cardinality, and it also contains about the same

number of solutions to the equation x + y = z. Moreover, the proofs of these two facts

are very similar. What happens if we investigate arithmetic progressions in subsets of
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PSL2(q)?

The most obvious question is not very interesting: does every dense subset A of

PSL2(q) contain a progression of length 3, where this is now defined to be a sequence of

the form (x, gx, g2x)? (It might be better to call this a “left progression,” since it is not

the same as a sequence of the form (x, xg, xg2).) The answer is yes, since PSL2(q) can

be decomposed into right cosets of a cyclic subgroup of order q: we can therefore find a

coset such that A intersects it densely and apply Roth’s theorem. However, this leaves

two questions unanswered. First, does A in fact contain roughly the expected number of

progressions of length 3? That is, if A has cardinality δn, are there roughly δ3n2 pairs

(x, g) such that x, gx and g2x all lie in A? Secondly, if A, B and C are three dense subsets

of PSL2(q), must there be an arithmetic progression (a, b, c) ∈ A × B × C. This would

be interesting, since an “off-diagonal” Roth theorem of this kind is completely false in an

Abelian group.

Notice that if (a, b, c) = (x, gx, g2x), then c = ba−1b, and if c = ba−1b then (a, b, c) =

(a, ga, g2a) for g = ba−1. Therefore, an equivalent question to the last one is the following:

if A, B and C are three dense subsets of PSL2(q), must there exist a ∈ A, b ∈ B and

c ∈ C such that bab = c? (To make the question cleaner we have replaced A by the set of

inverses of elements of A, which obviously makes no difference.)

There is a natural bipartite graph that one can define in response to these prob-

lems: join x to y if there exists b ∈ B such that bxb = y. If this graph is automatically

quasirandom, then the answers to both problems are yes. But it is not clear whether it is

quasirandom. The difficulty is that we are mixing left and right actions, which makes rep-

resentation theory less easy to apply. (Notice that the natural bipartite graph associated

with the equation ab = ca we considered first joins x to all points of the form a−1xa. It

is easy to see that this graph is very far from quasirandom – indeed, it has multiple edges

and a typical edge has very high multiplicity.)
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