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ii PREFACE

This book grew out of a one semester first course in Scientific Computing
for graduate students at New York University. It represents our view of how
advanced undergraduates or beginning graduate students should start learning
the subject, assuming that they will eventually become professionals. It is a
common foundation that we hope will serve people heading to one of the many
areas that rely on computing. This generic class normally would be followed by
more specialized work in a particular application area.

We started out to write a book that could be covered in an intensive one
semester class. The present book is a little bigger than that, but it still benefits
or suffers from many hard choices of material to leave out. Textbook authors
serve students by selecting the few most important topics from very many im-
portant ones. Topics such as finite element analysis, constrained optimization,
algorithms for finding eigenvalues, etc. are barely mentioned. In each case, we
found ourselves unable to say enough about the topic to be helpful without
crowding out the material here.

Scientific computing projects fail as often from poor software as from poor
mathematics. Well-designed software is much more likely to get the right answer
than naive “spaghetti code”. Each chapter of this book has a Software section
that discusses some aspect of programming practice. Taken together, these form
a short course on programming practice for scientific computing. Included are
topics like modular design and testing, documentation, robustness, performance
and cache management, and visualization and performance tools.

The exercises are an essential part of the experience of this book. Much
important material is there. We have limited the number of exercises so that the
instructor can reasonably assign all of them, which is what we do. In particular,
each chapter has one or two major exercises that guide the student through
turning the ideas of the chapter into software. These build on each other as
students become progressively more sophisticated in numerical technique and
software design. For example, the exercise for Chapter 6 draws on an LLt

factorization program written for Chapter 5 as well as software protocols from
Chapter 3.

This book is part treatise and part training manual. We lay out the mathe-
matical principles behind scientific computing, such as error analysis and condi-
tion number. We also attempt to train the student in how to think about com-
puting problems and how to write good software. The experiences of scientific
computing are as memorable as the theorems – a program running surprisingly
faster than before, a beautiful visualization, a finicky failure prone computation
suddenly becoming dependable. The programming exercises in this book aim
to give the student this feeling for computing.

The book assumes a facility with the mathematics of quantitative modeling:
multivariate calculus, linear algebra, basic differential equations, and elemen-
tary probability. There is some review and suggested references, but nothing
that would substitute for classes in the background material. While sticking
to the prerequisites, we use mathematics at a relatively high level. Students
are expected to understand and manipulate asymptotic error expansions, to do
perturbation theory in linear algebra, and to manipulate probability densities.
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Most of our students have benefitted from this level of mathematics.
We assume that the student knows basic C++ and Matlab. The C++

in this book is in a “C style”, and we avoid both discussion of object-oriented
design and of advanced language features such as templates and C++ excep-
tions. We help students by providing partial codes (examples of what we con-
sider good programming style) in early chapters. The training wheels come off
by the end. We do not require a specific programming environment, but in
some places we say how things would be done using Linux. Instructors may
have to help students without access to Linux to do some exercises (install
LAPACK in Chapter 4, use performance tools in Chapter 9). Some highly mo-
tivated students have been able learn programming as they go. The web site
http://www.math.nyu.edu/faculty/goodman/ScientificComputing/ has materi-
als to help the beginner get started with C++ or Matlab.

Many of our views on scientific computing were formed during as graduate
students. One of us (JG) had the good fortune to be associated with the re-
markable group of faculty and graduate students at Serra House, the numerical
analysis group of the Computer Science Department of Stanford University, in
the early 1980’s. I mention in particularly Marsha Berger, Petter Björstad, Bill
Coughran, Gene Golub, Bill Gropp, Eric Grosse, Bob Higdon, Randy LeVeque,
Steve Nash, Joe Oliger, Michael Overton, Robert Schreiber, Nick Trefethen, and
Margaret Wright.

The other one (DB) was fotunate to learn about numerical technique from
professors and other graduate students Berkeley in the early 2000s, including
Jim Demmel, W. Kahan, Beresford Parlett, Yi Chen, Plamen Koev, Jason
Riedy, and Rich Vuduc. I also learned a tremendous amount about making com-
putations relevant from my engineering colleagues, particularly Sanjay Govind-
jee, Bob Taylor, and Panos Papadopoulos.

Colleagues at the Courant Institute who have influenced this book include
Leslie Greengard, Gene Isaacson, Peter Lax, Charlie Peskin, Luis Reyna, Mike
Shelley, and Olof Widlund. We also acknowledge the lovely book Numerical
Methods by Germund Dahlquist and Åke Björk [2]. From an organizational
standpoint, this book has more in common with Numerical Methods and Soft-
ware by Kahaner, Moler, and Nash [13].
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2 CHAPTER 1. INTRODUCTION

Most problem solving in science and engineering uses scientific computing.
A scientist might devise a system of differential equations to model a physical
system, then use a computer to calculate their solutions. An engineer might
develop a formula to predict cost as a function of several variables, then use
a computer to find the combination of variables that minimizes that cost. A
scientist or engineer needs to know science or engineering to make the models.
He or she needs the principles of scientific computing to find out what the models
predict.

Scientific computing is challenging partly because it draws on many parts of
mathematics and computer science. Beyond this knowledge, it also takes dis-
cipline and practice. A problem-solving code is built and tested procedure by
procedure. Algorithms and program design are chosen based on considerations
of accuracy, stability, robustness, and performance. Modern software devel-
opment tools include programming environments and debuggers, visualization,
profiling, and performance tools, and high-quality libraries. The training, as
opposed to just teaching, is in integrating all the knowledge and the tools and
the habits to create high quality computing software “solutions.”

This book weaves together this knowledge and skill base through exposition
and exercises. The bulk of each chapter concerns the mathematics and algo-
rithms of scientific computing. In addition, each chapter has a Software section
that discusses some aspect of programming practice or software engineering.
The exercises allow the student to build small codes using these principles, not
just program the algorithm du jour. Hopefully he or she will see that a little
planning, patience, and attention to detail can lead to scientific software that is
faster, more reliable, and more accurate.

One common theme is the need to understand what is happening “under the
hood” in order to understand the accuracy and performance of our computa-
tions. We should understand how computer arithmetic works so we know which
operations are likely to be accurate and which are not. To write fast code, we
should know that adding is much faster if the numbers are in cache, that there
is overhead in getting memory (using new in C++ or malloc in C), and that
printing to the screen has even more overhead. It isn’t that we should not use
dynamic memory or print statements, but using them in the wrong way can
make a code much slower. State-of-the-art eigenvalue software will not produce
accurate eigenvalues if the problem is ill-conditioned. If it uses dense matrix
methods, the running time will scale as n3 for an n× n matrix.

Doing the exercises also should give the student a feel for numbers. The
exercises are calibrated so that the student will get a feel for run time by waiting
for a run to finish (a moving target given hardware advances). Many exercises
ask the student to comment on the sizes of numbers. We should have a feeling
for whether 4.5 × 10−6 is a plausible roundoff error if the operands are of the
order of magnitude of 50. Is it plausible to compute the inverse of an n × n
matrix if n = 500 or n = 5000? How accurate is the answer likely to be? Is
there enough memory? Will it take more than ten seconds? Is it likely that a
Monte Carlo computation with N = 1000 samples gives .1% accuracy?

Many topics discussed here are treated superficially. Others are left out
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altogether. Do not think the things left out are unimportant. For example,
anyone solving ordinary differential equations must know the stability theory
of Dalhquist and others, which can be found in any serious book on numeri-
cal solution of ordinary differential equations. There are many variants of the
FFT that are faster than the simple one in Chapter 7, more sophisticated kinds
of spline interpolation, etc. The same applies to things like software engineer-
ing and scientific visualization. Most high performance computing is done on
parallel computers, which are not discussed here at all.
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6 CHAPTER 2. SOURCES OF ERROR

Scientific computing usually gives inexact answers. The code x = sqrt(2)
produces something that is not the mathematical

√
2. Instead, x differs from√

2 by an amount that we call the error. An accurate result has a small error.
The goal of a scientific computation is rarely the exact answer, but a result that
is as accurate as needed. Throughout this book, we use A to denote the exact
answer to some problem and Â to denote the computed approximation to A.
The error is Â−A.

There are four primary ways in which error is introduced into a computation:

(i) Roundoff error from inexact computer arithmetic.

(ii) Truncation error from approximate formulas.

(iii) Termination of iterations.

(iv) Statistical error in Monte Carlo.

This chapter discusses the first of these in detail and the others more briefly.
There are whole chapters dedicated to them later on. What is important here
is to understand the likely relative sizes of the various kinds of error. This will
help in the design of computational algorithms. In particular, it will help us
focus our efforts on reducing the largest sources of error.

We need to understand the various sources of error to debug scientific com-
puting software. If a result is supposed to be A and instead is Â, we have to
ask if the difference between A and Â is the result of a programming mistake.
Some bugs are the usual kind – a mangled formula or mistake in logic. Oth-
ers are peculiar to scientific computing. It may turn out that a certain way of
calculating something is simply not accurate enough.

Error propagation also is important. A typical computation has several
stages, with the results of one stage being the inputs to the next. Errors in
the output of one stage most likely mean that the output of the next would be
inexact even if the second stage computations were done exactly. It is unlikely
that the second stage would produce the exact output from inexact inputs. On
the contrary, it is possible to have error amplification. If the second stage output
is very sensitive to its input, small errors in the input could result in large errors
in the output; that is, the error will be amplified. A method with large error
amplification is unstable.

The condition number of a problem measures the sensitivity of the answer
to small changes in its input data. The condition number is determined by the
problem, not the method used to solve it. The accuracy of a solution is limited
by the condition number of the problem. A problem is called ill-conditioned
if the condition number is so large that it is hard or impossible to solve it
accurately enough.

A computational strategy is likely to be unstable if it has an ill-conditioned
subproblem. For example, suppose we solve a system of linear differential equa-
tions using the eigenvector basis of the corresponding matrix. Finding eigenvec-
tors of a matrix can be ill-conditioned, as we discuss in Chapter 4. This makes
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the eigenvector approach to solving linear differential equations potentially un-
stable, even when the differential equations themselves are well-conditioned.

2.1 Relative error, absolute error, and cancella-
tion

When we approximate A by Â, the absolute error is e = Â−A, and the relative
error is ε = e/A. That is,

Â = A+ e (absolute error) , Â = A · (1 + ε) (relative error). (2.1)

For example, the absolute error in approximating A =
√

175 by Â = 13 is
e ≈ .23, and the relative error is ε ≈ .017 < 2%.

If we say e ≈ .23 and do not give A, we generally do not know whether the
error is large or small. Whether an absolute error much less than one is “small”
often depends entirely on how units are chosen for a problem. In contrast,
relative error is dimensionless, and if we know Â is within 2% of A, we know the
error is not too large. For this reason, relative error is often more useful than
absolute error.

We often describe the accuracy of an approximation by saying how many
decimal digits are correct. For example, Avogadro’s number with two digits
of accuracy is N0 ≈ 6.0 × 1023. We write 6.0 instead of just 6 to indicate
that Avogadro’s number is closer to 6 × 1023 than to 6.1 × 1023 or 5.9 × 1023.
With three digits the number is N0 ≈ 6.02 × 1023. The difference between
N0 ≈ 6× 1023 and N0 ≈ 6.02× 1023 is 2× 1021, which may seem like a lot, but
the relative error is about a third of one percent.

Relative error can grow through cancellation. For example, suppose A =
B − C, with B ≈ B̂ = 2.38× 105 and C ≈ Ĉ = 2.33× 105. Since the first two
digits of B and C agree, then they cancel in the subtraction, leaving only one
correct digit in A. Doing the subtraction exactly gives Â = B̂ − Ĉ = 5 × 103.
The absolute error in A is just the sum of the absolute errors in B and C, and
probably is less than 103. But this gives Â a relative accuracy of less than 10%,
even though the inputs B̂ and Ĉ had relative accuracy a hundred times smaller.
Catastrophic cancellation is losing many digits in one subtraction. More subtle
is an accumulation of less dramatic cancellations over many steps, as illustrated
in Exercise 3.

2.2 Computer arithmetic

For many tasks in computer science, all arithmetic can be done with integers. In
scientific computing, though, we often deal with numbers that are not integers,
or with numbers that are too large to fit into standard integer types. For this
reason, we typically use floating point numbers, which are the computer version
of numbers in scientific notation.
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2.2.1 Bits and ints

The basic unit of computer storage is a bit (binary digit), which may be 0 or 1.
Bits are organized into 32-bit or 64-bit words. There 232 ≈ four billion possible
32-bit words; a modern machine running at 2-3 GHz could enumerate them in
a second or two. In contrast, there are 264 ≈ 1.8 × 1019 possible 64-bit words;
to enumerate them at the same rate would take more than a century.

C++ has several basic integer types: short, int, and long int. The lan-
guage standard does not specify the sizes of these types, but most modern sys-
tems have a 16-bit short, and a 32-bit int. The size of a long is 32 bits on some
systems and 64 bits on others. For portability, the C++ header file cstdint
(or the C header stdint.h) defines types int16_t, int32_t, and int64_t that
are exactly 8, 16, 32, and 64 bits.

An ordinary b-bit integer can take values in the range −2b−1 to 2b−1− 1; an
unsigned b-bit integer (such as an unsigned int) takes values in the range 0 to
2b−1. Thus a 32-bit integer can be between −231 and 231−1, or between about
-2 billion and +2 billion. Integer addition, subtraction, and multiplication are
done exactly when the results are within the representable range, and integer
division is rounded toward zero to obtain an integer result. For example, (-7)/2
produces -3.

When integer results are out of range (an overflow), the answer is not defined
by the standard. On most platforms, the result will be wrap around. For
example, if we set a 32-bit int to 231 − 1 and increment it, the result will
usually be −2−31. Therefore, the loop

for (int i = 0; i < 2e9; ++i);

takes seconds, while the loop

for (int i = 0; i < 3e9; ++i);

never terminates, because the number 3e9 (three billion) is larger than any
number that can be represented as an int.

2.2.2 Floating point basics

Floating point numbers are computer data-types that represent approximations
to real numbers rather than integers. The IEEE floating point standard is a
set of conventions for computer representation and processing of floating point
numbers. Modern computers follow these standards for the most part. The
standard has three main goals:

1. To make floating point arithmetic as accurate as possible.

2. To produce sensible outcomes in exceptional situations.

3. To standardize floating point operations across computers.
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Floating point numbers are like numbers in ordinary scientific notation. A
number in scientific notation has three parts: a sign, a mantissa in the interval
[1, 10), and an exponent. For example, if we ask Matlab to display the number
−2752 = −2.572× 103 in scientific notation (using format short e), we see

-2.7520e+03

For this number, the sign is negative, the mantissa is 2.7520, and the exponent
is 3.

Similarly, a normal binary floating point number consists of a sign s, a
mantissa 1 ≤ m < 2, and an exponent e. If x is a floating point number with
these three fields, then the value of x is the real number

val(x) = (−1)s × 2e ×m . (2.2)

For example, we write the number −2752 = −2.752× 103 as

−2752 = (−1)1 ×
(
211 + 29 + 27 + 26

)
= (−1)1 × 211 ×

(
1 + 2−2 + 2−4 + 2−5

)
= (−1)1 × 211 × (1 + (.01)2 + (.0001)2 + (.00001)2)

−2752 = (−1)1 × 211 × (1.01011)2 .

The bits in a floating point word are divided into three groups. One bit
represents the sign: s = 1 for negative and s = 0 for positive, according to
(2.2). There are p − 1 bits for the mantissa and the rest for the exponent.
For example (see Figure 2.1), a 32-bit single precision floating point word has
p = 24, so there are 23 mantissa bits, one sign bit, and 8 bits for the exponent.

Floating point formats allow a limited range of exponents (emin ≤ e ≤
emax). Note that in single precision, the number of possible exponents {−126,−125, . . . , 126, 127},
is 254, which is two less than the number of 8 bit combinations (28 = 256). The
remaining two exponent bit strings (all zeros and all ones) have different inter-
pretations described in Section 2.2.4. The other floating point formats, double
precision and extended precision, also reserve the all zero and all one exponent
bit patterns.

The mantissa takes the form

m = (1.b1b2b3 . . . bp−1)2,

where p is the total number of bits (binary digits)1 used for the mantissa. In Fig-
ure 2.1, we list the exponent range for IEEE single precision (float in C/C++),
IEEE double precision (double in C/C++), and the extended precision on the
Intel processors (long double in C/C++).

Not every number can be exactly represented in binary floating point. For
example, just as 1/3 = .333 cannot be written exactly as a finite decimal frac-
tion, 1/3 = (.010101)2 also cannot be written exactly as a finite binary fraction.

1 Because the first digit of a normal floating point number is always one, it is not stored
explicitly.
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Name C/C++ type Bits p εmach = 2−p emin emax
Single float 32 24 ≈ 6× 10−8 −126 127
Double double 64 53 ≈ 10−16 −1022 1023
Extended long double 80 63 ≈ 5× 10−19 −16382 16383

Figure 2.1: Parameters for floating point formats.

If x is a real number, we write x̂ = round(x) for the floating point number (of a
given format) that is closest2 to x. Finding x̂ is called rounding. The difference
round(x)− x = x̂− x is rounding error. If x is in the range of normal floating
point numbers (2emin ≤ x < 2emax+1), then the closest floating point number
to x has a relative error not more than |ε| ≤ εmach, where the machine epsilon
εmach = 2−p is half the distance between 1 and the next floating point number.

The IEEE standard for arithmetic operations (addition, subtraction, mul-
tiplication, division, square root) is: the exact answer, correctly rounded. For
example, the statement z = x*y gives z the value round(val(x) · val(y)). That
is: interpret the bit strings x and y using the floating point standard (2.2), per-
form the operation (multiplication in this case) exactly, then round the result
to the nearest floating point number. For example, the result of computing
1/(float)3 in single precision is

(1.01010101010101010101011)2 × 2−2.

Some properties of floating point arithmetic follow from the above rule. For
example, addition and multiplication are commutative: x*y = y*x. Division by
powers of 2 is done exactly if the result is a normalized number. Division by 3 is
rarely exact. Integers, not too large, are represented exactly. Integer arithmetic
(excluding division and square roots) is done exactly. This is illustrated in
Exercise 8.

Double precision floating point has smaller rounding errors because it has
more mantissa bits. It has roughly 16 digit accuracy (2−53 ∼ 10−16, as opposed
to roughly 7 digit accuracy for single precision. It also has a larger range of
values. The largest double precision floating point number is 21023 ∼ 10307, as
opposed to 2126 ∼ 1038 for single. The hardware in many processor chips does
arithmetic and stores intermediate results in extended precision, see below.

Rounding error occurs in most floating point operations. When using an
unstable algorithm or solving a very sensitive problem, even calculations that
would give the exact answer in exact arithmetic may give very wrong answers
in floating point arithmetic. Being exactly right in exact arithmetic does not
imply being approximately right in floating point arithmetic.

2.2.3 Modeling floating point error

Rounding error analysis models the generation and propagation of rounding
2 If x is equally close to two floating point numbers, the answer is the number whose last

bit is zero.
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errors over the course of a calculation. For example, suppose x, y, and z are
floating point numbers, and that we compute fl(x+y+z), where fl(·) denotes
the result of a floating point computation. Under IEEE arithmetic,

fl(x+ y) = round(x+ y) = (x+ y)(1 + ε1),

where |ε1| < εmach. A sum of more than two numbers must be performed
pairwise, and usually from left to right. For example:

fl(x+ y + z) = round
(
round(x+ y) + z

)
=

(
(x+ y)(1 + ε1) + z

)
(1 + ε2)

= (x+ y + z) + (x+ y)ε1 + (x+ y + z)ε2 + (x+ y)ε1ε2

Here and below we use ε1, ε2, etc. to represent individual rounding errors.
It is often replace exact formulas by simpler approximations. For example,

we neglect the product ε1ε2 because it is smaller than either ε1 or ε2 (by a factor
of εmach). This leads to the useful approximation

fl(x+ y + z) ≈ (x+ y + z) + (x+ y)ε1 + (x+ y + z)ε2 ,

We also neglect higher terms in Taylor expansions. In this spirit, we have:

(1 + ε1)(1 + ε2) ≈ 1 + ε1 + ε2 (2.3)√
1 + ε ≈ 1 + ε/2 . (2.4)

As an example, we look at computing the smaller root of x2 − 2x + δ = 0
using the quadratic formula

x = 1−
√

1− δ . (2.5)

The two terms on the right are approximately equal when δ is small. This can
lead to catastrophic cancellation. We will assume that δ is so small that (2.4)
applies to (2.5), and therefore x ≈ δ/2.

We start with the rounding errors from the 1 − δ subtraction and square
root. We simplify with (2.3) and (2.4):

fl(
√

1− δ) =
(√

(1− δ)(1 + ε1)
)

(1 + ε2)

≈ (
√

1− δ)(1 + ε1/2 + ε2) = (
√

1− δ)(1 + εd),

where |εd| = |ε1/2 + ε2| ≤ 1.5εmach. This means that relative error at this point
is of the order of machine precision but may be as much as 50% larger.

Now, we account for the error in the second subtraction3, using
√

1− δ ≈ 1
and x ≈ δ/2 to simplify the error terms:

fl(1−
√

1− δ) ≈
(

1− (
√

1− δ)(1 + εd)
)

(1 + ε3)

= x

(
1−
√

1− δ
x

εd + ε3

)
≈ x

(
1 +

2εd
δ

+ ε3

)
.

3 For δ ≤ 0.75, this subtraction actually contributes no rounding error, since subtraction
of floating point values within a factor of two of each other is exact. Nonetheless, we will
continue to use our model of small relative errors in this step for the current example.
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Therefore, for small δ we have

x̂− x ≈ x εd
x
,

which says that the relative error from using the formula (2.5) is amplified from
εmach by a factor on the order of 1/x. The catastrophic cancellation in the final
subtraction leads to a large relative error. In single precision with x = 10−5,
for example, we would have relative error on the order of 8εmach/x ≈ 0.2. when
We would only expect one or two correct digits in this computation.

In this case and many others, we can avoid catastrophic cancellation by
rewriting the basic formula. In this case, we could replace (2.5) by the mathe-
matically equivalent x = δ/(1 +

√
1− δ), which is far more accurate in floating

point.

2.2.4 Exceptions

The smallest normal floating point number in a given format is 2emin. When a
floating point operation yields a nonzero number less than 2emin, we say there
has been an underflow. The standard formats can represent some values less
than the 2emin as denormalized numbers. These numbers have the form

(−1)2 × 2emin × (0.d1d2 . . . dp−1)2.

Floating point operations that produce results less than about 2emin in magni-
tude are rounded to the nearest denormalized number. This is called gradual
underflow. When gradual underflow occurs, the relative error in the result may
be greater than εmach, but it is much better than if the result were rounded to
0 or 2emin

With denormalized numbers, every floating point number except the largest
in magnitude has the property that the distances to the two closest floating point
numbers differ by no more than a factor of two. Without denormalized numbers,
the smallest number to the right of 2emin would be 2p−1 times closer than the
largest number to the left of 2emin; in single precision, that is a difference of a
factor of about eight billion! Gradual underflow also has the consequence that
two floating point numbers are equal, x = y, if and only if subtracting one from
the other gives exactly zero.

In addition to the normal floating point numbers and the denormalized num-
bers, the IEEE standard has encodings for ±∞ and Not a Number (NaN). When
we print these values to the screen, we see “inf” and “NaN,” respectively4 A
floating point operation results in an inf if the exact result is larger than the
largest normal floating point number (overflow), or in cases like 1/0 or cot(0)
where the exact result is infinite5. Invalid operations such as sqrt(-1.) and

4 The actual text varies from system to system. The Microsoft Visual Studio compilers
print Ind rather than NaN, for example.

5 IEEE arithmetic distinguishes between positive and negative zero, so actually 1/+0.0 =

inf and 1/-0.0 = -inf.
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log(-4.) produce NaN. Any operation involving a NaN produces another NaN.
Operations with inf are common sense: inf + finite = inf, inf/inf = NaN,
finite/inf = 0, inf + inf = inf, inf− inf = NaN.

A floating point operation generates an exception if the exact result is not a
normalized floating point number. The five types of exceptions are an inexact
result (i.e. when there is a nonzero rounding error), an underflow, an overflow,
an exact infinity, or an invalid operations. When one of these exceptions occurs,
a flag is raised (i.e. a bit in memory is set to one). There is one flag for each
type of exception. The C99 standard defines functions to raise, lower, and check
the floating point exception flags.

2.3 Truncation error

Truncation error is the error in analytical approximations such as

f ′(x) ≈ f(x+ h)− f(x)
h

. (2.6)

This is not an exact formula for f ′, but it can be a useful approximation. We
often think of truncation error as arising from truncating a Taylor series. In
this case, the Taylor series formula,

f(x+ h) = f(x) + hf ′(x) +
1
2
h2f ′′(x) + · · · ,

is truncated by neglecting all the terms after the first two on the right. This
leaves the approximation

f(x+ h) ≈ f(x) + hf ′(x) ,

which can be rearranged to give (2.6). Truncation usually is the main source of
error in numerical integration or solution of differential equations. The analysis
of truncation error using Taylor series will occupy the next two chapters.

As an example, we take f(x) = xex, x = 1, and several h values. The
truncation error is

etr =
f(x+ h)− f(x)

h
− f ′(x) .

In Chapter 3 we will see that (in exact arithmetic) etr roughly is proportional
to h for small h. This is apparent in Figure 2.3. As h is reduced from 10−2 to
10−5 (a factor of 10−3), the error decreases from 4.10 × 10−2 to 4.08 × 10−5,
approximately the same factor of 10−3.

The numbers in Figure 2.3 were computed in double precision floating point
arithmetic. The total error, etot, is a combination of truncation and roundoff
error. Roundoff error is significant for the smallest h values: for h = 10−8 the
error is no longer proportional to h; by h = 10−10 the error has increased. Such
small h values are rare in a practical calculation.
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h .3 .01 10−5 10−8 10−10

f̂ ′ 6.84 5.48 5.4366 5.436564 5.436562
etot 1.40 4.10× 10−2 4.08× 10−5 −5.76× 10−8 −1.35× 10−6

Figure 2.2: Estimates of f ′(x) using (2.6). The error is etot, which results from
truncation and roundoff error. Roundoff error is apparent only in the last two
columns.

n 1 3 6 10 20 67
xn 1 1.46 1.80 1.751 1.74555 1.745528
en −.745 −.277 5.5× 10−2 5.9× 10−3 2.3× 10−5 3.1× 10−17

Figure 2.3: Iterates of xn+1 = ln(y)− ln(xn) illustrating convergence to a limit
that satisfies the equation xex = y. The error is en = xn − x. Here, y = 10.

2.4 Iterative methods

A direct method computes the exact answer to a problem in finite time, assuming
exact arithmetic. The only error in direct methods is roundoff error. However,
many problems cannot be solved by direct methods. An example is finding A
that satisfies an equation that has no explicit solution formula. An iterative
method constructs a sequence of approximate solutions, An, for n = 1, 2, . . . .
Hopefully, the approximations converge to the right answer: An → A as n→∞.
In practice, we must stop the iteration for some large but finite n and accept
An as the approximate answer.

For example, suppose we have a y > 0 and we want to find x such that
xex = y. There is no formula for x, but we can write a program to carry out
the iteration: x1 = 1, xn+1 = ln(y) − ln(xn). The numbers xn are iterates.
The limit x = limn→∞ xn (if it exists), is a fixed point of the iteration, i.e.
x = ln(y) − ln(x), which implies that xex = y. Figure 2.3 demonstrates the
convergence of the iterates in this case with y = 10. The initial guess is x1 = 1.
After 20 iterations, we have x20 ≈ 1.75. The relative error is e20 ≈ 2.3× 10−5,
which might be small enough, depending on the application.

After 67 iterations, the relative error is (x67−x)/x ≈ 3.1×10−17/1.75 ≈ 1.8×
10−17, which means that x67 is the correctly rounded result in double precision
with εmach ≈ 1.1 × 10−16. This shows that supposedly approximate iterative
methods can be as accurate as direct methods in floating point arithmetic. For
example, if the equation were ex = y, the direct method would be x = log(y).
It is unlikely that the relative error resulting from the direct formula would be
significantly smaller than the error we could get from an iterative method.

Chapter 6 explains many features of Figure 2.3. The convergence rate is the
rate of decrease of en. We will be able to calculate it and to find methods that
converge faster. In some cases an iterative method may fail to converge even
though the solution is a fixed point of the iteration.
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n 10 100 104 106 106

Â .603 .518 .511 .5004 .4991
error .103 1.8× 10−2 1.1× 10−2 4.4× 10−4 −8.7× 10−4

Figure 2.4: Statistical errors in a demonstration Monte Carlo computation.

2.5 Statistical error in Monte Carlo

Monte Carlo means using random numbers as a computational tool. For ex-
ample, suppose6 A = E[X], where X is a random variable with some known
distribution. Sampling X means using the computer random number generator
to create independent random variables X1, X2, . . ., each with the distribution
of X. The simple Monte Carlo method would be to generate n such samples
and calculate the sample mean:

A ≈ Â =
1
n

n∑
k=1

Xk .

The difference between Â and A is statistical error. A theorem in probability,
the law of large numbers, implies that Â→ A as n→∞. Monte Carlo statistical
errors typically are larger than roundoff or truncation errors. This makes Monte
Carlo a method of last resort, to be used only when other methods are not
practical.

Figure 2.4 illustrates the behavior of this Monte Carlo method for the ran-
dom variable X = 3

2U
2 with U uniformly distributed in the interval [0, 1]. The

exact answer is A = E[X] = 3
2E[U2] = .5. The value n = 106 is repeated to

illustrate the fact that statistical error is random (see Chapter 9 for a clarifica-
tion of this). The errors even with a million samples are much larger than those
in the right columns of Figures 2.3 and 2.3.

2.6 Error propagation and amplification

Errors can grow as they propagate through a computation. For example, con-
sider the divided difference (2.6):

f1 = . . . ; // approx of f(x)
f2 = . . . ; // approx of f(x+h)
fPrimeHat = ( f2 - f1 ) / h ; // approx of derivative

There are three contributions to the final error in f ′:

f̂ ′ = f ′(x)(1 + εpr)(1 + εtr)(1 + εr) ≈ f ′(x)(1 + εpr + εtr + εr). (2.7)

6E[X] is the expected value of X. Chapter 9 has some review of probability.
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It is unlikely that f1 = f̂(x) ≈ f(x) is exact. Many factors may contribute to
the errors e1 = f1 − f(x) and e2 = f2 − f(x+ h), including inaccurate x values
and roundoff in the code to evaluate f . The propagated error comes from using
inexact values of f(x+ h) and f(x):

f2 − f1

h
=
f(x+ h)− f(x)

h

(
1 +

e2 − e1

f2 − f1

)
=
f(x+ h)− f(x)

h
(1 + εpr) . (2.8)

The truncation error in the difference quotient approximation is

f(x+ h)− f(x)
h

= f ′(x)(1 + εtr). (2.9)

Finally, there is roundoff error in evaluating ( f2 - f1 ) / h:

f̂ ′ =
f2 − f1

h
(1 + εr). (2.10)

If we multiply the errors from (2.8)–(2.10) and simplify, we get (2.7).
Most of the error in this calculation comes from truncation error and prop-

agated error. The subtraction and the division in the evaluation of the divided
difference each have relative error of at most εmach; thus, the roundoff error εr is
at most about 2εmach, which is relatively small7. We noted in Section 2.3 that
truncation error is roughly proportional to h. The propagated error εpr in the
outputs is roughly proportional to the absolute input errors e1 and e2 amplified
by a factor of h−1:

εpr =
e2 − e1

f2 − f1
≈ e2 − e1

f ′(x)h
.

Even if ε1 = e1/f(x) and ε2 = e2/f(x+h) are small, εpr may be quite large.
This increase in relative error by a large factor in one step is another example
of catastrophic cancellation, which we described in Section 2.1. If the numbers
f(x) and f(x + h) are nearly equal, the difference can have much less relative
accuracy than the numbers themselves. More subtle is gradual error growth over
many steps. Exercise 2.15 has an example in which the error roughly doubles
at each stage. Starting from double precision roundoff level, the error after 30
steps is negligible, but the error after 60 steps is larger than the answer.

An algorithm is unstable if its error mainly comes from amplification. This
numerical instability can be hard to discover by standard debugging techniques
that look for the first place something goes wrong, particularly if there is gradual
error growth.

In scientific computing, we use stability theory, or the study of propagation
of small changes by a process, to search for error growth in computations. In a
typical stability analysis, we focus on propagated error only, ignoring the original
sources of error. For example, Exercise 8 involves the backward recurrence
fk−1 = fk+1 − fk. In our stability analysis, we assume that the subtraction
is performed exactly and that the error in fk−1 is entirely due to errors in fk

7 If h is a power of two and f2 and f1 are within a factor of two of each other, then εr = 0.
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and fk+1. That is, if f̂k = fk + ek is the computer approximation, then the ek
satisfy the error propagation equation ek−1 = ek+1− ek. We then would use the
theory of recurrence relations to see whether the ek can grow relative to the fk
as k decreases. If this error growth is possible, it will usually happen.

2.7 Condition number and ill-conditioned prob-
lems

The condition number of a problem measures the sensitivity of the answer to
small changes in the data. If κ is the condition number, then we expect relative
error at least κεmach, regardless of the algorithm. A problem with large condition
number is ill-conditioned. For example, if κ > 107, then there probably is no
algorithm that gives anything like the right answer in single precision arithmetic.
Condition numbers as large as 107 or 1016 can and do occur in practice.

The definition of κ is simplest when the answer is a single number that
depends on a single scalar variable, x: A = A(x). A change in x causes a
change in A: ∆A = A(x + ∆x) − A(x). The condition number measures the
relative change in A caused by a small relative change of x:∣∣∣∣∆AA

∣∣∣∣ ≈ κ ∣∣∣∣∆xx
∣∣∣∣ . (2.11)

Any algorithm that computes A(x) must round x to the nearest floating point
number, x̂. This creates a relative error (assuming x is within the range of
normalized floating point numbers) of |∆x/x| = |(x̂− x)/x| ∼ εmach. If the rest
of the computation were done exactly, the computed answer would be Â(x) =
A(x̂) and the relative error would be (using (2.11))∣∣∣∣∣ Â(x)−A(x)

A(x)

∣∣∣∣∣ =
∣∣∣∣A(x̂)−A(x)

A(x)

∣∣∣∣ ≈ κ ∣∣∣∣∆xx
∣∣∣∣ ∼ κεmach . (2.12)

If A is a differentiable function of x with derivative A′(x), then, for small ∆x,
∆A ≈ A′(x)∆x. With a little algebra, this gives (2.11) with

κ =
∣∣∣∣A′(x) · x

A(x)

∣∣∣∣ . (2.13)

An algorithm is unstable if relative errors in the output are much larger than
relative errors in the input. This analysis argues that any computation for an
ill-conditioned problem must be unstable. Even if A(x) is evaluated exactly,
relative errors in the input of size ε are amplified by a factor of κ. The formulas
(2.12) and (2.13) represent an lower bound for the accuracy of any algorithm.
An ill-conditioned problem is not going to be solved accurately, unless it can be
reformulated to improve the conditioning.

A backward stable algorithm is as stable as the condition number allows.
This sometimes is stated as Â(x) = A(x̃) for some x̃ that is within on the order
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of εmach of x, |x̃− x| / |x| . Cεmach where C is a modest constant. That is, the
computer produces a result, Â, that is the exact correct answer to a problem
that differs from the original one only by roundoff error in the input. Many
algorithms in computational linear algebra in Chapter 5 are backward stable in
roughly this sense. This means that they are unstable only when the underlying
problem is ill-conditioned

The condition number (2.13) is dimensionless because it measures relative
sensitivity. The extra factor x/A(x) removes the units of x and A. Absolute
sensitivity is is just A′(x). Note that both sides of our starting point (2.11) are
dimensionless with dimensionless κ.

As an example consider the problem of evaluating A(x) = R sin(x). The
condition number formula (2.13) gives

κ(x) =
∣∣∣∣cos(x) · x

sin(x)

∣∣∣∣ .
Note that the problem remains well-conditioned (κ is not large) as x→ 0, even
though A(x) is small when x is small. For extremely small x, the calculation
could suffer from underflow. But the condition number blows up as x → π,
because small relative changes in x lead to much larger relative changes in A.
This illustrates quirk of the condition number definition: typical values of A
have the order of magnitude R and we can evaluate A with error much smaller
than this, but certain individual values of A may not be computed to high
relative precision. In most applications that would not be a problem.

There is no perfect definition of condition number for problems with more
than one input or output. Suppose at first that the single output A(x) depends
on n inputs x = (x1, . . . , xn). Of course A may have different sensitivities to
different components of x. For example, ∆x1/x1 = 1% may change A much
more than ∆x2/x2 = 1%. If we view (2.11) as saying that |∆A/A| ≈ κε for
|∆x/x| = ε, a worst case multicomponent generalization could be

κ =
1
ε

max
∣∣∣∣∆AA

∣∣∣∣ , where
∣∣∣∣∆xkxk

∣∣∣∣ ≤ ε for all k.

We seek the worst case8 ∆x. For small ε, we write

∆A ≈
n∑
k=1

∂A

∂xk
∆xk ,

then maximize subject to the constraint |∆xk| ≤ ε |xk| for all k. The maxi-
mum occurs at ∆xk = ±εxk, which (with some algebra) leads to one possible
generalization of (2.13):

κ =
n∑
k=1

∣∣∣∣ ∂A∂xk · xkA
∣∣∣∣ . (2.14)

8 As with rounding, typical errors tend to be on the order of the worst case error.
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This formula is useful if the inputs are known to similar relative accuracy, which
could happen even when the xk have different orders of magnitude or different
units. Condition numbers for multivariate problems are discussed using matrix
norms in Section 4.3. The analogue of (2.13) is (4.28).

2.8 Software

Each chapter of this book has a Software section. Taken together they form
a mini-course in software for scientific computing. The material ranges from
simple tips to longer discussions of bigger issues. The programming exercises
illustrate the chapter’s software principles as well as the mathematical material
from earlier sections.

Scientific computing projects fail because of bad software as often as they
fail because of bad algorithms. The principles of scientific software are less
precise than the mathematics of scientific computing, but are just as important.
Like other programmers, scientific programmers should follow general software
engineering principles of modular design, documentation, and testing. Unlike
other programmers, scientific programmers must also deal with the approximate
nature of their computations by testing, analyzing, and documenting the error
in their methods, and by composing modules in a way that does not needlessly
amplify errors. Projects are handsomely rewarded for extra efforts and care
taken to do the software “right.”

2.8.1 General software principles

This is not the place for a long discussion of general software principles, but
it may be worthwhile to review a few that will be in force even for the small
programs called for in the exercises below. In our classes, students are required
to submit the program source as well the output, and points are deducted for
failing to follow basic software protocols listed here.

Most software projects are collaborative. Any person working on the project
will write code that will be read and modified by others. He or she will read
code that will be read and modified by others. In single person projects, that
“other” person may be you, a few months later, so you will end up helping
yourself by coding in a way friendly to others.

• Make code easy for others to read. Choose helpful variable names, not
too short or too long. Indent the bodies of loops and conditionals. Align
similar code to make it easier to understand visually. Insert blank lines to
separate “paragraphs” of code. Use descriptive comments liberally; these
are part of the documentation.

• Code documentation includes comments and well chosen variable names.
Larger codes need separate documents describing how to use them and
how they work.
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void do_something(double tStart, double tFinal, int n)
{

double dt = ( tFinal - tStart ) / n; // Size of each step
for (double t = tStart; t < tFinal; t += dt) {

// Body of loop
}

}

Figure 2.5: A code fragment illustrating a pitfall of using a floating point variable
to regulate a for loop.

• Design large computing tasks into modules that perform sub-tasks.

• A code design includes a plan for building it, which includes a plan for
testing. Plan to create separate routines that test the main components
of your project.

• Know and use the tools in your programming environment. This includes
code specific editors, window based debuggers, formal or informal version
control, and make or other building and scripting tools.

2.8.2 Coding for floating point

Programmers who forget the inexactness of floating point may write code with
subtle bugs. One common mistake is illustrated in Figure 2.5. For tFinal
> tStart, this code would give the desired n iterations in exact arithmetic.
Because of rounding error, though, the variable t might be above or below
tFinal, and so we do not know whether this code while execute the loop body
n times or n + 1 times. The routine in Figure 2.5 has other issues, too. For
example, if tFinal <= tStart, then the loop body will never execute. The
loop will also never execute if either tStart or tFinal is a NaN, since any
comparison involving a NaN is false. If n = 0, then dt will be Inf. Figure 2.6
uses exact integer arithmetic to guarantee n executions of the for loop.

Floating point results may depend on how the code is compiled and executed.
For example, w = x + y + z is executed as if it were A = x + y; w = A + z.
The new anonymous variable, A, may be computed in extended precision or in
the precision of x, y, and z, depending on factors often beyond control or the
programmer. The results will be as accurate as they should be, but they will
be exactly identical. For example, on a Pentium running Linux9, the statement

double eps = 1e-16;
cout << 1 + eps - 1 << endl;

9 This is a 64-bit Pentium 4 running Linux 2.6.18 with GCC version 4.1.2 and Intel C
version 10.0.
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void do_something(double tStart, double tFinal, int n)
{

double dt = ( tFinal - tStart ) / n;
double t = tStart;
for (int i = 0; i < n; ++i) {

// Body of loop
t += dt;

}
}

Figure 2.6: A code fragment using an integer variable to regulate the loop of
Figure 2.5. This version also is more robust in that it runs correctly if tFinal
<= tStart or if n = 0.

prints 1e-16 when compiled with the Intel C compiler, which uses 80-bit inter-
mediate precision to compute 1 + eps, and 0 when compiled with the GNU C
compiler, which uses double precision for 1 + eps.

Some compilers take what seem like small liberties with the IEEE float-
ing point standard. This is particularly true with high levels of optimization.
Therefore, the output may change when the code is recompiled with a higher
level of optimization. This is possible even if the code is absolutely correct.

2.8.3 Plotting

Visualization tools range from simple plots and graphs to more sophisticated
surface and contour plots, to interactive graphics and movies. They make it
possible to explore and understand data more reliably and faster than simply
looking at lists of numbers. We discuss only simple graphs here, with future
software sections discussing other tools. Here are some things to keep in mind.

Learn your system and your options. Find out what visualization tools are
available or easy to get on your system. Choose a package designed for scientific
visualization, such as Matlab (or Gnuplot, R, Python, etc.), rather than one
designed for commercial presentations such as Excel. Learn the options such
as line style (dashes, thickness, color, symbols), labeling, etc. Also, learn how
to produce figures that are easy to read on the page as well as on the screen.
Figure 2.7 shows a Matlab script that sets the graphics parameters so that
printed figures are easier to read.

Use scripting and other forms of automation. You will become frustrated
typing several commands each time you adjust one detail of the plot. Instead,
assemble the sequence of plot commands into a script.

Choose informative scales and ranges. Figure 2.8 shows the convergence of
the fixed-point iteration from Section 2.4 by plotting the residual ri = |xi +
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% Set MATLAB graphics parameters so that plots are more readable
% in print. These settings are taken from the front matter in
% L.N. Trefethen’s book ’Spectral Methods in MATLAB’ (SIAM, 2000),
% which includes many beautifully produced MATLAB figures.

set(0, ’defaultaxesfontsize’, 12, ...
’defaultaxeslinewidth’, .7, ...
’defaultlinelinewidth’, .8, ...
’defaultpatchlinewidth’, .7);

Figure 2.7: A Matlab script to set graphics parameters so that printed figures
are easier to read.

log(xi) − y| against the iteration number. On a linear scale (first plot), all the
residual values after the tenth step are indistinguishable to plotting accuracy
from zero. The semi-logarithmic plot shows how big each of the iterates is. It
also makes clear that the log(ri) is nearly proportional to i; this is the hallmark
of linear convergence, which we will discuss more in Chapter 6.

Combine curves you want to compare into a single figure. Stacks of graphs
are as frustrating as arrays of numbers. You may have to scale different curves
differently to bring out the relationship they have to each other. If the curves
are supposed to have a certain slope, include a line with that slope. If a certain
x or y value is important, draw a horizontal or vertical line to mark it in the
figure. Use a variety of line styles to distinguish the curves. Exercise 9 illustrates
some of these points.

Make plots self–documenting. Figure 2.8 illustrates mechanisms in Matlab
for doing this. The horizontal and vertical axes are labeled with values and text.
Parameters from the run, in this case x1 and y, are embedded in the title.

2.9 Further reading

We were inspired to start our book with a discussion of sources of error by
the book Numerical Methods and Software by David Kahaner, Cleve Moler,
and Steve Nash [13]. Another interesting version is in Scientific Computing
by Michael Heath [9]. A much more thorough description of error in scientific
computing is Higham’s Accuracy and Stability of Numerical Algorithms [10].
Acton’s Real Computing Made Real [1] is a jeremiad against common errors in
computation, replete with examples of the ways in which computations go awry
– and ways those computations may be fixed.

A classic paper on floating point arithmetic, readily available online, is Gold-
berg’s “What Every Computer Scientist Should Know About Floating-Point
Arithmetic” [6]. Michael Overton has written a nice short book IEEE Floating
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% sec2_8b(x1, y, n, fname)
%
% Solve the equation x*exp(x) = y by the fixed-point iteration
% x(i+1) = log(y) - log(x(i));
% and plot the convergence of the residual |x+log(x)-log(y)| to zero.
%
% Inputs:
% x1 - Initial guess (default: 1)
% y - Right side (default: 10)
% n - Maximum number of iterations (default: 70)
% fname - Name of an eps file for printing the convergence plot.

function sec2_8b(x, y, n, fname)

% Set default parameter values
if nargin < 1, x = 1; end
if nargin < 2, y = 10; end
if nargin < 3, n = 70; end

% Compute the iterates
for i = 1:n-1
x(i+1) = log(y) - log(x(i));

end

% Plot the residual error vs iteration number on a log scale
f = x + log(x) - log(y);
semilogy(abs(f), ’x-’);

% Label the x and y axes
xlabel(’i’);
ylabel(’Residual |x_i + log(x_i) - log(y)|’);

% Add a title. The sprintf command lets us format the string.
title(sprintf([’Convergence of x_{i+1} = log(y)-log(x_i), ’...

’with x_1 = %g, y = %g\n’], x(1), y));
grid; % A grid makes the plot easier to read

% If a filename is provided, print to that file (sized for book)
if nargin ==4
set(gcf, ’PaperPosition’, [0 0 6 3]);
print(’-deps’, fname);

end

Figure 2.9: Matlab code to plot convergence of the iteration from Section 2.4.
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Point Arithmetic [18] that goes into more detail.
There are many good books on software design, among which we recom-

mend The Pragmatic Programmer by Hunt and Thomas [11] and The Practice
of Programming by Kernighan and Pike [14]. There are far fewer books that
specifically address numerical software design, but one nice exception is Writing
Scientific Software by Oliveira and Stewart [16].

2.10 Exercises

1. It is common to think of π2 = 9.87 as approximately ten. What are the
absolute and relative errors in this approximation?

2. If x and y have type double, and ( fabs( x - y ) >= 10 ) evaluates
to TRUE, does that mean that y is not a good approximation to x in the
sense of relative error?

3. Show that fjk = sin(x0 + (j − k)π/3) satisfies the recurrence relation

fj,k+1 = fj,k − fj+1,k . (2.15)

We view this as a formula that computes the f values on level k+ 1 from
the f values on level k. Let f̂jk for k ≥ 0 be the floating point numbers
that come from implementing fj0 = sin(x0 + jπ/3) and (2.15) (for k > 0)

in double precision floating point. If
∣∣∣f̂jk − fjk∣∣∣ ≤ ε for all j, show that∣∣∣f̂j,k+1 − fj,k+1

∣∣∣ ≤ 2ε for all j. Thus, if the level k values are very accurate,
then the level k + 1 values still are pretty good.

Write a program (C/C++ or Matlab) that computes ek = f̂0k − f0k

for 1 ≤ k ≤ 60 and x0 = 1. Note that f0n, a single number on level
n, depends on f0,n−1 and f1,n−1, two numbers on level n − 1, and so on
down to n numbers on level 0. Print the ek and see whether they grow
monotonically. Plot the ek on a linear scale and see that the numbers
seem to go bad suddenly at around k = 50. Plot the ek on a log scale.
For comparison, include a straight line that would represent the error if it
were exactly to double each time.

4. What are the possible values of k after the for loop is finished?

float x = 100.0*rand() + 2;
int n = 20, k = 0;
float dy = x/n;
for (float y = 0; y < x; y += dy)

k++; /* Body does not change x, y, or dy */

5. We wish to evaluate the function f(x) for x values around 10−3. We
expect f to be about 105 and f ′ to be about 1010. Is the problem too
ill-conditioned for single precision? For double precision?
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6. Use the fact that the floating point sum x + y has relative error ε < εmach

to show that the absolute error in the sum S computed below is no worse
than (n− 1)εmach

∑n−1
k=0 |xi|:

double compute_sum(double x[], int n)
{

double S = 0;
for (int i = 0; i < n; ++i)

S += x[i];
return S;

}

7. Starting with the declarations

float x, y, z, w;
const float oneThird = 1/ (float) 3;
const float oneHalf = 1/ (float) 2;

// const means these never are reassigned

we do lots of arithmetic on the variables x, y, z, w. In each case below,
determine whether the two arithmetic expressions result in the same float-
ing point number (down to the last bit) as long as no NaN or inf values
or denormalized numbers are produced.

(a)

( x * y ) + ( z - w )
( z - w ) + ( y * x )

(b)

( x + y ) + z
x + ( y + z )

(c)

x * oneHalf + y * oneHalf
( x + y ) * oneHalf

(d) x * oneThird + y * oneThird
( x + y ) * oneThird

8. The Fibonacci numbers, fk, are defined by f0 = 1, f1 = 1, and

fk+1 = fk + fk−1 (2.16)

for any integer k > 1. A small perturbation of them, the pib numbers
(“p” instead of “f” to indicate a perturbation), pk, are defined by p0 = 1,
p1 = 1, and

pk+1 = c · pk + pk−1

for any integer k > 1, where c = 1 +
√

3/100.



2.10. EXERCISES 27

(a) Plot the fn and pn in one together on a log scale plot. On the plot,
mark 1/εmach for single and double precision arithmetic. This can be
useful in answering the questions below.

(b) Rewrite (2.16) to express fk−1 in terms of fk and fk+1. Use the
computed fn and fn−1 to recompute fk for k = n − 2, n − 3, . . . , 0.
Make a plot of the difference between the original f0 = 1 and the
recomputed f̂0 as a function of n. What n values result in no accuracy
for the recomputed f0? How do the results in single and double
precision differ?

(c) Repeat b. for the pib numbers. Comment on the striking difference
in the way precision is lost in these two cases. Which is more typical?
Extra credit: predict the order of magnitude of the error in recom-
puting p0 using what you may know about recurrence relations and
what you should know about computer arithmetic.

9. The binomial coefficients, an,k, are defined by

an,k =
(
n
k

)
=

n!
k!(n− k)!

To compute the an,k, for a given n, start with an,0 = 1 and then use the
recurrence relation an,k+1 = n−k

k+1 an,k.

(a) For a range of n values, compute the an,k this way, noting the largest
an,k and the accuracy with which an,n = 1 is computed. Do this in
single and double precision. Why is roundoff not a problem here as
it was in problem 8? Find n values for which ân,n ≈ 1 in double
precision but not in single precision. How is this possible, given that
roundoff is not a problem?

(b) Use the algorithm of part (a) to compute

E(k) =
1
2n

n∑
k=0

kan,k =
n

2
. (2.17)

Write a program without any safeguards against overflow or zero di-
vide (this time only!)10. Show (both in single and double precision)
that the computed answer has high accuracy as long as the interme-
diate results are within the range of floating point numbers. As with
(a), explain how the computer gets an accurate, small, answer when
the intermediate numbers have such a wide range of values. Why is
cancellation not a problem? Note the advantage of a wider range of
values: we can compute E(k) for much larger n in double precision.
Print E(k) as computed by (2.17) and Mn = maxk an,k. For large n,
one should be inf and the other NaN. Why?

10One of the purposes of the IEEE floating point standard was to allow a program with
overflow or zero divide to run and print results.
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(c) For fairly large n, plot an,k/Mn as a function of k for a range of k
chosen to illuminate the interesting “bell shaped” behavior of the an,k
near k = n/2. Combine the curves for n = 10, n = 20, and n = 50 in
a single plot. Choose the three k ranges so that the curves are close
to each other. Choose different line styles for the three curves.
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Among the most common computational tasks are differentiation, interpola-
tion, and integration. The simplest methods used for these operations are finite
difference approximations for derivatives, polynomial interpolation, and panel
method integration. Finite difference formulas, integration rules, and interpo-
lation form the core of most scientific computing projects that involve solving
differential or integral equations.

Finite difference formulas range from simple low order approximations (3.14a)
– (3.14c) to more complicated high order methods such as (3.14e). High order
methods can be far more accurate than low order ones. This can make the
difference between getting useful answers and not in serious applications. We
will learn to design highly accurate methods rather than relying on simple but
often inefficient low order ones.

Many methods for these problems involve a step size, h. For each h there
is an approximation1 Â(h) ≈ A. We say Â is consistent if2 Â(h) → A as
h → 0. For example, we might estimate A = f ′(x) using the finite difference
formula (3.14a): Â(h) = (f(x+h)−f(x))/h. This is consistent, as limh→0 Â(h)
is the definition of f ′(x). The accuracy of the approximation depends on f ,
but the order of accuracy depends only on how many derivatives f has.3 The
approximation is first order accurate if the error is nearly proportional to h for
small enough h. It is second order if the error goes like h2. When h is small,
h2 � h, so approximations with a higher order of accuracy can be much more
accurate.

The design of difference formulas and integration rules is based on local
analysis using approximations to a function f about a base point x. These
approximations consist of the first few terms of the Taylor series expansion of
f about x. The first order approximation is

f(x+ h) ≈ f(x) + hf ′(x) . (3.1)

The second order approximation is more complicated and more accurate:

f(x+ h) ≈ f(x) + f ′(x)h+
1
2
f ′′(x)h2 . (3.2)

Figure 3.1 illustrates the first and second order approximations. Truncation
error is the difference between f(x + h) and one of these approximations. For
example, the truncation error for the first order approximation is

f(x) + f ′(x)h− f(x+ h) .

To see how Taylor series are used, substitute the approximation (3.1) into
the finite difference formula f ′(x) ≈ (f(x+ h)− f(x))/h (given in (3.14a)). We
find

Â(h) ≈ f ′(x) = A . (3.3)

1In the notation of Chapter 2, bA is an estimate of the desired answer, A.
2Here, and in much of this chapter, we implicitly ignore rounding errors. Truncation errors

are larger than rounding errors in the majority of applications.
3 The nominal order of accuracy may only be achieved if f is smooth enough, a point that

is important in many applications.
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The more accurate Taylor approximation (3.2) allows us to estimate the error
in (3.14a). Substituting (3.2) into (3.14a) gives

Â(h) ≈ A+A1h , A1 =
1
2
f ′′(x) . (3.4)

This asymptotic error expansion is an estimate of Â − A for a given f and
h. It shows that the error is roughly proportional to h, for small h. This
understanding of truncation error leads to more sophisticated computational
strategies. Richardson extrapolation combines Â(h) and Â(2h) to create higher
order estimates with much less error. Adaptive methods are automatic ways to
find h such that

∣∣∣Â(h)−A
∣∣∣ ≤ e, where e is a specified level of accuracy. Error

expansions like (3.4) are the basis of many adaptive methods.

This chapter focuses on truncation error and mostly ignores roundoff. In
most practical computations that have truncation error, including numerical
solution of differential equations or integral equations, the truncation error is
much larger than roundoff. In the example shown in Figure 2.3, we saw that
for values of h ranging from 10−2 to 10−5, the computed error is roughly 4.1h,
as (3.4) suggests it should be. Roundoff in this case begins to dominate only
around h = 10−8. More sophisticated high-order approximations reach roundoff
sooner, which can be an issue in testing, but rarely is an issue in production
runs.
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3.1 Taylor series and asymptotic expansions

The Taylor series expansion of a function f about the point x is

f(x+ h) =
∞∑
n=0

1
n!
f (n)(x)hn . (3.5)

The notation f (n)(x) refers to the nth derivative of f evaluated at x. The partial
sum of order p is a degree p polynomial in h:

Fp(x, h) =
p∑

n=0

1
n!
f (n)(x)hn . (3.6)

The partial sum Fp is the Taylor approximation to f(x+ h) of order p. It is a
polynomial of order p in the variable h. Increasing p makes the approximation
more complicated and more accurate. The order p = 0 partial sum is simply
F0(x, h) = f(x). The first and second order approximations are (3.1) and (3.2)
respectively.

The Taylor series sum converges if the partial sums converge to f :

lim
p→∞

Fp(x, h) = f(x+ h) .

If there is a positive h0 so that the series converges whenever |h| < h0, then f is
analytic at x. A function probably is analytic at most points if there is a formula
for it, or it is the solution of a differential equation. Figure 3.1 plots a function
f(x) = xe2x together with the Taylor approximations of order zero, one, and
two. The symbols at the ends of the curves illustrate the convergence of this
Taylor series when h = ±.3. When h = .3, the series converges monotonically:
F0 < F1 < F2 < · · · → f(x + h). When h = −.3, there are approximants on
both sides of the answer: F0 > F2 > f(x+ h) > F1.

For our purposes, we will often use the partial sums Fp without letting p
go to infinity. To analyze how well the approximations Fp approximate f near
the base point x, it is useful to introduce big-O notation. If B1(h) > 0 for
h 6= 0, we write B2(h) = O(B1(h)) (as h → 04 to mean there is a C such that
|B1(h)| ≤ CB2(h) in an open neighborhood of h = 0. A common misuse of
the notation, which we will follow, is to write B2(h) = O(B1(h)) when B1 can
be negative, rather than B2(h) = O(|B1(h)|). We say B2 is an order smaller
than B1 (or an order of approximation smaller) if B2(h) = O(hB1(h)). If B2 is
an order smaller than B1, then we have |B2(h)| < |B1(h)| for small enough h
(h < 1/C), and reducing h further makes B2 much smaller than B1.

An asymptotic expansion is a sequence of approximations with increasing
order of accuracy, like the partial sums Fp(x, h). We can make an analogy

4 Big-O notation is also used to describe the asymptotic behavior of functions as they go
to infinity; we say f(t) = O(g(t)) for g ≥ 0 as t→∞ if |f(t)|/g(t) is bounded for all t > T . It
will usually be clear from context whether we are looking at limits going to zero or going to
infinity.



3.1. TAYLOR SERIES AND ASYMPTOTIC EXPANSIONS 33

between asymptotic expansions of functions and decimal expansions of numbers
if we think of orders of magnitude rather than orders of accuracy. The expansion

π = 3.141592 · · · = 3 + 1 · .1 + 4 · (.1)2 + 1 · (.1)3 + 5 · (.1)4 + · · · (3.7)

is a sequence of approximations

Â0 ≈ 3
Â1 ≈ 3 + 1 · .1 = 3.1
Â2 ≈ 3 + 1 · .1 + 4 · (.1)2 = 3.14

etc.

The approximation Âp is an order of magnitude more accurate than Âp−1. The
error Âp − π is of the order of magnitude (.1)p+1, which also is the order of
magnitude of the first neglected term. The error in Â3 = 3.141 is Â3 − π ≈
6 ·10−4. This error is approximately the same as the next term, 5 ·(.1)4. Adding
the next term gives an approximation whose error is an order of magnitude
smaller:

Â3 + 5 · (.1)4 − π = Â4 − π ≈ −9 · 10−5 .

We change notation when we view the Taylor series as an asymptotic expan-
sion, writing

f(x+ h) ∼ f(x) + f ′(x) · h+
1
2
f ′′(x)h2 + · · · . (3.8)

This means that the right side is an asymptotic series that may or may not
converge. It represents f(x+ h) in the sense that the partial sums Fp(x, h) are
a family of approximations of increasing order of accuracy:

|Fp(x, h)− f(x+ h)| = O(hp+1) . (3.9)

The asymptotic expansion (3.8) is much like the decimal expansion (3.7). The
term in (3.8) of order O(h2) is 1

2f
′′(x) · h2. The term in (3.7) of order of

magnitude 10−2 is 4 · (.1)−2. The error in a p term approximation is roughly
the first neglected term, since all other neglected terms are at least one order
smaller.

Figure 3.1 illustrates the asymptotic nature of the Taylor approximations.
The lowest order approximation is F0(x, h) = f(x). The graph of F0 touches
the graph of f when h = 0 but otherwise has little in common. The graph of
F1(x, h) = f(x) + f ′(x)h not only touches the graph of f when h = 0, but the
curves are tangent. The graph of F2(x, h) not only is tangent, but has the same
curvature and is a better fit for small and not so small h.

3.1.1 Technical points

In this subsection, we present two technical points for mathematically minded
readers. First, we prove the basic fact that underlies most of the analysis in this
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chapter, that the Taylor series (3.5) is an asymptotic expansion. Second, we give
an example of an asymptotic expansion that converges to the wrong answer, and
another example of an asymptotic expansion that does not converge at all.

The asymptotic expansion property of Taylor series comes from the Taylor
series remainder theorem.5 If the derivatives of f up to order p + 1 exist and
are continuous in the interval [x, x+ h], then there is a ξ ∈ [x, x+ h] so that

f(x+ h)− Fp(x, h) =
1

(p+ 1)!
f (p+1)(ξ)hp+1 . (3.10)

If we take
C =

1
(p+ 1)!

max
y∈[x,x+h]

∣∣∣f (p+1)(y)
∣∣∣ ,

then we find that
|Fp(x, h)− f(x+ h)| ≤ C · hp+1 .

This is the proof of (3.9), which states that the Taylor series is an asymptotic
expansion.

The approximation Fp(x, h) includes terms in the sum (3.8) through order
p. The first neglected term is 1

(p+1)f
(p+1)(x), the term of order p+ 1. This also

is the difference Fp+1−Fp. It differs from the the Taylor series remainder (3.10)
only in ξ being replaced by x. Since ξ ∈ [x, x+ h], this is a small change if h is
small. Therefore, the error in the Fp is nearly equal to the first neglected term.

An asymptotic expansion can converge to the wrong answer or not converge
at all. We give an example of each. These are based on the fact that exponentials
beat polynomials in the sense that, for any n,

tne−t → 0 as t→∞ .

If we take t = a/ |x| (because x may be positive or negative), this implies that

1
xn
e−a/x → 0 as x→ 0 . (3.11)

Consider the function f(x) = e−1/|x|. This function is continuous at x = 0
if we define f(0) = 0. The derivative at zero is (using (3.11))

f ′(0) = lim
h→0

f(h)− f(0)
h

= lim
h→0

e−1/|h|

h
= 0 .

When x 6= 0, we calculate f ′(x) = ± 1
|x|2 e

−1/|x|. The first derivative is con-
tinuous at x = 0 because (3.11) implies that f ′(x) → 0 = f ′(0) as x → 0.
Continuing in his way, one can see that each of the higher derivatives vanishes
at x = 0 and is continuous. Therefore Fp(0, h) = 0 for any p, as f (n)(0) = 0 for
all n. Thus clearly Fp(0, h) → 0 as p → ∞. But f(h) = e1/h > 0 if h 6= 0, so
the Taylor series, while asymptotic, converges to the wrong answer.

5 See any good calculus book for a derivation and proof.
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What goes wrong here is that the derivatives f (p) are zero at x = 0, but
they are large for x close zero. The remainder theorem (3.10) implies that
Fp(x, h)→ f(x+ h) as p→∞ if

Mp =
hp

p!
max

x≤ξ≤x+h

∣∣∣f (p)(ξ)
∣∣∣→ 0 as p→∞.

Taking x = 0 and any h > 0, function f(x) = e−1/|x| has Mp →∞ as p→∞.
Here is an example of an asymptotic Taylor series that does not converge at

all. Consider

f(h) =
∫ 1/2

0

e−x/h
1

1− x
dx . (3.12)

The integrand goes to zero exponentially as h→ 0 for any fixed x. This suggests6

that most of the integral comes from values of x near zero and that we can
approximate the integral by approximating the integrand near x = 0. Therefore,
we write 1/(1− x) = 1 + x+ x2 + · · · , which converges for all x in the range of
integration. Integrating separately gives

f(h) =
∫ 1/2

0

e−x/hdx+
∫ 1/2

0

e−x/hxdx+
∫ 1/2

0

e−x/hx2dx+ · · · .

We get a simple formula for the integral of the general term e−x/hxn if we change
the upper limit from 1/2 to ∞. For any fixed n, changing the upper limit of
integration makes an exponentially small change in the integral, see problem
(6). Therefore the nth term is (for any p > 0)∫ 1/2

0

e−x/hxndx =
∫ ∞

0

e−x/hxndx+O(hp)

= n!hn+1 +O(hp) .

Assembling these gives

f(h) ∼ h+ h2 + 2h3 + · · ·+ (n− 1)! · hn + · · · (3.13)

This is an asymptotic expansion because the partial sums are asymptotic ap-
proximations:∣∣h+ h2 + 2h3 + · · ·+ (p− 1)! · hp − f(h)

∣∣ = O(hp+1) .

But the infinite sum does not converge; for any h > 0 we have n! · hn+1 → ∞
as n→∞.

In these examples, the higher order approximations have smaller ranges of
validity. For (3.12), the three term approximation f(h) ≈ h+h2 +2h3 is reason-
ably accurate when h = .3 but the six term approximation is less accurate, and
the ten term “approximation” is 4.06 for an answer less than .5. The ten term
approximation is very accurate when h = .01 but the fifty term “approximation”
is astronomical.

6A more precise version of this intuitive argument is in exercise 6.
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3.2 Numerical Differentiation

One basic numerical task is estimating the derivative of a function from function
values. Suppose we have a smooth function, f(x), of a single variable, x. The
problem is to combine several values of f to estimate f ′. These finite difference7

approximations are useful in themselves, and because they underlie methods for
solving differential equations. Several common finite difference approximations
are

f ′(x) ≈ f(x+ h)− f(x)
h

(3.14a)

f ′(x) ≈ f(x)− f(x− h)
h

(3.14b)

f ′(x) ≈ f(x+ h)− f(x− h)
2h

(3.14c)

f ′(x) ≈ −f(x+ 2h) + 4f(x+ h)− 3f(x)
2h

(3.14d)

f ′(x) ≈ −f(x+ 2h) + 8f(x+ h)− 8f(x− h) + f(x+ 2h)
12h

(3.14e)

Formulas (3.14a)-(3.14c) have simple geometric interpretations as the slopes
of lines connecting nearby points on the graph of f(x). A carefully drawn
figure shows that (3.14c) is more accurate than (3.14a). We give an analytical
explanation of this below. Formulas (3.14d) and (3.14e) are more technical. The
formulas (3.14a), (3.14b), and (3.14d) are one sided because they use values only
on one side of x. The formulas (3.14c) and (3.14e) are centered because they
use points symmetrical about x and with opposite weights.

The Taylor series expansion (3.8) allows us to calculate the accuracy of each
of these approximations. Let us start with the simplest, the first-order formula
(3.14a). Substituting (3.8) into the right side of (3.14a) gives

f(x+ h)− f(x)
h

∼ f ′(x) + h
f ′′(x)

2
+ h2 f

′′′(x)
6

+ · · · . (3.15)

This may be written:

f(x+ h)− f(x)
h

= f ′(x) + Ea(h) ,

where
Ea(h) ∼ 1

2
f ′′(x) · h+

1
6
f ′′′(x) · h2 + · · · . (3.16)

In particular, this shows that Ea(h) = O(h), which means that the one sided
two point finite difference approximation is first order accurate. Moreover,

Ea(h) =
1
2
f ′′(x) · h+O(h2) , (3.17)

7 Isaac Newton thought of the differential dx as something infinitely small and yet not zero.
He called such quantities infinitesimals. The infinitesimal difference was df = f(x+dx)−f(x).
The finite difference occurs when the change in x is finitely small but not infinitely small.
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which is to say that, to leading order, the error is proportional to h and given
by 1

2f
′′(x)h.

Taylor series analysis applied to the two point centered difference approxi-
mation (3.14c) leads to

f ′(x) =
f(x+ h)− f(x− h)

2h
+ Ec(h)

where

Ec(h) ∼ 1
6
f ′′′(x) · h2 +

1
24
f (5)(x) · h4 + · · · (3.18)

=
1
6
f ′′′(x) · h2 +O(h4)

This centered approximation is second order accurate, Ec(h) = O(h2). This is
one order more accurate than the one sided approximations (3.14a) and (3.14b).
Any centered approximation such as (3.14c) or (3.14e) must be at least second
order accurate because of the symmetry relation Â(−h) = Â(h). Since A =
f ′(x) is independent of h, this implies that E(h) = Â(h) − A is symmetric. If
E(h) = c · h+O(h2), then

E(−h) = −c · h+O(h2) = E(h) +O(h2) ≈ −E(h) for small h,

which contradicts E(−h) = E(h). The same kind of reasoning shows that the
O(h3) term in (3.18) must be zero.

A Taylor series analysis shows that the three point one sided formula (3.14d)
is second order accurate, while the four point centered approximation (3.14e) is
fourth order. Sections 3.3.1 and 3.5 give two ways to find the coefficients 4, −3,
and 8 achieve these higher orders of accuracy.

Figure 3.2 illustrates many of these features. The first is that the higher
order formulas (3.14c), (3.14d), and (3.14e) are more accurate when h is small.
For h = .5, the first order two point one sided difference formula is more accurate
than the second order accurate three point formula, but their proper asymptotic
ordering is established by h = .01. For h ≤ 10−5 with the fourth order centered
difference formula and h = 10−7 with the second order formula, double precision
roundoff error makes the results significantly different from what they would be
in exact arithmetic. The rows labeled Ê give the leading order Taylor series
estimate of the error. For the first order formula, (3.17) shows that this is
Ê(h) = 1

2f
′′(x)h. For the second order centered formula, (3.18) gives leading

order error Êc(h) = 1
6f
′′′(x)h2. For the three point one sided formula, the

coefficient of f ′′′(x)h2 is 1
3 , twice the coefficient for the second order centered

formula. For the fourth order formula, the coefficient of f (5)(x)h4 is 1
30 . The

table shows that Ê is a good predictor of E, if h is at all small, until roundoff
gets in the way. The smallest error8 in the table comes from the fourth order

8The error would have been −3×10−19 rather than −6×10−12, seven orders of magnitude
smaller, in exact arithmetic. The best answer comes despite some catastrophic cancellation,
but not completely catastrophic.
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h (3.14a) (3.14c) (3.14d) (3.14e)
.5 3.793849 0.339528 7.172794 0.543374
E 2.38e+00 -1.08e+00 5.75e+00 -8.75e-01
Ê 5.99e+00 -1.48e+00 -2.95e+00 -1.85e+00
.01 2.533839 1.359949 1.670135 1.415443
E 1.12e+00 -5.84e-02 2.52e-01 -2.87e-03
Ê 1.20e+00 -5.91e-02 -1.18e-01 -2.95e-03

5× 10−3 1.999796 1.403583 1.465752 1.418128
E 5.81e-01 -1.47e-02 4.74e-02 -1.83e-04
Ê 5.99e-01 -1.48e-02 -2.95e-02 -1.85e-04

10−3 1.537561 1.417720 1.419642 1.418311
E 1.19e-01 -5.91e-04 1.33e-03 -2.95e-07
Ê 1.20e-01 -5.91e-04 -1.18e-03 -2.95e-07

10−5 1.418431 1.418311 1.418311 1.418311
E 1.20e-04 -5.95e-10 1.16e-09 -6.05e-12
Ê 1.20e-04 -5.91e-10 -1.18e-09 -2.95e-19

10−7 1.418312 1.418311 1.418311 1.418311
E 1.20e-06 2.76e-10 3.61e-09 8.31e-10
Ê 1.20e-06 -5.91e-14 -1.18e-13 -2.95e-27

Figure 3.2: Estimates of f ′(x) with f(x) = sin(5x) and x = 1 using formulas
(3.14a), (3.14c), (3.14d), and (3.14e). Each group of three rows corresponds
to one h value. The top row gives the finite difference estimate off ′(x), the
middle row gives the error E(h), and the third row is Ê(h), the leading Taylor
series term in the error formula. All calculations were done in double precision
floating point arithmetic.

formula and h = 10−5. It is impossible to have an error this small with a first
or second order formula no matter what the step size. Note that the error in
the (3.14e) column increased when h was reduced from 10−5 to 10−7 because of
roundoff.

A difference approximation may not achieve its expected order of accuracy
if the requisite derivatives are infinite or do not exist. As an example of this,
let f(x) be the function

f(x) =
{

0 if x ≤ 0
x2 if x ≥ 0 .

If we want f ′(0) , the formulas (1c) and (1e) are only first order accurate despite
their higher accuracy for smoother functions. This f has a mild singularity, a
discontinuity in its second derivative. Such a singularity is hard to spot on a
graph, but may have a drastic effect on the numerical analysis of the function.
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We can use finite differences to approximate higher derivatives such as

f(x+ h)− 2f(x) + f(x− h)
h2

= f ′′(x) +
h2

12
f (4) +O(h4) ,

and to estimate partial derivatives of functions depending on several variables,
such as

f(x+ h, y)− f(x− h, y)
2h

∼ ∂

∂x
f(x, y) +

h2

3
∂3f

∂x3
(x, y) + · · · .

3.2.1 Mixed partial derivatives

Several new features arise only when evaluating mixed partial derivatives or
sums of partial derivatives in different variables. For example, suppose we want
to evaluate9 fxy = ∂x∂yf(x, y). Rather than using the same h for both10 x
and y, we use step size ∆x for x and ∆y for y. The first order one sided
approximation for fy is

fy ≈
f(x, y + ∆y)− f

∆y
.

We might hope this, and

fy(x+ ∆x, y) ≈ f(x+ ∆x, y + ∆y)− f(x+ ∆x, y)
∆y

,

are accurate enough so that

∂x
(
∂yf

)
≈ fy(x+ ∆x, y)− fy

∆x

≈

f(x+ ∆x, y + ∆y)− f(x+ ∆x, y)
∆y

− f(x, y + ∆y)− f
∆y

∆x

fxy ≈ f(x+ ∆x, y + ∆y)− f(x+ ∆x, y)− f(x, y + ∆y) + f

∆x∆y
(3.19)

is consistent11.
To understand the error in (3.19), we need the Taylor series for functions of

more than one variable. The rigorous remainder theorem is more complicated,

9 We abbreviate formulas by denoting partial derivatives by subscripts, ∂xf = fx, etc., and
by leaving out the arguments if they are (x, y), so f(x+ ∆x, y)− f(x, y) = f(x+ ∆x, y)− f ≈
∆x fx(x, y) = ∆x fx.

10The expression f(x+h, y+h) does not even make sense if x and y have different physical
units.

11 The same calculation shows that the right side of (3.19) is an approximation of ∂y (∂xf).
This is one proof that ∂y∂xf = ∂y∂xf .
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but it suffices here to use all of the “first” neglected terms. The expansion is

f(x+ ∆x, y + ∆y) ∼ f + ∆xfx + ∆yfy

+
1
2

∆x2fxx + ∆x∆yfxy +
1
2

∆y2fyy

+
1
6

∆x3fxxx +
1
2

∆x2∆yfxxy +
1
2

∆x∆y2fxyy +
1
6

∆y3fyyy

+ · · ·

+
1
p!

p∑
k=0

(
p

k

)
∆xp−k∆yk∂p−kx ∂kyf + · · · .

If we keep just the terms on the top row on the right, the second order terms on
the second row are the first neglected terms, and (using the inequality ∆x∆y ≤
∆x2 + ∆y2):

f(x+ ∆x, y + ∆y) = f + ∆xfx + ∆yfy +O
(
∆x2 + ∆y2

)
.

Similarly,

f(x+ ∆x, y + ∆y)

= f + ∆xfx + ∆yfy +
1
2

∆x2fxx + ∆x∆yfxy +
1
2

∆y2fyy

+ O
(
∆x3 + ∆y3

)
.

Of course, the one variable Taylor series is

f(x+ ∆x, y) = f + ∆xfx +
1
2

∆x2fxx +O
(
∆x3

)
, etc.

Using all these, and some algebra, gives

f(x+ ∆x, y + ∆y)− f(x+ ∆x, y)− f(x, y + ∆y) + f

∆x∆y

= fxy +O

(
∆x3 + ∆y3

∆x∆y

)
. (3.20)

This shows that the approximation (3.19) is first order, at least if ∆x is roughly
proportional to ∆y. The second order Taylor expansion above gives a quanti-
tative estimate of the error:

f(x+ ∆x, y + ∆y)− f(x+ ∆x, y)− f(x, y + ∆y) + f

∆x∆y
− fxy

≈ 1
2

(∆xfxxy + ∆yfxyy) . (3.21)

This formula suggests (and it is true) that in exact arithmetic we could let
∆x→ 0, with ∆y fixed but small, and still have a reasonable approximation to
fxy. The less detailed version (3.20) suggests that might not be so.
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A partial differential equation may involve a differential operator that is a
sum of partial derivatives. One way to approximate a differential operator is to
approximate each of the terms separately. For example, the Laplace operator
(or Laplacian), which is 4 = ∂2

x + ∂2
y in two dimensions, may be approximated

by

4f(x, y) = ∂2
xf + ∂2

yf

≈ f(x+ ∆x, y)− 2f + f(x−∆x, y)
∆x2

+
f(x, y + ∆y)− 2f + f(x, y − 2∆y)

∆y2
.

If ∆x = ∆y = h (x and y have the same units in the Laplace operator), then
this becomes

4 f ≈ 1
h2

(
f(x+ h, y) + f(x− h, y) + f(x, y + h) + f(x, y − h)− 4f

)
. (3.22)

This is the standard five point approximation (seven points in three dimensions).
The leading error term is

h2

12
(
∂4
xf + ∂4

yf
)
. (3.23)

The simplest heat equation (or diffusion equation) is ∂tf = 1
2∂

2
xf . The space

variable, x, and the time variable, t have different units. We approximate the
differential operator using a first order forward difference approximation in time
and a second order centered approximation in space. This gives

∂tf −
1
2
∂2
xf ≈

f(x, t+ ∆t)− f
∆t

− f(x+ ∆x, t)− 2f + f(x−∆x, t)
2∆x2

. (3.24)

The leading order error is the sum of the leading errors from time differencing
( 1

2∆t∂2
t f) and space differencing (∆x2

24 ∂
4
xf), which is

1
2

∆t∂2
t f −

∆x2

24
∂4
xf . (3.25)

For many reasons, people often take ∆t proportional to ∆x2. In the simplest
case of ∆t = ∆x2, the leading error becomes

∆x2

(
1
2
∂2
t f −

1
24
∂4
xf

)
.

This shows that the overall approximation (3.24) is second order accurate if we
take the time step to be the square of the space step.

3.3 Error Expansions and Richardson Extrapo-
lation

The error expansions (3.16) and (3.18) above are instances of a common situ-
ation that we now describe more systematically and abstractly. We are trying
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to compute A and there is an approximation with

Â(h)→ A as h→ 0 .

The error is E(h) = Â(h)−A. A general asymptotic error expansion in powers
of h has the form

Â(h) ∼ A+ hp1A1 + hp2A2 + · · · , (3.26)

or, equivalently,
E(h) ∼ hp1A1 + hp2A2 + · · · .

As with Taylor series, the expression (3.26) does not imply that the series on
the right converges to Â(h). Instead, the asymptotic relation (3.26) means that,
as h→ 0,

Â(h)− (A+ hp1A1) = O(hp2) (a)

Â(h)− (A+ hp1A1 + hp2A2) = O(hp3) (b)

and so on.

 (3.27)

It goes without saying that 0 < p1 < p2 < · · · . The statement (3.27a) says not
only that A + A1h

p1 is a good approximation to Â(h), but that the error has
the same order as the first neglected term, A2h

p2 . The statement (3.27b) says
that including the O(hp2) term improves the approximation to O(hp3), and so
on.

Many asymptotic error expansions arise from Taylor series manipulations.
For example, the two point one sided difference formula error expansion (3.15)
gives p1 = 1, A1 = 1

2f
′′(x), p2 = 2, A2 = 1

6f
′′′(x), etc. The error expansion

(3.18) for the two point centered difference formula implies that p1 = 2, p2 = 4,
A1 = 1

6f
′′′(x), and A2 = 1

24f
(5)(x). The three point one sided formula has

p1 = 2 because it is second order accurate, but p2 = 3 instead of p2 = 4. The
fourth order formula has p1 = 4 and p2 = 6.

It is possible that an approximation is pth order accurate in the big O sense,
|E(h)| ≤ Chp, without having an asymptotic error expansion of the form (3.26).
Figure 3.4 has an example showing that this can happen when the function
f(x) is not sufficiently smooth. Most of the extrapolation and debugging tricks
described here do not apply in those cases.

We often work with asymptotic error expansions for which we know the
powers pk but not the coefficients, Ak. For example, in finite difference approx-
imations, the Ak depend on the function f but the pk do not. Two techniques
that use this information are Richardson extrapolation and convergence analysis.
Richardson extrapolation combines Â(h) approximations for several values of h
to produce a new approximation that has greater order of accuracy than Â(h).
Convergence analysis is a debugging method that tests the order of accuracy of
numbers produced by a computer code.
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3.3.1 Richardson extrapolation

Richardson extrapolation increases the order of accuracy of an approximation
provided that the approximation has an asymptotic error expansion of the form
(3.26) with known pk. In its simplest form, we compute Â(h) and Â(2h) and
then form a linear combination that eliminates the leading error term. Note
that

Â(2h) = A+ (2h)p1 A1 + (2h)p2 A2 + · · ·
= A+ 2p1hp1A1 + 2p2hp2A2 + · · · ,

so

2p1Â(h)− Â(2h)
2p1 − 1

= A+
2p1 − 2p2

2p1 − 1
hp2A2 +

2p3 − 2p2

2p1 − 1
hp3A3 + · · · .

In other words, the extrapolated approximation

Â(1)(h) =
2p1Â(h)− Â(2h)

2p1 − 1
(3.28)

has order of accuracy p2 > p1. It also has an asymptotic error expansion,

Â(1)(h) = A+ hp2A
(1)
2 + hp3A

(1)
3 + · · · ,

where A(1)
2 =

2p1 − 2p2

2p1 − 1
A2, and so on.

Richardson extrapolation can be repeated to remove more asymptotic error
terms. For example,

Â(2)(h) =
2p2Â(1)(h)− Â(1)(2h)

2p2 − 1

has order p3. Since Â(1)(h) depends on Â(h) and Â(2h), Â(2)(h) depends on
Â(h), Â(2h), and Â(4h). It is not necessary to use powers of 2, but this is
natural in many applications. Richardson extrapolation will not work if the
underlying approximation, Â(h), has accuracy of order hp in the O(hp) sense
without at least one term of an asymptotic expansion.

Richardson extrapolation allows us to derive higher order difference approx-
imations from low order ones. Start, for example, with the first order one sided
approximation to f ′(x) given by (3.14a). Taking p1 = 1 in (3.28) leads to the
second order approximation

f ′(x) ≈ 2
f(x+ h)− f(x)

h
− f(x+ 2h)− f(x)

2h

=
−f(x+ 2h) + 4f(x+ h)− 3f(x)

2h
,

which is the second order three point one sided difference approximation (3.14d).
Starting with the second order centered approximation (3.14c) (with p1 = 2 and
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p2 = 4) leads to the fourth order approximation (3.14e). The second order one
sided formula has p1 = 2 and p2 = 3. Applying Richardson extrapolation to it
gives a one sided formula that uses f(x+ 4h), f(x+ 2h), f(x+ h), and f(x) to
give a third order approximation. A better third order one sided approximation
would use f(x+ 3h) instead of f(x+ 4h). Section 3.5 explains how to do this.

Richardson extrapolation may also be applied to the output of a complex
code. Run it with step size h and 2h and apply (3.28) to the output. This is
sometimes applied to differential equations as an alternative to making up high
order schemes from scratch, which can be time consuming and intricate.

3.3.2 Convergence analysis

We can test a code, and the algorithm it is based on, using ideas related to
Richardson extrapolation. A naive test would be to do runs with decreasing h
values to check whether Â(h)→ A as h→ 0. A convergence analysis based on
asymptotic error expansions can be better. For one thing, we might not know
A. Even if we run a test case where A is known, it is common that a code with
mistakes limps to convergence, but not as accurately or reliably as the correct
code would. If we bother to write a code that is more than first order accurate,
we should test that we are getting the order of accuracy we worked for.

There are two cases, the case where A is known and the case where A is not
known. While we would not write a code solely to solve problems for which we
know the answers, such problems are useful test cases. Ideally, a code should
come with a suite of tests, and some of these tests should be nontrivial. For
example, the fourth-order approximation (3.14e) gives the exact answer for any
polynomial of degree less than five, so a test suite of only low-order polynomials
would be inappropriate for this rule.

If A is known, we can run the code with step size h and 2h and, from the
resulting approximations, Â(h) and Â(2h), compute

E(h) ≈ A1h
p1 +A2h

p2 + · · · ,
E(2h) ≈ 2p1A1h

p1 + 2p2A2h
p2 + · · · .

For small h the first term is a good enough approximation so that the ratio
should be approximately the characteristic value

R(h) =
E(2h)
E(h)

≈ 2p1 . (3.29)

Figure 3.3 illustrates this phenomenon. As h → 0, the ratios converge to the
expected result 2p1 = 23 = 8. Figure 3.4 shows what may happen when we apply
this convergence analysis to an approximation that is second order accurate in
the big O sense without having an asymptotic error expansion. The error gets
very small but the error ratio does not have simple behavior as in Figure 3.3.
The difference between the convergence in these two cases appears clearly in the
log-log error plots shown in Figure 3.5.
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h Error: E(h) Ratio: E(h)/E(h/2)
.1 4.8756e-04 3.7339e+00
.05 1.3058e-04 6.4103e+00
.025 2.0370e-05 7.3018e+00
.0125 2.7898e-06 7.6717e+00

6.2500e-03 3.6364e-07 7.8407e+00
3.1250e-03 4.6379e-08 7.9215e+00
1.5625e-03 5.8547e-09 7.9611e+00
7.8125e-04 7.3542e-10 ———-

Figure 3.3: Convergence study for a third order accurate approximation. As
h→ 0, the ratio converges to 23 = 8. The h values in the left column decrease
by a factor of two from row to row.

h Error: E(h) Ratio: E(h)/E(h/2)
.1 1.9041e-02 2.4014e+00
.05 7.9289e-03 1.4958e+01
.025 5.3008e-04 -1.5112e+00
.0125 -3.5075e-04 3.0145e+00

6.2500e-03 -1.1635e-04 1.9880e+01
3.1250e-03 -5.8529e-06 -8.9173e-01
1.5625e-03 6.5635e-06 2.8250e+00
7.8125e-04 2.3233e-06 ———-

Figure 3.4: Convergence study for an approximation that is second order ac-
curate in the sense that |E(h)| = O(h2) but that has no asymptotic error ex-
pansion. The h values are the same as in Figure 3.3. The errors decrease in an
irregular fashion.

Convergence analysis can be applied even when A is not known. In this case
we need three approximations, Â(4h), Â(2h), and Â(h). Again assuming the
existence of an asymptotic error expansion (3.26), we get, for small h,

R′(h) =
Â(4h)− Â(2h)

Â(2h)− Â(h)
≈ 2p1 . (3.30)

3.4 Integration

Numerical integration means finding approximations for quantities such as

I =
∫ b

a

f(x)dx .
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Figure 3.5: Log-log plots of the convergence study data in Figures 3.3 (top)
and 3.4 (bottom). The existence of an asymptotic error expansion in the first
example shows up graphically as convergence to a straight line with slope 3.
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Rectangle Îk = hkf(xk) 1st order

Trapezoid Îk =
hk
2

(f(xk) + f(xk+1)) 2nd order

Midpoint Îk = hkf(xk+1/2) 2nd order

Simpson Îk ≈
hk
6
(
f(xk) + 4f(xk+1/2) + f(xk+1)

)
4th order

2 point GQ Îk =
hk
2
(
f(xk+1/2 − hkξ) + f(xk+1/2 + hkξ)

)
4th order

3 point GQ Îk =
hk
18
(
5f(xk+1/2 − hkη) + 8f(xk+1/2) + 5f(xk+1/2 + hkη)

)
6th order

Figure 3.6: Common panel integration rules. The last two are Gauss quadrature
(Gauss – Legendre to be precise) formulas. The definitions are ξ = 1

2
√

3
and

η = 1
2

√
3
5 .

We discuss only panel methods here, though there are other elegant methods.
In a panel method, the integration interval, [a, b], is divided into n subintervals,
or panels, Pk = [xk, xk+1], where a = x0 < x1 < · · · < xn = b. If the panel Pk
is small, we can get an accurate approximation to

Ik =
∫
Pk

f(x)dx =
∫ xk+1

xk

f(x)dx (3.31)

using a few evaluations of f inside Pk. Adding these approximations gives an
approximation to I:

Î =
n−1∑
k=0

Îk . (3.32)

Some common panel integral approximations are given in Figure 3.6, where we
write xk+1/2 = (xk+1 +xk)/2 for the midpoint of the panel and hk = xk+1−xk
is the width. Note that xk is the left endpoint of Pk and the right endpoint
of Pk−1. In the trapezoid rule and Simpson’s rule, we need not evaluate f(xk)
twice.

For our error analysis, we assume that all the panels are the same size

h = ∆x = |Pk| = xk+1 − xk for all k.

Given this restriction, not every value of h is allowed because b− a = nh and n
is an integer. When we take h → 0, we will assume that h only takes allowed
values h = (b−a)/n. The local truncation error is the integration error over one
panel. The global error is the sum of the local truncation errors in all the panels.
The global error usually is one power of h larger than the local truncation error.
If the error per panel is O(hq), then the total error will be of the order of nhq,
where n is the number of panels. Since n = (b − a)/h, this suggests that the
global error will be of order hq · (b− a)/h = O(hq−1).
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For the local truncation error analysis, let P = [x∗, x∗ + h] be a generic
panel. The panel integration rule approximates the panel integral

IP =
∫
P

f(x)dx =
∫ x∗+h

x∗

f(x)dx

with the approximation, ÎP . For example, the rectangle rule (top row of Figure
3.6) has panel integration rule∫ x∗+h

x∗

f(x)dx ≈ ÎP (h) = hf(x∗) .

To estimate the difference between IP and ÎP (h), we expand f in a Taylor series
about x∗:

f(x) ∼ f(x∗) + f ′(x∗)(x− x∗) +
1
2
f ′′(x∗)(x− x∗)2 + · · · .

Integrating this term by term leads to

IP ∼
∫
P

f(x∗)dx+
∫
P

f ′(x∗)(x− x∗)dx+ · · ·

= f(x∗)h+
1
2
f ′(x∗)h2 +

1
6
f ′′(x∗)h3 + · · · .

The error in integration over this panel then is

E(P, h) = ÎP (h)− IP ∼ −
1
2
f ′(x∗)h2 − 1

6
f ′′(x∗)h3 − · · · . (3.33)

This shows that the local truncation error for the rectangle rule is O(h2) and
identifies the leading error coefficient.

E = Î − I

=
n−1∑
k=0

Îk − Ik

E ∼ −
n−1∑
k=0

1
2
f ′(xk)h2 −

n−1∑
k=0

1
6
f ′′(xk)h3 − · · · . (3.34)

We sum over k and use simple inequalities to get the order of magnitude of the
global error:

|E| <≈ 1
2

n−1∑
k=0

|f ′(xk)|h2

≤ n · 1
2

max
a≤x≤b

|f ′(x)| · h2

=
b− a
h

O(h2)

= O(h) .
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This shows that the rectangle rule is first order accurate overall.
Looking at the global error in more detail leads to an asymptotic error

expansion. Applying the rectangle rule error bound to another function, g(x),
we have

n−1∑
k=0

g(xk)h =
∫ b

a

g(x)dx+O(h) .

Taking g(x) = f ′(x) gives

n−1∑
k=0

f ′(xk)h =
∫ b

a

f ′(x)dx+O(h) = f(b)− f(a) +O(h) .

From (3.34) we have

E ≈ −

(
n−1∑
k=0

f ′(xk)h

)
h

2

≈ −

(∫ b

a

f ′(x)dx

)
h

2

E ≈ −1
2

(f(b)− f(a))h . (3.35)

This gives the first term in the asymptotic error expansion. It shows that the
leading error not only is bounded by h, but roughly is proportional to h. It also
demonstrates the curious fact that if f is differentiable then the leading error
term is determined by the values of f at the endpoints and is independent of
the values of f between. This is not true if f has a discontinuity in the interval
[a, b].

To get the next term in the error expansion, apply (3.34) to the error itself,
i.e.

n−1∑
k=0

f ′(xk)h =
∫ b

a

f ′(x)dx− h

2
(f ′(b)− f ′(a)) +O(h2)

= f(b)− f(a)− h

2
(f ′(b)− f ′(a)) +O(h2) .

In the same way, we find that

n−1∑
k=0

f ′′(xk)
h3

6
= (f ′(b)− f ′(a))

h2

6
+O(h3) .

Combining all these gives the first two terms in the error expansion:

E(h) ∼ −1
2

(f(b)− f(a))h+
1
12

(f ′(b)− f ′(a))h2 + · · · . (3.36)

It is clear that this procedure can be used to continue the expansion as far
as we want, but you would have to be very determined to compute, for example,
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n Computed Integral Error Error/h (E −A1h)/h2 (E −A1h−A2h
2)/h3

10 3.2271 -0.2546 -1.6973 0.2900 -0.7250
20 3.3528 -0.1289 -1.7191 0.2901 -0.3626
40 3.4168 -0.0649 -1.7300 0.2901 -0.1813
80 3.4492 -0.0325 -1.7354 0.2901 -0.0907

160 3.4654 -0.0163 -1.7381 0.2901 -0.0453

Figure 3.7: Experiment illustrating the asymptotic error expansion for rectangle
rule integration.

n Computed Integral Error Error/h (E −A1h)/h2

10 7.4398e-02 -3.1277e-02 -3.1277e-01 -4.2173e-01
20 9.1097e-02 -1.4578e-02 -2.9156e-01 -4.1926e-01
40 9.8844e-02 -6.8314e-03 -2.7326e-01 -1.0635e-01
80 1.0241e-01 -3.2605e-03 -2.6084e-01 7.8070e-01

160 1.0393e-01 -1.7446e-03 -2.7914e-01 -1.3670e+00
320 1.0482e-01 -8.5085e-04 -2.7227e-01 -5.3609e-01
640 1.0526e-01 -4.1805e-04 -2.6755e-01 1.9508e+00

1280 1.0546e-01 -2.1442e-04 -2.7446e-01 -4.9470e+00
2560 1.0557e-01 -1.0631e-04 -2.7214e-01 -3.9497e+00
5120 1.0562e-01 -5.2795e-05 -2.7031e-01 1.4700e+00

Figure 3.8: Experiment illustrating the breakdown of the asymptotic expan-
sion for a function with a continuous first derivative but discontinuous second
derivative.

the coefficient of h4. An elegant and more systematic discussion of this error
expansion is carried out in the book of Dahlquist and Bjork. The resulting error
expansion is called the Euler Maclaurin formula. The coefficients 1/2, 1/12, and
so on, are related to the Bernoulli numbers.

The error expansion (3.36) will not be valid if the integrand, f , has singular-
ities inside the domain of integration. Suppose, for example, that a = 0, b = 1,
u = 1/

√
2, and f(x) = 0 for x ≤ u and f(x) =

√
x− u for x ≥ u. In this case

the error expansion for the rectangle rule approximation to
∫ 1

0
f(x)dx has one

valid term only. This is illustrated in Figure 3.8. The “Error/h” column shows
that the first coefficient, A1, exists. Moreover, A1 is given by the formula (3.36).
The numbers in the last column do not tend to a limit. This shows that the
coefficient A2 does not exist. The error expansion does not exist beyond the
first term.

The analysis of the higher order integration methods listed in Figure 3.6 is
easier if we use a symmetric basic panel. From now on, the panel of length h
will have x∗ in the center, rather at the left end, that is

P = [x∗ − h/2, x∗ + h/2] .

If we now expand f(x) in a Taylor series about x∗ and integrate term by term,
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we get

∫
P

f(x)dx =
∫ x∗+

h
2

x=x∗−h2
f(x)dx ∼ f(x∗)h+

f ′′(x∗)
24

h3 +
f (4)(x∗)

384
h5 + · · · .

For the midpoint rule, this leads to a global error expansion in even powers of
h, E ≈ A1h

2 +A2h
4 + · · · , with A1 = (f ′(b)− f ′(a))/24. Each of the remaining

panel methods is symmetric about the center of the panel. This implies that
each of them has local truncation error containing only odd powers of h and
global error containing only even powers of h.

The leading power of h in the error expansion is the order of accuracy. It can
be determined by a simple observation: the order of the local truncation error is
one more than the degree of the lowest monomial that is not integrated exactly
by the panel method. For example, the rectangle rule integrates f(x) = x0 ≡ 1
exactly but gets f(x) = x1 ≡ x wrong. The order of the lowest monomial not
integrated exactly is 1 so the local truncation error is O(h2) and the global
error is O(h). The midpoint rule integrates x0 and x1 correctly but gets x2

wrong. The order of the lowest monomial not integrated exactly is 2 so the
local truncation error is O(h3) and the global error is O(h2). If the generic
panel has x∗ in the center, then∫

P

(x− x∗)n dx

is always done exactly if n is odd. This is because both the exact integral and
its panel method approximation are zero by symmetry.

To understand why this rule works, think of the Taylor expansion of f(x)
about the midpoint, x∗. This approximates f by a sum of monomials. Applying
the panel integral approximation to f is the same as applying the approxima-
tion to each monomial and summing the results. Moreover, the integral of a
monomial (x− x∗)n over P is proportional to hn+1, as is the panel method ap-
proximation to it, regardless of whether the panel method is exact or not. The
first monomial that is not integrated exactly contributes something proportional
to hn+1 to the error.

Using this rule it is easy to determine the accuracy of the approximations in
Figure 3.6. The trapezoid rule integrates constants and linear functions exactly,
but it gets quadratics wrong. This makes the local truncation error third order
and the global error second order. The Simpson’s rule coefficients 1/6 and 2/3
are designed exactly to integrate constants and quadratics exactly, which they
do. Simpson’s rule integrates cubics exactly (by symmetry) but gets quartics
wrong. This gives Simpson’s rule fourth order global accuracy. The two point
Gauss quadrature also does constants and quadratics correctly but quartics
wrong (check this!). The three point Gauss quadrature rule does constants,
quadratics, and quartics correctly but gets (x − x∗)6 wrong. That makes it
sixth order accurate.
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3.5 The method of undetermined coefficients

The method of undetermined coefficients is a general way to find an approxima-
tion formula of a desired type. Suppose we want to estimate some A in terms
of given data g1(h), g2(h), . . .. The method is to assume a linear estimation
formula of the form

Â(h) = a1(h)g1(h) + a2(h)g2(h) + · · · , (3.37)

then determine the unknown coefficients ak(h) by matching Taylor series up to
the highest possible order. The coefficients often take the form of a constant
times some power of h: ak(h) = akh

pk . The algebra is simpler if we guess or
figure out the powers first. The estimator is consistent if Â(h) − A → 0 as
h → ∞. Generally (but not always), being consistent is the same as being at
least first order accurate. At the end of our calculations, we may discover that
there is no consistent estimator of the desired type.

We illustrate the method in a simple example: estimate f ′(x) from g1 = f(x)
and g2 = f(x + h). As above, we will leave out the argument x whenever
possible and write f for f(x), f ′ for f ′(x), etc. The estimator is (dropping the
x argument)

f ′ ≈ Â = a1(h)f + a2(h)f(x+ h) .

Now expand in Taylor series:

f(x+ h) = f + f ′h+
1
2
f ′′ + · · · .

The estimator is

Â = a1(h)f + a2(h)f + a2(h)f ′h+ a2(h)f ′′h2 + · · · . (3.38)

Looking at the right hand side, we see various coefficients, f , f ′, and so on.
Since the relation is supposed to work whatever the values of f , f ′, etc. may be,
we choose a1 and a2 so that the coefficient of f is zero. From (3.38), this leads
to

0 = a1(h) + a2(h) .

To make the estimator consistent, we try

1 = a2(h)h .

These two conditions lead to

a2 =
1
h
, a1 =

−1
h

, (3.39)

so the estimate is

f ′(x) ≈ Â =
−1
h
f(x) +

1
h
f(x+ h)

=
f(x+ h)− f(x)

h
.
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This is the first order one sided difference approximation we saw earlier. Plug-
ging the values (3.39) into (3.38) shows that the estimator satisfies Â = f ′ +
O(h), which is the first order accuracy we found before.

A more complicated problem is to estimate f ′(x) from f(x), f(x−h), f(x+
h), f(x+2h). This is not centered nor is it completely one sided, but it is biased
to one side. It has proven useful in high accuracy wave simulations. This time
we guess that all the coefficients have a power 1/h, as all the estimates of f ′ so
far have this property. Thus assume the form:

f ′ ≈ Â =
1
h

(a−1f(x− h) + a0f + a1f(x+ h) + a2f(x+ 2h)) .

The Taylor series expansions are

f(x− h) = f − f ′h + f ′′

2 h
2 − f ′′′

6 h3 + f(4)

24 h
4 + · · ·

f(x+ h) = f + f ′h + f ′′

2 h
2 + f ′′′

6 h3 + f(4)

24 h
4 + · · ·

f(x+ 2h) = f + 2f ′h + 2f ′′h2 + 4f ′′′

3 h3 + 2f(4)

3 h4 + · · ·
Equating powers of h turns out to be the same as equating the coefficients of f ,
f ′, etc. from both sides:

f , O(h−1) : 0 = a−1 + a0 + a1 + a2

f ′ , O(h0) : 1 = −a−1 + a1 + 2a2

f ′′ , O(h1) : 0 = 1
2a−1 + 1

2a1 + 2a2

f ′′′ , O(h2) : 0 = −1
6 a−1 + 1

6a1 + 4
3a2

(3.40)

We could compute the O(h3) equation but already we have four equations for
the four unknown coefficients. If we would use the O(h3) equation in place of the
O(h2) equation, we loose an order of accuracy in the resulting approximation.

These are a system of four linear equations in the four unknowns a−1 through
a2, which we solve in an ad hoc way. Notice that the combination b = −a−1 +a1

appears in the second and fourth equations. If we substitute b, these equations
are

1 = b+ 2a2 ,

0 =
1
6
b+

4
3
a2 .

which implies that b = −8a2 and then that a2 = − 1
6 and b = 4

3 . Then, since
−4a2 = 2

3 , the third equation gives a−1 + a1 = 2
3 . Since b = 4

3 is known, we get
two equations for a−1 and a1:

a1 − a−1 =
4
3
,

a1 + a−1 =
2
3
.

The solution is a1 = 1 and a−1 = −1
3 . With these, the first equation leads to

a0 = −1
2 . Finally, our approximation is

f ′(x) =
1
h

(
−1
3
f(x− h)− 1

2
f(x) + f(x+ h)− 1

6
f(x+ 2h)

)
+O(h3) .
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Note that the first step in this derivation was to approximate f by its Taylor
approximation of order 3, which would be exact if f were a polynomial of order
3. The derivation has the effect of making Â exact on polynomials of degree 3
or less. The four equations (3.40) arise from asking Â to be exact on constants,
linear functions, quadratics, and cubics. We illustrate this approach with the
problem of estimating f ′′(x) as accurately as possible from f(x), f(x+h), f ′(x)
and f ′(x+ h). The estimator we seek has the form

f ′′ ≈ Â = af + bf(x+ h) + cf ′ + df ′(x+ h) .

We can determine the four unknown coefficients a, b, c, and d by requiring the
approximation to be exact on constants, linears, quadratics, and cubics. It does
not matter what x value we use, so let us take x = 0. This gives, respectively,
the four equations:

0 = a+ b (constants, f = 1) ,
0 = bh+ c+ d (linears, f = x) ,

1 = b
h2

2
+ dh (quadratics, f = x2/2) ,

0 = b
h3

6
+ d

h2

2
(cubics, f = x3/6) .

Solving these gives

a =
−6
h2

, b =
6
h2

, c =
−4
h

, d =
−2
h

.

and the approximation

f ′′(x) ≈ 6
h2

(
−f(x) + f(x+ h)

)
− 2
h

(
2f ′(x) + f ′(x+ h)

)
.

A Taylor series calculation shows that this is second order accurate.

3.6 Adaptive parameter estimation

In most real computations, the computational strategy is not fixed in advance,
but is adjusted adaptively as the computation proceeds. If we are using one of
the approximations Â(h), we might not know an appropriate h when we write
the program, and the user might not have the time or expertise to choose h
for each application. For example, exercise 12 involves hundreds or thousands
of numerical integrations. It is out of the question for the user to experiment
manually to find a good h for each one. We need instead a systematic procedure
for finding an appropriate step size.

Suppose we are computing something about the function f , a derivative or
an integral. We want a program that takes f , and a desired level of accuracy12,

12This is absolute error. We also could seek a bound on relative error:
˛̨̨ bA−A˛̨̨ / |A| ≤ ε.
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e, and returns Â with
∣∣∣Â−A∣∣∣ ≤ e with a high degree of confidence. We have

Â(h) that we can evaluate for any h, and we want an automatic way to choose
h so that

∣∣∣Â(h)−A
∣∣∣ ≤ e. A natural suggestion would be to keep reducing h

until the answer stops changing. We seek a quantitative version of this.
Asymptotic error expansions of Section 3.3 give one approach. For example,

if Â(h) is a second order accurate approximation to an unknown A and h is
small enough we can estimate the error using the leading term:

E(h) = Â(h)−A ≈ A1h
2 .

We can estimate A1h
2 from Â(h) and Â(2h) using the ideas that give (3.28).

The result is the Richardson extrapolation error estimate

E(h) ≈ A1h
2 ≈ 1

3
(
Â(2h)− Â(h)

)
. (3.41)

The adaptive strategy would be to keep reducing h by a factor of two until the
estimated error (3.41) is within the tolerance13:

double adaptive1(double h, // Step size
double eps) // Desired error bound

{
double Ah = A(h);
double Ah2 = A(h/2);
while (fabs(Ah2 - Ah) > 3*eps) {

h = h/2;
Ah = Ah2;
Ah2 = A(h/2);

}
return Ah2;

}

A natural strategy might be to stop when
∣∣∣Â(2h)− Â(h)

∣∣∣ ≤ e. Our quantitative
asymptotic error analysis shows that this strategy is off by a factor of 3. We
achieve accuracy roughly e when we stop at

∣∣∣Â(2h)− Â(h)
∣∣∣ ≤ 3e. This is

because Â(h) is more accurate than Â(2h).
We can base reasonably reliable software on refinements of the basic strategy

of adaptive1. Some drawbacks of adaptive1 are that

1. It needs an initial guess, a starting value of h.

2. It may be an infinite loop.

3. It might terminate early if the initial h is outside the asymptotic range
where error expansions are accurate.

13 In the increment part we need not evaluate bA(2h) because this is what we called bA(h)
before we replaced h with h/2.
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4. If Â(h) does not have an asymptotic error expansion, the program will
not detect this.

5. It does not return the best possible estimate of A.

A plausible initial guess, h0, will depend on the scales (length or time, etc.)
of the problem. For example 10−10 meters is natural for a problem in atomic
physics but not in airplane design. The programmer or the user should supply
h0 based on understanding of the problem. The programmer can take h0 = 1
if he or she thinks the user will use natural units for the problem (Ångströms
for atomic physics, meters for airplanes). It might happen that you need h =
h0/1000 to satisfy adaptive1, but you should give up if h = h0εmach. For
integration we need an initial n = (b − a)/h. It might be reasonable to take
n0 = 10, so that h0 = (b− a)/10.

Point 2 says that we need some criterion for giving up. As discussed more
in Section 3.7, we should anticipate the ways our software can fail and report
failure. When to give up should depend on the problem. For numerical dif-
ferentiation, we can stop when roundoff or propagated error from evaluating f
(see Chapter 2, Section?) creates an error as big as the answer. For integration
limiting the number of refinements to 20, would limit the number of panels to
n0 · 220 ≈ n0 · 106. The revised program might look like

const int HMIN_REACHED = -1;

int adaptive2(double h, // Step size
double eps, // Desired error bound
double& result) // Final A estimate (output)

{
double Ah = A(h);
double Ah2 = A(h/2);
double hmin = 10*DBL_EPSILON*h; // DBL_EPSILON is in cfloat (float.h)
while (fabs(Ah2 - Ah) > 3*eps) {

h = h/2;
if (h <= hmin) {

result = (4*Ah-Ah2)/3; // Extrapolated best result
return HMIN_REACHED; // Return error code;

}
Ah = Ah2;
Ah2 = A(h/2);

}
result = (4*Ah2-Ah)/3; // Extrapolated best result
return 0;

}

We cannot have perfect protection from point 3, though premature termi-
nation is unlikely if h0 is sensible and e (the desired accuracy) is small enough.
A more cautious programmer might do more convergence analysis, for example
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asking that the Â(4h) and Â(2h) error estimate be roughly 2p times larger than
the Â(2h) and Â(h) estimate. There might be irregularities in f(x), possibly
jumps in some derivative, that prevent the asymptotic error analysis but do not
prevent convergence. It would be worthwhile returning an error flag in this case,
as some commercial numerical software packages do.

Part of the risk in point 4 comes from the possibility that Â(h) converges
more slowly than the hoped for order of accuracy suggests. For example if
Â(h) ≈ A+A1h

1/2, then the error is three times that suggested by adaptive1.
The extra convergence analysis suggested above might catch this.

Point 5 is part of a paradox afflicting many error estimation strategies. We
estimate the size of E(h) = Â(h) − A by estimating the value of E(h). This
leaves us a choice. We could ignore the error estimate (3.41) and report Â(h)
as the approximate answer, or we could subtract out the estimated error and
report the more accurate Â(h)− Ê(h). This is the same as applying one level of
Richardson extrapolation to Â. The corrected approximation probably is more
accurate, but we have no estimate of its error. The only reason to be dissatisfied
with this is that we cannot report an answer with error less than e until the
error is far less than e.

3.7 Software

Scientific programmers have many opportunities to err. Even in short compu-
tations, a sign error in a formula or an error in program logic may lead to an
utterly wrong answer. More intricate computations provide even more oppor-
tunities for bugs. Programs that are designed without care become more and
more difficult to read as they grow in size, until

Things fall apart; the centre cannot hold;
Mere anarchy is loosed upon the world.14

Scientific programmers can do many things to make codes easier to debug
and more reliable. We write modular programs composed of short procedures so
that we can understand and test our calculations one piece at a time. We design
these procedures to be flexible so that we can re-use work from one problem in
solving another problem, or a problem with different parameters. We program
defensively, checking for invalid inputs and nonsensical results and reporting
errors rather than failing silently. In order to uncover hidden problems, we also
test our programs thoroughly, using techniques like convergence analysis that
we described in Section 3.3.2.

3.7.1 Flexibility and modularity

Suppose you want to compute I =
∫ 2

0
f(x) dx using a panel method. You could

write the following code using the rectangle rule:

14 From “The Second Coming,” with apologies to William Butler Yeats.
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double I = 0;
for (int k = 0; k < 100; ++k)

I += .02*f(.02*k);

In this code, the function name, the domain of integration, and the number
of panels are all hard-wired. If you later decided you needed 300 panels for
sufficient accuracy, it would be easy to introduce a bug by changing the counter
in line 2 without changing anything in line 3. It would also be easy to introduce
a bug by replacing .02 with the integer expression 2/300 (instead of 2.0/300).

A more flexible version would be:

double rectangle_rule(double (*f)(double), // The integrand
double a, double b, // Left and right ends
unsigned n) // Number of panels

{
double sum = 0;
double h = (b-a)/n;
for (unsigned k = 0; k < n; ++k) {

double xk = ( a*(n-k) + b*k )/n;
sum += f(xk);

}
return sum*h;

}

In this version of the code, the function, domain of integration, and number
of panels are all parameters. We could use n = 100 or n = 300 and still get
a correct result. This extra flexibility costs only a few extra lines of code that
take just a few seconds to type.

This subroutine also documents what we were trying to compute by giving
names to what were previously just numeric constants. We can tell immediately
that the call rectangle rule(f, 0, 2, 100) should integrate over [0, 2], while
we could only tell that in the original version by reading the code carefully and
multipling .02× 100.

What if we are interested in a integrating a function that has parameters
in addition to the variable of integration? We could pass the extra parameters
via a global variable, but this introduces many opportunities for error. If we
need to deal with such integrands, we might make the code even more flexible
by adding another argument:

// An integrand_t is a type of function that takes a double and a double*
// and returns a double. The second argument is used to pass parameters.
typedef double (*integrand_t)(double, double*);

double rectangle_rule(integrand_t f, // The integrand
double* fparams, // Integrand parameters
double a, double b, // Left and right ends
unsigned n) // Number of panels
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{
double sum = 0;
double h = (b-a)/n;
for (unsigned k = 0; k < n; ++k) {

double xk = ( a*(n-k) + b*k )/n;
sum += f(xk, fparams);

}
return sum*h;

}

We could make this routine even more flexible by making fparams a void*, or
by writing in a style that used more C++ language features15.

The rectangle_rule function illustrates how designing with subroutines
improves code flexibility and documentation. When we call a procedure, we
care about the interface: what data do we have to pass in, and what results do
we get out? But we can use the procedure without knowing all the details of the
implementation. Because the details of the implementation are hidden, when we
call a procedure we can keep our focus on the big picture of our computation.

To design robust software, we need to design a testing plan, and another
advantage of well-designed procedures is that they make testing easier. For
example, we might write test a generic adaptive Richardson extrapolation rou-
tine as in Section 3.6, and separately write and test an integration routine like
rectangle_rule. If the procedures work correctly separately, they have a good
chance of working correctly together.

3.7.2 Error checking and failure reports

Most scientific routines can fail, either because the user provides nonsensical
input or because it is too difficult to solve the problem to the requested accuracy.
Any module that can fail must have a way to report these failures. The simplest
way to handle an error is to report an error message and exit; but while this is
fine for some research software, it is generally not appropriate for commercial
software. A more sophisticated programmer might write errors to a log file,
return a flag that indicates when an error has occurred, or throw an exception.16

For example, let’s consider our rectangle_rule procedure. We have implic-
itly assumed in this case that the input arguments are reasonable: the function
pointer cannot be NULL, there is at least one panel, and the number of panels is
not larger than some given value of MAX PANELS. These are preconditions for the

15 This routine is written in C-style C++, which we will use throughout the book. A
“native” C++ solution would probably involve additional language features, such as function
templates or virtual methods.

16 We will avoid discussing C++ exception handling with try/catch, except to say that it
exists. While the try/catch model of exception handling is conceptually simple, and while
it’s relatively simple in languages like Java and MATLAB that have garbage collection, using
exceptions well in C++ involves some points that are beyond the scope of this course. For
a thorough discussion of C++ exception handling and its implications, we recommend the
discussion in Effective C++ by Scott Meyers.
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routine. We can catch errors in these preconditions by using the C++ assert
macro defined in assert.h or cassert:

const int MAX_PANELS = 10000000;
typedef double (*integrand_t)(double, double*);

double rectangle_rule(integrand_t f, // The integrand
double* fparams, // Integrand parameters
double a, double b, // Left and right ends
unsigned n) // Number of panels

{
assert(f != NULL);
assert(a <= b);
assert(n != 0 && n < MAX_PANELS);
...

}

When an assertion fails, the system prints a diagnostic message that tells
the programmer where the problem is (file and line number), then exits. Such
a hard failure is probably appropriate if the user passes a NULL pointer into our
rectangle_rule routine, but what if the user just uses too large a value of n?
In that case, there is a reasonable default behavior that would probably give an
adequate answer. For a kinder failure mode, we can return our best estimate
and an indication that there might be a problem by using an information flag:

const int MAX_PANELS = 10000000;
typedef double (*integrand_t)(double, double*);

/* Integrates f on [a,b] via an n-panel rectangle rule.
* We assume [a,b] and [b,a] are the same interval (no signed measure).
* If an error occurs, the output argument info takes a negative value:
* info == -1 -- n = 0; computed with n = 1
* info == -2 -- n was too large; computed with n = MAX_PANELS
* If no error occurs, info is set to zero.
*/

double rectangle_rule(integrand_t f, // The integrand
double* fparams, // Integrand parameters
double a, double b, // Left and right ends
unsigned n, // Number of panels
int& info) // Status code

{
assert(f != NULL);
info = 0; // 0 means "success"
if (n == 0) {

n = 1;
info = -1; // -1 means "n too small"

} else if (n > MAX_PANELS) {



3.7. SOFTWARE 61

n = MAX_PANELS;
info = -2; // -2 means "n too big"

}
if (b < a)

swap(a,b); // Allow bounds in either order
...

}

Note that we describe the possible values of the info output variable in a com-
ment before the function definition. Like the return value and the arguments,
the types of failures a routine can experience are an important part of the in-
terface, and they should be documented accordingly17.

In addition to checking the validity of the input variables, we also want to be
careful about our assumptions involving intermediate calculations. For example,
consider the loop

while (error > targetError) {
... refine the solution ...;

}

If targetError is too small, this could be an infinite loop. Instead, we should
at least put in an iteration counter:

const int max_iter = 1000; // Stop runaway loop
int iter = 0;
while (error > targetError) {

if (++iter > max_iter) {
... report error and quit ...;

}
... make the solution more accurate ...;

}

3.7.3 Unit testing

A unit test is a test to make sure that a particular routine does what it is sup-
posed to do. In general, a unit test suite should include problems that exercise
every line of code, including failures from which the routine is supposedly able
to recover. As a programmer finds errors during development, it also makes
sense to add relevant test cases to the unit tests so that those bugs do not
recur. In many cases, it makes sense to design the unit tests before actually
writing a routine, and to use the unit tests to make sure that various revisions
to a routine are correct.

17 There is an unchecked error in this function: the arguments to the integrand could be
invalid. In this C-style code, we might just allow f to indicate that it has been called with
invalid arguments by returning NaN. If we were using C++ exception handling, we could
allow f to throw an exception when it was given invalid arguments, which would allow more
error information to propagate back to the top-level program without any need to redesign
the rectangle rule interface.
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In addition, high-quality numerical codes are designed with test problems
that probe the accuracy and stability of the computation. These test cases
should include some trivial problems that can be solved exactly (except possibly
for rounding error) as well as more difficult problems.

3.8 References and further reading

For a review of one variable calculus, I recommend the Schaum outline. The
chapter on Taylor series explains the remainder estimate clearly.

There several good old books on classical numerical analysis. Two favorites
are Numerical Methods by Germund Dahlquist and Åke Björk [2], and Analysis
of Numerical Methods by Gene Isaacson and Herb Keller [12]. Particularly
interesting subjects are the symbolic calculus of finite difference operators and
Gaussian quadrature.

There are several applications of convergent Taylor series in scientific com-
puting. One example is the fast multipole method of Leslie Greengard and
Vladimir Rokhlin.

3.9 Exercises

1. Verify that (3.23) represents the leading error in the approximation (3.22).
Hint, this does not require multidimensional Taylor series. Why?

2. Use multidimensional Taylor series to show that the rotated five point
operator

1
2h2

(
f(x+h, y+h)+f(x+h, y−h)+f(x−h, y+h)+f(x−h, y−h)−4f

)
is a consistent approximation to 4f . Use a symmetry argument to show
that the approximation is at least second order accurate. Show that the
leading error term is

h2

12
(
∂4
xf + 6∂2

x∂
2
yf + ∂4

yf
)
.

3. For a ∈ [0.5, 2], consider the following recurrence defining xk(a) = xk:

xk+1 =
a+ xkxk−1

xk + xk−1

with x0 = x1 = 1 + (a − 1)/2. This recurrence converges to a function
f(a) which is smooth for a ∈ [0.5, 2].

(a) Define δk to be the largest value of |xk+1(a) − xk(a)| over twenty
evenly spaced values starting at a = 0.5 and ending with a = 2.0.
Plot the largest value of δk versus k on a semi-logarithmic plot from
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k = 1 up to k = 10 and comment on the apparent behavior. About
how accurate do you think x4(a) is as an approximation to f(x)?
About how accurate do you think x6(a) is?

(b) Write a program to compute x̂′k(a;h) = (xk(a+ h)− xk(a− h))/2h.
For k = 4 and a = 0.5625, show a log-log plot of x̂′k(a;h)− x̂′k(a;h/2)
for h = 2−1, 2−2, . . . , 2−20. For h not too small, the plot should be
roughly linear on a log-log scale; what is the slope of the line?

(c) For a = 0.5625, the exact value of f ′(a) is 2/3; on a single log-
log plot, show the difference between x̂′k(0.5625;h) and 2/3 for h =
2−1, 2−2, . . . , 2−20 for k = 4, 6. Comment on the accuracy for k = 4
in light of parts (a) and (b).

4. Find a formula that estimates f ′′(x) using the four values f(x), f(x+ h),
f(x+2h), and f(x+3h) with the highest possible order of accuracy. What
is this order of accuracy? For what order polynomials does the formula
give the exact answer?

5. Suppose we have panels Pk as in (3.31) and panel averages Fk =
∫
Pk
f(x)dx/(xk+1−

xk).

(a) What is the order of accuracy of Fk as an estimate of f((xk +
xk+1)/2) = f(xk+1/2)?

(b) Assuming the panels all have size h, find a higher order accurate
estimate of f(xk+1/2) using Fk, Fk−1, and Fk+1.

6. In this exercise, we computationally explore the accuracy of the asymptotic
series for the function (3.12).

(a) Define

Ln(h) =
n−1∑
k=0

∫ (k+1)/n

k/n

e−x/h

1− a
dx

Rn(h) =
n−1∑
k=0

∫ (k+1)/n

k/n

e−x/h

1− b
dx

f(h) =
∫ 0.5

0

e−x/h

1− x
dx

and show that for any n > 1, h > 0,

Ln(h) ≤ f(h) ≤ Rn(h)

(b) Compute R200(0.3) and L200(0.3), and give a bound on the relative
error in approximating f(0.3) by R200(0.3). Let f̂k(h) be the asymp-
totic series for f(h) expanded through order k, and use the result
above to make a semilogarithmic plot of the (approximate) relative
error for h = 0.3 and k = 1 through 30. For what value of k does
f̂k(0.3) best approximate f(0.3), and what is the relative error?
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7. An application requires accurate values of f(x) = ex − 1 for x very close
to zero.18

(a) Show that the problem of evaluating f(x) is well conditioned for small
x.

(b) How many digits of accuracy would you expect from the code f =
exp(x) - 1; for x ∼ 10−5 and for x ∼ 10−10 in single and in double
precision?

(c) Let f(x) =
∑∞
n=1 fnx

n be the Taylor series about x = 0. Calculate
the first three terms, the terms involving x, x2, and x3. Let p(x) be
the degree three Taylor approximation of f(x) about x = 0.

(d) Assuming that x0 is so small that the error is nearly equal to the
largest neglected term, estimate max |f(x)− p(x)| when |x| ≤ x0.

(e) We will evaluate f(x) using

if ( abs(x) > x0 ) f = exp(x) - 1;
else f = p3(x); // given by part c.

What x0 should we choose to maximize the accuracy of f(x) for
|x| < 1 assuming double precision arithmetic and that the expo-
nential function is evaluated to full double precision accuracy (exact
answer correctly rounded)?

8. Suppose that f(x) is a function that is evaluated to full machine precision
but that there is εmach rounding error in evaluating Â = (f(x + h) −
f(x))/h. What value of hminimizes the total absolute error including both
rounding error19 and truncation error? This will be h∗(εmach) ∼ εqmach.
Let e∗(εmach) be the error in the resulting best estimate of f ′(x). Show
that e∗ ∼ εrmach and find r.

9. Repeat Exercise 8 with the two point centered difference approximation to
f ′(x). Show that the best error possible with centered differencing is much
better than the best possible with the first order approximation. This is
one of the advantages of higher order finite difference approximations.

10. Verify that the two point Gauss quadrature formula of Figure 3.6 is exact
for monomials of degree less than six. This involves checking the functions
f(x) = 1, f(x) = x2, and f(x) = x4 because the odd order monomials are
exact by symmetry. Check that the three point Gauss quadrature formula
is exact for monomials of degree less than 8.

11. Find the replacement to adaptive halting criterion (3.41) for a method of
order p.

18 The C standard library function expm1 evaluates ex − 1 to high relative accuracy even
for x close to zero.

19 Note that both x and f(x) will generally be rounded. Recall from the discussion in
Section 2.6 that the subtraction and division in the divided difference formula usually commit
negligible, or even zero, additional rounding error.
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12. In this exercise, we will write a simple adaptive integration routine in
order to illustrate some of the steps that go into creating robust numerical
software. We will then use the routine to explore the convergence of an
asymptotic series. You will be given much of the software; your job is to
fill in the necessary pieces, as indicated below (and by TODO comments in
the code you are given).

The method we will use is not very sophisticated, and in practice, you
would usually use a library routine from QUADPACK, or possibly a
quadrature routine in Matlab, to compute the integrals in this exam-
ple. However, you will use the same software design ideas we explore here
when you attack more complicated problems on your own.

(a) Write a procedure based on Simpson’s rule to estimate the definite
integral ∫ b

a

f(x) dx

using panel integration method with uniformly-sized panels. For your
implementation of Simpson’s rule, the values f(xk) should be com-
puted only once. Your procedure should run cleanly against a set
of unit tests that ensure that you check the arguments correctly,
that you exactly integrate low-order polynomials. Your integration
procedures should have the same signature as the last version of
rectangle rule from the software section:

typedef (*integrand_t)(double x, double* fargs);

double simpson_rule(integrand_t f, double* fargs
double a, double b, unsigned n, int& info);

double gauss3_rule(integrand_t f, double* fargs
double a, double b, unsigned n, int& info);

If there is an error, the info flag should indicate which argument
was a problem (-1 for the first argument, -1 for the second, etc).
On success, info should return the number of function evaluations
performed.

(b) For each of the quadrature rules you have programmed, use (3.30) to
compute the apparent order of accuracy of

I1(h) ≈
∫ 1

0

ex dx

and

I2(h) ≈
∫ 1

0

√
x dx.

The order of accuracy for I1 will be computed as part of your standard
test suite. You will need to add the computation of the order of
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accuracy of I2 yourself. Do your routines obtain the nominal order
of accuracy for I1? For I2?

(c) Write code that does one step of Richardson extrapolation on Simp-
son’s rule in order. Test your code using the test harness from the
first part. This procedure should be sixth-order accurate; why is it
sixth order rather than fifth? Repeat the procedure for the three-
point Gauss rule: write a code to do one step of extrapolation and
test to see that it is eighth order.

(d) We want to know how the function20

f(t) =
∫ 1

0

cos
(
tx2
)
dx (3.42)

behaves for large t.
Write a procedure based on the three-point Gauss quadrature rule
with Richardson estimation to find n that gives f(t) to within a
specified tolerance (at least 10−9). The procedure should work by
repeatedly doubling n until the estimated error, based on comparing
approximations, is less than this tolerance. This routine should be
robust enough to quit and report failure if it is unable to achieve the
requested accuracy.

(e) The approximation,

f(t) ∼
√
π

8t
+

1
2t

sin(t)− 1
4t2

cos(t)− 3
8t3

sin(t) + · · · , (3.43)

holds for large t21. Use the procedure developed in the previous part
to estimate the error in using one, to, and three terms on the right
side of (3.43) for t in the range 1 ≤ t ≤ 1000. Show the errors
versus t on a log-log plot. In all cases we want to evaluate f so
accurately that the error in our f value is much less than the error of
the approximation (3.43). Note that even for a fixed level of accuracy,
more points are needed for large t. Plot the integrand to see why.

20 The function f(t) is a rescaling of the Fresnel integral C(t).
21 This asymptotic expansion is described, for example, in Exercise 3.1.4 of Olver’s Asymp-

totics and Special Functions.
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4.1 Introduction

Linear algebra and calculus are the basic tools of quantitative science. The oper-
ations of linear algebra include solving systems of equations, finding subspaces,
solving least squares problems, factoring matrices, and computing eigenvalues
and eigenvectors. There is good, publicly available software to perform these
computations, and in most cases this software is faster and more accurate than
code you write yourself. Chapter 5 outlines some of the basic algorithms of
computational linear algebra. This chapter discusses more basic material.

Conditioning is a major concern in many linear algebra computations. Easily
available linear algebra software is backward stable, which essentially1 means
that the results are as accurate as the conditioning of the problem allows. Even
a backward stable method produces large errors if the condition number is
of the order of 1/εmach. For example, if the condition number is 1018, even
double precision calculations are likely to yield a completely wrong answer.
Unfortunately, such condition numbers occur in problems that are not terribly
large or rare.

If a computational method for a well-conditioned problem is unstable (much
less accurate than its conditioning allows), it is likely because one of the sub-
problems is ill-conditioned. For example, the problem of computing the matrix
exponential, eA, may be well-conditioned while the problem of computing the
eigenvectors of A is ill-conditioned. A stable algorithm for computing eA (see
Exercise 12) in that case must avoid using the eigenvectors of A.

The condition number of a problem (see Section 2.7) measures how small
perturbations in the data affect the answer. This is called perturbation theory.
Suppose A is a matrix2 and f(A) is the solution of a linear algebra problem
involving A, such as x that satisfies Ax = b, or λ and v that satisfy Av = λv.
Perturbation theory seeks to estimate ∆f = f(A + ∆A) − f(A) when ∆A is
small. Usually, this amounts to calculating the derivative of f with respect to
A.

We simplify the results of perturbation calculations using bounds that in-
volve vector or matrix norms. For example, suppose we want to say that all the
entries in ∆A or ∆v are small. For a vector, v, or a matrix, A, the norm, ‖v‖
or ‖A‖, is a number that characterizes the size of v or A. Using norms, we can
say that the relative size of a perturbation in A is ‖∆A‖/‖A‖.

The condition number of a problem involving A depends on the problem as
well as on A. The condition number of f(A) = A−1b (i.e. solving the system
of linear equations Ax = b) is very different from the problem of finding the
eigenvalues of A. There are matrices that have well conditioned eigenvalues
but poorly conditioned eigenvectors. What is commonly called “the” condition
number of A is the worst case condition number of solving Ax = b, taking the
worst possible b.

1The precise definition of backward stability is in Chapter 5.
2 This notation replaces our earlier A(x). In linear algebra, A always is a matrix and x

never is a matrix.
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4.2 Review of linear algebra

This section reviews some linear algebra that we will use later. It is not a
substitute for a course on linear algebra. We assume that most of the topics are
familiar to the reader. People come to scientific computing with vastly differing
perspectives on linear algebra, and will know some of the concepts we describe
by different names and notations. This section should give everyone a common
language.

Much of the power of linear algebra comes from this interaction between
the abstract and the concrete. Our review connects the abstract language of
vector spaces and linear transformations to the concrete language of matrix
algebra. There may be more than one concrete representation corresponding to
any abstract linear algebra problem. We will find that different representations
often lead to numerical methods with very different properties.

4.2.1 Vector spaces

A vector space is a set of elements that may be added and multiplied by scalars3

(either real or complex numbers, depending on the application). Vector addition
is commutative (u + v = v + u) and associative ((u + v) + w = u + (v + w)).
Multiplication by scalars is distributive over vector addition (a(u+v) = au+av
and (a + b)u = au + bu for scalars a and b and vectors u and v). There is a
unique zero vector, 0, with 0 + u = u for any vector u.

The standard vector spaces are Rn (or Cn), consisting of column vectors

u =


u1

u2

·
·
un

 ,

where the components, uk, are arbitrary real (or complex) numbers. Vector
addition and scalar multiplication are done componentwise.

A subset V ′ of a vector space V is a subspace of V if sums and scalar
multiples of elements in V ′ remain in V ′. That is, V ′ is closed under vector
addition and scalar multiplication. This means V ′ is also is a vector space under
the vector addition and scalar multiplication operations of V . For example,
suppose V = Rn and V ′ consists of all vectors whose components sum to zero
(
∑n
k=1 uk = 0). If we add two such vectors or multiply by a scalar, the result

also has the zero sum property. On the other hand, the set of vectors whose
components sum to one (

∑n
k=1 uk = 1) is not closed under vector addition or

scalar multiplication.

3 Physicists use the word “scalar” in a different way. For them, a scalar is a number that
is the same in any coordinate system. The components of a vector in a particular basis are
not scalars in this sense.
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The span of a set of vectors span(f1, f2, . . . , fn) ⊂ V is the subspace of V
consisting of linear combination of the vectors fj :

u = u1f1 + · · ·+ unfn , (4.1)

where uk are scalar coefficients. We say f1, . . . , fn are linearly independent if
u = 0 implies that uk = 0 for all k in (4.1). Recall that the fj are linearly
independent if and only if the representation (4.1) uniquely determines the ex-
pansion coefficients, uk. A theorem of linear algebra states that if the fj are
not linearly independent, then it is possible to find a subset of them with the
same span. If V = span(f1, . . . , fn) and the fj are linearly independent, then
the fj are a basis for V .

The standard vector spaces Rn and Cn have standard bases {e1, . . . , en},
where ek is the vector with all zero components but for a single 1 in position k.
This is a basis because

u =


u1

u2

·
·
un

 = u1


1
0
·
·
0

+ u2


0
1
·
·
0

+ · · ·+ un


0
0
·
·
1

 =
n∑
k=1

ukek .

In view of this, there is little distinction between coordinates, components, and
expansion coefficients, all of which are denoted uk. If V has a basis with n
elements, we say the dimension of V is n. It is possible to make this definition
because of the theorem that states that every basis of V has the same number
of elements. A vector space that does not have a finite basis is called infinite-
dimensional4.

An inner product space is a vector space that has an inner product 〈·, ·〉, which
is a scalar function of two vector arguments with the following properties:

1. 〈u, av1 + bv2〉 = a〈u, v1〉+ b〈u, v2〉;

2. 〈u, v〉 = 〈v, u〉, where z refers to the complex conjugate of z;

3. 〈u, u〉 ≥ 0;

4. 〈u, u〉 = 0 if and only if u = 0.

When u and v are vectors with 〈u, v〉 = 0, we say u and v are orthogonal. If u
and v are n component column vectors (u ∈ Cn, v ∈ Cn), their standard inner
product (sometimes called the dot product) is

〈u, v〉 =
n∑
k=1

ukvk . (4.2)

The complex conjugates are not needed when the entries of u and v are real.
4 An infinite dimensional vector space might have an infinite basis.
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Spaces of polynomials are interesting examples of vector spaces. A polyno-
mial in the variable x is a linear combination of powers of x, such as 2 + 3x4, or
1, or 1

3 (x− 1)2(x3− 3x)6. We could multiply out the last example to write it as
a linear combination of powers of x. The degree of a polynomial is the highest
power that it contains. The product 1

3 (x − 1)2(x3 − 3x)6 has degree 20. The
vector space Pd is the set of all polynomials of degree at most d. This space has
a basis consisting of d+ 1 elements:

f0 = 1 , f1 = x , . . . , fd = xd . (4.3)

The power basis (4.3) is one basis for P3 (with d = 3, so P3 has dimension
4). Another basis consists of the first four Hermite polynomials

H0 = 1 , H1 = x , H2 = x2 − 1 , H3 = x3 − 3x .

The Hermite polynomials are orthogonal with respect to a certain inner prod-
uct5:

〈p, q〉 =
1√
2π

∫ ∞
−∞

p(x)q(x)e−x
2/2 dx. (4.4)

Hermite polynomials are useful in probability because if X is a standard normal
random variable, then they are uncorrelated:

E [Hj(X)Hk(X)] = 〈Hj , Hk〉 =
1√
2π

∫ ∞
−∞

Hj(x)Hk(x)e−x
2/2dx = 0 if j 6= k.

Still another basis of P3 consists of Lagrange interpolating polynomials for the
points 1, 2, 3, and 4:

l1 =
(x− 2)(x− 3)(x− 4)
(1− 2)(1− 3)(1− 4)

, l2 =
(x− 1)(x− 3)(x− 4)
(2− 1)(2− 3)(2− 4)

,

l3 =
(x− 1)(x− 2)(x− 4)
(3− 1)(3− 2)(3− 4)

, l4 =
(x− 1)(x− 2)(x− 3)
(4− 1)(4− 2)(4− 3)

.

These are useful for interpolation because, for example, l1(1) = 1 while l2(1) =
l3(1) = l4(1) = 0. If we want u(x) to be a polynomial of degree 3 taking specified
values u(1) = u1, u(2) = u2, u(3) = u3, and u(4) = u4, the answer is

u(x) = u1l1(x) + u2l2(x) + u3l3(x) + u4l4(x) .

The Lagrange interpolating polynomials are linearly independent because if 0 =
u(x) = u1l1(x)+u2l2(x)+u3l3(x)+u4l4(x) for all x then in particular u(x) = 0
at x = 1, 2, 3, and 4, so u1 = u2 = u3 = u4 = 0. Let V ′ ⊂ P3 be the set of
polynomials p ∈ P3 that satisfy p(2) = 0 and p(3). This is a subspace of P3. A
basis for it consists of l1 and l4.

If V ′ ⊂ V is a subspace of dimension m of a vector space of dimension n,
then it is possible to find a basis of V consisting of vectors fk so that the first m

5The reader can verify that the formula (4.4) defines an inner product on the vector space
P3.
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of the fk form a basis of V ′. For example, if V = P3 and V ′ is the polynomials
that vanish at x = 2 and x = 3, we can take

f1 = l1 , f2 = l4 , f3 = l2 , f4 = l3 .

In general, the dimension of a subspace V ′ is the dimension of V minus the
number of linearly independent conditions that define V ′. If there are any
nontrivial constraints that define V ′, then V ′ is a proper subspace of V ; that
is, there is some u ∈ V that is not in V ′, m < n. One common task in
computational linear algebra is finding a well-conditioned basis for a subspace.

4.2.2 Matrices and linear transformations

Suppose V and W are vector spaces. A function L from V to W is linear if
L(v1 + v2) = L(v1) + L(v2) for any vectors v1, v2 ∈ V , and L(av) = aL(v) for
any scalar a and vector v ∈ V . Linear functions are also called linear transfor-
mations. By convention, we write Lv instead of L(v), even though L represents
a function from V to W . This makes algebra with linear transformations look
just like matrix algebra, deliberately blurring the distinction between linear
transformations and matrices. The simplest example is V = Rn, W = Rm, and
Lu = A · u for some m× n matrix A. The notation A · u refers to the product
of the matrix A and the vector u. Most of the time we just write Au.

Any linear transformation between finite dimensional vector spaces may be
represented by a matrix. Suppose f1, . . . , fn is a basis for V , and g1, . . . , gm is
a basis for W . For each k, the linear transformation of fk is an element of W
and may be written as a linear combination of the gj :

Lfk =
m∑
j=1

ajkgj .

Because the transformation is linear, we can calculate what happens to a vector
u ∈ V in terms of its expansion u =

∑
k ukfk. Let w ∈ W be the image of u,

w = Lu, written as w =
∑
j wjgj . We find

wj =
n∑
k=1

ajkuk ,

which is ordinary matrix-vector multiplication.
The matrix that represents L depends on the basis. For example, suppose

V = P3, W = P2, and L represents differentiation:

L
(
p0 + p1x+ p2x

2 + p3x
3
)

=
d

dx

(
p0 + p1x+ p2x

2 + p3x
3
)

= p1+2p2x+3p3x
2 .

If we take the basis 1, x, x2, x3 for V , and 1, x, x2 for W , then the matrix is0 1 0 0
0 0 2 0
0 0 0 3

 .
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The matrix would be different if we used the Hermite polynomial basis for V
(see Exercise 1).

Conversely, an m×n matrix, A, represents a linear transformation from Rn
to Rm (or from Cn to Cm). We denote this transformation also by A. If v ∈ Rn
is an n-component column vector, then the matrix-vector product w = Av
is a column vector with m components. As before, the notation deliberately is
ambiguous. The matrix A is the matrix that represents the linear transformation
A using standard bases of Rn and Rm.

A matrix also may represent a change of basis within the same space V .
If f1, . . ., fn, and g1, . . ., gn are different bases of V , and u is a vector with
expansions u =

∑
k vkfk and u =

∑
j wjgj , then we may write

v1

·
·
vn

 =


a11 a12 · a1n

a21 a22 · a2n

· · · ·
an1 an2 · ann



w1

·
·
wn

 .

As before, the matrix elements ajk are the expansion coefficients of gj with
respect to the fk basis6. For example, suppose u ∈ P3 is given in terms of
Hermite polynomials or simple powers: u =

∑3
j=0 vjHj(x) =

∑3
k=0 wjx

j , then
v0

v1

v2

v3

 =


1 0 −1 0
0 1 0 −3
0 0 1 0
0 0 0 1



w0

w1

w2

w3

 .

We may reverse the change of basis by using the inverse matrix:
w1

·
·
wn

 =


a11 a12 · a1n

a21 a22 · a2n

· · · ·
an1 an2 · ann


−1

v1

·
·
vn

 .

Two bases must have the same number of elements because only square matrices
can be invertible.

Composition of linear transformations corresponds to matrix multiplication.
If L is a linear transformation from V to W , and M is a linear transformation
from W to a third vector space, Z, then ML is the composite transformation
that takes V to Z. The composite of L and M is defined if the target (or range)
of L, is the same as the source (or domain) of M , W in this case. If A is an
m × n matrix and and B is p × q, then the target of A is W = Rm and the
source of B is Rq. Therefore, the composite AB is defined if n = p. This is the
condition for the matrix product A ·B (usually written without the dot) to be
defined. The result is a transformation from V = Rq to Z = Rm, i.e., the m× q
matrix AB.

6We write ajk for the (j, k) entry of A.
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For vector spaces V and W , the set of linear transformations from V to W
forms a vector space. We can add two linear transformations and multiply a
linear transformation by a scalar. This applies in particular to m× n matrices,
which represent linear transformations from Rn to Rm. The entries of A + B
are ajk + bjk. An n × 1 matrix has a single column and may be thought of as
a column vector. The product Au is the same whether we consider u to be a
column vector or an n × 1 matrix. A 1 × n matrix has a single row and may
be thought of as a row vector. If r is such a row vector, the product rA makes
sense, but Ar does not. It is useful to distinguish between row and column
vectors although both are determined by n components. The product ru is a
1× 1 matrix ((1× n) · (n× 1) gives 1× 1), i.e., a scalar.

If the source and targets are the same, V = W , or n = m = p = q, then
both composites LM and ML both are defined, but they probably are not
equal. Similarly, if A and B are n× n matrices, then AB and BA are defined,
but AB 6= BA in general. That is, composition and matrix multiplication are
noncommutative. If A, B, and C are matrices so that the products AB and BC
both are defined, then the products A · (BC) and (AB) ·C also are defined. The
associative property of matrix multiplication is the fact that these are equal:
A(BC) = (AB)C. In practice, there may be good reasons for computing BC
then multiplying by A, rather than finding AB and multiplying by C.

If A is an m × n matrix with real entries ajk, the transpose of A, written
AT , is the n ×m matrix whose (j, k) entry is

(
aT
)
jk

= akj . If A has complex
entries, then A∗, the adjoint of A, is the n×m matrix with entries (a∗)jk = akj
(a is the complex conjugate of a.). If A is real, then AT = A∗. The transpose
or adjoint of a column vector is a row vector with the same number of entries,
and vice versa. A square matrix (m = n) is symmetric if A = AT , and self-
adjoint (or Hermitian) if A = A∗. In the case of real matrices, symmetry and
self-adjointness are the same.

For a linear operator L on an inner product space, the adjoint L∗ is an
operator that satisfies 〈L∗u, v〉 = 〈u, Lv〉 for all u and v. The reader should
check that the matrix adjoint described above satisfies the definition of an op-
erator when the matrix A is interpreted as an operator from Rm to Rn with the
standard inner product.

4.2.3 Vector norms

The norm of a vector u, written ‖u‖, is a single number that describes the
magnitude of u. There are different ways to measure overall size and therefore
different vector norms. We say ‖u‖ (technically, a real number associated to the
vector u), is a norm if it satisfies the axioms:

1. Positive definiteness: ‖u‖ ≥ 0 with ‖u‖ = 0 only when u = 0;

2. Homogeneity: ‖au‖ = |a|‖u‖ for any scalar a;

3. Triangle inequality: ‖u+ v‖ ≤ ‖u‖+ ‖v‖ for any vectors u and v.
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There are several simple norms for Rn or Cn that are useful in scientific
computing. One is the l1 norm

‖u‖1 = ‖u‖l1 =
n∑
k=1

|uk| .

Another is the l∞ norm, also called the sup norm or the max norm7:

‖u‖∞ = ‖u‖l∞ = max
k=1,...,n

|uk| .

Another is the l2 norm, also called the Euclidean norm

‖u‖2 = ‖u‖l2 =

(
n∑
k=1

|uk|2
)1/2

= 〈u, u〉1/2 .

The l2 norm is natural, for example, for vectors representing positions or ve-
locities in three dimensional space. If the components of u ∈ Rn represent
probabilities, the l1 norm might be more appropriate. In some cases we may
have a norm defined indirectly or with a definition that is hard to turn into a
number. For example in the vector space P3 of polynomials of degree 3, we can
define a norm

‖p‖ = max
a≤x≤b

|p(x)| . (4.5)

There is no simple formula for ‖p‖ in terms of the coefficients of p.
An appropriate choice of norms is not always obvious. For example, what

norm should we use for the two-dimensional subspace of P3 consisting of poly-
nomials that vanish at x = 2 and x = 3? In other cases, we might be concerned
with vectors whose components have very different magnitudes, perhaps because
they are associated with measurements in different units. This might happen,
for example, if the components of u represent different factors (or variables) in
a linear regression. The first factor, u1, might be age of a person, the second,
u2, income, the third the number of children. In units of years and dollars, we
might get

u =

 45
50000

2

 . (4.6)

However, most people would consider a five dollar difference in annual salary to
be small, while a five-child difference in family size is significant. In situations
like these we can define for example, a dimensionless version of the l1 norm:

‖u‖ =
n∑
k=1

1
sk
· |uk| ,

7The name l∞ comes from a generalization of the l2 norm below. The lp norm is ‖u‖p =`P
‖uk‖2

´1/p
. One can show that ‖u‖p → ‖u‖∞ as p→∞.
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where the scale factor s−1
k is a typical value of a quantity with the units of uk

in the problem at hand. In the example above, we might use s1 = 40 (years),
s2 = 60000 (dollars per year), and s3 = 2.3 (children). This is equivalent to
using the l1 norm for the problem expressed in a different basis, {s−1

k ek}. In
many computations, it makes sense to change to an appropriately scaled basis
before turning to the computer.

4.2.4 Norms of matrices and linear transformations

Suppose L is a linear transformation from V to W . If we have norms for the
spaces V and W , we can define a corresponding norm of L, written ‖L‖, as the
largest amount by which it stretches a vector:

‖L‖ = max
u6=0

‖Lu‖
‖u‖

. (4.7)

The norm definition (4.7) implies that for all u,

‖Lu‖ ≤ ‖L‖ · ‖u‖ . (4.8)

Moreover, ‖L‖ is the sharp constant in the inequality (4.8) in the sense that if
‖Lu‖ ≤ C · ‖u‖ for all u, then C ≥ ‖L‖. Thus, (4.7) is equivalent to saying that
‖L‖ is the sharp constant in (4.8).

The different vector norms give rise to different matrix norms. The ma-
trix norms corresponding to certain standard vector norms are written with
corresponding subscripts, such as

‖L‖l2 = max
u 6=0

‖Lu‖l2
‖u‖l2

. (4.9)

For V = W = Rn, it turns out that (for the linear transformation represented
in the standard basis by A)

‖A‖l1 = max
k

∑
j

|ajk| ,

and
‖A‖l∞ = max

j

∑
k

|ajk| .

Thus, the l1 matrix norm is the maximum column sum while the max norm is
the maximum row sum. Other norms, such as the l2 matrix norm, are hard to
compute explicitly in terms of the entries of A.

Any norm defined by (4.7) in terms of vector norms has several properties
derived from corresponding properties of vector norms. One is homogeneity:
‖xL‖ = |x| ‖L‖. Another is that ‖L‖ ≥ 0 for all L, with ‖L‖ = 0 only for L = 0.
The triangle inequality for vector norms implies that if L and M are two linear
transformations from V to W , then ‖L+M‖ ≤ ‖L‖ + ‖M‖. Finally, we have
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‖LM‖ ≤ ‖L‖ ‖M‖. This is because the composite transformation stretches no
more than the product of the individual maximum stretches:

‖M(Lu)‖ ≤ ‖M‖ ‖Lu‖ ≤ ‖M‖ ‖L‖ ‖u‖ .

Of course, all these properties hold for matrices of the appropriate sizes.
All of these norms have uses in the theoretical parts of scientific comput-

ing, the l1 and l∞ norms because they are easy to compute and the l2 norm
because it is invariant under orthogonal transformations such as the discrete
Fourier transform. The norms are not terribly different from each other. For
example, ‖A‖l1 ≤ n ‖A‖l∞ and ‖A‖l∞ ≤ n ‖A‖l1 . For n ≤ 1000, this factor of
n may not be so important if we are asking, for example, about catastrophic
ill-conditioning.

4.2.5 Eigenvalues and eigenvectors

Let A be an n× n matrix, or a linear transformation from V to V . If

Ar = λr .

and r 6= 0, we say that λ is an eigenvalue, and that r is the corresponding
eigenvector8 of A.

Eigenvalues and eigenvectors are useful in understanding dynamics related
to A. For example, the differential equation du

dt = u̇ = Au has solutions u(t) =
eλtr. If the differential equation describes something oscillating, A will have at
least one complex eigenvalue. In general, eigenvalues and eigenvectors may be
complex even though A is real. This is one reason people work with complex
vectors in Cn, even for applications that seem to call for Rn.

The special case of the symmetric eigenvalue problem (A symmetric for real
A or self-adjoint for complex A), is vastly different from the general, or unsym-
metric problem. One of the differences is conditioning. The set of eigenvalues
of a self-adjoint matrix is always a well-conditioned function of the matrix – a
rare example of uniform good fortune. By contrast, the eigenvalues of an un-
symmetric matrix may be so ill-conditioned, even for n as small as 20, that they
are not computable in double precision arithmetic. Eigenvalues of unsymmetric
matrices are too useful to ignore, but we can get into trouble if we forget their
potential ill-conditioning. Eigenvectors, even for self-adjoint matrices, may be
ill-conditioned.

We return to the unsymmetric eigenvalue problem. An n × n matrix may
have as many as n eigenvalues, denoted λk, k = 1, . . . , n. If all the eigenvalues
are distinct, the corresponding eigenvectors, denoted rk, with Ark = λkrk must
be linearly independent, and therefore form a basis for Cn. These n linearly in-
dependent vectors can be assembled to form the columns of an n×n eigenvector

8 Note that “the” eigenvector is at best unique up to scaling: if r is an eigenvector, then so
is ar for any scalar a. Those who fail to understand this fact often complain needlessly when
a computed eigenvector is scaled differently from the one they had in mind.
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matrix that we call the right eigenvector matrix.

R =


...

...
r1 · · · rn
...

...

 . (4.10)

We also consider the diagonal eigenvalue matrix with the eigenvalues on the
diagonal and zeros in all other entries:

Λ =

λ1 0
. . .

0 λn

 .

The eigenvalue – eigenvector relations may be expressed in terms of these ma-
trices as

AR = RΛ . (4.11)

To see this, check that multiplying R by A is the same as multiplying each of
the columns of R by A. Since these are eigenvectors, we get

A


...

...
r1 · · · rn
...

...

 =


...

...
λ1r1 · · · λnrn

...
...



=


...

...
r1 · · · rn
...

...


λ1 0

. . .
0 λn


= RΛ .

Since the columns of R are linearly independent, R is invertible, we can multiply
(4.11) from the right and from the left by R−1 to get

R−1ARR−1 = R−1RΛR−1 ,

then cancel the R−1R and RR−1, and define9 L = R−1 to get

LA = ΛL .

This shows that the kth row of L is an eigenvector of A if we put the A on the
right:

lkA = λklk .

Of course, the λk are the same: there is no difference between “right” and “left”
eigenvalues.

9 Here L refers to a matrix, not a general linear transformation.
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The matrix equation we used to define L, LR = I, gives useful relations
between left and right eigenvectors. The (j, k) entry of LR is the product of
row j of L with column k of R. When j = k this product should be a diagonal
entry of I, namely one. When j 6= k, the product should be zero. That is

lkrk = 1
ljrk = 0 if j 6= k.

}
(4.12)

These are called biorthogonality relations. For example, r1 need not be orthog-
onal to r2, but it is orthogonal to l2. The set of vectors rk is not orthogonal,
but the two sets lj and rk are biorthogonal. The left eigenvectors are sometimes
called adjoint eigenvectors because their transposes form right eigenvectors for
the adjoint of A:

A∗l∗j = λj l
∗
j .

Still supposing n distinct eigenvalues, we may take the right eigenvectors to be
a basis for Rn (or Cn if the entries are not real). As discussed in Section 4.2.2,
we may express the action of A in this basis. Since Arj = λjrj , the matrix
representing the linear transformation A in this basis will be the diagonal matrix
Λ. In the framework of Section 4.2.2, this is because if we expand a vector
v ∈ Rn in the rk basis, v = v1r1 + · · ·+ vnrn, then Av = λ1v1r1 + · · ·+ λnvnrn.
For this reason finding a complete set of eigenvectors and eigenvalues is called
diagonalizing A. A matrix with n linearly independent right eigenvectors is
diagonalizable.

If A does not have n distinct eigenvalues then there may be no basis in which
the action of A is diagonal. For example, consider the matrix

J =
(

0 1
0 0

)
.

Clearly, J 6= 0 but J2 = 0. A diagonal or diagonalizable matrix cannot have
this property: if Λ2 = 0 then Λ = 0, and if the relations A 6= 0, A2 = 0 in one
basis, they hold in any other basis. In general a Jordan block with eigenvalue
λ is a k × k matrix with λ on the diagonal, 1 on the superdiagonal and zeros
elsewhere: 

λ 1 0 · · · 0
0 λ 1 0 0
... 0

. . . . . .
...

...
...

. . . λ 1
0 0 · · · 0 λ

 .

If a matrix has fewer than n distinct eigenvalues, it might or might not be
diagonalizable. If A is not diagonalizable, a theorem of linear algebra states
that there is a basis in which A has Jordan form. A matrix has Jordan form if
it is block diagonal with Jordan blocks of various sizes and eigenvalues on the
diagonal. It can be hard to compute the Jordan form of a matrix numerically,
as we will see.
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If A has a Jordan block, a basis of eigenvectors will not exist; and even if
A is diagonalizable, transforming to an eigenvector basis may be very sensitive.
For this reason, most software for the unsymmetric eigenvalue problem actually
computes a Schur form:

AQ = QT,

where T is an upper triangular matrix with the eigenvalues on the diagonal,

T =


λ1 t12 t13 . . . t1n
0 λ2 t23 . . . t2n
0 0 λ3 . . . t3n
...

...
. . . . . .

...
0 0 . . . 0 λn

 ,

and the columns qk of Q are orthonormal, i.e.

q∗j qk =

{
1, j = k

0, j 6= k.

Equivalently, we can say that Q is an orthogonal matrix, which means that
Q∗Q = I. In many applications, the Schur form is an acceptable substitute for
an eigenvalue – eigenvector decomposition. When eigenvectors are needed, they
are computed from the Schur form.

The eigenvalue – eigenvector problem for self-adjoint matrices is different and
in many ways simpler than the general nonsymmetric eigenvalue problem. The
eigenvalues are real. The left eigenvectors are adjoints of the right eigenvectors:
lk = r∗k. There are no Jordan blocks. Every self-adjoint matrix is diagonalizable
even if the number of distinct eigenvalues is less than n. A complete set of
eigenvectors of a symmetric matrix forms an orthonormal basis; that is, R is
orthogonal. The matrix form of the eigenvalue relation (4.11) may be written
R∗AR = Λ, or A = RΛR∗, or R∗A = ΛR∗. The latter shows (yet again) that
the rows of R∗, which are r∗k, are left eigenvectors of A.

4.2.6 Differentiation and perturbation theory

The main technique in the perturbation theory of Section 4.3 is implicit differ-
entiation. We use the formalism of infinitesimal virtual perturbations, which is
related to tangent vectors in differential geometry. It may seem roundabout at
first, but it makes actual calculations quick.

Suppose f(x) representsm functions, f1(x), . . . , fm(x) of n variables, x1, . . . , xn.
The Jacobian matrix10, f ′(x), is the m×n matrix of partial derivatives f ′jk(x) =
∂xkfj(x). If f is differentiable (and f ′ is Lipschitz continuous), then the first
derivative approximation is (writing x0 for x to clarify some discussion below)

f(x0 + ∆x)− f(x0) = ∆f = f ′(x0)∆x+O
(
‖∆x‖2

)
. (4.13)

10 See any good book on multivariate calculus.
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Here ∆f and ∆x are column vectors.
Suppose s is a scalar “parameter” and x(s) is a differentiable curve in Rn with

x(0) = x0. The function f(x) then defines a curve in Rm with f(x(0)) = f(x0).
We define two vectors, called virtual perturbations,

ẋ =
d

ds

∣∣∣∣
s=0

x(s) , ḟ =
d

dx

∣∣∣∣
s=0

f(x(s)) .

The multivariate calculus chain rule implies the virtual perturbation formula

ḟ = f ′(x0)ẋ . (4.14)

This formula is nearly the same as (4.13). The virtual perturbation strategy is to
calculate the linear relationship (4.14) between virtual perturbations and use it
to find the approximate relation (4.13) between actual perturbations. For this,
it is important that any ẋ ∈ Rn can be the virtual perturbation corresponding
to some curve: just take the straight “curve” x(s) = x0 + sẋ.

The Leibniz rule (product rule) for matrix multiplication makes virtual per-
turbations handy in linear algebra. Suppose A(s) and B(s) are differentiable
curves of matrices and compatible for matrix multiplication. Then the virtual
perturbation of AB is given by the product rule

d

ds

∣∣∣∣
s=0

AB = ȦB +AḂ . (4.15)

To see this, note that the (jk) entry of A(s)B(s) is
∑
l ajl(s)blk(s). Differenti-

ating this using the ordinary product rule then setting s = 0 yields∑
l

ȧjlblk +
∑
l

ajlḃlk .

These terms correspond to the terms on the right side of (4.15). We can differ-
entiate products of more than two matrices in this way.

As an example, consider perturbations of the inverse of a matrix, B = A−1.
The variable x in (4.13) now is the matrix A, and f(A) = A−1. Apply implicit
differentiation to the formula AB = I, use the fact that I is constant, and we
get ȦB +AḂ = 0. Then solve for Ḃ and use A−1 = B, and get

Ḃ = −A−1ȦA−1 .

The corresponding actual perturbation formula is

∆
(
A−1

)
= −A−1 (∆A) A−1 +O

(
‖∆A‖2

)
. (4.16)

This is a generalization of the fact that the derivative of 1/x is −1/x2, so
∆(1/x) ≈ (−1/x2)∆x. When x is replaced by A and ∆A does not commute
with A, we have to worry about the order of the factors. The correct order is
(4.16), and not, for example, ȦA−1A−1 = ȦA−2.
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For future reference we comment on the case m = 1, which is the case of
one function of n variables. The 1 × n Jacobian matrix may be thought of as
a row vector. We often write this as ∇f , and calculate it from the fact that
ḟ = ∇f(x) · ẋ for all ẋ. In particular, x is a stationary point of f if ∇f(x) = 0,
which is the same as ḟ = 0 for all ẋ. For example, suppose f(x) = x∗Ax for
some n×n matrix A. This is a product of the 1×n matrix x∗ with A with the
n× 1 matrix x. The Leibniz rule (4.15) gives, if A is constant,

ḟ = ẋ∗Ax+ x∗Aẋ .

Since the 1× 1 real matrix ẋ∗Ax is equal to its transpose, this is

ḟ = x∗(A+A∗)ẋ .

This implies that (both sides are row vectors)

∇ ( x∗Ax ) = x∗(A+A∗) . (4.17)

If A∗ = A, we recognize this as a generalization of the n = 1 formula d
dx (ax2) =

2ax.

4.2.7 Variational principles for the symmetric eigenvalue
problem

A variational principle is a way to find something by solving a maximization or
minimization problem. The Rayleigh quotient for an n× n matrix is

Q(x) =
x∗Ax

x∗x
=
〈x,Ax〉
〈x, x〉

. (4.18)

If x is complex, x∗ is the adjoint. In either case, the denominator is x∗x =∑n
k=1 |xk|

2 = ‖x‖2l2 . The Rayleigh quotient is defined for x 6= 0. A vector r is
a stationary point if ∇Q(r) = 0. If r is a stationary point, the corresponding
value λ = Q(r) is a stationary value.

Theorem 1 Suppose A is self-adjoint. A vector x 6= 0 is an eigenvector if and
only if it is a stationary point of the Rayleigh quotient; and if x is an eigenvector,
the Rayleigh quotient is the corresponding eigenvalue.

Proof: The underlying principle is the calculation (4.17). If A∗ = A (this is
where symmetry matters) then ∇ ( x∗Ax ) = 2x∗A. Since (4.18) is a quotient,
we differentiate using the quotient rule. We already know ∇(x∗Ax) = 2x∗A.
Also, ∇x∗x = 2x∗ (the rule with A = I). The result is

∇Q = 2
(

1
x∗x

)
x∗A− 2

(
x∗Ax

(x∗x)2

)
x∗ =

2
x∗x

(x∗A− x∗Q(x)) .

If x is a stationary point (∇Q = 0), then x∗A =
(
x∗Ax
x∗x

)
x∗, or, taking the

adjoint,

Ax =
(
x∗Ax

x∗x

)
x .
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This shows that x is an eigenvector with

λ =
x∗Ax

x∗x
= Q(x)

as the corresponding eigenvalue. Conversely if Ar = λr, then Q(r) = λ and the
calculations above show that ∇Q(r) = 0. This proves the theorem.

A simple observation shows that there is at least one stationary point of Q
for Theorem 1 to apply to. If α is a real number, then Q(αx) = Q(x). We may
choose α so that11 ‖αx‖ = 1. This shows that

max
x 6=0

Q(x) = max
‖x‖=1

Q(x) = max
‖x‖=1

x∗Ax .

A theorem of analysis states that if Q(x) is a continuous function on a compact
set, then there is an r so that Q(r) = maxxQ(x) (the max is attained). The
set of x with ‖x‖ = 1 (the unit sphere) is compact and Q is continuous. Clearly
if Q(r) = maxxQ(x), then ∇Q(r) = 0, so r is a stationary point of Q and an
eigenvector of A.

Now suppose we have found m orthogonal eigenvectors r1, . . . , rm. If x is
orthogonal to rj , i.e. r∗jx = 0, then so is Ax:

r∗j (Ax) = (r∗jA)x = λjr
∗
jx = 0.

Therefore, the subspace Vm ⊂ Cn of all x that are orthogonal to r1, . . . , rm
is an invariant subspace: if x ∈ Vm, then Ax ∈ Vm. Thus A defines a linear
transformation from Vm to Vm, which we call Am. Chapter 5 gives a proof that
Am is symmetric in a suitable basis. Therefore, Theorem 1 implies that Am has
at least one eigenvector, rm+1, with eigenvalue λm+1. Since rm+1 ∈ Vm, the
action of A and Am on rm+1 is the same, which means that Arm+1 = λm+1rm+1.
After finding rm+1, we can repeat the procedure to find rm+2, and continue until
we eventually find a full set of n orthogonal eigenvectors.

4.2.8 Least squares

Suppose A is an m× n matrix representing a linear transformation from Rn to
Rm, and we have a vector b ∈ Rm. If n < m the linear equation system Ax = b
is overdetermined in the sense that there are more equations than variables to
satisfy them. If there is no x with Ax = b, we may seek an x that minimizes
the residual

r = Ax− b . (4.19)

This linear least squares problem

min
x
‖Ax− b‖l2 , (4.20)

11In this section and the next, ‖x‖ = ‖x‖l2 .
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is the same as finding x to minimize the sum of squares

‖r‖2l2 = SS =
n∑
j=1

r2
j .

Linear least squares problems arise through linear regression in statistics.
A linear regression model models the response, b, as a linear combination of
m explanatory vectors, ak, each weighted by a regression coefficient, xk. The
residual, R = (

∑m
k=1 akxk)−b, is modeled as a Gaussian random variable12 with

mean zero and variance σ2. We do n experiments. The explanatory variables
and response for experiment j are ajk, for k = 1. . . . ,m, and bj , and the residual
(for given regression coefficients) is rj =

∑m
k=1 ajkxk − bj . The log likelihood

function is f(x) = −σ2
∑n
j=1 r

2
j . Finding regression coefficients to maximize the

log likelihood function leads to (4.20).
The normal equations give one approach to least squares problems. We

calculate:

‖r‖2l2 = r∗r

= (Ax− b)∗ (Ax− b)
= x∗A∗Ax− 2x∗A∗b+ b∗b .

Setting the gradient to zero as in the proof of Theorem 1 leads to the normal
equations

A∗Ax = A∗b , (4.21)

which can be solved by
x = (A∗A)−1

A∗b . (4.22)

The matrix M = A∗A is the moment matrix or the Gram matrix. It is sym-
metric, and positive definite if A has rank m, so the Choleski decomposition
of M (see Chapter 5) is a good way to solve (4.21). The matrix (A∗A)−1

A∗

is the pseudoinverse of A. If A were square and invertible, it would be A−1

(check this). The normal equation approach is the fastest way to solve dense
linear least squares problems, but it is not suitable for the subtle ill-conditioned
problems that arise often in practice.

The singular value decomposition in Section 4.2.9 and the QR decomposition
from Section 5.5 give better ways to solve ill-conditioned linear least squares
problems.

4.2.9 Singular values and principal components

Let A be an m×n matrix that represents a linear transformation from Rn to Rm.
The right singular vectors, vk ∈ Rn form an orthonormal basis for Rn. The left

12 See any good book on statistics for definitions of Gaussian random variable and the log
likelihood function. What is important here is that a systematic statistical procedure, the
maximum likelihood method, tells us to minimize the sum of squares of residuals.
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singular vectors, uk ∈ Rm, form an orthonormal basis for Rm. Corresponding
to each vk and uk pair is a non-negative singular value, σk with

Avk = σkuk . (4.23)

By convention these are ordered so that σ1 ≥ σ2 ≥ · · · ≥ 0. If n < m we
interpret (4.23) as saying that σk = 0 for k > n. If n > m we say σk = 0 for
k > m.

The non-zero singular values and corresponding singular vectors may be
found one by one using variational and orthogonality principles similar to those
in Section 4.2.7. We suppose A is not the zero matrix (not all entries equal to
zero). The first step is the variational principle:

σ1 = max
x 6=0

‖Ax‖
‖x‖

. (4.24)

As in Section 4.2.7, the maximum is achieved, and σ1 > 0. Let v1 ∈ Rn be a
maximizer, normalized to have ‖v1‖ = 1. Because ‖Av1‖ = σ1, we may write
Av1 = σ1u1 with ‖u1‖ = 1. This is the relation (4.23) with k = 1.

The optimality condition calculated as in the proof of Theorem 1 implies
that

u∗1A = σ1v
∗
1 . (4.25)

Indeed, since σ1 > 0, (4.24) is equivalent to13

σ2
1 = max

x6=0

‖Ax‖2

‖x‖2

= max
x6=0

(Ax)∗(Ax)
x∗x

σ2
1 = max

x6=0

x∗(A∗A)x
x∗x

. (4.26)

Theorem 1 implies that the solution to the maximization problem (4.26), which
is v1, satisfies σ2v1 = A∗Av1. Since Av1 = σu1, this implies σ1v1 = A∗u1, which
is the same as (4.25).

The analogue of the eigenvalue orthogonality principle is that if x∗v1 = 0,
then (Ax)∗ u1 = 0. This is true because

(Ax)∗ u1 = x∗ (A∗u1) = x∗σ1v1 = 0 .

Therefore, if we define V1 ⊂ Rn by x ∈ V1 if x∗v1 = 0, and U1 ⊂ Rm by y ∈ U1

if y∗u1 = 0, then A also defines a linear transformation (called A1) from V1 to
U1. If A1 is not identically zero, we can define

σ2 = max
x∈V1
x 6=0

‖Ax‖2

‖x‖2
= max

x∗v1=0
x 6=0

‖Ax‖2

‖x‖2
,

13These calculations make constant use of the associativity of matrix multiplication, even
when one of the matrices is a row or column vector.
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and get Av2 = σ2u2 with v∗2v1 = 0 and u∗2u1 = 0. This is the second step in
constructing orthonormal bases satisfying (4.23). Continuing in this way, we
can continue finding orthonormal vectors vk and uk that satisfy (4.23) until we
reach Ak = 0 or k = m or k = n. After that point, we may complete the v and
u bases arbitrarily as in Chapter 5 with remaining singular values being zero.

The singular value decomposition (SVD) is a matrix expression of the rela-
tions (4.23). Let U be the m ×m matrix whose columns are the left singular
vectors uk (as in (4.10)). The orthonormality relations14 u∗juk = δjk are equiv-
alent to U being an orthogonal matrix: U∗U = I. Similarly, we can form the
orthogonal n × n matrix, V , whose columns are the right singular vectors vk.
Finally, the m × n matrix, Σ, has the singular values on its diagonal (with
somewhat unfortunate notation), σjj = σj , and zeros off the diagonal, σjk = 0
if j 6= k. With these definitions, the relations (4.23) are equivalent to AV = UΣ,
which more often is written

A = UΣV ∗ . (4.27)

This the singular value decomposition. Any matrix may be factored, or decom-
posed, into the product of the form (4.27) where U is an m × m orthogonal
matrix, Σ is an m × n diagonal matrix with nonnegative entries, and V is an
n× n orthogonal matrix.

A calculation shows that A∗A = V Σ∗ΣV ∗ = V ΛV ∗. This implies that the
eigenvalues of A∗A are given by λj = σ2

j and the right singular vectors of A are
the eigenvectors of A∗A. Section 4.3 explains that the condition number asso-
ciated with solving linear systems may be taken to be κl2(A) = σ1(A)/σn(A).
This implies that κl2(A∗A) = κl2(A)2. This means that the condition number of
solving the normal equations (4.21) is the square of the condition number of the
original least squares problem (4.20). If the condition number of a least squares
problem is κl2(A) = 105, even the best solution algorithm can amplify errors by
a factor of 105. Solving using the normal equations can amplify rounding errors
by a factor of 1010.

Many people call singular vectors uk and vk principal components. They
refer to the singular value decomposition as principal component analysis, or
PCA. One application is clustering, in which you have n objects, each with m
measurements, and you want to separate them into two clusters, say “girls”
and “boys”. You assemble the data into a matrix, A, and compute, say, the
largest two singular values and corresponding left singular vectors, u1 ∈ Rm
and u2 ∈ Rm. The data for object k is ak ∈ Rm, and you compute zk ∈ R2 by
zk1 = u∗1ak and zk2 = u∗2ak, the components of ak in the principal component
directions. You then plot the n points zk in the plane and look for clusters, or
maybe just a line that separates one group of points from another. Surprising
as may seem, this simple procedure does identify clusters in practical problems.

14 Here δjk is the Kronecker delta, which is equal to one when j = k and zero otherwise.
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4.3 Condition number

Ill-conditioning can be a serious problem in numerical solution of problems in
linear algebra. We take into account possible ill-conditioning when we choose
computational strategies. For example, the matrix exponential exp(A) (see
Exercise 12) can be computed using the eigenvectors and eigenvalues of A. We
will see in Section 4.3.3 that the eigenvalue problem may be ill conditioned even
when the problem of computing exp(A) is fine. In such cases we need a way to
compute exp(A) that does not use the eigenvectors and eigenvalues of A.

As we said in Section 2.7 (in slightly different notation), the condition num-
ber is the ratio of the change in the answer to the change in the problem data,
with (i) both changes measured in relative terms, and (ii) the change in the
problem data being small. Norms provide a way to extend this definition to
functions and data with more than one component. Let f(x) represent m func-
tions of n variables, with ∆x being a change in x and ∆f = f(x+ ∆x)− f(x)
the corresponding change in f . The size of ∆x, relative to x is ‖∆x‖ / ‖x‖, and
similarly for ∆f . In the multivariate case, the size of ∆f depends not only on
the size of ∆x, but also on the direction. The norm-based condition number
seeks the worst case ∆x, which leads to

κ(x) = lim
ε→0

max
‖∆x‖=ε

‖f(x+ ∆x)− f(x)‖ / ‖f(x)‖
‖∆x‖ / ‖x‖

. (4.28)

Except for the maximization over directions ∆x with ‖∆x‖ = ε, this is the same
as the earlier definition 2.11.

Still following Section 2.7, we express (4.28) in terms of derivatives of f . We
let f ′(x) represent the m×n Jacobian matrix of first partial derivatives of f , as in
Section 4.2.6, so that, ∆f = f ′(x)∆x+O

(
‖∆x‖2

)
. Since O

(
‖∆x‖2

)
/ ‖∆x‖ =

O (‖∆x‖), the ratio in (4.28) may be written

‖∆f‖
‖∆x‖

· ‖x‖
‖f‖

=
‖f ′(x)∆x‖
‖∆x‖

· ‖x‖
‖f‖

+O (‖∆x‖) .

The second term on the right disappears as ∆x→ 0. Maximizing the first term
on the right over ∆x yields the norm of the matrix f ′(x). Altogether, we have

κ(x) = ‖f ′(x)‖ · ‖x‖
‖f(x)‖

. (4.29)

This differs from the earlier condition number definition (2.13) in that it uses
norms and maximizes over ∆x with ‖∆x‖ = ε.

In specific calculations we often use a slightly more complicated way of stat-
ing the definition (4.28). Suppose that P and Q are two positive quantities and
there is a C so that P ≤ C · Q. We say that C is the sharp constant if there
is no C ′ with C ′ < C so that P ≤ C ′ ·Q. For example, we have the inequality
sin(2ε) ≤ 3ε for all ε > 0. But C = 3 is not the sharp constant because the
inequality also is true with C ′ = 2, which is sharp.
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This sharp constant idea is not exactly what we want because it is required
to hold for all ε (large or small), and because the inequality you might want for
small ε is not exactly true. For example, there is no inequality tan(ε) ≤ Cε that
applies for all ε > 0. As ε→ 0, the constant seems to be C = 1, but this is not
strictly true, since tan(ε) > ε for 0 < ε < π

2 . Therefore we write

P (ε).CQ(ε) as ε→ 0 , (4.30)

if P (ε) > 0, Q(ε) > 0, and

lim
ε→0

P (ε)
Q(ε)

≤ C .

This is the sharp constant, the smallest C so that

P (ε) ≤ C ·Q(ε) +O(ε) as ε→ 0.

The definition (4.28) is precisely that κ(x) is the sharp constant in the inequality

‖∆f‖
‖f‖

.
‖∆x‖
‖x‖

as ‖x‖ → 0. (4.31)

4.3.1 Linear systems, direct estimates

We start with the condition number of calculating b = Au in terms of u with A
fixed. This fits into the general framework above, with u playing the role of x,
and Au of f(x). Of course, A is the Jacobian of the function u→ Au, so (4.29)
gives

κ(A, u) = ‖A‖ · ‖u‖
‖Au‖

. (4.32)

This shows that computing Au is ill-conditioned if ‖A‖ is much larger than
the ratio ‖Au‖ ‖u‖. The norm of A is the maximum A can stretch any vector
(max ‖Av‖ / ‖v‖). Computing Au is ill-conditioned if it stretches some vector v
much more than it stretches u.

The condition number of solving a linear system Au = b (finding u as a
function of b) is the same as the condition number of computing u = A−1b. The
formula (4.32) gives this as

κ(A−1, b) =
∥∥A−1

∥∥ · ‖b‖
‖A−1b‖

=
∥∥A−1

∥∥ · ‖Au‖
‖u‖

.

This is large if there is some vector that is stretched much less than u. Of
course, “stretching” factors can be less than one. For future reference, note
that κ(A−1, b) is not the same as (4.32).

The traditional definition of the condition number of the Au computation
takes the worst case relative error not only over perturbations ∆u but also over
vectors u. Taking the maximum over ∆u led to (4.32), so we need only maximize
it over u:

κ(A) = ‖A‖ ·max
u6=0

‖u‖
‖Au‖

. (4.33)
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Since A(u+ ∆u)−Au = A∆u, and u and ∆u are independent variables, this is
the same as

κ(A) = max
u6=0

‖u‖
‖Au‖

· max
∆u6=0

‖A∆u‖
‖∆u‖

. (4.34)

To evaluate the maximum, we suppose A−1 exists.15 Substituting Au = v,
u = A−1v, gives

max
u6=0

‖u‖
‖Au‖

= max
v 6=0

∥∥A−1v
∥∥

‖v‖
=
∥∥A−1

∥∥ .
Thus, (4.33) leads to

κ(A) = ‖A‖
∥∥A−1

∥∥ (4.35)

as the worst case condition number of the forward problem.
The computation b = Au with

A =
(

1000 0
0 10

)
illustrates this discussion. The error amplification relates ‖∆b‖ / ‖b‖ to ‖∆u‖ / ‖u‖.
The worst case would make ‖b‖ small relative to ‖u‖ and ‖∆b‖ large relative
to ‖∆u‖: amplify u the least and ∆u the most. This is achieved by taking

u =
(

0
1

)
so that Au =

(
0

10

)
with amplification factor 10, and ∆u =

(
ε
0

)
with A∆u =

(
1000ε

0

)
and amplification factor 1000. This makes ‖∆b‖ / ‖b‖

100 times larger than ‖∆u‖ / ‖u‖. For the condition number of calculating

u = A−1b, the worst case is b =
(

0
1

)
and ∆b =

(
ε
0

)
, which amplifies the error

by the same factor of κ(A) = 100.
The informal condition number (4.33) has advantages and disadvantages over

the more formal one (4.32). At the time we design a computational strategy,
it may be easier to estimate the informal condition number than the formal
one, as we may know more about A than u. If we have no idea what u will
come up, we have a reasonable chance of getting something like the worst one.
Also, by coincidence, κ(A) defined by (4.33) determines the convergence rate
of some iterative methods for solving linear systems involving A. On the other
hand, in solving differential equations κ(A) often is much larger than κ(A, u). In
such cases, the error in solving Au = b is much less than the condition number
κ(A) would suggest. For example, in Exercise 11, κ(A) is on the order of n2,
where n is the number of unknowns. The truncation error for the second order
discretization is on the order of 1/n2. A naive estimate using (4.33) might
suggest that solving the system amplifies the O(n−2) truncation error by a
factor of n2 to be on the same order as the solution itself. This does not happen
because the u we seek is smooth, and not like the worst case.

15See Exercise 8 for a the l2 condition number of the u → Au problem with singular or
non-square A.
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The informal condition number (4.35) also has the strange feature than
κ(A) = κ(A−1), since

(
A−1

)−1 = A. This gives the mistaken problem that
solving a forward problem (computing Au from u) has the same stability prop-
erties as solving the inverse problem,(computing u from b = Au). For example,
solving the heat equation forward in time is far different from the inverse prob-
lem of solving it backward in time.16 Again, the more precise definition (4.32)
does not have this drawback.

4.3.2 Linear systems, perturbation theory

If Au = b, we can study the dependence of u on A through perturbation theory.
The starting point is the perturbation formula (4.16). Taking norms gives

‖∆u‖ .
∥∥A−1

∥∥ ‖∆A‖ ‖u‖ , (for small ∆A), (4.36)

so
‖∆u‖
‖u‖

.
∥∥A−1

∥∥ ‖A‖ · ‖∆A‖
‖A‖

(4.37)

This shows that the condition number satisfies κ ≤
∥∥A−1

∥∥ ‖A‖. The condition
number is equal to

∥∥A−1
∥∥ ‖A‖ if the inequality (4.36) is (approximately for small

∆A) sharp, which it is because we can take ∆A = εI and u to be a maximum
stretch vector for A−1. Note that the condition number formula (4.35) applies
to the problem of solving the linear system Au = b both when we consider
perturbations in b and in A, though the derivations here are different.

4.3.3 Eigenvalues and eigenvectors

The eigenvalue relationship is Arj = λjrj . Perturbation theory allows to esti-
mate the changes in λj and rj that result from a small ∆A. These perturbation
results are used throughout science and engineering. The symmetric or self-
adjoint case is often is called Rayleigh-Schödinger perturbation theory17 Using
the virtual perturbation method of Section 4.2.6, differentiating the eigenvalue
relation using the product rule yields

Ȧrj +Aṙj = λ̇jrj + λj ṙj . (4.38)

Multiply this from the left by r∗j and use the fact that r∗j is a left eigenvector
gives

r∗j Ȧjrj = λ̇lr
∗
j rj .

If rj is normalized so that r∗j rj = ‖rj‖2l2 = 1, then the right side is just λ̇j .
Trading virtual perturbations for actual small perturbations turns this into the
famous formula

∆λj = r∗j ∆A rj + O
(
‖∆A‖2

)
. (4.39)

16See, for example, the book by Fritz John on partial differential equations.
17Lord Rayleigh used it to study vibrational frequencies of plates and shells. Later Erwin

Schrödinger used it to compute energies (which are eigenvalues) in quantum mechanics.
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We get a condition number estimate by recasting this in terms of rela-
tive errors on both sides. The important observation is that ‖rj‖l2 = 1, so
‖∆A · rj‖l2 ≤ ‖∆A‖l2 and finally∣∣r∗j ∆A rj

∣∣ . ‖∆A‖l2 .

This inequality is sharp because we can take ∆A = εrjr
∗
j , which is an n × n

matrix with (see Exercise 7)
∥∥εrjr∗j∥∥l2 = |ε|. Putting this into (4.39) gives the

also sharp inequality, ∣∣∣∣∆λjλj

∣∣∣∣ ≤ ‖A‖l2|λj |
‖∆A‖l2
‖A‖l2

.

We can put this directly into the abstract condition number definition (4.28) to
get the conditioning of λj :

κj(A) =
‖A‖l2
|λj |

=
|λ|max

|λj |
(4.40)

Here, κj(A) denotes the condition number of the problem of computing λj ,
which is a function of the matrix A, and ‖A‖l2 = |λ|max refers to the eigenvalue
of largest absolute value.

The condition number formula (4.40) predicts the sizes of errors we get in
practice. Presumably λj depends in some way on all the entries of A and the
perturbations due to roundoff will be on the order of the entries themselves,
multiplied by the machine precision, εmach, which are on the order of ‖A‖. Only
if λj is very close to zero, by comparison with |λmax|, will it be hard to compute
with high relative accuracy. All of the other eigenvalue and eigenvector problems
have much worse condition number difficulties.

The eigenvalue problem for non-symmetric matrices can by much more sen-
sitive. To derive the analogue of (4.39) for non-symmetric matrices we start
with (4.38) and multiply from the left with the corresponding left eigenvector,
lj , and using the normalization condition ljrj = 1. After simplifying, the result
is

λ̇j = ljȦrj , ∆λj = lj∆Arj +O
(
‖∆A‖2

)
. (4.41)

In the non-symmetric case, the eigenvectors need not be orthogonal and the
eigenvector matrix R need not be well conditioned. For this reason, it is possible
that lk, which is a row of R−1 is very large. Working from (4.41) as we did for
the symmetric case leads to∣∣∣∣∆λjλj

∣∣∣∣ ≤ ‖l∗j‖‖rj‖ ∣∣∣∣∆λjλj

∣∣∣∣ .

Therefore, the condition number of the non-symmetric eigenvalue problem is
(again because the inequalities are sharp)

κj(A) = ‖lj‖‖rj‖
‖A‖
|λj |

. (4.42)
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A useful upper bound is ‖lj‖‖rj‖ ≤ κLS(R), where κLS(R) =
∥∥R−1

∥∥ ‖R‖ is
the linear systems condition number of the right eigenvector matrix. Since A
is not symmetric, we cannot replace ‖A‖ by |λ|max as we did for (4.40). In the
symmetric case, the only reason for ill-conditioning is that we are looking for a
(relatively) tiny number. For non-symmetric matrices, it is also possible that
the eigenvector matrix is ill-conditioned. It is possible to show that if a family
of matrices approaches a matrix with a Jordan block, the condition number of
R approaches infinity. For a symmetric or self-adjoint matrix, R is orthogonal
or unitary, so that ‖R‖l2 = ‖R∗‖l2 = 1 and κLS(R) = 1.

The eigenvector perturbation theory uses the same ideas, with the extra
trick of expanding the derivatives of the eigenvectors in terms of the eigenvectors
themselves. We expand the virtual perturbation ṙj in terms of the eigenvectors
rk. Call the expansion coefficients mjk, and we have

ṙj =
n∑
l=1

mjlrl .

For the symmetric eigenvalue problem, if all the eigenvalues are distinct, the
formula follows from multiplying (4.38) from the left by r∗k:

mjk =
r∗kȦrj
λj − λk

,

so that
∆rj =

∑
k 6=j

r∗k∆Arj
λj − λk

+O
(
‖∆A‖2

)
.

(The term j = k is omitted because mjj = 0: differentiating r∗j rj = 1 gives
r∗j ṙj = 0.) This shows that the eigenvectors have condition number “issues”
even when the eigenvalues are well-conditioned, if the eigenvalues are close to
each other. Since the eigenvectors are not uniquely determined when eigenvalues
are equal, this seems plausible. The unsymmetric matrix perturbation formula
is

mkj =
ljȦrk
λj − λk

.

Again, we have the potential problem of an ill-conditioned eigenvector basis,
combined with the possibility of close eigenvalues. The conclusion is that the
eigenvector conditioning can be problematic, even though the eigenvalues are
fine, for closely spaced eigenvalues.

4.4 Software

4.4.1 Software for numerical linear algebra

There have been major government-funded efforts to produce high quality soft-
ware for numerical linear algebra. This culminated in the public domain soft-
ware package LAPACK. LAPACK is a combination and extension of earlier
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packages EISPACK, for solving eigenvalue problems, and LINPACK, for solv-
ing systems of equations. LAPACK is used in many mathematical packages,
including Matlab.

Our advice is to use LAPACK for dense linear algebra computations when-
ever possible18, either directly or through an environment like Matlab. These
routines are extensively tested, and are much less likely to have subtle bugs than
codes you developed yourself or copied from a textbook. The LAPACK soft-
ware also includes condition estimators that are often more sophisticated than
the basic algorithms themselves, and includes methods such as equilibration to
improve the conditioning of problems.

LAPACK is built upon a library of Basic Linear Algebra Subroutines (BLAS).
A BLAS library includes routines that perform such tasks as computing dot
products and multiplying matrices. Different systems often have their own
specially-tuned BLAS libraries, and these tuned libraries have much better per-
formance than the reference implementation. Computations using LAPACK
with an optimized BLAS can be faster than computations with the reference
BLAS by an order of magnitude or more.

On many platforms, LAPACK and a tuned BLAS are packaged as a pre-
compiled library. On machines running OS X, for example, LAPACK and a
tuned BLAS are provided as part of the vecLib framework. On Windows and
Linux machines, optimized LAPACK and BLAS implementations are part of
Intel’s Math Kernel Libraries (MKL), which are sold commercially but with
a free version under Windows, and as part of the AMD Core Math Library
(ACML), which is freely available from AMD. The LAPACK Frequently Asked
Questions list from http://www.netlib.org/lapack includes as its first item
a list of places where you can get LAPACK and the BLAS pre-packaged as part
of a vendor library.

LAPACK is written in Fortran 9019, not C++. It is not too difficult to call
Fortran routines from C++, but the details vary from platform to platform.
One alternative to mixed-language programming is to use CLAPACK, which is
an automatic translation of LAPACK into the C language. CLAPACK provides
a Fortran-style interface to LAPACK, but because it is written entirely in C, it
is often easier to link. As of this writing, there is a standardized C interface to
the BLAS (the CBLAS), but there is no standard C interface to LAPACK. One
of the advantages of using LAPACK via a vendor-provided library is that many
of these libraries provide a native C-style interface to the LAPACK routines.

4.4.2 Linear algebra in Matlab

The Matlab system uses LAPACK and BLAS for most of its dense linear
algebra operation. This includes the * command to multiply matrices, the

18 LAPACK has routines for dense linear algebra. Sparse matrices, such as those with only
a few nonzero entries, should generally be solved using other packages. We will discuss sparse
matrices briefly in Chapter 5

19 Most of LAPACK was developed in Fortran 77. However, the most recent version (LA-
PACK 3.2) uses some Fortran 90 features to provide extended precision routines.

http://www.netlib.org/lapack/faq.html
http://www.netlib.org/lapack/faq.html
http://www.netlib.org/lapack
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N = 500;
A = rand(N);
B = rand(N);

tic; C = A*B; t1 = toc;

tic;
C2 = zeros(N);
for i = 1:N
for j = 1:N
for k = 1:N
C2(i,j) = C2(i,j) + A(i,k)*B(k,j);

end
end

end
t2 = toc;

fprintf(’For N = %d: built-in = %f sec; ours = %f sec\n’, ...
N, t1, t2);

Figure 4.1: Example Matlab program that multiplies two matrices with a
built-in primitive based on the BLAS and with a hand-written loop.

backslash command to solve linear systems and least squares problems (\), the
eig command to compute eigenvalues and eigenvectors, and the svd command
to compute singular values and vectors.

Where Matlab provides a built-in routine based on LAPACK and the
BLAS, it will usually be much more efficient than a corresponding routine that
you would write yourself. For example, consider the code shown in Figure 4.1
to multiply two matrices using the built-in * operator and a hand-written loop.
On a desktop Pentium 4 system running version 7.6 of Matlab, we can see the
difference between the two calls clearly:

For N = 500: built-in = 0.061936 sec; ours = 5.681781 sec

Using the Matlab built-in functions that call the BLAS is almost a hundred
times faster than writing our own matrix multiply routine! In general, the most
efficient Matlab programs make heavy use of linear algebra primitives that call
BLAS and LAPACK routines.

Where LAPACK provides very different routines for different matrix struc-
tures (e.g. different algorithms for symmetric and unsymmetric eigenvalue prob-
lems), Matlab tests the matrix structure and automatically chooses an appro-
priate routine. It’s possible to see this indirectly by looking at the timing of
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A = rand(600); % Make a medium-sized random matrix
B = (A+A’)/2; % Take the symmetric part of A
Bhat = B+eps*A; % Make B just slightly nonsymmetric

tic; eig(B); t1 = toc; % Time eig on a symmetric problem
tic; eig(Bhat); t2 = toc; % Time eig on a nonsymmetric problem

fprintf(’Symmetric: %f sec; Nonsymmetric: %f sec\n’, t1, t2);

Figure 4.2: Example Matlab program that times the computation of eigenval-
ues for a symmetric matrix and a slightly nonsymmetric matrix.

the following Matlab script in Figure 4.2. On a desktop Pentium 4 system
running version 7.6 of Matlab, we can see the difference between the two calls
clearly:

Symmetric: 0.157029 sec; Nonsymmetric: 1.926543 sec

4.4.3 Mixing C++ and Fortran

Like an enormous amount of scientific software, LAPACK is written in For-
tran. Because of this, it is useful to call Fortran code from C. Unfortunately,
many systems do not include a Fortran compiler; and even when there is a
Fortran compiler, it may be difficult to figure out which libraries are needed
to link together the Fortran and C codes. The f2c translator, available from
http://www.netlib.org/f2c, translates Fortran codes into C. In this section,
we will describe how to use f2c-translated codes in a C++ program. As an ex-
ample, we will translate and use the reference version of the BLAS dot product
routine ddot, which is available at http://www.netlib.org/blas/ddot.f. In
our description, we assume a command line shell of the sort provided by OS X,
Linux, or the Cygwin environment under Windows. We also assume that f2c
has already been installed somewhere on the system.

The first step is to actually translate the code from Fortran to C:

f2c -C++ ddot.f

This command generates a function ddot.c with the translated routine. The
-C++ option says that the translation should be done to C++-compatible C. In
Fortran, ddot has the signature

DOUBLE PRECISION FUNCTION DDOT(N,DX,INCX,DY,INCY)
* .. Scalar Arguments ..

INTEGER INCX,INCY,N
* ..

http://www.netlib.org/f2c
http://www.netlib.org/blas/ddot.f
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#include <iostream>
#include "f2c.h"

extern "C"
double ddot_(const integer& N, const double* dx,

const integer& incX, const double* dy,
const integer& incY);

int main()
{

using namespace std;
double xy[] = {1, 2};
double result = ddot_(2, xy, 1, xy, 1);
cout << "Result = " << result << endl; // Result = 5
return 0;

}

Figure 4.3: Example C++ program that calls an f2c-translated routine.

* .. Array Arguments ..
DOUBLE PRECISION DX(*),DY(*)

The corresponding C function ddot has the signature

double ddot_(integer* n, double* dx, integer* incx,
double* dy, integer* incy);

We note three things about the signature for this translated routine:

• The C name of the routine is all lower case, with an underscore appended
at the end: ddot .

• Fortran uses call-by-reference semantics; that is, all arguments are passed
by reference (through a pointer in C) rather than by value.

• An integer is a typedef defined in the f2c.h header file. Depending on
the system, a Fortran integer may correspond to a C int or long.

Once we have translated the function to C, we need to be able to use it
in another program. We will use as an example the code in Figure 4.3, which
computes the dot product of a two-element vector with itself. We note a few
things about this program:

• The extern "C" directive tells the C++ compiler to use C-style linkage20,
20 C++ linkage involves name mangling, which means that the compiler adds type infor-

mation into its internal representation for a function name. In C-style linkage, we keep only
the function name.
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which is what f2c requires. This is important when using C++ with any
other language.

• Rather than using C-style pointers to pass the vector length N and the
parameters incX and incY, we use C++-style references21 We tell the
compiler that the ddot routine uses these values purely as input param-
eters by declaring that these are references to constant values. If we do
this, the C++ compiler will allow us to pass in literal constants like 2 and
1 when we call ddot , rather than requiring that we write

// If we had ddot_(integer* N, ...)
integer two = 2;
integer one = 1;
ddot_(&two, xy, &one, xy, &one);

Finally, we compile the program:

c++ -o example.exe -I f2cdir example.cc ddot.c -L f2cdir -lf2c

Here -I f2cdir tells the compiler to search the directory f2cdir for the header
file f2c.h; and the flag -L f2cdir tells the compiler where to find the support
library libf2c.

The steps we used to incorporate the Fortran ddot routine in our C++ code
using f2c are similar to the steps we would use to incorporate a Fortran library
into any C++ code:

1. Follow the directions to compile the library (or to translate it using f2c,
in our case). If you can find a pre-built version of the library, you may be
able to skip this step.

2. Write a C++ program that includes a prototype for the library routine.
Remember that the C name will probably be slightly different from the
Fortran name (a trailing underscore is common), and that all arguments
in Fortran are passed by reference.

3. Compile your C++ program and link it against the Fortran library and
possibly some Fortran support libraries.

4.5 Resources and further reading

For a practical introduction to linear algebra written by a numerical analyst, try
the books by Gilbert Strang [23, 24]. More theoretical treatments may be found
in the book by Peter Lax [15] or the one by Paul Halmos [8]. The linear algebra
book by Peter Lax also has a beautiful discussion of eigenvalue perturbation

21 The C++ compiler would complain at us if it were keeping type information on the ar-
guments to ddot , but those are discarded because the compiler is using C linkage. References
and pointers are implemented nearly identically, so we can get away with this in practice.
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theory and some of its applications. More applications may be found in the
book Theory of Sound by Lord Rayleigh (reprinted by Dover Press) and in any
book on quantum mechanics [20].

There are several good books that focus exclusively on topics in numerical
linear algebra. The textbook by Lloyd N. Trefethen [25] provides a good survey
of numerical linear algebra, while the textbook by James Demmel [4] goes into
more detail. Both books provide excellent discussion of condition numbers.
Nicholas Higham’s book Accuracy and Stability of Numerical Algorithms [10]
includes a much more detailed description of conditioning and related issues.
The standard reference book for topics in numerical linear algebra is by Gene
Golub and Charles Van Loan [7].

Beresford Parlett has a book on the theory and computational methods
for the symmetric eigenvalue problem [19]; though it does not include some of
the most recent methods, it remains an excellent and highly readable book.
G.W. Stewart has devoted the second volume of his Matrix Algorithms book
entirely to eigenvalue problems, including both the symmetric and the nonsym-
metric case [22].

The software repository Netlib, http://netlib.org, is a source for LA-
PACK and for many other numerical codes.

4.6 Exercises

1. Let L be the differentiation operator that takes P3 to P2 described in
Section 4.2.2. Let fk = Hk(x) for k = 0, 1, 2, 3 be the Hermite polynomial
basis of P3 and gk = Hk(x) for k = 0, 1, 2 be the Hermite basis of P2.
What is the matrix, A, that represents this L in these bases?

2. Suppose L is a linear transformation from V to V and that f1, . . ., fn,
and g1, . . ., gn are two bases of V . Any u ∈ V may be written in a unique
way as u =

∑n
k=1 vkfk, or as u =

∑n
k=1 wkgk. There is an n× n matrix,

R that relates the fk expansion coefficients vk to the gk coefficients wk by
vj =

∑n
k=1 rjkwk. If v and w are the column vectors with components vk

and wk respectively, then v = Rw. Let A represent L in the fk basis and
B represent L in the gk basis.

(a) Show that B = R−1AR.

(b) For V = P3, and fk = xk, and gk = Hk, find R.

(c) Let L be the linear transformation Lp = q with q(x) = ∂x(xp(x)).
Find the matrix, A, that represents L in the monomial basis fk.

(d) Find the matrix, B, that represents L in the Hermite polynomial
basis Hk.

(e) Multiply the matrices to check explicitly that B = R−1AR in this
case.

http://netlib.org
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3. If A is an n ×m matrix and B is an m × l matrix, then AB is an n × l
matrix. Show that (AB)∗ = B∗A∗. Note that the incorrect suggestion
A∗B∗ in general is not compatible for matrix multiplication.

4. Let V = Rn and M be an n × n real matrix. This exercise shows that
‖u‖ = (u∗Mu)1/2 is a vector norm whenever M is positive definite (defined
below).

(a) Show that u∗Mu = u∗M∗u = u∗
(

1
2 (M +M∗)

)
u for all u ∈ V . This

means that as long as we consider functions of the form f(u) = u∗Mu,
we may assume M is symmetric. For the rest of this question, assume
M is symmetric. Hint: u∗Mu is a 1 × 1 matrix and therefore equal
to its transpose.

(b) Show that the function ‖u‖ = (u∗Mu)1/2 is homogeneous: ‖au‖ =
|a| ‖u‖.

(c) We say M is positive definite if u∗Mu > 0 whenever u 6= 0. Show
that if M is positive definite, then ‖u‖ ≥ 0 for all u and ‖u‖ = 0 only
for u = 0.

(d) Show that ifM is symmetric and positive definite (SPD), then |u∗Mv| ≤
‖u‖ ‖v‖. This is the Cauchy–Schwarz inequality. Hint (a famous old
trick): φ(t) = (u+ tv)∗M(u+ tv) is a quadratic function of t that is
non-negative for all t if M is positive definite. The Cauchy–Schwarz
inequality follows from requiring that the minimum value of φ is not
negative, assuming M∗ = M .

(e) Use the Cauchy–Schwarz inequality to verify the triangle inequality
in its squared form ‖u+ v‖2 ≤ ‖u‖2 + 2 ‖u‖ ‖u‖+ ‖v‖2.

(f) Show that if M = I then ‖u‖ is the l2 norm of u.

5. Verify that ‖p‖ defined by (4.5) on V = P3 is a norm as long as a < b.

6. Suppose A is the n×n matrix that represents a linear transformation from
Rn to Rn in the standard basis ek. Let B be the matrix of the same linear
transformation in the scaled basis (??).

(a) Find a formula for the entries bjk in terms of the ajk and uk.
(b) Find a matrix formula for B in terms of A and the diagonal scaling

matrix W = diag(uk) (defined by wkk = uk, wjk = 0 if j 6= k) and
W−1.

7. Show that if u ∈ Rm and v ∈ Rn and A = uv∗, then ‖A‖l2 = ‖u‖l2 · ‖v‖l2 .
Hint: Note that Aw = bu where b is a scalar, so ‖Aw‖l2 = |b| · ‖u‖l2 . Also,
be aware of the Cauchy–Schwarz inequality: |v∗w| ≤ ‖v‖l2 ‖w‖l2 .

8. Suppose that A is an n× n invertible matrix. Show that

∥∥A−1
∥∥ = max

u 6=0

‖u‖
‖Au‖

=
(

min
u6=0

‖Au‖
‖u‖

)−1

.
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9. The symmetric part of the real n × n matrix is M = 1
2 (A+A∗). Show

that ∇
(

1
2x
∗Ax

)
= Mx.

10. The informal condition number of the problem of computing the action of
A is

κ(A) = max
x 6=0, ∆x 6=0

‖A(x+∆x)−Ax‖
‖Ax‖
‖x+∆x‖
‖x‖

.

Alternatively, it is the sharp constant in the estimate

‖A(x+ ∆x)−Ax‖
‖Ax‖

≤ C · ‖x+ ∆x‖
‖x‖

,

which bounds the worst case relative change in the answer in terms of the
relative change in the data. Show that for the l2 norm,

κ = σmax/σmin ,

the ratio of the largest to smallest singular value of A. Show that this
formula holds even when A is not square.

11. We wish to solve the boundary value problem for the differential equation

1
2
∂2
xu = f(x) for 0 < x < 1, (4.43)

with boundary conditions

u(0) = u(1) = 0 . (4.44)

We discretize the interval [0, 1] using a uniform grid of points xj = j∆x
with n∆x = 1. The n− 1 unknowns, Uj , are approximations to u(xj), for
j = 1, . . . , n− 1. If we use a second order approximation to 1

2∂
2
xu, we get

discrete equations

1
2

1
∆x2

(Uj+1 − 2Uj + Uj−1) = f(xj) = Fj . (4.45)

Together with boundary conditions U0 = Un = 0, this is a system of
n − 1 linear equations for the vector U = (U1, . . . , Un−1)∗ that we write
as AU = F .

(a) Check that there are n−1 distinct eigenvectors of A having the form
rkj = sin(kπxj). Here rkj is the j component of eigenvector rk.
Note that rk,j+1 = sin(kπxj+1) = sin(kπ(xj + ∆x)), which can be
evaluated in terms of rkj using trigonometric identities.

(b) Use the eigenvalue information from part (a) to show that
∥∥A−1

∥∥→
2/π2 as n→∞ and κ(A) = O(n2) (in the informal sense) as n→∞.
All norms are l2.
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(c) Suppose Ũj = u(xj) where u(x) is the exact but unknown solution
of (4.43), (4.44). Show that if u(x) is smooth then the residual22,
R = AŨ − F , satisfies ‖R‖ = O(∆x2) = O(1/n2). For this to be
true we have to adjust the definition of ‖U‖ to be consistent with
the L2 integral ‖u‖2L2 =

∫ 1

x=0
u2(x)dx. The discrete approximation

is ‖U‖2l2 = ∆x
∑n
k=1 U

2
j .

(d) Show that A
(
U − Ũ

)
= R. Use part (b) to show that

∥∥∥U − Ũ∥∥∥ =

O(∆x2) (with the ∆x modified ‖·‖).
(e) (harder) Create a fourth order five point central difference approxi-

mation to ∂2
xu. You can do this using Richardson extrapolation from

the second order three point formula. Use this to find an A so that
solving AU = F leads to a fourth order accurate U . The hard part is
what to do at j = 1 and j = n− 1. At j = 1 the five point approxi-
mation to ∂2

xu involves U0 and U−1. It is fine to take U0 = u(0) = 0.
Is it OK to take U−1 = −U1?

(f) Write a program in Matlab to solve AU = F for the second order
method. The matrix A is symmetric and tridiagonal (has nonzeros
only on three diagonals, the main diagonal, and the immediate sub
and super diagonals). Use the Matlab matrix operation appropriate
for symmetric positive definite tridiagonal matrices. Do a conver-
gence study to show that the results are second order accurate.

(g) (extra credit) Program the fourth order method and check that the
results are fourth order when f(x) = sin(πx) but not when f(x) =
max(0, .15− (x− .5)2). Why are the results different?

12. This exercise explores conditioning of the non-symmetric eigenvalue prob-
lem. It shows that although the problem of computing the fundamental
solution is well-conditioned, computing it using eigenvalues and eigen-
vectors can be an unstable algorithm because the problem of computing
eigenvalues and eigenvectors is ill-conditioned. For parameters 0 < λ < µ,
there is a Markov chain transition rate matrix, A, whose entries are ajk = 0
if |j − k| > 1 If 1 ≤ j ≤ n− 2, aj,j−1 = µ, ajj = −(λ+ µ), and aj,j+1 = λ
(taking j and k to run from 0 to n − 1). The other cases are a00 = −λ,
a01 = λ, an−1,n−1 = −µ, and an−1,n−2 = µ. This matrix describes a
continuous time Markov process with a random walker whose position at
time t is the integer X(t). Transitions X → X + 1 happen with rate λ
and transitions X → X − 1 have rate µ. The transitions 0 → −1 and
n − 1 → n are not allowed. This is the M/M/1 queue used in operations
research to model queues (X(t) is the number of customers in the queue
at time t, λ is the rate of arrival of new customers, µ is the service rate. A
customer arrival is an X → X+1 transition.). For each t, we can consider
the row vector p(t) = (p1(t), . . . , pn(t)) where pj(t) = Prob(X(t) = j).

22Residual refers to the extent to which equations are not satisfied. Here, the equation is
AU = F , which eU does not satisfy, so R = AeU − F is the residual.
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These probabilities satisfy the differential equation ṗ = d
dtp = pA. The

solution can be written in terms of the fundamental solution, S(t), which
in an n× n matrix that satisfies Ṡ = SA, S(0) = I.

(a) Show that if Ṡ = SA, S(0) = I, then p(t) = p(0)S(t).

(b) The matrix exponential may be defined through the Taylor series
exp(B) =

∑∞
k=0

1
k!B

k. Use matrix norms and the fact that
∥∥Bk∥∥ ≤

‖B‖k to show that the infinite sum of matrices converges.

(c) Show that the fundamental solution is given by S(t) = exp(tA). To
do this, it is enough to show that exp(tA) satisfies the differential
equation d

dt exp(tA) = exp(tA)A using the infinite series, and show
exp(0A) = I.

(d) Suppose A = LΛR is the eigenvalue and eigenvector decomposition of
A, show that exp(tA) = L exp(tΛ)R, and that exp(tΛ) is the obvious
diagonal matrix.

(e) Use the Matlab function [R,Lam] = eig(A); to calculate the eigen-
values and right eigenvector matrix of A. Let rk be the kth column
of R. For k = 1, . . . , n, print rk, Ark, λkrk, and ‖λk −Ark‖ (you
choose the norm). Mathematically, one of the eigenvectors is a mul-
tiple of the vector 1 defined in part h. The corresponding eigenvalue
is λ = 0. The computed eigenvalue is not exactly zero. Take n = 4
for this, but do not hard wire n = 4 into the Matlab code.

(f) Let L = R−1, which can be computed in Matlab using L=R^(-1);.
Let lk be the kth row of L, check that the lk are left eigenvectors of
A as in part e. Corresponding to λ = 0 is a left eigenvector that is a
multiple of p∞ from part h. Check this.

(g) Write a program in Matlab to calculate S(t) using the eigenvalues and
eigenvectors of A as above. Compare the results to those obtained
using the Matlab built in function S = expm(t*A);. Use the values
λ = 1, µ = 4, t = 1, and n ranging from n = 4 to n = 80. Compare
the two computed Ŝ(t) (one using eigenvalues, the other just using
expm) using the l1 matrix norm. Use the Matlab routine cond(R) to
compute the condition number of the eigenvector matrix, R. Print
three columns of numbers, n, error, condition number. Comment on
the quantitative relation between the error and the condition number.

(h) Here we figure out which of the answers is correct. To do this, use the
known fact that limt→∞ S(t) = S∞ has the simple form S∞ = 1p∞,
where 1 is the column vector with all ones, and p∞ is the row vector
with p∞,j = ((1 − r)/(1 − rn))rj , with r = λ/µ. Take t = 3 ∗ n
(which is close enough to t = ∞ for this purpose) and the same
values of n and see which version of S(t) is correct. What can you
say about the stability of computing the matrix exponential using
the ill conditioned eigenvalue/eigenvector problem?
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13. This exercise explores eigenvalue and eigenvector perturbation theory for
the matrix A defined in exercise 12. Let B be the n × n matrix with
bjk = 0 for all (j, k) except b00 = −1 and b1,n−1 = 1 (as in exercise 12,
indices run from j = 0 to j = n − 1). Define A(s) = A + sB, so that
A(0) = A and dA(s)

ds = B when s = 0.

(a) For n = 20, print the eigenvalues of A(s) for s = 0 and s = .1.
What does this say about the condition number of the eigenvalue
eigenvector problem? All the eigenvalues of a real tridiagonal matrix
are real23 but that A(s = .1) is not tridiagonal and its eigenvalues
are not real.

(b) Use first order eigenvalue perturbation theory to calculate λ̇k = d
dsλk

when s = 0. What size s do you need for ∆λk to be accurately
approximated by sλ̇k? Try n = 5 and n = 20. Note that first order
perturbation theory always predicts that eigenvalues stay real, so
s = .1 is much too large for n = 20.

23It is easy to see that if A is tridiagonal then there is a diagonal matrix, W , so thatWAW−1

is symmetric. Therefore, A has the same eigenvalues as the symmetric matrix WAW−1.
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5.1 Introduction

This chapter discusses some of the algorithms of computational linear algebra.
For routine applications it probably is better to use these algorithms as software
packages rather than to recreate them. Still, it is important to know what
they do and how they work. Some applications call for variations on the basic
algorithms here. For example, Chapter 6 refers to a modification of the Cholesky
decomposition.

Many algorithms of numerical linear algebra may be formulated as ways
to calculate matrix factorizations. This point of view gives conceptual insight
and often suggests alternative algorithms. This is particularly useful in find-
ing variants of the algorithms that run faster on modern processor hardware.
Moreover, computing matrix factors explicitly rather than implicitly allows the
factors, and the work in computing them, to be re-used. For example, the work
to compute the LU factorization of an n× n matrix, A, is O(n3), but the work
to solve Au = b is only O(n2) once the factorization is known. This makes it
much faster to re-solve if b changes but A does not.

This chapter does not cover the many factorization algorithms in great de-
tail. This material is available, for example, in the book of Golub and Van
Loan [7] and many other places. Our aim is to make the reader aware of what
the computer does (roughly), and how long it should take. First we explain
how the classical Gaussian elimination algorithm may be viewed as a matrix
factorization, the LU factorization. The algorithm presented is not the prac-
tical one because it does not include pivoting. Next, we discuss the Cholesky
(LL∗) decomposition, which is a natural version of LU for symmetric positive
definite matrices. Understanding the details of the Cholesky decomposition will
be useful later when we study optimization methods and still later when we dis-
cuss sampling multivariate normal random variables with correlations. Finally,
we show how to compute matrix factorizations, such as the QR decomposition,
that involve orthogonal matrices.

5.2 Counting operations

A simple way to estimate running time is to count the number of floating point
operations, or flops that a particular algorithm performs. We seek to estimate
W (n), the number of flops needed to solve a problem of size n, for large n.
Typically,

W (n) ≈ Cnp , (5.1)

for large n. Most important is the power, p. If p = 3, then W (2n) ≈ 8W (n).
This is the case for most factorization algorithms in this chapter.

One can give work estimates in the “big O” notation from Section 3.1. We
say that W (n) = O (np) if there is a C so that W (n) ≤ Cnp for all n > 0.
This is a less precise and less useful statement than (5.1). It is common to say
W (n) = O (np) when one really means (5.1). For example, we say that matrix
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multiplication takes O
(
n3
)

operations and back substitution takes O
(
n2
)
, when

we really mean that they satisfy (5.1) with p = 3 and p = 2 respectively1.
Work estimates like (5.1) often are derived by using integral approximations

to sums. As an example of this idea, consider the sum

S1(n) =
n∑
k=1

k =
n(n+ 1)

2
= 1

2n
2 + 1

2n ≈
1
2n

2 . (5.2)

We would like to pass directly to the useful approximation at the end without
the complicated exact formula in the middle. As an example, the simple fact
(draw a picture)

k2 =
∫ k

k−1

x2 dx+O(k) .

implies that (using (5.2) to add up O(k))

S2(n) =
n∑
k=1

k2 =
∫ n

0

x2 dx+
n∑
k=1

O(k) = 1
3n

3 +O
(
n2
)
.

The integral approximation to (5.2) is easy to picture in a graph. The sum
represents the area under a staircase in a large square. The integral represents
the area under the diagonal. The error is the smaller area between the staircase
and the diagonal.

Consider the problem of computing C = AB, where A and B are general
n× n matrices. The standard method uses the formulas

cjk =
n∑
l=1

ajlblk . (5.3)

The right side requires n multiplies and about n adds for each j and k. That
makes n×n2 = n3 multiplies and adds in total. The formulas (5.3) have (almost)
exactly 2n3 flops in this sense. More generally, suppose A is n ×m and B is
m×p. Then AB is n×p, and it takes (approximately) m flops to calculate each
entry. Thus, the entire AB calculation takes about 2nmp flops.

Now consider a matrix triple product ABC, where the matrices are not
square but are compatible for multiplication. Say A is n×m, B is m× p, and
C is p × q. If we do the calculation as (AB)C, then we first compute AB and
then multiply by C. The work to do it this way is 2(nmp+ npq) (because AB
is n × p. On the other hand doing is as A(BC) has total work 2(mpq + nmq).
These numbers are not the same. Depending on the shapes of the matrices, one
could be much smaller than the other. The associativity of matrix multiplication
allows us to choose the order of the operations to minimize the total work.

1 The actual relation can be made precise by writing W = Θ(n2), for example, which
means that W = O(n2) and n2 = O(W ).
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5.3 Gauss elimination and LU decomposition

5.3.1 A 3× 3 example

Gauss elimination is a simple systematic way to solve systems of linear equations.
For example, suppose we have the system of equations

4x1 + 4x2 + 2x3 = 2
4x1 + 5x2 + 3x3 = 3
2x1 + 3x2 + 3x3 = 5.

Now we eliminate x1 from the second two equations, first subtracting the first
equation from the second equation, then subtracting half the first equation from
the third equation.

4x1 + 4x2 + 2x3 = 2
x2 + x3 = 1
x2 + 2x3 = 4.

Now we eliminate x2 from the last equation by subtracting the second equation:

4x1 + 4x2 + 2x3 = 2
x2 + x3 = 1

x3 = 3.

Finally, we solve the last equation for x3 = 3, then back-substitute into the second
equation to find x2 = −2, and then back-substitute into the first equation to
find x1 = 1.

We gain insight into the elimination procedure by writing it in matrix terms.
We begin with the matrix equation Ax = b:4 4 2

4 5 3
2 3 3

x1

x2

x3

 =

2
3
5

 .

The operation of eliminating x1 can be written as an invertible linear transfor-
mation. Let M1 be the transformation that subtracts the first component from
the second component and half the first component from the third component:

M1 =

 1 0 0
−1 1 0
−0.5 0 1

 . (5.4)

The equation Ax = b is equivalent to M1Ax = M1b, which is4 4 2
0 1 1
0 1 2

x1

x2

x3

 =

2
1
4

 .
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We apply a second linear transformation to eliminate x2:

M2 =

1 0 0
0 1 0
0 −1 1

 .

The equation M2M1Ax = M2M1b is4 4 2
0 1 1
0 0 1

x1

x2

x3

 =

2
1
3

 .

The matrix U = M2M1A is upper triangular, and so we can apply back substi-
tution.

We can rewrite the equation U = M2M1A as A = M−1
1 M−1

2 U = LU .
The matrices M1 and M2 are unit lower triangular: that is, all of the diagonal
elements are one, and all the elements above the diagonal are zero. All unit lower
triangular matrices have inverses that are unit lower triangular, and products of
unit lower triangular matrices are also unit lower triangular, so L = M−1

1 M−1
2

is unit lower triangular2. The inverse of M2 corresponds to undoing the last
elimination step, which subtracts the second component from the third, by
adding the third component back to the second. The inverse of M1 can be
constructed similarly. The reader should verify that in matrix form we have

L = M−1
1 M−1

2 =

1 0 0
0 1 0
0 1 1

 1 0 0
1 1 0

0.5 0 1

 =

 1 0 0
1 1 0

0.5 1 1

 .

Note that the subdiagonal elements of L form a record of the elimination pro-
cedure: when we eliminated the ith variable, we subtracted lij times the ith
equation from the jth equation. This turns out to be a general pattern.

One advantage of the LU factorization interpretation of Gauss elimination
is that it provides a framework for organizing the computation. We seek lower
and upper triangular matrices L and U so that LU = A: 1 0 0

l21 1 0
l31 l32 1

u11 u12 u13

0 u22 u23

0 0 u33

 =

4 4 2
4 5 3
2 3 3

 . (5.5)

If we multiply out the first row of the product, we find that

1 · u1j = a1j

for each j; that is, the first row of U is the same as the first row of A. If we
multiply out the first column, we have

li1u11 = ai1
2 The unit lower triangular matrices actually form an algebraic group, a subgroup of the

group of invertible n× n matrices.
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function [L,U] = mylu(A)

n = length(A); % Get the dimension of A
L = eye(n); % Initialize the diagonal elements of L to 1

for i = 1:n-1 % Loop over variables to eliminate
for j = i+1:n % Loop over equations to eliminate from

% Subtract L(j,i) times the ith row from the jth row
L(j,i) = A(j,i) / A(i,i);
for k = i:n
A(j,k) = A(j,k)-L(j,i)*A(i,k);

end

end
end
U = A; % A is now transformed to upper triangular

Figure 5.1: Example Matlab program to compute A = LU .

or li1 = ai1/u11 = ai1/a11; that is, the first column of L is the first column of
A divided by a scaling factor.

Finding the first column of L and U corresponds to finding the multiples
of the first row we need to subtract from the other rows to do the elimination.
Actually doing the elimination involves replacing aij with aij − li1u1j = aij −
ai1a

−1
11 a1j for each i > 1. In terms of the LU factorization, this gives us a

reduced factorization problem with a smaller matrix:(
1 0
l32 1

)(
u22 u23

0 u33

)
=
(

5 3
3 3

)
−
(
l21

l31

)(
u21 u31

)
=
(

1 1
1 2

)
.

We can continue onward in this way to compute the rest of the elements of L
and U . These calculations show that the LU factorization, if it exists, is unique
(remembering to put ones on the diagonal of L).

5.3.2 Algorithms and their cost

The basic Gauss elimination algorithm transforms the matrix A into its upper
triangular factor U . As we saw in the previous section, the scale factors that
appear when we eliminate the ith variable from the jth equation can be in-
terpreted as subdiagonal entries of a unit lower triangular matrix L such that
A = LU . We show a straightforward Matlab implementation of this idea in
Figure 5.1. These algorithms lack pivoting, which is needed for stability. How-
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function x = mylusolve(L,U,b)

n = length(b);
y = zeros(n,1);
x = zeros(n,1);

% Forward substitution: L*y = b
for i = 1:n

% Subtract off contributions from other variables
rhs = b(i);
for j = 1:i-1
rhs = rhs - L(i,j)*y(j);

end

% Solve the equation L(i,i)*y(i) = 1*y(i) = rhs
y(i) = rhs;

end

% Back substitution: U*x = y
for i = n:-1:1

% Subtract off contributions from other variables
rhs = y(i);
for j = i+1:n
rhs = rhs - U(i,j)*x(j);

end

% Solve the equation U(i,i)*x(i) = rhs
x(i) = rhs / U(i,i);

end

Figure 5.2: Example Matlab program that performs forward and backward
substitution with LU factors (without pivoting)
.



112 CHAPTER 5. LINEAR ALGEBRA II, ALGORITHMS

ever, pivoting does not significantly affect the estimates of operation counts for
the algorithm, which we will estimate now.

The total number of arithmetic operations for the LU factorization is given
by

W (n) =
n−1∑
i=1

n∑
j=i+1

(
1 +

n∑
k=i

2

)
.

We get this work expression by converting loops in Figure 5.1 into sums and
counting the number of operations in each loop. There is one division inside
the loop over j, and there are two operations (a multiply and an add) inside
the loop over k. There are far more multiplies and adds than divisions, so let
us count only these operations:

W (n) ≈
n−1∑
i=1

n∑
j=i+1

n∑
k=i

2.

If we approximate the sums by integrals, we have

W (n) ≈
∫ n

0

∫ n

x

∫ n

x

2 dz dy dx =
2
3
n3.

If we are a little more careful, we find that W (n) = 2
3n

3 +O(n2).
We can compute the LU factors of A without knowing the right hand side b,

and writing the LU factorization alone does not solve the system Ax = b. Once
we know A = LU , though, solving Ax = b becomes a simple two-stage process.
First, forward substitution gives y such that Ly = b; then back substitution gives
x such that Ux = y. Solving by forward and backward substitution is equivalent
to writing x = U−1y = U−1L−1b. Figure 5.2 gives a Matlab implementation
of the forward and backward substitution loops.

For a general n × n system, forward and backward substitution each take
about 1

2n
2 multiplies and the same number of adds. Therefore, it takes a total

of about 2n2 multiply and add operations to solve a linear system once we have
the LU factorization. This costs much less time than the LU factorization,
which takes about 2

3n
3 multiplies and adds.

The factorization algorithms just described may fail or be numerically un-
stable even when A is well conditioned. To get a stable algorithm, we need to
introduce pivoting. In the present context this means adaptively reordering the
equations or the unknowns so that the elements of L do not grow. Details are
in the references.

5.4 Cholesky factorization

Many applications call for solving linear systems of equations with a symmetric
and positive definite A. An n×n matrix is positive definite if x∗Ax > 0 whenever
x 6= 0. Symmetric positive definite (SPD) matrices arise in many applications.
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If B is anm×nmatrix withm ≥ n and rank(B) = n, then the product A = B∗B
is SPD. This is what happens when we solve a linear least squares problem using
the normal equations, see Section 4.2.8). If f(x) is a scalar function of x ∈ Rn,
the Hessian matrix of second partials has entries hjk(x) = ∂2f(x)/∂xj∂xk. This
is symmetric because ∂2f/∂xj∂xk = ∂2f/∂xk∂xj . The minimum of f probably
is taken at an x∗ with H(x∗) positive definite, see Chapter 6. Solving elliptic
and parabolic partial differential equations often leads to large sparse SPD linear
systems. The variance/covariance matrix of a multivariate random variable is
symmetric, and positive definite except in degenerate cases.

We will see that A is SPD if and only if A = LL∗ for a lower triangular
matrix L. This is the Cholesky factorization, or Cholesky decomposition of A.
As with the LU factorization, we can find the entries of L from the equations
for the entries of LL∗ = A one at a time, in a certain order. We write it out:

l11 0 0 · · · 0

l21 l22 0 · · ·
...

l31 l32 l33
. . .

...
...

. . . 0
ln1 ln2 · · · lnn


·



l11 l21 l31 · · · ln1

0 l22 l32 · · · ln2

0 0 l33
. . .

...
...

...
. . .

0 0 · · · lnn



=



a11 a21 a31 · · · an1

a21 a22 a32 · · · an2

a31 a32 a33
. . .

...
...

...
. . .

an1 an2 · · · ann

 .

Notice that we have written, for example, a32 for the (2, 3) entry because A is
symmetric. We start with the top left corner. Doing the matrix multiplication
gives

l211 = a11 =⇒ l11 =
√
a11 .

The square root is real because a11 > 0 because A is positive definite and3

a11 = e∗1Ae1. Next we match the (2, 1) entry of A. The matrix multiplication
gives:

l21l11 = a21 =⇒ l21 =
1
l11
a21 .

The denominator is not zero because l11 > 0 because a11 > 0. We could continue
in this way, to get the whole first column of L. Alternatively, we could match
(2, 2) entries to get l22:

l221 + l222 = a22 =⇒ l22 =
√
a22 − l221 .

3Here e1 is the vector with one as its first component and all the rest zero. Similarly
akk = e∗kAek.
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It is possible to show (see below) that if the square root on the right is not real,
then A was not positive definite. Given l22, we can now compute the rest of the
second column of L. For example, matching (3, 2) entries gives:

l31 · l21 + l32 · l22 = a32 =⇒ l32 =
1
l22

(a32 − l31 · l21) .

Continuing in this way, we can find all the entries of L. It is clear that if L
exists and if we always use the positive square root, then all the entries of L are
uniquely determined.

A slightly different discussion of the Cholesky decomposition process makes
it clear that the Cholesky factorization exists whenever A is positive definite.
The algorithm above assumed the existence of a factorization and showed that
the entries of L are uniquely determined by LL∗ = A. Once we know the
factorization exists, we know the equations are solvable, in particular, that
we never try to take the square root of a negative number. This discussion
represents L as a product of simple lower triangular matrices, a point of view
that will be useful in constructing the QR decomposition (Section 5.5).

Suppose we want to apply Gauss elimination to A and find an elementary
matrix of the type (5.4) to set ai1 = a1i to zero for i = 2, 3, . . . , n. The matrix
would be

M1 =


1 0 0 . . . 0
−a21
a11

1 0 . . . 0
−a31
a11

0 1 . . . 0
...

. . .
...

−an1
a11

0 0 . . . 1


Because we only care about the nonzero pattern, let us agree to write a star as
a placeholder for possibly nonzero matrix entries that we might not care about
in detail. Multiplying out M1A gives:

M1A =


a11 a12 a13 · · ·
0 ∗ ∗ · · ·
0 ∗ ∗
...

 .

Only the entries in row two have changed, with the new values indicated by
primes. Note that M1A has lost the symmetry of A. We can restore this
symmetry by multiplying from the right by M∗1 This has the effect of subtracting
a1i
a11

times the first column of M1A from column i for i = 2, . . . , n. Since the top
row of A has not changed, this has the effect of setting the (1, 2) through (1, n)
entries to zero:

M1AM
∗
1 =


a11 0 0 · · ·

0 ∗ ∗ · · ·
0 ∗ ∗
...

 .
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Continuing in this way, elementary matrices E31, etc. will set to zero all the
elements in the first row and top column except a11. Finally, let D1 be the
diagonal matrix which is equal to the identity except that d11 = 1/

√
a11. All in

all, this gives (D∗1 = D1):

D1M1AM
∗
1D
∗
1 =


1 0 0 · · ·
0 a′22 a′23 · · ·
0 a′23 a′33
...

 . (5.6)

We define L1 to be the lower triangular matrix

L1 = D1M1 ,

so the right side of (5.6) is A1 = L1AL
∗
1 (check this). Note that the trailing

submatrix elements a′ik satisfy

aik′ = aik − (L1)i1(L1)k1.

The matrix L1 is nonsingular since D1 and M1 are nonsingular. To see that
A1 is positive definite, simply define y = L∗x, and note that y 6= 0 if x 6= 0
(L1 being nonsingular), so x∗A1x = x∗LAL∗x = y∗Ay > 0 since A is positive
definite. In particular, this implies that a′22 > 0 and we may find an L2 that
sets a′22 to one and all the a2k to zero.

Eventually, this gives Ln−1 · · ·L1AL
∗
1 · · ·L∗n−1 = I. Solving for A by revers-

ing the order of the operations leads to the desired factorization:

A = L−1
1 · · ·L

−1
n−1L

−∗
n−1 · · ·L

−∗
1 ,

where we use the common convention of writing B−∗ for the inverse of the
transpose of B, which is the same as the transpose of the inverse. Clearly, L is
given by L = L−1

1 · · ·L
−1
n−1.

As in the case of Gaussian elimination, the product matrix L turns out to
take a rather simple form:

lij =

{
−(Lj)i, i > j

(Li)i, i = j.

Alternately, the Cholesky factorization can be seen as the end result of a se-
quence of transformations to a lower triangular form, just as we thought about
the U matrix in Gaussian elimination as the end result of a sequence of trans-
formations to upper triangular form.

Once we have the Cholesky decomposition of A, we can solve systems of
equations Ax = b using forward and back substitution, as we did for the LU
factorization.
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5.5 Least squares and the QR factorization

Many problems in linear algebra call for linear transformations that do not
change the l2 norm:

‖Qx‖l2 = ‖x‖l2 for all x ∈ Rn. (5.7)

A real matrix satisfying (5.7) is orthogonal, because4

‖Qx‖2l2 = (Qx)∗Qx = x∗Q∗Qx = x∗x = ‖x‖2l2 .

(Recall that Q∗Q = I is the definition of orthogonality for square matrices.)
Just as we were able to transform a matrix A into upper triangular form by

a sequence of lower triangular transformations (Gauss transformations), we are
also able to transform A into upper triangular form by a sequence of orthogonal
transformations. The Householder reflector for a vector v is the orthogonal
matrix

H(v) = I − 2
vv∗

v∗v
.

The Householder reflector corresponds to reflection through the plane normal to
v. We can reflect any given vector w into a vector ‖w‖e1 by reflecting through
a plane normal to the line connecting w and ‖w‖e1

H(w − ‖w‖e1)w = ‖w‖e1.

In particular, this means that if A is an m×n matrix, we can use a Householder
transformation to make all the subdiagonal entries of the first column into zeros:

H1A = H(Ae1 − ‖Ae1‖e1)A =

‖Ae1‖ a′12 a′13 . . .
0 a′22 a23′ . . .

0 a′32 a33′ . . .
...

...
...


Continuing in the way, we can apply a sequence of Householder transformations
in order to reduce A to an upper triangular matrix, which we usually call R:

Hn . . . H2H1A = R.

Using the fact that Hj = H−1
j , we can rewrite this as

A = H1H2 . . . HnR = QR,

where Q is a product of Householder transformations.
The QR factorization is a useful tool for solving least squares problems. If

A is a rectangular matrix with m > n and A = QR, then the invariance of the
l2 norm under orthogonal transformations implies

‖Ax− b‖l2 = ‖Q∗Ax−Q∗b‖l2 = ‖Rx− b′‖l2 .
4This shows an orthogonal matrix satisfies (5.7). Exercise 8 shows that a matrix satisfying

(5.7) must be orthogonal.
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Therefore, minimizing ‖Ax− b‖ is equivalent to minimizing ‖Rx− b′‖, where R
is upper triangular5:

r11 r12 · · · r1n

0 r22 · · ·
...

...
. . . . . .

0 · · · 0 rnn
0 · · · 0
...

...
0 · · · 0


·


x1

x2

...
xn


−



b′1
b′2
...
b′n
b′n+1

...
b′m


=



r′1
r′2
...
r′n
r′n+1

...
r′m


Assuming none of the diagonals rjj is zero, the best we can do is to choose x so
that the first n components of r′ are set to zero. Clearly x has no effect on the
last m− n components of r′

5.6 Software

5.6.1 Representing matrices

Computer memories are typically organized into a linear address space: that is,
there is a number (an address) associated with each location in memory. A one-
dimensional array maps naturally to this memory organization: the address of
the ith element in the array is distance i (measured in appropriate units) from
the base address for the array. However, we usually refer to matrix elements
not by a single array offset, but by row and column indices. There are different
ways that a pair of indices can be converted into an array ofset. Languages like
FORTRAN and MATLAB use column major order, so that a 2×2 matrix would
be stored in memory a column at a time: a11, a21, a12, a22. In contrast,
C/C++ use row major order, so that if we wrote

double A[2][2] = { {1, 2},
{3, 4} };

the order of the elements in memory would be 1, 2, 3, 4.
C++ has only very primitive built-in support for multi-dimensional arrays.

For example, the first dimension of a built-in two-dimensional array in C++
must be known at compile time. However, C++ allows programmers to write
classes that describe new data types, like matrices, that the basic language does
not fully support. The uBLAS library and the Matrix Template Library are
examples of widely-used libraries that provide matrix classes.

An older, C-style way of writing matrix algorithms is to manually manage
the mappings between row and column indices and array offsets. This can

5The upper triangular part of the LU decomposition is called U while the upper triangular
part of the QR decomposition is called R. The use of rjk for the entries of R and rj for the
entries of the residual is not unique to this book.
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/*
* Solve the n-by-n lower triangular system Lx = b.
* L is assumed to be in column-major form.
*/

void forward_substitute(const double* Ldata, double* x,
const double* b, int n)

{
#define L(i,j) Ldata[(j)*n+(i)]

for (int i = 0; i < n; ++i) {
x[i] = b[i];
for (int j = 0; j < i; ++j)

x[i] -= L(j,i)*x[j];
x[i] /= L(i,i);

}
#undef L
}

Figure 5.3: C++ code to solve a lower triangular system using forward sub-
stitution. Note the macro definition (and corresponding undefinition) used to
simplify array accesses.

be made a little more convenient using C macros. For example, consider the
forward substitution code in Figure 5.3. The line

#define L(i,j) Ldata[(j)*n+(i)]

defines L to be a macro with two arguments. Any time the compiler encounters
L(i,j) while the macro is defined, it will substitute Ldata[(j)*n+(i)]. For
example, if we wanted to look at an entry of the first superdiagonal, we might
write L(i,i+1), which the compiler would translate to Ldata[(i+1)*n+(i)].
Note that the parentheses in the macro definition are important – this is not
the same as looking at Ldata[i+1*n+i]! Also note that we have followed the
C convention of zero-based indexing, so the first matrix entry is at L(0,0) =
Ldata[0].

In addition to the column-major and row-major layouts, there are many
other ways to represent matrices in memory. Often, it is possible to represent
an n× n matrix in a way that uses far less than the n2 numbers of a standard
row-major or column-major layout. A matrix that can be represented efficiently
with much fewer than n2 memory entries is called sparse; other matrices are
called dense. Much of the discussion here and in Chapter 5 applies mainly to
dense matrices. A modern (2009) desktop computer with 2 GB (231 bytes) of
memory can store at most 228 double precision numbers, so a square matrix
with n > 214 ≈ 16000 variables would not even fit in memory. Sparse matrix
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methods can handle larger problems and often give faster methods even for
problems that can be handled using dense matrix methods. For example, finite
element computations often lead to sparse matrices with hundreds of thousands
of variables that can be solved in minutes.

One way a matrix can be sparse is for most of its entries to be zero. For
example, discretizations of the Laplace equation in three dimensions have as
few as seven non-zero entries per row, so that 7/n is the fraction of entries of A
that are not zero. Sparse matrices in this sense also arise in circuit problems,
where a non-zero entry in A corresponds to a direct connection between two
elements in the circuit. Such matrices may be stored in sparse matrix format,
in which we keep lists noting which entries are not zero and the values of the
non-zero elements. Computations with such sparse matrices try to avoid fill in.
For example, they would avoid explicit computation of A−1 because most of its
entries are not zero. Sparse matrix software has heuristics that often do very
well in avoiding fill in. The interested reader should consult the references.

In some cases it is possible to compute the matrix vector product y = Ax
for a given x efficiently without calculating the entries of A explicitly. One
example is the discrete Fourier transform (DFT) described in Chapter 1. This
is a full matrix with n2 non-zero entries, but the FFT (fast Fourier transform)
algorithm computes y = Ax in O(n log(n)) operations. Another example is the
fast multipole method that computes forces from mutual electrostatic interaction
of n charged particles with b bits of accuracy in O(nb) work. Many finite element
packages never assemble the stiffness matrix, A.

Computational methods can be direct or iterative. A direct method have
only rounding errors. They would get the exact answer in exact arithmetic
using a predetermined number of arithmetic operations. For example, Gauss
elimination computes the LU factorization of A using O(n3) operations. Itera-
tive methods produce a sequence of approximate solutions that converge to the
exact answer as the number of iterations goes to infinity. They often are faster
than direct methods for very large problems, particularly when A is sparse.

5.6.2 Performance and caches

In scientific computing, performance refers to the time it takes to run the pro-
gram that does the computation. Faster computers give more performance, but
so do better programs. To write high performance software, we should know
what happens inside the computer, something about the compiler and about the
hardware. This and several later Software sections explore performance-related
issues.

When we program, we have a mental model of the operations that the com-
puter is doing. We can use this model to estimate how long a computation will
take. For example, we know that Gaussian elimination on an n×n matrix takes
about 2

3n
3 flops, so on a machine that can execute at R flop/s, the elimination

procedure will take at least 2n3

3R seconds. Desktop machines that run at a rate
of 2-3 gigahertz (billions of cycles per second) can often execute two floating
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point oerations per cycle, for a peak performance of 4-5 gigaflops. On a desktop
machine capable of 4 gigaflop/s (billions of flop/s), we would expect to take at
least about a sixth of a second to factor a matrix with n = 1000. In practice,
though, only very carefully written packages will run anywhere near this fast.
A naive implementation of LU factorization is likely to run 10× to 100× slower
than we would expect from a simple flop count.

The failure of our work estimates is not due to a flaw in our formula, but
in our model of the computer. A computer can only do arithmetic operations
as fast as it can fetch data from memory, and often the time required to fetch
data is much greater than the time required to perform arithmetic. In order to
try to keep the processor supplied with data, modern machines have a memory
hierarchy. The memory hierarchy consists of different size memories, each with
a different latency, or time taken between when memory is requested and when
the first byte can be used by the processor6. At the top of the hierarchy are a
few registers, which can be accessed immediately. The register file holds on the
order of a hundred bytes. The level 1 cache holds tens of kilobytes – 32 and 64
kilobyte cache sizes are common at the time of this writing – within one or two
clock cycles. The level 2 cache holds a couple megabytes of information, and
usually has a latency of around ten clock cycles. Main memories are usually
one or two gigabytes, and might take around fifty cycles to access. When the
processor needs a piece of data, it will first try the level 1 cache, then resort to
the level 2 cache and then to the main memory only if there is a cache miss. The
programmer has little or no control over the details of how a processor manages
its caches. However, cache policies are designed so that codes with good locality
suffer relatively few cache misses, and therefore have good performance. There
are two versions of cache locality: temporal and spatial.

Temporal locality occurs when we use the same variables repeatedly in a
short period of time. If a computation involves a working set that is not so
big that it cannot fit in the level 1 cache, then the processor will only have to
fetch the data from memory once, after which it is kept in cache. If the working
set is too large, we say that the program thrashes the cache. Because dense
linear algebra routines often operate on matrices that do not fit into cache, they
are often subject to cache thrashing. High performance linear algebra libraries
organize their computations by partitioning the matrix into blocks that fit into
cache, and then doing as much work as possible on each block before moving
onto the next.

In addition to temporal locality, most programs also have some spatial local-
ity, which means that when the processor reads one memory location, it is likely
to read nearby memory locations in the immediate future. In order to get the
best possible spatial locality, high performance scientific codes often access their
data with unit stride, which means that matrix or vector entries are accessed
one after the other in the order in which they appear in memory.

6 Memories are roughly characterized by their latency, or the time taken to respond to a
request, and the bandwidth, or the rate at which the memory supplies data after a request has
been initiated.
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5.6.3 Programming for performance

Because of memory hierarchies and other features of modern computer architec-
ture, simple models fail to accurately predict performance. The picture is even
more subtle in most high-level programming languages because of the natural,
though mistaken, inclination to assume that program statements take the about
the same amount of time just because they can be expressed with the same num-
ber of keystrokes. For example, printing two numbers to a file is several hundred
times slower than adding two numbers. A poorly written program may even
spend more time allocating memory than it spends computing results7.

Performance tuning of scientific codes often involves hard work and difficult
trade-offs. Other than using a good compiler and turning on the optimizer8,
there are few easy fixes for speeding up the performance of code that is too
slow. The source code for a highly tuned program is often much more subtle
than the textbook implementation, and that subtlety can make the program
harder to write, test, and debug. Fast implementations may also have different
stability properties from their standard counterparts. The first goal of scientific
computing is to get an answer which is accurate enough for the purpose at
hand, so we do not consider it progress to have a tuned code which produces
the wrong answer in a tenth the time that a correct code would take. We can
try to prevent such mis-optimizations from affecting us by designing a thorough
set of unit tests before we start to tune.

Because of the potential tradeoffs between speed, clarity, and numerical sta-
bility, performance tuning should be approached carefully. When a computation
is slow, there is often one or a few critical bottlenecks that take most of the time,
and we can best use our time by addressing these first. It is not always obvious
where bottlenecks occur, but we can usually locate them by timing our codes. A
profiler is an automated tool to determine where a program is spending its time.
Profilers are useful both for finding bottlenecks both in compiled languages like
C and in high-level languages like Matlab9.

Some bottlenecks can be removed by calling fast libraries. Rewriting a code
to make more use of libraries also often clarifies the code – a case in which
improvements to speed and clarity go hand in hand. This is particularly the
case in Matlab, where many problems can be solved most concisely with a
few calls to fast built-in factorization routines that are much faster than hand-
written loops. In other cases, the right way to remedy a bottleneck is to change
algorithms or data structures. A classic example is a program that solves a
sparse linear system – a tridiagonal matrix, for example – using a general-
purpose dense routine. One good reason for learning about matrix factorization
algorithms is that you will then know which of several possible factorization-
based solution methods is fastest or most stable, even if you have not written

7 We have seen this happen in actual codes that we were asked to look at.
8 Turning on compiler optimizations is one of the simplest things you can do to improve

the performance of your code.
9 The Matlab profiler is a beautifully informative tool – type help profile at the Matlab

prompt to learn more about it



122 CHAPTER 5. LINEAR ALGEBRA II, ALGORITHMS

the factorization codes yourself. One often hears the statement that increasing
computer power makes it unnecessary to find faster algorithms. We believe
the opposite: the greater the computer power, the larger the problems one can
attempt, and the greater the difference a good algorithm can make.

Some novice scientific programmers (and even some experienced program-
mers) write codes with bottlenecks that have nothing to do with the main part
of their computation. For example, consider the following fragment of MATLAB
code:

n = 1000;
A = [];
for i = 1:n
A(i,i) = 1;

end

On one of our desktop machines, the time to execute this loop went from about
six seconds to under two milliseconds just by changing the second statement to A
= zeros(n). The problem with the original code is that at each step Matlab
is forced to enlarge the matrix, which it does by allocating a larger block of
memory, copying the old matrix contents to the new location, and only then
writing the new element. Therefore, the original code takes O(i2) time to run
step i, and the overall cost of the loop scales like O(n3). Fortunately, this sort of
blunder is relatively easy to fix. It is always worth timing a code before trying
to tune it, just to make sure that the bottlenecks are where you think they are,
and that your code is not wasting time because of a programming blunder.

5.7 References and resources

The algorithms of numerical linear algebra for dense matrices are described
in great detail in the book by Charles Van Loan and Gene Golub [7] and in
the book by James Demmel [4]. The book Direct Methods for Sparse Linear
Systems by Tim Davis describes computational methods for matrices stored in
sparse matrix format [3]. Still larger problems are solved by iterative meth-
ods. Generally speaking, iterative methods are not very effective unless the user
can concoct a good preconditioner, which is an approximation to the inverse.
Effective preconditioners usually depend in physical understanding of the prob-
lem and are problem specific. The book Templates for the Solution of Linear
Systems provides a concise description of many different iterative methods and
preconditioners [].

While the topic is generally covered in courses in computer architecture,
there are relatively few textbooks on performance optimization that seem suit-
able for scientific programmers without a broad CS background. The book
Performance Optimization of Numerically Intensive Codes by Stefan Goedecker
and Adolfy Hoisie []. is one noteworthy exception. We also recommend High
Performance Computing by Kevin Down and Charles Severance [21]. Truly
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high performance computing is done on computers with more than one proces-
sor, which is called parallel computing. There are many specialized algorithms
and programming techniques for parallel computing.

The LAPACK software package is designed to make the most of memory hi-
erarchies. The performance of LAPACK depends on fast Basic Linear Algebra
Subroutines (BLAS). There is a package called ATLAS that producs automati-
cally tuned BLAS libraries for different archictectures, as well as choosing good
parameters (block sizes, etc.) for LAPACK depending on the cache performance
of your particular processor. The LAPACK manual is published by SIAM, the
Society for Industrial and Applied Mathematics.

5.8 Exercises

1. The solution to Au = b may be written b = A−1u. This can be a good
way to analyze algorithms involving linear systems (see Sections 4.3.1 and
6.3). But we try to avoid forming A−1 explicitly in computations because
it is more that twice as expensive as solving the linear equations. A good
way to form B = A−1 is to solve the matrix equation AB = I. Gauss
elimination applied to A gives A = LU , where the entries of L are the
pivots used in elimination.

(a) Show that about 1
3n

3 work reduces AB = I to UB = L−1, where the
entries of U and L−1 are known.

(b) Show that computing the entries of B from UB = L−1 takes about
1
2n

3 work. Hint: It takes one flop per element for each of the n
elements of the bottom row of B, then two flops per element of the
n−1 row of B, and so on to the top. The total is n×(1+2+ · · ·+n).

(c) Use this to verify the claim that computing A−1 is more than twice
as expensive as solving Au = b.

2. Show that a symmetric n × n real matrix is positive definite if and only
if all its eigenvalues are positive. Hint: If R is a right eigenvector matrix,
then, for a symmetric matrix we may normalize so that R−1 = R∗ and
A = RΛR∗, where Λ is a diagonal matrix containing the eigenvalues (See
Sections 4.2.5 and 4.2.7). Then x∗Ax = x∗RΛR∗x = (x∗R)Λ(R∗x) =
y∗Λy, where y = R∗x. Show that y∗Λy > 0 for all y 6= 0 if and only
if all the diagonal entries of Λ are positive. Show that if A is positive
definite, then there is a C > 0 so that x∗Ax > C ‖x‖l2 for all x. (Hint:
‖x‖l2 = ‖x‖l2 , C = λmin.)

3. Write a program to compute the LL∗ decomposition of an SPD matrix
A. Your procedure should have as arguments the dimension, n, and the
matrix A. The output should be the Cholesky factor, L. Your procedure
must detect and report a matrix that is not positive definite and should not
perform the operation sqrtc if c < 0. Write another procedure that has n
and L as arguments and returns the product LL∗. Hand in: (i) printouts
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of the two procedures and the driving program, (ii) a printout of results
showing that the testing routine reports failure when LL∗ 6= A, (iii) a
printout showing that the Cholesky factoring procedure reports failure
when A is not positive definite, (iv) a printout showing that the Cholesky
factoring procedure works correctly when applied to a SPD matrix, proven
by checking that LL∗ = A.

4. A square matrix A has bandwidth 2k + 1 if ajk = 0 whenever |j − k| > k.
A subdiagonal or superdiagonal is a set of matrix elements on one side of
the main diagonal (below for sub, above for super) with j−k, the distance
to the diagonal, fixed. The bandwidth is the number of nonzero bands. A
bandwidth 3 matrix is tridiagonal, bandwidth 5 makes pentadiagonal, etc.

(a) Show that a SPD matrix with bandwidth 2k+1 has a Cholesky factor
with nonzeros only on the diagonal and up to k bands below.

(b) Show that the Cholesky decomposition algorithm computes this L
in work proportional to k2n (if we skip operations on entries of A
outside its nonzero bands).

(c) Write a procedure for Cholesky factorization of tridiagonal SPD ma-
trices, and apply it to the matrix of Exercise 11, compare the running
time with this dense matrix factorizer and the one from Exercise 5.4.
Of course, check that the answer is the same, up to roundoff.

5. Suppose v1, . . . , vm is an orthonormal basis for a vector space V ⊆ Rn.
Let L be a linear transformation from V to V . Let A be the matrix that
represents L in this basis. Show that the entries of A are given by

ajk = v∗jLvk . (5.8)

Hint: Show that if y ∈ V , the representation of y is this basis is y =∑
j yjvj , where yj = v∗j y. In physics and theoretical chemistry, inner

products of the form (5.8) are called matrix elements. For example, the
eigenvalue perturbation formula (4.39) (in physicist terminology) simply
says that the perturbation in an eigenvalue is (nearly) equal to to the
appropriate matrix element of the perturbation in the matrix.

6. Suppose A is an n × n symmetric matrix and V ⊂ Rn is an invariant
subspace for A (i.e. Ax ∈ V if x ∈ V ). Show that A defines a linear
transformation from V to V . Show that there is a basis for V in which
this linear transformation (called A restricted to V ) is represented by a
symmetric matrix. Hint: construct an orthonormal basis for V .

7. If Q is an n × n matrix, and (Qx)∗Qy = x∗y for all x and y, show that
Q is an orthogonal matrix. Hint: If (Qx)∗Qy = x∗(Q∗Q)y = x∗y, we can
explore the entries of Q∗Q by choosing particular vectors x and y.

8. If ‖Qx‖l2 = ‖x‖l2 for all x, show that (Qx)∗Qy = x∗y for all x and y. Hint
(polarization): If ‖Q(x+ sy)‖2l2 = ‖x+ sy‖2l2 for all s, then (Qx)∗Qy =
x∗y.
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6.1 Introduction

This chapter discusses two related computational problems. One is root finding,
or solving systems of nonlinear equations. This means that we seek values of
n variables, (x1, . . . , xn) = x ∈ Rn, to satisfy n nonlinear equations f(x) =
(f1(x), . . . , fn(x)) = 0. We assume that f(x) is a smooth function of x. The
other problem is smooth optimization, or finding the minimum (or maximum1)
value of a smooth objective function, V (x). These problems are closely related.
Optimization algorithms use the gradient of the objective function, solving the
system of equations g(x) = ∇V (x) = 0. Conversely, root finding can be seen as
minimizing ‖f(x)‖2.

The theory here is for black box methods. These are algorithms that do not
depend on details of the definitions of the functions f(x) or V (x). The code
doing the root finding will learn about f only by “user-supplied” procedures
that supply values of f or V and their derivatives. The person writing the
root finding or optimization code need not “open the box” to see how the user
procedure works. This makes it possible for specialists to create general pur-
pose optimization and root finding software that is efficient and robust, without
knowing all the problems it may be applied to.

There is a strong incentive to use derivative information as well as function
values. For root finding, we use the n× n Jacobian matrix, f ′(x), with entries
f ′(x)jk = ∂xkfj(x). For optimization, we use the gradient and the n×n Hessian
matrix of second partials H(x)jk = ∂xj∂xkV (x). It may seem like too much
extra work to go from the n components of f to the n2 entries of f ′, but
algorithms that use f ′ often are much faster and more reliable than those that
do not.

There are drawbacks to using general-purpose software that treats each spe-
cific problem as a black box. Large-scale computing problems usually have
specific features that have a big impact on how they should be solved. Re-
formulating a problem to fit into a generic f(x) = 0 or minx V (x) form may
increase the condition number. Problem-specific solution strategies may be
more effective than the generic Newton’s method. In particular, the Jacobian
or the Hessian may be sparse in a way that general purpose software cannot take
advantage of. Some more specialized algorithms are in Exercise 6c (Marquart-
Levenberg for nonlinear least squares), and Section ?? (Gauss-Seidel iteration
for large systems).

The algorithms discussed here are iterative (see Section 2.4). They produce
a sequence of approximations, or iterates, that should converge to the desired
solution, x∗. In the simplest case, each iteration starts with a current iterate,
x, and produces a successor iterate, x′ = Φ(x). The algorithm starts from an
initial guess2, x0, then produces a sequence of iterates xk+1 = Φ(xk). The
algorithm succeeds if the iterates converge to the solution: xk → x∗ as k →∞.

1Optimization refers either to minimization or maximization. But finding the maximum
of V (x) is the same as finding the minimum of −V (x).

2Here, the subscript denotes the iteration number, not the component. In n dimensions,
iterate xk has components xk = (xk1, . . . , xkn).
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An iterative method fails if the iterates fail to converge or converge to the wrong
answer. For an algorithm that succeeds, the convergence rate is the rate at which
‖xk − x∗‖ → 0 as k →∞.

An iterative method is locally convergent if it succeeds whenever the initial
guess is close enough to the solution. That is, if there is an R > 0 so that if
‖x0 − x∗‖ ≤ R then xk → x∗ as k →∞. The algorithms described here, mostly
variants of Newton’s method, all are locally convergent if the problem is non-
degenerate (terminology below). An iterative method is globally convergent if it
finds the answer from any initial guess. Between these extremes are algorithms
that are more or less robust. The algorithms described here consist of a relatively
simple locally convergent method, usually Newton’s method, enhanced with
safeguards that guarantee that some progress is made toward the solution from
any x. We will see that safeguards based on mathematical analysis and reasoning
are more effective than heuristics.

All iterative methods need some kind of convergence criterion (more prop-
erly, halting criterion). One natural possibility is to stop when the relative
change in x is small enough: ‖xk+1 − xk‖ / ‖xk‖ ≤ ε. It also makes sense to
check that the residuals, the components of f(x) or ∇V (x), are small. Even
without roundoff error, an iterative method would be very unlikely to get the
exact answer. However, as we saw in Section 2.4, good algorithms and well con-
ditioned problems still allow essentially optimal accuracy: ‖xk − x∗‖ / ‖x∗‖ ∼
εmach.

The final section of this chapter is on methods that do not use higher deriva-
tives. The discussion applies to linear or nonlinear problems. For optimization,
it turns out that the rate of convergence of these methods is determined by
the condition number of H for solving linear systems involving H, see Section
4.3.1 and the condition number formula (4.35). More precisely, the number
of iterations needed to reduce the error by a factor of 2 is proportional to
κ(H) = λmax(H)/λmin(H). This, more than linear algebra roundoff, explains
our fixation on condition number. The condition number κ(H) = 104 could
arise in a routine partial differential equation problem. This bothers us not so
much because it makes us lose 4 out of 16 double precision digits of accuracy,
but because it takes tens of thousands of iterations to solve the problem with a
naive method.

6.2 Solving a single nonlinear equation

The simplest problem is that of solving a single equation in a single variable:
f(x) = 0. Single variable problems are easier than multi-variable problems.
There are simple criteria that guarantee a solution exists. Some algorithms for
one dimensional problems, Newton’s method in particular, have analogues for
higher dimensional problems. Others, such as bisection, are strictly one dimen-
sional. Algorithms for one dimensional problems are components for algorithms
for higher dimensional problems.
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6.2.1 Bisection

Bisection search is a simple, robust way to find a zero of a function on one
variable. It does not require f(x) to be differentiable, but merely continuous.
It is based on a simple topological fact called the intermediate value theorem:
if f(x) is a continuous real-valued function of x on the interval a ≤ x ≤ b and
f(a) < 0 < f(b), then there is at least one x∗ ∈ (a, b) with f(x∗) = 0. A similar
theorem applies in the case b < a or f(a) > 0 > f(b).

The bisection search algorithm consists of repeatedly bisecting an interval in
which a root is known to lie. Suppose we have an interval3 [a, b] with f(a) < 0
and f(b) > 0. The intermediate value theorem tells us that there is a root of f
in [a, b]. The uncertainty is the location of this root is the length of the interval∣∣b− a∣∣. To cut that uncertainty in half, we bisect the interval. The midpoint
is c =

(
a+ b

)
/2. We determine the sign of f(c), probably by evaluating it. If

f(c) > 0 then we know there is a root of f in the sub-interval [a, c]. In this case,
we take the new interval to be [a′, b′], with a′ = a and b′ = c. In the other case,
f(c) < 0, we take a′ = c and b′ = b. In either case, f changes sign over the half
size interval [a′, b′].

To start the bisection algorithm, we need an initial interval [a0, b0] over which
f changes sign. Running the bisection procedure then produces intervals [ak, bk]
whose size decreases at an exponential rate:

|bk − ak| = 2−k |b0 − a0| .

To get a feeling for the convergence rate, use the approximate formula 210 = 103.
This tells us that we get three decimal digits of accuracy for each ten iter-
ations. This may seem good, but Newton’s method is much faster, when it
works. Moreover, Newton’s method generalizes to more than one dimension
while there is no useful multidimensional analogue of bisection search. Ex-
ponential convergence often is called linear convergence because of the linear
relationship |bk+1 − ak+1| = 1

2 |bk − ak|. Newton’s method is faster than this.
Although the bisection algorithm is robust, it can fail if the computed ap-

proximation to f(x) has the wrong sign. The user of bisection should take into
account the accuracy of the function approximation as well as the interval length
when evaluating the accuracy of a computed root.

6.2.2 Newton’s method for a nonlinear equation

As in the previous section, we want to find a value, x∗, that solves a single
nonlinear equation f(x∗) = 0. We have procedures that return f(x) and f ′(x)
for any given x. At each iteration, we have a current iterate, x and we want to
find an x′ that is closer to x∗. Suppose that x is close to x∗. The values f(x)
and f ′(x) determine the tangent line to the graph of f(x) at the point x. The
new iterate, x′, is the point where this tangent line crosses the x axis. If f(x) is

3The interval notation [a, b] used here is not intended to imply that a < b. For example,
the interval [5, 2] consists of all numbers between 5 and 2, endpoints included.
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close to zero, then x′ should be close to x and the tangent line approximation
should be close to f at x′, which suggests that f(x′) should be small.

More analytically, the tangent line approximation (See Section 3.1) is

f(x) ≈ F (1)(x) = f(x) + f ′(x) · (x− x) . (6.1)

Finding where the line crosses the x axis is the same as setting F (1)(x) = 0 and
solving for x′:

x′ = x− f ′(x)−1f(x) . (6.2)

This is the basic Newton method.
The local convergence rate of Newton’s method is governed by the error

in the approximation (6.1). The analysis assumes that the root x∗ is non-
degenerate, which means that f ′(x∗) 6= 0. The convergence for degenerate roots
is different, see Exercise 1. For a non-degenerate root, we will have f ′(x) 6= 0
for x close enough to x∗. Assuming this, (6.2) implies that |x′ − x| = O(|f(x)|).
This, together with the Taylor series error bound

f(x′)− F (1)(x′) = O
(
|x′ − x|2

)
,

and the Newton equation F (1)(x′) = 0, implies that

|f(x′)| = O
(
|f(x)|2

)
.

This means that there is a C > 0 so that

|f(x′)| ≤ C · |f(x)|2 . (6.3)

This manifestation of local quadratic convergence says that the residual at the
next iteration is roughly proportional4 to the square of the residual at the current
iterate.

Quadratic convergence is very fast. In a typical problem, once xk − x∗ is
moderately small, the residual will be at roundoff levels in a few more iterations.
For example, suppose that5 C = 1 in (6.3) and that |xk − x∗| = .1. Then
|xk+1 − x∗| ≤ .01, |xk+2 − x∗| ≤ 10−4, and |xk+4 − x∗| ≤ 10−16. The number
of correct digits doubles at each iteration. By contrast, a linearly convergent
iteration with |xk+1 − x∗| ≤ .1·|xk − x∗| gains one digit of accuracy per iteration
and takes 15 iterations rather than 4 to go from .1 to 10−16 Bisection search
needs about 50 iterations to reduce the error by a factor of 1015 (1015 =

(
103
)5 ≈(

210
)5 = 250).

Unfortunately, the quadratic convergence of Newton’s method is local. There
is no guarantee that xk → x∗ as k → ∞ if the initial guess is not close to x∗.
A program for finding x∗ must take this possibility into account. See Section
3.7.2 for some ideas on how to do this.

4Strictly speaking, (6.3) is just a bound, not an estimate. However, Exercise 2 shows that
f(x′) really is approximately proportional to f(x)2.

5This does not make sense on dimensional grounds. It would be more accurate and more
cumbersome to describe this stuff in terms of relative error.
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6.3 Newton’s method in more than one dimen-
sion

Newton’s method applies also to solving systems of nonlinear equations. The
linear approximation (6.1) applies in dimensions n > 1 if f ′(x) is the Jacobian
matrix evaluated at x, and f and (x − x) are column vectors. We write the
Newton step as x′ − x = z, so x′ = x + z. Newton’s method determines z by
replacing the nonlinear equations, f(x+ z) = 0, with the linear approximation,

0 = f(x) + f ′(x)z . (6.4)

To carry out one step of Newton’s method, we must evaluate the function f(x),
the Jacobian, f ′(x), then solve the linear system of equations (6.4). We may
write this as

z = −
(
f ′(x)

)−1
f(x) , (6.5)

which is a natural generalization of the one dimensional formula (6.2). In compu-
tational practice (see Exercise 1) it usually is more expensive to form

(
f ′(x)

)−1

than to solve (6.4).
Newton’s method for systems of equations also has quadratic (very fast)

local convergence to a non-degenerate solution x∗. As in the one dimensional
case, this is because of the error bound in the linear approximation (6.1). For
n > 1, we write the Taylor approximation error bound in terms of norms:∥∥∥f(x+ z)− F (1)

∥∥∥ =
∥∥∥f(x+ z)−

{
f(x) + f ′(x)z

}∥∥∥ = O
(
‖z‖2

)
.

We see from (6.5) that6

‖z‖ ≤ C ‖f(x)‖ .

Together, these inequalities imply that if x− x∗ is small enough then

‖f(x′)‖ = ‖f(x+ z)‖ ≤ C ‖f(x)‖2 ,

which is quadratic convergence, exactly as in the one dimensional case.
In practice, Newton’s method can be frustrating for its lack of robustness.

The user may need some ingenuity to find an x0 close enough to x∗ to get
convergence. In fact, it often is hard to know whether a system of nonlinear
equations has a solution at all. There is nothing as useful as the intermediate
value theorem from the one dimensional case, and there is no multi-dimensional
analogue of the robust but slow bisection method in one dimension.

While Newton’s method can suffer from extreme ill conditioning, it has a
certain robustness against ill conditioning that comes from its affine invariance.
Affine invariance states Newton’s method is invariant under affine transforma-
tions. An affine transformation is a mapping x → Ax + b (it would be linear

6The definition of a non-degenerate solution is that f ′(x∗) is nonsingular. If x is close
enough to x∗, then f ′(x) will be close enough to f ′(x∗) that it also will be nonsingular (See

(4.16)). Therefore ‖z‖ ≤
‚‚‚`f ′(x)

´−1
‚‚‚ ‖f(x)‖ ≤ C ‖f(x)‖.
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without the b). An affine transformation7 of f(x) is g(y) = Af(By), where A
and B are invertible n × n matrices. The affine invariance is that if we start
from corresponding initial guesses: x0 = By0, and create iterates yk by applying
Newton’s method to g(y) and xk by applying Newton’s method to f(x), then
the iterates also correspond: xk = Byk. This means that Newton’s method
works exactly as well on the original equations f(x) = 0 as on the transformed
equations g(y) = 0. For example, we can imagine changing from x to variables
y in order to give each of the unknowns the same units. If g(y) = 0 is the best
possible rescaling of the original equations f(x) = 0, then applying Newton’s
method to f(x) = 0 gives equivalent iterates.

This argument can be restated informally as saying that Newton’s method
makes sense on dimensional grounds and therefore is natural. The variables
x1, . . . , xn may have different units, as may the functions f1, . . . , fn. The n2

entries f ′(x) all may have different units, as may the entries of (f ′)−1. The
matrix vector product that determines the components of the Newton step (see
(6.4)), z = − (f ′)−1

f(x), involves adding a number of contributions (entries in
the matrix (f ′)−1 multiplying components of f) that might seem likely to have
a variety of units. Nevertheless, each of the n terms in the sum implicit in the
matrix-vector product (6.5) defining a component zj has the same units as the
corresponding component, xj . See Section 6.6 for a more detailed discussion of
this point.

6.3.1 Quasi-Newton methods

Local quadratic convergence is the incentive for evaluating the Jacobian matrix.
Evaluating the Jacobian matrix may not be so expensive if much of the work in
evaluating f can be re-used in calculating f ′. There are other situations where
the Jacobian is nearly impossible to evaluate analytically. One possibility would
be to estimate f ′ using finite differences. Column k of f ′(x) is ∂xkf(x). The
cheapest and least accurate approximation to this is the first-order one-sided
difference formula8: (f(x + ∆xkek) − f(x))/∆xk. Evaluating all of f ′ in this
way would take n extra evaluations of f per iteration, which may be so expensive
that it outweighs the fast local convergence.

Quasi-Newton methods replace the true f ′(x) in the Newton equations (6.4)
by estimates of f ′(x) built up from function values over a sequence of iterations.
If we call this approximate Jacobian Ak, the quasi-Newton equations are

0 = f(xk) +Akzk . (6.6)

The simplest such method is the secant method for one-dimensional root find-
ing. Using the current xk and f(xk), and the previous xk−1 and f(xk−1), we
use the slope of the line connecting the current (xk, f(xk)) to the previous

7Actually, this is a linear transformation. It is traditional to call it affine though the
constant terms are missing.

8ek is the unit vector in the xk direction and ∆xk is a step size in that direction. Different
components of x may have different units and therefore require different step sizes.
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(xk−1, f(xk−1)) to estimate the slope of the tangent line at xk. The result is

Ak =
f(xk)− f(xk−1)

xk − xk−1
, xk+1 = xk − f(xk)/Ak . (6.7)

The local convergence rate of the secant method (6.7) is better than linear
(|xk+1 − x∗| ≤ C |xk − x∗|) and worse than quadratic.

Many multidimensional quasi-Newton methods work by updating Ak at each
iteration so tht Ak+1zk = f(xk+1)− f(xk). In higher dimensions, this does not
determine Ak+1 completely, because it involves n equations, which is not enough
to define the n2 elements of Ak+1. The references give several suggestions for
update formulas. The good ones have the property that if you you apply them
to linear equations, you find the exact A = f ′ in n steps. It is not clear that
such a property makes quasi-Newton methods better than ordinary Newton’s
method with finite difference approximations to the elements of the Jacobian.

6.4 One variable optimization

Suppose n = 1 and we wish to find the minimum of the function of a single
variable, V (x). Please bear with the following long list of definitions. We
say that x∗ is a local minimum of V if there is an R > 0 so that V (x∗) ≤
V (x) whenever |x− x∗| ≤ R. We say that x∗ is a strict local minimum if
V (x) > V (x∗) whenever x 6= x∗ and |x− x∗| ≤ R. We say that x∗ is a global
minimum if V (x∗) ≤ V (x) for all x for which V (x) is defined, and a strict global
minimum if V (x∗) < V (x) for all x 6= x∗ for which V is defined. Finally, x∗
is a nondegenerate local minimum if V ′′(x∗) > 0. The Taylor series remainder
theorem implies that if V ′(x∗) = 0 and V ′′(x∗) > 0, then x∗ is at least a strict
local minimum. The function V (x) is convex if 9 αV (x) + βV (y) > V (αx+ βy)
whenever α ≥ 0, β ≥ 0, and α + β = 1. The function is strictly convex if
V ′′(x) > 0 for all x. A strictly convex function is convex, but the function
V (x) = x4 is not strictly convex, because V ′′(0) = 0. This function has a strict
but degenerate global minimum at x∗ = 0.

For the curious, there is an analogue of bisection search in one variable
optimization called golden section search. It applies to any continuous function
that is unimodal, meaning that V has a single global minimum and no local
minima. The golden mean10 is r = (1 +

√
5)/2 ≈ 1.62. At each stage of

bisection search we have an interval [a, b] in which there must be at least one
root. At each stage of golden section search we have an interval [a, c] and a
third point b ∈ [a, c] with

|a− c| = r
∣∣a− b∣∣ . (6.8)

9The reader should check that this is the same as the geometric condition that the line
segment connecting the points (x, V (x)) and (y, V (y)) lies above the graph of V .

10This number comes up in many ways. From Fibonacci numbers it is r = limk→∞ fk+1/fk.
If (α + β)/α = α/β and α > β, then α/β = r. This has the geometric interpretation that
if we remove an α × α square from one end of an α × (α + β) rectangle, then the remaining
smaller β×α rectangle has the same aspect ratio as the original α× (α+β) rectangle. Either
of these leads to the equation r2 = r + 1.
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As with our discussion of bisection search, the notation [a, c] does not imply
that a < c. In bisection, we assume that f(a) · f(b) < 0. Here, we assume
that f(b) < f(a) and f(b) < f(c), so that there must be a local minimum
within [a, c]. Now (this is the clever part), consider a fourth point in the larger
subinterval, d = (1 − 1

r )a + 1
r b. Evaluate f(d). If f(d) < f(b), take a′ = a,

b′ = d, and c′ = b. Otherwise, take a′ = c, b′ = b, and c′ = d, reversing the
sense of the interval. In either case, |a′ − c′| = r |a′ − b′|, and f(b′) < f(a′) and
f(b′) < f(c′), so the iteration can continue. Each stage reduces the uncertainty
in the minimizer by a factor of 1

r , since |a′ − c′| = 1
r |a− c|.

6.5 Newton’s method for local optimization

Most of the properties listed in Section 6.4 are the same for multi-variable
optimization. We denote the gradient as g(x) = ∇V (x), and the Hessian matrix
of second partials as H(x). An x∗ with g(x∗) = 0 and H(x∗) positive definite
(see Section 5.4 and Exercise 2) is called non-degenerate, a natural generalization
of the condition V ′′ > 0 for one variable problems. Such a point is at least a
local minimum because the Taylor series with error bound is

V (x∗ + z)− V (x∗) =
1
2
z∗H(x∗)z +O(‖z‖3) .

Exercise 2 shows that the first term on the right is positive and larger than the
second if H(x∗) is positive definite and ‖z‖ is small enough. If H(x∗) is negative
definite (obvious definition), the same argument shows that x∗ is at least a local
maximum. If H(x∗) has some positive and some negative eigenvalues (and
g(x∗) = 0) then x∗ is neither a local minimum nor a local maximum, but is
called a saddle point. In any case, a local minimum must satisfy g(x∗) = 0 if V
is differentiable.

We can use Newton’s method from Section 6.3 to seek a local minimum by
solving the equations g(x) = 0, but we must pay attention to the difference
between row and column vectors. We have been considering x, the Newton
step, z, etc. to be column vectors while ∇V (x) = g(x) is a row vector. For
this reason, we consider applying Newton’s method to the column vector of
equations g∗(x) = 0. The Jacobian matrix of the column vector function g∗(x)
is the Hessian H (check this). Therefore, the locally convergent Newton method
is

x′ = x+ z ,

where the step z is given by the Newton equations

H(x)z = −g∗(x) . (6.9)

Because it is a special case of Newton’s method, it has local quadratic conver-
gence to x∗ if x∗ is a local non-degenerate local minimum.

Another point of view for the local Newton method is that each iteration
minimizes a quadratic model of the function V (x + z). The three term Taylor
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series approximation to V about x is

V (x+ z) ≈ V (2)(x, z) = V (x) +∇V (x)z +
1
2
z∗H(x)z . (6.10)

If we minimize V (2)(x, z) over z, the result is z = −H(x)−1∇V (x)∗, which is the
same as (6.9). As for Newton’s method for nonlinear equations, the intuition
is that V (2)(x, z) will be close to V (x + z) for small z. This should make the
minimum of V (2)(x, z) close to the minimizer of V , which is x∗.

Unfortunately, this simple local method cannot distinguish between between
a local minimum, a local maximum, or even a saddle point. If x∗ has∇V (x∗) = 0
(so x∗ is a stationary point) and H(x∗) is nonsingular, then the iterates xk+1 =
xk−H(xk)−1g∗(xk) will happily converge to to x∗ if ‖x0 − x∗‖ is small enough.
This could be a local maximum or a saddle point. Moreover, if ‖x0 − x∗‖ is not
small, we have no idea whether the iterates will converge to anything at all.

The main difference between the unsafeguarded Newton method optimiza-
tion problem and general systems of nonlinear equations is that the Hessian
is symmetric and (close enough to a non-degenerate local minimum) positive
definite. The Jacobian f ′ need not be symmetric. The Cholesky decomposition
requires storage for the roughly 1

2n
2 distinct elements of H and takes about 1

6n
3

floating points to compute L. This is about half the storage and work required
for a general non-symmetric linear system using the LU factorization.

6.6 Safeguards and global optimization

The real difference between minimization and general systems of equations
comes from the possibility of evaluating V (x) and forcing it to decrease from
iteration to iteration. It is remarkable that two simple safeguards turn the unre-
liable Newton’s method into a much more robust (though not perfect) method
that converges to a local minimum from almost any initial guess. These are (i)
finding a descent direction by modifying H(x) if necessary, and (ii) using a one
dimensional line search to prevent wild steps. Both of the safeguards have the
purpose of guaranteeing descent, that V (x′) < V (x).

In principle, this would allow the xk to converge to a saddle point, but this
is extremely unlikely in practice because saddle points are unstable for this
process.

The safeguarded methods use the formulation of the search directions, p and
the step size, t > 0. One iteration will take the form x′ = x+ z, where the step
is z = tp. We define the search direction to be a descent direction if

d

dt
V (x+ tp)

∣∣∣
t=0

= g(x) · p < 0 . (6.11)

This guarantees that if t > 0 is small enough, then V (x + tp) < V (x). Then
we find a step size, t, that actually achieves this property. If we prevent t from
becoming too small, it will be impossible for the iterates to converge except to
a stationary point.
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We find the search direction by solving a modified Newton equation

H̃p = −g∗(x) . (6.12)

Putting this into (6.11) gives

d

dt
V (x+ tp)

∣∣∣
t=0

= −g(x)H̃g(x)∗ .

This is negative if H̃ is positive definite (the right hand side is a 1 × 1 matrix
(a number) because g is a row vector). One algorithm for finding a descent
direction would be to apply the Cholesky decomposition algorithm (see Section
5.4). If the algorithm finds L with LL∗ = H(x), use this L to solve the Newton
equation (6.12) with H̃ = H(x) = LL∗. If the Cholesky algorithm fails to find
L, then H(x) is not positive definite. A possible substitute (but poor in practice,
see below) is H̃ = I, which turns Newton’s method into gradient descent.

A better choice for H̃ comes from the modified Cholesky algorithm. This
simply replaces the equation

lkk =
(
Hkk − l2k1 + · · ·+ l2k,k−1

)1/2
with the modified equation using the absolute value

lkk =
∣∣Hkk − l2k1 + · · ·+ l2k,k−1

∣∣1/2 . (6.13)

Here, Hkk is the (k, k) entry of H(x). This modified Cholesky algorithm pro-
duces L with LL∗ = H(x) if and only if H(x) is positive definite. In any case,
we take H̃ = LL∗, which is positive definite. Using these non-Cholesky factors,
the Newton equations become:

LL∗p = −g(x)∗ . (6.14)

It is not entirely clear why the more complicated modified Cholesky algo-
rithm is more effective than simply taking H̃ = I when H(x) is not positive
definite. One possible explanation has to do with units. Let us suppose that Uk
represents the units of xk, such as seconds, dollars, kilograms, etc. Let us also
suppose that V (x) is dimensionless. In this case the units of Hjk = ∂xj∂xkV
are [Hjk] = 1/UjUk. We can verify by studying the Cholesky decomposition
equations from Section ?? that the entries of L have units [ljk] = 1/Uj , whether
we use the actual equations or the modification (6.13). We solve (??) in two
stages, first Lq = −∇V ∗, then L∗p = q. Looking at units, it is clear that all the
elements of q are dimensionless and that the elements of p have units [pk] = Uk.
Thus, the modified Cholesky algorithm produces a search direction that com-
ponent by component has the same units as x. This allows the update formula
x′ = x+ tp to make sense with a dimensionless t. The reader should check that
the choice H̃ = I does not have this property in general, even if we allow t to
have units, if the Uk are different.
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The second safeguard is a limited line search. In general, line search means
minimizing the function φ(t) = V (x+ tp) over the single variable t. This could
be done using golden section search, but a much more rudimentary binary search
process suffices as a safeguard. In this binary search, we evaluate φ(0) = V (x)
and φ(1) = V (x+ p). If φ(1) > φ(0), the step size is too large. In that case, we
keep reducing t by a factor of 2 (t = t/2;) until φ(t) < φ(0), or we give up.
If p is a search direction, we will have φ(t) < φ(0) for small enough t and this
bisection process will halt after finitely many reductions of t. If φ(1) < φ(0), we
enter a greedy process of increasing t by factors of 2 until φ(2t) > φ(t). This
process will halt after finitely many doublings if the set of x with V (x) < V (x)
is bounded.

A desirable feature is that the safeguarded algorithm gives the ordinary
Newton step, and rapid (quadratic) local convergence, if x is close enough to
a nondegenerate local minimum. The modified Hessian will correspond to the
actual Hessian if H(x∗) is positive definite and x is close enough to x∗. The step
size will be the default t = 1 if x is close enough to x∗ because the quadratic
model (6.10) will be accurate. The quadratic model has V (2)(x, 2z) > V (2)(x, z),
because z is the minimizer of V (2).

6.7 Determining convergence

There are two reasonable ways to judge when an iterative method is “close to”
a right answer: a small residual error or a small error in the solution. For
example, suppose we seek solutions to the equation f(x) = 0. The iterate xk
has a small residual error if ‖f(xk)‖ is small for some appropriate norm. There
is a small error in the solution if ‖xk − x∗‖ is small, where ‖x∗‖ is the true
solution.

The residual error is easy to determine, but what about the error ‖xk −
x∗‖? For Newton’s method, each successive iterate is much more accurate than
the previous one, so that as long as x∗ is a regular root (i.e. the Jacobian is
nonsingular), then

‖xk − x∗‖ = ‖xk − xk+1‖+O(‖xk − xk+1‖2).

Therefore, it is natural to use the length of the Newton step from xk to xk+1 as
an estimate for the error in xk, assuming that we are close to the solution and
that we are taking full Newton steps. Of course, we would then usually return
the approximate root xk+1, even though the error estimate is for xk. That is,
we test convergence based on the difference between a less accurate and a more
accurate formula, and return the more accurate result even though the error
estimate is only realistic for the less accurate formula. This is exactly the same
strategy we used in our discussion of integration, and we will see it again when
we discuss step size selection in the integration of ordinary differential equations.
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6.8 Gradient descent and iterative methods

The gradient descent optimization algorithm uses the identity matrix as the
approximate Hessian, H̃ = I, so the (negative of the) gradient becomes the
search direction: p = −∇V (x)∗. This seems to make sense geometrically, as
the negative gradient is the steepest downhill direction (leading to the name
method of steepest descent). With a proper line search, gradient descent has
the theoretical global robustness properties of the more sophisticated Newton
method with the modified Cholesky approximate Hessian. But much of the
research in sophisticated optimization methods is motivated by the fact that
simple gradient descent converges slowly in many applications.

One indication of trouble with gradient descent is that the formula,

x′ = x− t∇V (x)∗ , (6.15)

does not make dimensional sense in general, see Section 6.6. Written in compo-
nents, (6.15) is x′k = xk − t∂xkV (x). Applied for k = 1, this makes dimensional
sense if the units of t satisfy [t] = [x2

1]/[V ]. If the units of x2 are different from
those of x1, the x2 equation forces units of t inconsistent with those from the
x1 equation.

We can understand the slow convergence of gradient descent by studying
how it works on the model problem V (x) = 1

2x
∗Hx, with a symmetric and

positive definite H. This is the same as assuming that the local minimum is
nondegenerate and the local approximation (6.10) is exact11. In this case the
gradient satisfies g(x)∗ = ∇V (x)∗ = Hx, so solving the Newton equations (6.9)
gives the exact solution in one iteration. We study the gradient method with a
fixed step size12, t, which implies xk+1 = xk − tHxk. We write this as

xk+1 = Mxk , (6.16)

where
M = I − tH . (6.17)

The convergence rate of gradient descent in this case is the rate at which xk → 0
in the iteration (6.16).

This, in turn, is related to the eigenvalues of M . Since H and M are
symmetric, we may choose an orthonormal basis in which both are diagonal:
H = diag(λ1, . . . λn), and M = diag(µ1, . . . µn). The λj and positive, so we
may assume that 0 < λmin = λ1 ≤ λ2 ≤ · · · ≤ λn = λmax. The formula (6.17)
implies that

µj = 1− tλj . (6.18)

After k iterations of (6.16), we have xkj = µkjx0j , where xkj component j of the
iterate xk. Clearly, the rate at which xk → 0 depends on the spectral gap,

ρ = 1−max
j
|µj | ,

11We simplified the problem but have not lost generality by taking x∗ = 0 here.
12See Exercise 7 for an example showing that line search does not improve the situation

very much.
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in the sense that the estimate

‖xk‖ ≤ (1− ρ)k ‖x0‖

is sharp (take x0 = e1 or x0 = en). The optimal step size, t is the one that
maximizes ρ, which leads to (see (6.18)

1− ρ = µmax = 1− tλmin

ρ− 1 = µmin = 1− tλmax .

Solving these gives the optimizing value t = 2/(λmin + λmax) and

ρ = 2 · λmin

λmax
≈ 2
κ(H)

. (6.19)

If we take k = 2/ρ ≈ κ(H) iterations, and H is ill conditioned so that k is large,
the error is reduced roughly by a factor of

(1− ρ)k =
(

1− 2
k

)k
≈ e−2 .

This justifies what we said in the Introduction, that it takes k = κ(H) iterations
to reduce the error by a fixed factor.

6.8.1 Gauss Seidel iteration

The Gauss-Seidel iteration strategy makes use of the fact that optimizing over
one variable is easier than optimizing over several. It goes from x to x′ in
n steps. Step j optimizes V (x) over the single component xj with all other
components fixed. We write the n intermediate stages as x(j) with components
x(j) = (x(j)

1 , . . . , x
(j)
n ). Starting with x(0) = x, we go from x(j−1) to x(j) by

optimizing over component j. That is x(j−1)
m = x

(j)
m if m 6= j, and we get x(j)

j

by solving
min
ξ

V
(
(x(j−1)

1 , . . . , x
(j−1)
j−1 , ξ, x

(j−1)
j+1 , . . . , x(j−1)

n )
)
.

6.9 Resources and further reading

The book by Ortega and Rheinboldt has a more detailed discussion of Newton’s
method for solving systems of nonlinear equations [17]. The book Practical
Optimization by Phillip Gill, Walter Murray, and my colleague Margaret Wright,
has much more on nonlinear optimization including methods for constrained
optimization problems [5]. There is much public domain software for smooth
optimization problems, but I don’t think much of it is useful.

The set of initial guesses x0 so that kk → x∗ as t → ∞ is the basin of
attraction of x∗. If the method is locally convergent, the basin of attraction
contains a ball of radius R about x∗. The boundary of the basin of attraction
can be a beautiful fractal set. The picture book Fractals by Benoit Mandelbrot,
some of the most attractive fractals arise in this way.
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6.10 Exercises

1. Study the convergence of Newton’s method applied to solving the equation
f(x) = x2 = 0. Show that the root x∗ = 0 is degenerate in that f ′(x∗) = 0.
The Newton iterates are xk satisfying xk+1 = xk − f(xk)/f ′(xk). Show
that the local convergence in this case is linear, which means that there
is an α < 1 with |xk+1 − x∗| ≈ α |xk − x∗|. Note that so called linear
convergence still implies that xk − x∗ → 0 exponentially. Nevertheless,
contrast this linear local convergence with the quadratic local convergence
for a nondegenerate problem.

2. Use the Taylor expansion to second order to derive the approximation

f(x′) ≈ C(x)f(x)2 =
1
2
f ′′(x)
f ′(x)2

· f(x)2 . (6.20)

Derive a similar expression that shows that (x′ − x∗) is approximately
proportional to (x − x∗)2. Use (6.20) to predict that applying Newton’s
method to finding solving the equation sin(x) = 0 will have superquadratic
convergence. What makes C(x) large, and the convergence slow, is (i)
small f ′(x) (a nearly degenerate problem), and (ii) large f ′′(x) (a highly
nonlinear problem).

3. The function f(x) = x/
√

1 + x2 has a unique root: f(x) = 0 only for
x = 0. Show that the unsafeguarded Newton method gives xk+1 = x3

k.
Conclude that the method succeeds if and only if |x0| < 1. Draw graphs
to illustrate the first few iterates when x0 = .5 and x0 = 1.5. Note that
Newton’s method for this problem has local cubic convergence, which is
even faster than the more typical local quadratic convergence. The formula
(6.20) explains why.

4. Suppose n = 2 and x1 has units of (electric) charge, x2 has units of mass,
f1(x1, x2) has units of length, and f2(x1, x2) has units of time. Find the
units of each of the four entries of (f ′)−1. Verify the claims about the
units of the step, z, at the end of Section 6.3.

5. Suppose x∗ satisfies f(x∗) = 0. The basin of attraction of x∗ is the set of
x so that if x0 = x then xk → x∗ as k →∞. If f ′(x∗) is non-singular, the
basin of attraction of x∗ under unsafeguarded Newton’s method includes at
least a neighborhood of x∗, because Newton’s method is locally convergent.
Exercise 3 has an example in one dimension where the basin of attraction of
x∗ = 0 is the open interval (endpoints not included) (−1, 1). Now consider
the two dimensional problem of finding roots of f(z) = z2 − 1, where
z = x+iy. Written out in its real components, f(x, y) = (x2−y2−1, 2xy).
The basin of attraction of the solution z∗ = 1 ((x∗, y∗) = (1, 0)) includes
a neighborhood of z = 1 but surprisingly many many other points in the
complex plane. This Mandelbrot set is one of the most beautiful examples
of a two dimensional fractal. The purpose of this exercise is to make a
pretty picture, not to learn about scientific computing.
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(a) Show that Newton iteration is zk+1 = zk − z2k−1
2zk

.

(b) Set zk = 1 + wk and show that wk+1 = 3
2w

2
k/(1 + wk).

(c) Use this to show that if |wk| < 1
4 , then |wk+1| < 1

2 |wk|. Hint: Show
|1 + wk| > 3

4 . Argue that this implies that the basin of attraction
of z∗ = 1 includes at least a disk of radius 1

4 about z∗, which is a
quantitative form of local convergence.

(d) Show that if |zk − 1| < 1
4 for some k, then z0 is in the basin of

attraction of z∗ = 1. (This is the point of parts (b) and (c).)

(e) Use part (d) to make a picture of the Mandelbrot set. Hint: Divide
the rectangle |x| < Rx, 0 ≤ y ≤ Ry into a regular grid of small cells
of size ∆x×∆y. Start Newton’s method from the center of each cell.
Color the cell if |zk − 1| < 1

4 for some k ≤ N . See how the picture
depends on the parameters ∆x, ∆y, Rx, Ry, and N .

6. A saddle point13 is an x so that ∇V (x) = 0 and the Hessian, H(x), is
nonsingular and has at least one negative eigenvalue. We do not want the
iterates to converge to a saddle point, but most Newton type optimization
algorithms seem to have that potential. All the safeguarded optimization
methods we discussed have Φ(x) = x if x is a saddle point because they
all find the search direction by solving H̃p = −∇V (x).

(a) Let V (x) = x2
1 − x2

2 and suppose x is on the x1 axis. Show that
with the modified Cholesky, x′ also is on the x1 axis, so the iterates
converge to the saddle point, x = 0. Hint: H̃ has a simple form in
this case.

(b) Show that if x2 6= 0, and t > 0 is the step size, and we use the
bisection search that increases the step size until φ(t) = V ((x) + tp)
satisfies φ(2t) > φ(t), then one of the following occurs:

i. The bisection search does not terminate, t → ∞, and φ(t) →
−∞. This would be considered good, since the minimum of V is
−∞.

ii. The line search terminates with t satisfying φ(t) = V (x′) < 0.
In this case, subsequent iterates cannot converge to x = 0 be-
cause that would force V to converge to zero, while our modified
Newton strategy guarantees that V decreases at each iteration.

(c) Nonlinear least squares means finding x ∈ Rm to minimize V (x) =
‖f(x)− b‖2l2 , where f(x) = (f1(x), . . . , fn(x))∗ is a column vector of
n nonlinear functions of the m unknowns, and b ∈ Rn is a vector we
are trying to approximate. If f(x) is linear (there is an n×m matrix
A with f(x) = Ax), then minimizing V (x) is a linear least squares
problem. The Marquart Levenberg iterative algorithm solves a linear

13The usual definition of saddle point is that H should have at least one positive and
one negative eigenvalue and no zero eigenvalues. The simpler criterion here suffices for this
application.
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least squares problem at each iteration. If the current iterate is x, let
the linearization of f be the n ×m Jacobian matrix A with entries
aij = ∂xjfi(x). Calculate the step, p, by solving

min
p
‖Ap− (b− f(x))‖l2 . (6.21)

Then take the next iterate to be x′ = x+ p.

i. Show that this algorithm has local quadratic convergence if the
residual at the solution has zero residual: r(x∗) = f(x∗)− b = 0,
but not otherwise (in general).

ii. Show that p is a descent direction.
iii. Describe a safeguarded algorithm that probably will converge to

at least a local minimum or diverge.

7. This exercise shows a connection between the slowness of gradient de-
scent and the condition number of H in one very special case. Con-
sider minimizing the model quadratic function in two dimensions V (x) =
1
2

(
λ1x

2
1 + λ2x

2
2

)
using gradient descent. Suppose the line search is done

exactly, choosing t to minimize φ(t) = V (x + tp), where p = ∇V (x). In
general it is hard to describe the effect of many minimization steps be-
cause the iteration x→ x′ is nonlinear. Nevertheless, there is one case we
can understand.

(a) Show that for any V , gradient descent with exact line search has pk+1

orthogonal to pk. Hint: otherwise, the step size tk was not optimal.

(b) In the two dimensional quadratic optimization problem at hand, show
that if pk is in the direction of (−1,−1)∗, then pk+1 is in the direction
of (−1, 1)∗.

(c) Show that pk is in the direction of (−1,−1)∗ if and only if (x1, x2) =
r(λ2, λ1), for some r,

(d) Since the optimum is x∗ = (0, 0)∗, the error is ‖(x1, x2)‖. Show that
if p0 is in the direction of (−1,−1), then the error decreases exactly
by a factor of ρ = (λ1 − λ2)/(λ1 + λ2) if λ1 ≥ λ2 (including the case
λ1 = λ2).

(e) Show that if λ1 � λ2, then ρ ≈ 1 − 2λ2/λ1 = 1 − 2/κ(H), where
κ(H) is the linear systems condition number of H.

(f) Still supposing λ1 � λ2, show that it takes roughly n = 1/κ(H)
iterations to reduce the error by a factor of e2.

8. This exercise walks you through construction of a robust optimizer. It is
as much an exercise in constructing scientific software as in optimization
techniques. You will apply it to finding the minimum of the two variable
function

V (x, y) =
ψ(x, y)√

1 + ψ(x, y)2
, ψ(x, y) = ψ0 + wx2 +

(
y − a sin(x)

)2
.
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Hand in output documenting what you for each of the of the parts below.

(a) Write procedures that evaluate V (x, y), g(x, y), and H(x, y) analyt-
ically. Write a tester that uses finite differences to verify that g and
H are correct.

(b) Implement a local Newton’s method without safeguards as in Section
6.5. Use the Cholesky decomposition code from Exercise 3. Report
failure if H is not positive definite. Include a stopping criterion and a
maximum iteration count, neither hard wired. Verify local quadratic
convergence starting from initial guess (x0, y0) = (.3, .3) with param-
eters ψ0 = .5, w = .5, and a = .5. Find an initial condition from
which the unsafeguarded method fails.

(c) Modify the Cholesky decomposition code Exercise 5.4 to do the mod-
ified Cholesky decomposition described in Section 6.6. This should
require you to change a single line of code.

(d) Write a procedure that implements the limited line search strategy
described in Section 6.6. This also should have a maximum iteration
count that is not hard wired. Write the procedure so that it sees only
a scalar function φ(t). Test on:

i. φ(t) = (t− .9)2 (should succeed with t = 1).
ii. φ(t) = (t − .01)2 (should succeed after several step size reduc-

tions).
iii. φ(t) = (t − 100)2 (should succeed after several step size dou-

blings).
iv. φ(t) = t (should fail after too many step size reductions).
v. φ(t) = −t (should fail after too many doublings).

(e) Combine the procedures from parts (c) and (d) to create a robust
global optimization code. Try the code on our test problem with
(x0, y0) = (10, 10) and parameters ψ0 = .5, w = .02, and a = 1.
Make plot that shows contour lines of V and all the iterates.
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Scientific computing often calls for representing or approximating a general
function, f(x). That is, we seek a f̃ in a certain class of functions so that1

f̃ ≈ f in some sense. For example, we might know the values fk = f(xk) (for
some set of points x0, x1, . . .) and wish to find an interpolating function so that
f(xk) = fk. In general there

This chapter discusses two related problems. One is finding simple approx-
imate representations for known functions. The other is interpolation and ex-
trapolation, estimating unknown function values from known values at nearby
points. On one hand, interpolation of smooth functions gives accurate approx-
imations. On the other hand, we can interpolate and extrapolate using our
approximating functions.

Some useful interpolating functions are polynomials, splines, and trigono-
metric polynomials. Interpolation by low order polynomials is simple and ubiq-
uitous in scientific computing. Ideas from Chapters 3 and 4 will let us un-
derstand its accuracy. Some simple tricks for polynomial interpolation are the
Newton form of the interpolating polynomial and Horner’s rule for evaluating
polynomials.

Local polynomial interpolation gives different approximating functions in
different intervals. A spline interpolant is a single globally defined function that
has many of the approximation properties of local polynomial interpolation.
Computing the interpolating spline from n data points requires us to solve a
linear system of equations involving a symmetric banded matrix, so the work is
proportional to n.

The order of accuracy of polynomial or spline interpolation is p + 1, where
p is the degree of polynomials used. This suggests that we could get very accu-
rate approximations using high degree polynomials. Unfortunately, high degree
polynomial interpolation on uniformly spaced points leads to linear systems of
equations that are exponentially ill conditioned, κ ∼ ecp, where p is the degree
and κ is the condition number. The condition number grows moderately as
p → ∞ only if the interpolation points cluster at the ends of the interval in a
very specific way.

High accuracy interpolation on uniformly spaced points can by done using
trigonometric polynomial interpolation, also called Fourier interpolation. More
generally, Fourier analysis for functions defined at n uniformly spaced points
can be done using the discrete Fourier transform, or DFT. The fast Fourier
transform, or FFT, is an algorithm that computes the DFT of n values in
O(n log(n)) time. Besides trigonometric interpolation, the FFT gives highly
accurate solutions to certain linear partial differential equations and allows us
to compute large discrete convolutions, including the convolution that defines
the time lag covariance function for a time series.

1In Chapters 2 and 3 we used the hat or caret notation of statisticians to denote approxi-
mation: bQ ≈ Q. In this chapter, the hat refers to Fourier coefficients and the tilde represents
approximation.
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7.1 Polynomial interpolation

Given points x0, . . . , xd and values f0, . . . , fd, there is a unique interpolating
polynomial of degree d,

p(x) = p0 + p1x+ · · ·+ pdx
d , (7.1)

so that
p(xk) = fk for k = 0, 1, . . . , d. (7.2)

We give three proofs of this, each one illustrating a different aspect of polynomial
interpolation.

We distinguish between low order or local interpolation and high order or
global interpolation. In low order interpolation, we have a small number (at
least two and probably not much more than five) of nearby points and we seek
an interpolating polynomial that should be valid near these points. This leads
to approximations of order d+ 1 for degree d interpolation. For example, local
linear interpolation (degree d = 1) is second order accurate. See Exercise ??.

7.1.1 Vandermonde theory

The most direct approach to interpolation uses the Vandermonde matrix. The
equations (7.22) and (7.2) form a set of linear equations that determine the
d + 1 unknown coefficients, pj , from the d + 1 given function values, fk. The
kth equation is

p0 + xkp1 + x2
kp2 + · · ·+ xdkpd = fk ,

which we write abstractly as
V p = f , (7.3)

where

V =


1 x0 . . . xd0
1 x1 . . . xd1
...

...
...

1 xd . . . xdd

 , (7.4)

p = (p0, . . . , pd)∗, and f = (f0, . . . , fd)∗. The equations (7.3) have a unique
solution if and only if det(V ) 6= 0. We show det(V ) 6= 0 using the following
famous formula:

Theorem 2 Define D(x0, . . . , xd) = det(V ) as in (7.4). Then

D(x0, . . . , xd) =
∏
j<k

(xk − xj) . (7.5)

The reader should verify directly that D(x0, x1, x2) = (x2−x0)(x1−x0)(x2−
x1). It is clear that D = 0 whenever xj = xk for some j 6= k because xj = xk
makes row j and row k equal to each other. The formula (7.5) says that D is a
product of factors coming from these facts.
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Proof: The proof uses three basic properties of determinants. The first is that
the determinant does not change if we perform an elimination operation on rows
or columns. If we subtract a multiple of row j from row k or of column j from
column k, the determinant does not change. The second is that if row k or
column k has a common factor, we can pull that factor out of the determinant.
The third is that if the first column is (1, 0 . . . , 0)∗, then the determinant is the
determinant of the d× d matrix got by deleting the top row and first column.

We work by induction on the number of points. For d = 1 (7.5) isD(x0, x1) =
x1 − x0, which is easy to verify. The induction step is the formula

D(x0, . . . , xd) =

(
d∏
k=1

(xk − x0)

)
·D(x1, . . . , xd) . (7.6)

We use the easily checked formula

xk − yk = (x− y)(xk−1 + xk−2y + · · ·+ yk−1) . (7.7)

To compute the determinant of V in (7.4), we use Gauss elimination to set all
but the top entry of the first column of V to zero. This means that we replace
row j by row j minus row 1. Next we find common factors in the columns.
Finally we perform column operations to put the d × d matrix back into the
form of a Vandermonde matrix for x1, . . . , xd, which will prove (7.6).

Rather than giving the argument in general, we give it for d = 2 and d = 3.
The general case will be clear from this. For d = 2 we have

det

 1 x0 x2
0

1 x1 x2
1

1 x2 x2
2

 = det

 1 x0 x2
0

0 x1 − x0 x2
1 − x2

0

0 x2 − x0 x2
2 − x2

0


= det

(
x1 − x0 x2

1 − x2
0

x2 − x0 x2
2 − x2

0

)
.

The formula (7.7) with k = 2 gives x2
1 − x2

0 = (x1 − x0)(x1 + x0), so (x1 − x0)
is a common factor in the top row. Similarly, (x2 − x0) is a common factor of
the bottom row. Thus:

det
(
x1 − x0 x2

1 − x2
0

x2 − x0 x2
2 − x2

0

)
= det

(
x1 − x0 (x1 − x0)(x1 + x0)
x2 − x0 x2

2 − x2
0

)
= (x1 − x0) det

(
1 (x1 + x0)

x2 − x0 x2
2 − x2

0

)
= (x1 − x0)(x2 − x0) det

(
1 x1 + x0

1 x2 + x0

)
.
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The final step is to subtract x0 times the first column from the second column,
which does not change the determinant:

det
(

1 x1 + x0

1 x2 + x0

)
= det

(
1 x1 + x0 − x0 ∗ 1
1 x2 + x0 − x0 ∗ 1

)
= det

(
1 x1

1 x2

)
= D(x1, x2) .

This proves (7.6) for d = 2.
For d = 3 there is one more step. If we subtract row 1 from row k for k > 1

and do the factoring using (7.7) for k = 2 and x = 3, we get

det


1 x0 x2

0 x3
0

1 x1 x2
1 x3

1

1 x2 x2
2 x3

2

1 x3 x2
3 x3

3

 =

(x1 − x0)(x2 − x0)(x3 − x0) det

 1 x1 + x0 x2
1 + x1x0 + x2

0

1 x2 + x0 x2
2 + x2x0 + x2

0

1 x3 + x0 x2
3 + x3x0 + x2

0

 .

We complete the proof of (7.6) in this case by showing that

det

 1 x1 + x0 x2
1 + x1x0 + x2

0

1 x2 + x0 x2
2 + x2x0 + x2

0

1 x3 + x0 x2
3 + x3x0 + x2

0

 = det

 1 x1 x2
1

1 x2 x2
2

1 x3 x2
3

 .

For this we first subtract x0 times the first column from the second column,
then subtract x2

0 times the first column from the third column, then subtract
x0 times the second column from the third column. This completes the proof
of Theorem 2 and shows that one can find the coefficients of the interpolating
polynomial by solving a linear system of equations involving the Vandermonde
matrix.

7.1.2 Newton interpolation formula

The Newton interpolation formula is a simple and insightful way to express the
interpolating polynomial. It is based on repeated divided differences, done in
a way to expose the leading terms of polynomials. These are combined with a
specific basis for the vector space of polynomials of degree k so that in the end
the interpolation property is obvious. In some sense, the Newton interpolation
formula provides a formula for the inverse of the Vandermonde matrix.

We begin with the problem of estimating derivatives of f(x) using a number
of function values. Given nearby points, x1 and x0, we have

f ′ ≈ f(x1)− f(x0)
x1 − x0

.
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We know that the divided difference is particularly close to the derivative at the
center of the interval, so we write

f ′
(
x1 + x0

2

)
≈ f(x1)− f(x0)

x1 − x0
, (7.8)

with an error that is O
(
|x1 − x0|2

)
. If we have three points that might not be

uniformly spaced, the second derivative estimate using (7.8) could be

f ′′ ≈
f ′
(
x2+x1

2

)
− f ′

(
x1+x0

2

)
x2 + x1

2
− x1 + x0

2

f ′′ ≈

f(x2)− f(x1)
x2 − x1

− f(x1)− f(x0)
x1 − x0

1
2 (x2 − x0)

. (7.9)

As we saw in Chapter 3, the approximation (7.9) is consistent (converges to the
exact answer as x2 → x, x1 → x, and x0 → x) if it is exact for quadratics,
f(x) = ax2 + bx + c. Some algebra shows that both sides of (7.9) are equal to
2a.

The formula (7.9) suggests the right way to do repeated divided differences.
Suppose we have d + 1 points2 x0, . . . , xd, we define f [xk] = f(xk) (exchange
round parentheses for square brackets), and the first order divided difference is:

f [xk, xk+1] =
f [xk+1]− f [xk]
xk+1 − xk

.

More generally, the Newton divided difference of order k+1 is a divided difference
of divided differences of order k:

f [xj , · · · , xk+1] =
f [xj+1, · · · , xk+1]− f [xj , · · · , xk]

xk+1 − xj
. (7.10)

The denominator in (7.10) is the difference between the extremal x values, as
(7.9) suggests it should be. If instead of a function f(x) we just have values
f0, . . . , fd, we define

[fj , · · · , fk+1] =
[fj+1, · · · , fk+1]− [fj , · · · , fk]

xk+1 − xj
. (7.11)

It may be convenient to use the alternative notation

Dk(f) = f [x0, · · · , xk] .

If r(x) = rkx
k+· · ·+r0 is a polynomial of degree k, we will see that Dkr = k!·rk.

We verified this already for k = 1 and k = 2.
2The xk must be distinct but they need not be in order. Nevertheless, it helps the intuition

to think that x0 < x1 < · · · < xd.
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The interpolation problem is to find a polynomial of degree d that satisfies
the interpolation conditions (7.2). The formula (7.1) expresses the interpolating
polynomial as a linear combination of pure monomials xk. Using the monomials
as a basis for the vector space of polynomials of degree d leads to the Vander-
monde matrix (7.4). Here we use a different basis, which might be called the
Newton monomials of degree k (although they strictly speaking are not mono-
mials), q0(x) = 1, q1(x) = x− x0, q2(x) = (x− x1)(x− x0), and generally,

qk(x) = (x− xk−1) · · · · · (x− x0) . (7.12)

It is easy to see that qk(x) is a polynomial of degree k in x with leading coefficient
equal to one:

qk(x) = xk + ak−1x
k−1 + · · · .

Since this also holds for qk−1, we may subtract to get:

qk(x)− ak−1qk−1(x) = xk + bk−2x
k−2 + · · · .

Continuing in this way, we express xk in terms of Newton monomials:

xk = qk(x)− ak,k−1qk−1(x)− bk,k−2 − · · · . (7.13)

This shows that the qk(x) are linearly independent and span the same space as
the monomial basis.

The connection between repeated divided differences (7.10) and Newton
monomials (7.12) is

Dkqj = δkj . (7.14)

The intuition is that Dkf plays the role 1
k!∂

k
xf(0) and qj(x) plays the role of

xj . For k > j, ∂kxj = 0 because differentiation lowers the order of a monomial.
For k < j, ∂kxx

j = 0 when evaluated at x = 0 because monomials vanish when
x = 0. The remaining case is the interesting one, 1

k!∂
k
xx

k = 1.
We verify (7.14) by induction on k. We suppose that (7.14) holds for all

k < d and all j and use that to prove it for k = d and all j, treating the cases
j = d, j < d, and j > d separately. The base case k = 1 explains the ideas. For
j = 1 we have

D1q1(x) =
q1(x1)− q1(x0)

x1 − x0
=

(x1 − x0)− (x0 − x0)
x1 − x0

= 1 , (7.15)

as claimed. More generally, any first order divided difference of q1 is equal to
one,

q1[xk+1, xk] =
q1(xk+1)− q1(xk)

xk+1 − xk
= 1 ,

which implies that higher order divided differences of q1 are zero. For example,

q1[x2, x3, x4] =
q1[x3, x4]− q1[x2, x3]

x4 − x2
=

1− 1
x4 − x2

= 0 .
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This proves the base case, k = 1 and all j.
The induction step has the same three cases. For j > d it is clear that

Ddqj = qj [x0, . . . , xd] = 0 because qj(xk) = 0 for all the xk that are used in
qj [x0, . . . , xd]. The interesting case is qk[x0, . . . , xk] = 1. From (7.10) we have
that

qk[x0, . . . , xk] =
qk[x1, . . . , xk]− qk[x0, . . . , xk−1]

xk − x0
=
qk[x1, . . . , xk]
xk − x0

,

because qk[x0, . . . , xk−1] = 0 (it involves all zeros). The same reasoning gives
qk[x1, . . . , xk−1] = 0 and

qk[x1, . . . , xk] =
qk[x2, . . . , xk]− qk[x1, . . . , xk−1]

xk − x1
=
qk[x2, . . . , xk]
xk − x1

.

Combining these gives

qk[x0, . . . , xk] =
qk[x1, . . . , xk]
xk − x0

=
qk[x2, . . . , xk]

(xk − x0)(xk − x1)
,

and eventually, using the definition (7.12), to

qk[x0, . . . , xk] =
qk(xk)

(xk − x0) · · · · · (xk − xk−1)
=

(xk − x0) · · · · · (xk − xk−1)
(xk − x0) · · · · · (xk − xk−1)

= 1 ,

as claimed. Now, using (7.13) we see that

Dkx
k = Dk

(
qk − ak,k−1qk−1 − · · ·

)
= Dkqk = 1 ,

for any collection of distinct points xj . This, in turn, implies that

qk[xm+k, . . . , xm] = 1 .

which, as in (7.15), implies that Dk+1qk = 0. This completes the induction
step.

The formula (7.14) allows us to verify the Newton interpolation formula,
which states that

p(x) =
d∑
k=0

[f0, . . . , fk]qk(x) , (7.16)

satisfies the interpolation conditions (7.2). We see that p(x0) = f0 because each
term on the right k = 0 vanishes when x = x0. The formula (7.14) also implies
that D1p = D1f . This involves the values p(x1) and p(x0). Since we already
know p(x0) is correct, this implies that p(x1) also is correct. Continuing in this
way verifies all the interpolation conditions.
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7.1.3 Lagrange interpolation formula

The Lagrange approach to polynomial interpolation is simpler mathematically
but less useful than the others. For each k, define the polynomial3 of degree d

lk(x) =

∏
j 6=k (x− xj)∏
j 6=k (xk − xj)

. (7.17)

For example, for d = 2, x0 = 0, x1 = 2, x2 = 3 we have

l0(x) =
(x− x1)(x− x2)

(x0 − x1)(x0 − x2)
=

(x− 2)(x− 3)
(−2)(−3)

=
1
6
(
x2 − 5x+ 6

)
l1(x) =

(x− x0)(x− x2)
(x1 − x0)(x1 − x2)

=
(x− 0)(x− 3)

(1)(−1)
= x2 − 3x

l2(x) =
(x− x0)(x− x1)

(x2 − x0)(x2 − x1)
=

(x− 0)(x− 2)
(3)(1)

=
1
3
(
x2 − 2x

)
,

If j = k, the numerator and denominator in (7.17) are equal. If j 6= k, then
lk(xj) = 0 because (xj−xj) = 0 is one of the factors in the numerator. Therefore

lk(xj) = δjk =
{

1 if j = k
0 if j 6= k

(7.18)

The Lagrange interpolation formula is

p(x) =
d∑
k=0

fklk(x) . (7.19)

The right side is a polynomial of degree d. This satisfies the interpolation
conditions (7.2) because of (7.18).

7.2 Discrete Fourier transform

The Fourier transform is one of the most powerful methods of applied mathe-
matics. Its finite dimensional anologue, the discrete Fourier transform, or DFT,
is just as useful in scientific computing. The DFT allows direct algebraic solu-
tion of certain differential and integral equations. It is the basis of computations
with time series data and for digital signal processing and control. It leads to
computational methods that have an infinite order of accuracy (which is not the
same as being exact).

The drawback of DFT based methods is their geometric inflexibility. They
can be hard to apply to data that are not sampled at uniformly spaced points.
The multidimensional DFT is essentially a product of one dimensional DFTs.
Therefore is it hard to apply DFT methods to problems in more than one
dimension unless the computational domain has a simple shape. Even in one
dimension, applying the DFT depends on boundary conditions.

3We do not call these Lagrange polynomials because that term means something else.
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7.2.1 Fourier modes

The simplest Fourier analysis is for periodic functions of one variable. We say
f(x) is periodic with period p if f(x + p) = f(x) for all x. If α is an integer,
then the Fourier mode

wα(x) = e2πiαx/p (7.20)

is such a periodic function. Fourier analysis starts with the fact that Fourier
modes form a basis for the vector space of periodic functions. That means that
if f has period p, then there are Fourier coefficients, f̂α, so that

f(x) =
∞∑

α=−∞
f̂αe

2πiαx/p . (7.21)

More precisely, let Vp be the vector space of complex valued periodic func-
tions so that

‖f‖2L2 =
∫ p

0

|f(x)|2 dx <∞ .

This vector space has an inner product that has the properties discussed in
Section 4.2.2. The definition is

〈f, g〉 =
∫ p

0

f(x)g(x)dx . (7.22)

Clearly, ‖f‖2L2 = 〈f, f〉 > 0 unless f ≡ 0. The inner product is linear in the g
variable:

〈f, ag1 + bg2〉 = a〈f, g1〉+ b〈f, g2〉 ,

and antilinear in the f variable:

〈af1 + bf2, g〉 = a〈f1, g〉+ b〈f2, g〉 .

Functions f and g are orthogonal if 〈f, g〉 = 0. A set of functions is orthogonal
if any two of them are orthogonal and none of them is zero. The Fourier modes
(7.20) have this property: if α 6= β are two integers, then 〈wα, wβ〉 = 0 (check
this).

Any orthogonal system of functions is linearly independent. Linear indepen-
dence means that if

f(x) =
∑
α

f̂αwα(x) =
∞∑

α=−∞
f̂αe

2πiαx/p , (7.23)

then the f̂α are uniquely determined. For orthogonal functions, we show this by
taking the inner product of wβ with f and use the linearity of the inner product
to get

〈wβ , f〉 =
∑
α

f̂α〈wβ , wα〉 = f̂β〈wβ , wβ〉 ,
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so

f̂β =
〈wβ , f〉
‖wβ‖2

. (7.24)

This formula shows that the coefficients are uniquely determined. Written more
explicitly for the Fourier modes, (7.24) is

f̂α =
1
p

∫ p

x=0

e−2πiαx/pf(x)dx . (7.25)

An orthogonal family, wα, is complete if any f has a representation in terms
of them as a linear combination (7.23). An orthogonal family need not be
complete. Fourier conjectured that the Fourier modes (7.20) are complete, but
this was first proven several decades later.

Much of the usefulness of Fourier series comes from the relationship between
the series for f and for derivatives f ′, f ′′, etc. When we differentiate (7.23) with
respect to x and differentiate under the summation on the right side, we get

f ′(x) =
2πi
p

∑
α

αf̂αe
2πiαx/p .

This shows that the α Fourier coefficient of f ′ is

f̂ ′α =
2πiα
p

f̂α . (7.26)

Formulas like these allow us to express the solutions to certain ordinary and
partial differential equations in terms of Fourier series. See Exercise 4 for one
example.

We will see that the differentiation formula (7.26) also contains important
information about the Fourier coefficients of smooth functions, that they are
very small for large α. This implies that approximations

f(x) ≈
∑
|α|≤R

f̂αwα(x)

are very accurate if f is smooth. It also implies that the DFT coefficients (see
Section 7.2.2) are very accurate approximations of f̂α. Both of these make DFT
based computational methods very attractive (when they apply) for application
to problems with smooth solutions.

We start to see this decay by rewriting (7.26) as

f̂α =
pf̂ ′α
2πi

· 1
α
. (7.27)

The integral formula

f̂ ′α =
1
p

∫ p

0

wα(x)f ′(x)dx
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shows that the Fourier coefficients f̂ ′α are bounded if f ′ is bounded, since (for
some real θ) |wα(x)| =

∣∣eiθ∣∣ = 1. This, and (7.27) shows that∣∣∣f̂α∣∣∣ ≤ C · 1
|α|

.

We can go further by applying (7.27) to f ′ and f ′′ to get

f̂α =
p2f̂ ′′α
−4π2

· 1
α2

,

so that if f ′′ is bounded, then ∣∣∣f̂α∣∣∣ ≤ C · 1
|α2|

,

which is faster decay (1/α2 � 1/α for large α). Continuing in this way, we can
see that if f has N bounded derivatives then∣∣∣f̂α∣∣∣ ≤ CN · 1

|αN |
. (7.28)

This shows, as we said, that the Fourier coefficients of smooth functions decay
rapidly.

It is helpful in real applications to use real Fourier modes, particularly when
f(x) is real. The real modes are sines and cosines:

uα(x) = cos(2παx/p) , vα(x) = sin(2παx/p) . (7.29)

The uα are defined for α ≥ 0 and the vα for α ≥ 1. The special value α = 0
corresponds to u0(x) = 1 (and v0(x) = 0). Exercise 3 shows that the uα for
α = 0, 1, . . . and vα for α = 1, 2, . . . form an orthogonal family. The real Fourier
series representation expresses f as a superposition of these functions:

f(x) =
∞∑
α=0

aα cos(2παx/p) +
∞∑
α=1

bα sin(2παx/p) . (7.30)

The reasoning that led to (7.25), and the normalization formulas of Exercise ??
below, (7.41), gives

aα =
2
p

∫ p

0

cos(2παx/p)f(x)dx (α ≥ 1),

bα =
2
p

∫ p

0

sin(2παx/p)f(x)dx (α ≥ 1),

a0 =
1
p

∫ p

0

f(x)dx .


(7.31)
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This real Fourier series (7.30) is basically the same as the complex Fourier

series (7.23) when f(x) is real. If f is real, then (7.25) shows that4 f̂−α = f̂α.
This determines the α < 0 Fourier coefficients from the α ≥ 0 coefficients. If
α > 0 and f̂α = gα + ihα (gα and hα being real and imaginary parts), then
(using eiθ = cos(θ) + i sin(θ)), we have

f̂αe
2πiαx/p + f̂−αe

−2πiαx/p

= (gα + ihα)
(
cos(·) + i sin(·)) + (gα − ihα)

(
cos(·)− i sin(·)

)
= 2gα cos(·)− 2hα sin(·) .

Moreover, when f is real,

gα =
1
p

Re
[∫ p

0

e−2πiαx/pf(x)dx
]

=
1
p

∫ p

0

cos(2πiαx/p)f(x)dx

=
1
2
aα .

Similarly, hα = −1
2 bα. This shows that the real Fourier series relations (7.23)

and (7.25) directly follow from the complex Fourier series relations (7.30) and
(7.31) without using Exercise 3.

7.2.2 The DFT

The DFT is a discrete anologue of Fourier analysis. The vector space Vp is
replaced by sequences with period n: fj+n = fj . A periodic sequence is de-
termined by the n entries5: f = (f0, . . . , fn−1)∗, and the vector space of such
sequences is Cn. Sampling a periodic function of x is one way to create an ele-
ment of Cn. Choose ∆x = p/n, take sample points, xj = j∆x, then the samples
are fj = f(xj). If the continuous f has period p, then the discrete sampled f
has period n, because fj+n = f(xj+n), and xj+n = (j + n)∆x, and n∆x = p.

The DFT modes come from sampling the continuous Fourier modes (7.20)
in this way. That is

wα,j = wα(xj) = exp(2πiαxj/p) .

Since xj = jp/n, this gives

wα,j = exp(2πiαj/n) = wαj , (7.32)

where w is a primitive root of unity6

w = e2πi/n . (7.33)
4This also shows that the full Fourier series sum over positive and negative α is somewhat

redundant for real f . This is another motivation for using the version with cosines and sines.
5The ∗ in (f0, . . . , fn−1)∗ indicates that we think of f as a column vector in Cn.
6Unity means the number 1. An nth root of x is a y with yn = x. An nth root of unity is

primitive if wn = 1 but wk 6= 1 for 0 ≤ k ≤ n.
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7 point sampling of sin(2x) and sin(9x)

Figure 7.1: An illustration of aliasing with n = 7 sampling points and period
p = 2π, with modes α = 2 and β = α + n = 9. The continuous curves are
sin(2x) and sin(9x). The circles are these curves sampled at the sample points
xj = 2πj/n. The sampled values are identical even though the functions sin(2x)
and sin(9x) are not.

Aliasing is a difference between continuous and discrete Fourier analysis. If
β = α+ n then the samplings of wβ and wα are the same, wβ(xj) = wα(xj) for
all j, even though wβ and wα are different functions of x. Figure 7.1 illustrates
this with sine functions instead of complex exponentials. Aliasing implies that
the discrete sampled vectors wα ∈ Cn with components given by (7.32) are not
all different. In fact, the n vectors wα for 0 ≤ α < n are distinct. After that
they repeat: wα+n = wα (this being an equality between two vectors in Cn).

These n discrete sampled modes form a basis, the DFT basis, for Cn. If f
and g are two elements of Cn, the discrete inner product is

〈f, g〉 =
n−1∑
j=0

f jgj .

This is the usual inner product on Cn and leads to the usual l2 norm 〈f, f〉 =
‖f‖2l2 . We show that the discrete modes form an orthogonal family, but only as
far as is allowed by aliasing. That is, if 0 ≤ α < n and 0 ≤ β < n, and α 6= β,
then 〈wα, wβ〉 = 0.
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Recall that for any complex number, z, S(z) =
∑n−1
j=0 z

j has S = n if z = 1
and S = (zn − 1)/(z − 1) if z 6= 1. Also,

wα,j = e2πiαj/n = e−2πiαj/n = w−αj ,

so we can calculate

〈wα, wβ〉 =
n−1∑
j=0

w−αjwβj

=
n−1∑
j=0

w(β−α)j

=
n−1∑
j=0

(
wβ−α

)j
Under our assumptions (α 6= β but 0 ≤ α < n, 0 ≤ β < n) we have 0 <
|β − α| < n, and z = wβ−α 6= 1 (using the fact that w is a primitive root of
unity). This gives

〈wα, wβ〉 =
wn(β−α) − 1
wβ−α − 1

.

Also,

wn(β−α) =
(
wn
)β−α

= 1β−α = 1 ,

because w is an nth root of unity. This shows 〈wα, wβ〉 = 0. We also can
calculate that ‖wα‖2 =

∑n
j=1 |wα,j |

2 = n.
Since the n vectors wα for 0 ≤ α < n are linearly independent, they form a

basis of Cn. That is, any f ∈ Cn may be written as a linear combination of the
wα:

f =
n−1∑
α=0

f̂αwα .

By the arguments we gave for Fourier series above, the DFT coefficients are

f̂α =
1
n
〈wα, f〉 .

Expressed explicitly in terms of sums, these relations are

f̂α =
1
n

n−1∑
j=0

w−αjfj , (7.34)

and

fj =
n−1∑
α=0

f̂αw
αj . (7.35)
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These are the (forward) DFT and inverse DFT respectively. Either formula
implies the other. If we start with the fj and calculate the f̂α using (7.34), then
we can use (7.35) to recover the fj from the f̂α, and the other way around. These
formulas are more similar to each other than are the corresponding formulas
(7.25) and (7.21). Both are sums rather than one being a sum and the other an
integral.

There are many other slightly different definitions of the DFT relations.
Some people define the discrete Fourier coefficients using a variant of (7.34),
such as

f̂α =
n−1∑
j=0

wαjfj .

This particular version changes (7.35) to

fj =
1
n

n−1∑
α=0

w−αj f̂α .

Still another way to express these relations is to use the DFT matrix, W , which
is an orthogonal matrix whose (α, j) entry is

wα,j =
1√
n
w−αj .

The adjoint of W has entries

w∗j,α = wα,j =
1√
n
wαj .

The DFT relations are equivalent toW ∗W = I. In vector notation, this f̂ = Wf
transform differs from (7.34) by a factor of

√
n:

f̂α =
1√
n

n−1∑
j=0

w−αjfj .

It has the advantage of making the direct and inverse DFT as similar as possible,
with a factor 1/

√
n in both.

As for continuous Fourier series, there is a real discrete cosine and sine
transform for real f . The complex coefficients f̂α, determine the real coefficients
aα and bα as before. Aliasing is more complicated for the discrete sine and cosine
transform, and depends on whether n is even or odd. The cosine and sine sums
corresponding to (7.30) run from α = 0 or α = 1 roughly to α = n/2.

We can estimate the Fourier coefficients of a continuous function by taking
the DFT of its sampled values. We call the vector of samples f (n). It has
components f (n)

j = f(xj), where xj = j∆x and ∆x = p/n. The DFT coefficients

f̂
(n)
α defined by (7.34) are rectangle rule approximations to the Fourier series
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coefficients (7.25). This follows from (7.32) and 1
p∆x = 1

n , since αj/n = αxj/p
and

f̂ (n)
α =

1
n

n−1∑
j=0

w−αjf
(n)
j (7.36)

=
1
p

∆x
n−1∑
j=0

e−2πiαxj/nf(xj) .

There is a simple aliasing formula for the Fourier coefficients of f (n) in
terms of those of f . It depends on aliasing when we put the continuous Fourier
representation (7.25) into the discrete Fourier coefficient formula (7.37). If we
rewrite (7.25) with β instead of α as the summation index, substitute into (7.37),
and change the order of summation, we find

f̂ (n)
α =

∞∑
β=−∞

f̂β
∆x
p

n−1∑
j=0

exp [2πi (β − α)xj/n] .

We have shown that the inner sum is equal to zero unless mode β aliases to mode
α on the grid, which means β = α + kn for some integer k. We also showed
that if mode β does alias to mode α on the grid, then each of the summands is
equal to one. Since ∆x/p = 1/n, this implies that

f̂ (n)
α =

∞∑
k=−∞

f̂α+kn . (7.37)

This shows that the discrete Fourier coefficient is equal to the continuous Fourier
coefficient (the k = 0 term on the right) plus all the coefficients that alias to it
(the terms k 6= 0).

You might worry that the continuous function has Fourier coefficients with
both positive and negative α while the DFT computes coefficients for α =
0, 1, . . . , n − 1. The answer to this is aliasing. We find approximations to the
negative α Fourier coefficients using f̂

(n)
−α = f̂

(n)
n−α. It may be more helpful to

think of the DFT coefficients as being defined for α ≈ −n2 to α ≈ n
2 (the

exact range depending on whether n is even or odd) rather than from α = 0 to
α = n − 1. The aliasing formula shows that if f is smooth, then f̂

(n)
α is a very

good approximation to f̂α.

7.2.3 FFT algorithm

It takes n2 multiplies to carry out all the sums in (7.34) directly (n terms in
each of n sums). The Fast Fourier Transform, or FFT, is an algorithm that
calculates the n components of f̂ from the n components of f using O(n log(n))
operations, which is much less for large n.

The idea behind FFT algorithms is clearest when n = 2m. A single DFT
of size n = 2m is reduced to two DFT calculations of size m = n/2 followed
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by O(n) work. If m = 2r, this process can be continued to reduce the two size
m DFT operations to four size r DFT operations followed by 2 · O(m) = O(n)
operations. If n = 2p, this process can be continued p times, where we arrive at
2p = n trivial DFT calculations of size one each. The total work for the p levels
is p ·O(n) = O(n log2(n)).

There is a variety of related methods to handle cases where n is not a power
of 2, and the O(n log(n)) work count holds for all n. The algorithm is simpler
and faster for n = 2p. For example, an FFT with n = 220 = 1, 048, 576 should
be significantly faster than with n = 1, 048, 573, which is a prime number.

Let Wn×n be the complex n× n matrix7 whose (α, j) entry is wα,j = w−αj ,
where w is a primitive nth root of unity. The DFT (7.34), but for the factor of 1

n ,
is the matrix product f̃ = Wn×nf . If n = 2m, then w2 is a primitive mth root
of unity and an m ×m DFT involves the matrix product g̃ = Wm×mg, where
the (α, k) entry of Wm×m is (w2)−αk = w−2αk. The reduction splits f ∈ Cn
into g ∈ Cm and h ∈ Cm, then computes g̃ = Wm×mg and h̃ = Wm×mh, then
combines g̃ and h̃ to form f̃ .

The elements of f̃ are given by the sums

f̃α =
n−1∑
j=0

w−αjfj .

We split these into even and odd parts, with j = 2k and j = 2k+1 respectively.
Both of these have k ranging from 0 to n

2 − 1 = m − 1. For these sums,
−αj = −α(2k) = −2αk (even), and −αj = −α(2k + 1) = −2αk − α (odd)
respectively. Thus

f̃α =
m−1∑
k=0

w−2αkf2k + w−α
m−1∑
k=0

w−2αkf2k+1 . (7.38)

Now define g ∈ Cm and h ∈ Cm to have the even and odd components of f
respectively:

gk = f2k , hk = f2k+1 .

The m×m operations g̃ = Wm×mg and h̃ = Wm×mh, written out, are

g̃α =
n−1∑
k=0

(
w2
)−αk

gk ,

and

h̃α =
n−1∑
k=0

(
w2
)−αk

hk .

Then (7.38) may be written

f̃α = g̃α + w−αh̃α . (7.39)
7This definition of W differs from that of Section 7.2 by a factor of

√
n.
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This is the last step, which reassembles f̃ from g̃ and h̃. We must apply (7.39)
for n values of α ranging from α = 0 to α = n − 1. The computed g̃ and h̃
have period m (g̃α+m = g̃α, etc.), but the factor w−α in front of h̃ makes f̃ have
period n = 2m instead.

To summarize, an order n FFT requires first order n copying to form g
and h, then two order n/2 FFT operations, then order n copying, adding, and
multiplying. Of course, the order n/2 FFT operations themselves boil down
to copying and simple arithmetic. As explained in Section 5.6, the copying
and memory accessing can take more computer time than the arithmetic. High
performance FFT software needs to be chip specific to take full advantage of
cache.

7.2.4 Trigonometric interpolation

Interpolating f(x) at points xj , j = 1, . . . , n, means finding another function
F (x) so that F (xj) = f(xj) for j = 1, . . . , n. In polynomial interpolation,
F (x) is a polynomial of degree n− 1. In trigonometric interpolation, F (x) is a
trigonometric polynomial with n terms. Because we are interested in values of
F (x) off the grid, do should not take advantage of aliasing to simplify notation.
Instead, we let Zn be a set of integers as symmetric about α = 0 as possible.
This depends on whether n is even or odd

Zn =
{
{−m,−m+ 1, . . . ,m} if n = 2m+ 1 (i.e. n is odd)
{−m+ 1, . . . ,m} if n = 2m (i.e. n is even) (7.40)

With this notation, an n term trigonometric polynomial may be written

F (x) =
∑
α∈Zn

cαe
2πiαx/p .

The DFT provides coefficients cα of the trigonometric interpolating polynomial
at n uniformly spaced points.

The high accuracy of DFT based methods comes from the fact that trigono-
metric polynomials are very efficient approximations for smooth periodic func-
tions. This, in turn, follows from the rapid decay of Fourier coefficients of
smooth periodic functions. Suppose, for example, that f(x) is a periodic func-
tion that has N bounded derivatives. Let be the n term trigonometric polyno-
mial consisting of n terms of the Fourier sum:

F (n)(x) =
∑
α∈Zn

f̂αe
2πiαx/p .

Note that for large m,

∑
α≥m

1
αN
≈
∫ ∞
α=m

1
αN

dα =
1

N − 1
1

αN−1
.
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The rapid decay inequality (7.28) gives a simple error bound

∣∣∣f(x)− F (n)(x)
∣∣∣ =

∣∣∣∣∣∣
∑
α/∈Zn

f̂αe
2πiαx/p

∣∣∣∣∣∣
≤ C

∑
α≥n/2

1
αN

+ C
∑

α≤−n/2

1

|α|N

≤ C · 1
nN−1

Thus, the smoother f is, the more accurate is the partial Fourier sum approxi-
mation.

7.3 Software

Performance tools.

7.4 References and Resources

The classical books on numerical analysis (Dahlquist and Björck, Isaacson and
Keller, etc.) discuss the various facts and forms of polynomial interpolation.
There are many good books on Fourier analysis. One of my favorites is by
Harry Dym and my colleague Henry McKean8 I learned the aliasing formula
(7.37) from a paper by Heinz Kreiss and Joseph Oliger.

7.5 Exercises

1. Verify that both sides of (7.9) are equal to 2a when f(x) = ax2 + bx+ c.

2. One way to estimate the derivative or integral from function values is to
differentiate or integrate the interpolating polynomial.

3. Show that the real Fourier modes (7.29) form an orthogonal family. This
means that

(a) 〈uα, uβ〉 = 0 if α 6= β.

(b) 〈vα, vβ〉 = 0 if α 6= β.

(c) 〈uα, vβ〉 = 0 for any α and β.

In (a), α or β may be zero. In (b), α and β start with one. In (c), α starts
with zero and β starts with one. It is easy to verify these relations using

8He pronounces McKean as one would Senator McCain.
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complex exponentials and the formula eiθ = cos(θ) + i sin(θ). For exam-
ple, we can write cos(θ) = 1

2

(
eiθ + e−iθ

)
, so that uα = 1

2 (wα + w−α).
Therefore

〈uα, uβ〉 =
1
4

(
〈wα, wβ〉+ 〈w−α, wβ〉+ 〈wα, w−β〉+ 〈w−α, w−β〉

)
.

You can check that if α ≥ 0 and β ≥ 0 and α 6= β, then all four terms
on the right side are zero because the wα are an orthogonal family. Also
check this way that

‖uα‖2L2 = 〈uα, uα〉 = ‖vα‖2L2 =
p

2
, (7.41)

if α ≥ 1, and ‖u0‖2L2 = p.

4. We wish to use Fourier series to solve the boundary value problem from
4.11.

(a) Show that the solution to (4.43) and (4.44) can be written as a Fourier
sine series

u(x) =
n−1∑
α=1

cα sin(παx) . (7.42)

One way to do this is to define new functions also called u and f ,
that extend the given ones in a special way to satisfy the boundary
conditions. For 1 ≤ x ≤ 2, we define f(x) = −f(x− 1). This defines
f in the interval [0, 2] in a way that makes it antisymmetric about
x = 1. Next if x /∈ [0, 2] there is a k so that x − 2k ∈ [0, 2]. Define
f(x) = f(x − 2k) in that case. This makes f a periodic function
with period p = 2 that is antisymmetric about any of the integer
points x = 0, x = 1, etc. Draw a picture to make this two step
extension clear. If we express this extended f as a real cosine and
sine series, the coefficients of all the cosine terms are zero (why?), so
f(x) =

∑
α>0 bα sin(παx). (Why π instead of 2π?) Now determine

the cα in terms of the bα so that u satisfies (4.43). Use the sine series
for u to show that u = 0 for x = 0 and x = 1.

(b) Write a program in Matlab that uses the Matlab fft function to
calculate the discrete sine coefficients bα for a sampled function f (n).
The simplest way to program this is to extend f to the interval [0, 2]
as described, sample this extended f at 2n+1 uniformly spaced points
in the interval [0, 2], compute the complex DFT of these samples, then
extract the sine coefficients as described in Section 7.2.1.

(c) Write a Matlab program that takes the bα and computes f̃(x) =∑n−1
α=1 bα sin(παx) for an arbitrary x value. On one graph, make

a plot of f(x) and f̃(x) for x ∈ [0, 1]. On another plot the error
f(x)− f̃(x). Check that the error is zero at the sampling points, as
it should be. For plotting, you will have to evaluate f(x) and f̃(x)
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at many more than the sampling points. Do this for n = 5, 20, 100
and f(x) = x2 and f(x) = sin(3 sin(x)). Comment on the accuracy
in the two cases.

(d) Use the relation between bα and cα to calculate the solution to (4.43)
and (4.44) for the two functions f in part (c). Comment on the
difference in accuracy.

(e) Show that the eigenvectors of the matrix A in Exercise 4.11 are dis-
crete sine modes. Use this to describe an algorithm to express any
vector, F , in terms as a linear combination of eigenvectors of A. This
is more or less what part (a) does, only stated in a different way.

(f) Use part (e) to develop a fast algorithm (i.e. as fast as the FFT rather
than the direct method) to solve Au = F . Write a Matlab code to
do this. Compare the accuracy of the second order method from
Exercise 4.11 to the DFT based algorithm of part (c).



Chapter 8

Dynamics and Differential
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Many dynamical systems are modeled by first order systems of differential
equations. An n component vector x(t) = (x1(t), . . . , xn(t)), models the state
of the system at time t. The dynamics are modeled by

dx

dt
= ẋ(t) = f(x(t), t) , (8.1)

where f(x, t) is an n component function, f(x, t) = f1(x, t), . . . , fn(x, t)). The
system is autonomous if f = f(x), i.e., if f is independent of t. A trajectory
is a function, x(t), that satisfies (8.1). The initial value problem is to find a
trajectory that satisfies the initial condition1

x(0) = x0 , (8.2)

with x0 being the initial data. In practice we often want to specify initial data
at some time other than t0 = 0. We set t0 = 0 for convenience of discussion. If
f(x, t) is a differentiable function of x and t, then the initial value problem has
a solution trajectory defined at least for t close enough to t0. The solution is
unique as long as it exists.2.

Some problems can be reformulated into the form (8.1), (8.2). For example,
suppose F (r) is the force on an object of mass m if the position of the object is
r ∈ R3. Newton’s equation of motion: F = ma is

m
d2r

dt2
= F (r) . (8.3)

This is a system of three second order differential equations. The velocity at
time t is v(t) = ṙ(t). The trajectory, r(t), is determined by the initial position,
r0 = r(0), and the initial velocity, v0 = v(0).

We can reformulate this as a system of six first order differential equations
for the position and velocity, x(t) = (r(t), v(t)). In components, this is


x1(t)
x2(t)
x3(t)
x4(t)
x5(t)
x6(t)

 =


r1(t)
r2(t)
r3(t)
v1(t)
v2(t)
v3(t)

 .

1There is a conflict of notation that we hope causes little confusion. Sometimes, as here,
xk refers to component k of the vector x. More often xk refers to an approximation of the
vector x at time tk.

2This is the existence and uniqueness theorem for ordinary differential equations. See any
good book on ordinary differential equations for details.
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The dynamics are given by ṙ = v and v̇ = 1
mF (r). This puts the equations (8.3)

into the form (8.1) where

f =


f1

f2

f3

f4

f5

f6

 =


x4

x5

x6
1
mF1(x1, x2, x3)
1
mF2(x1, x2, x3)
1
mF3(x1, x2, x3)

 .

There are variants of this scheme, such as taking x1 = r1, x2 = ṙ1, x3 = r2, etc.,
or using the momentum, p = mṙ rather than the velocity, v = ṙ. The initial
values for the six components x0 = x(t0) are given by the initial position and
velocity components.

8.1 Time stepping and the forward Euler method

For simplicity this section supposes f does not depend on t, so that (8.1) is just
ẋ = f(x). Time stepping, or marching, means computing approximate values
of x(t) by advancing time in a large number of small steps. For example, if we
know x(t), then we can estimate x(t+ ∆t) using

x(t+ ∆t) ≈ x(t) + ∆t ẋ(t) = x(t) + ∆t f(x(t)) . (8.4)

If we have an approximate value of x(t), then we can use (8.4) to get an ap-
proximate value of x(t+ ∆t).

This can be organized into a method for approximating the whole trajectory
x(t) for 0 ≤ t ≤ T . Choose a time step, ∆t, and define discrete times tk = k∆t
for k = 0, 1, 2, . . .. We compute a sequence of approximate values xk ≈ x(tk).
The approximation (8.4) gives

xk+1 ≈ x(tk+1) = x(tk + ∆t) ≈ x(tk) + ∆t f(xk) ≈ xk + ∆tf(xk) .

The forward Euler method takes this approximation as the definition of xk+1:

xk+1 = xk + ∆t f(xk) . (8.5)

Starting with initial condition x0 (8.5) allows us to calculate x1, then x2, and
so on as far as we like.

Solving differential equations sometimes is called integration. This is because
of the fact that if f(x, t) is independent of x, then ẋ(t) = f(t) and the solution
of the initial value problem (8.1) (8.2) is given by

x(t) = x(0) +
∫ t

0

f(s)ds .

If we solve this using the rectangle rule with time step ∆t, we get

x(tk) ≈ xk = x(0) + ∆t
k−1∑
j=0

f(tj) .
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We see from this that xk+1 = xk + ∆t f(tk), which is the forward Euler method
in this case. We know that the rectangle rule for integration is first order
accurate. This is a hint that the forward Euler method is first order accurate
more generally.

We can estimate the accuracy of the forward Euler method using an infor-
mal error propagation equation. The error, as well as the solution, evolves (or
propagates) from one time step to the next. We write the value of the exact
solution at time tk as x̃k = x(tk). The error at time tk is ek = xk − x̃k. The
residual is the amount by which x̃k fails to satisfy the forward Euler equations3

(8.5):
x̃k+1 = x̃k + ∆t f(x̃k) + ∆t rk , (8.6)

which can be rewritten as

rk =
x(tk + ∆t)− x(tk)

∆t
− f(x(tk)) . (8.7)

In Section 3.2 we showed that

x(tk + ∆t)− x(tk)
∆t

= ẋ(tk) +
∆t
2
ẍ(tk) +O(∆t2) .

Together with ẋ = f(x), this shows that

rk =
∆t
2
ẍ(tk) +O(∆t2) , (8.8)

which shows that rk = O(∆t).
The error propagation equation, (8.10) below, estimates e in terms of the

residual. We can estimate ek = xk − x̃k = xk − x(tk) by comparing (8.5) to
(8.6)

ek+1 = ek + ∆t (f(x(k))− f(x̃k))−∆t rk .

This resembles the forward Euler method applied to approximating some func-
tion e(t). Being optimistic, we suppose that xk and x(tk) are close enough to
use the approximation (f ′ is the Jacobian matrix of f as in Section ??)

f(xk) = f(x̃k + ek) ≈ f(x̃k) + f ′(x̃k)ek ,

and then
ek+1 ≈ ek + ∆t (f ′(x̃k)ek − rk) . (8.9)

If this were an equality, it would imply that the ek satisfy the forward Euler
approximation to the differential equation

ė = f ′ (x (t)) e− r(t) , (8.10)

where x(t) satisfies (8.1), e has initial condition e(0) = 0, and r(t) is given by
(8.8):

r(t) =
∆t
2
ẍ(t) . (8.11)

3We take out one factor of ∆t so that the order of magnitude of r is the order of magnitude
of the error e.
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The error propagation equation (8.10) is linear, so e(t) should be proportional to4

r, which is proportional to ∆t. If the approximate e(t) satisfies ‖e(t)‖ = C(t)∆t,
then the exact e(t) should satisfy ‖e(t)‖ = O(∆t), which means there is a C(t)
with

‖e(t)‖ ≤ C(t)∆t . (8.12)

This is the first order accuracy of the forward Euler method.
It is important to note that this argument does not prove that the forward

Euler method converges to the correct answer as ∆t→ 0. Instead, it assumes the
convergence and uses it to get a quantitative estimate of the error. The formal
proof of convergence may be found in any good book on numerical methods for
ODEs, such as the book by Arieh Iserles.

If this analysis is done a little more carefully, it shows that there is an
asymptotic error expansion

xk ∼ x(tk) + ∆t u1(tk) + ∆t2u2(tk) + · · · . (8.13)

The leading error coefficient, u1(t), is the solution of (8.10). The higher or-
der coefficients, u2(t), etc. are found by solving higher order error propagation
equations.

The modified equation is a different approach to error analysis that allows
us to determine the long time behavior of the error. The idea is to modify the
differential equation (8.1) so that the solution is closer to the forward Euler
sequence. We know that xk = x(tk) + O(∆t). We seek a differential equation
ẏ = g(y) so that xk = y(tk) +O(∆t2). We construct an error expansion for the
equation itself rather than the solution.

It is simpler to require y(t) so satisfy the forward Euler equation at each t,
not just the discrete times tk:

y(t+ ∆t) = y(t) + ∆t f(y(t)) . (8.14)

We seek
g(y,∆t) = g0(y) + ∆t g1(y) + · · · (8.15)

so that the solution of (8.14) satisfies ẏ = g(y) + O(∆t2). We combine the
expansion (8.15) with the Taylor series

y(t+ ∆t) = y(t) + ∆t ẏ(t) +
∆t2

2
ÿ(t) +O(∆t3) ,

to get (dividing both sides by ∆t, O(∆t3)/∆t = O(∆t2).):

y(t) + ∆t ẏ(t) +
∆t2

2
ÿ(t) +O(∆t3) = y(t) + ∆t f(y(t))

g0(y(t)) + ∆t g1(y(t)) +
∆
2
ÿ(t) = f(y(t)) +O(∆t2)

4The value of e(t) depends on the values of r(s) for 0 ≤ s ≤ t. We can solve u̇ = f ′(x)u−w,
where w = 1

2
ẍ, then solve (8.10) by setting e = ∆t u. This shows that ‖e(t)‖ = ∆t ‖u(t)‖,

which is what we want, with C(t) = ‖u(t)‖.
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Equating the leading order terms gives the unsurprising result

g0(y) = f(y) ,

and leaves us with
g1(y(t)) +

1
2
ÿ(t) = O(∆t) . (8.16)

We differentiate ẏ = f(y) +O(∆t) and use the chain rule, giving

ÿ =
d

dt
ẏ =

d

dt

(
f(y(t)) +O(∆t)

)
= f ′(y)ẏ(t) +O(∆t)

ÿ = f ′(y)f(y) +O(∆t)

Substituting this into (8.16) gives

g1(y) = −1
2
f ′(y)f(y) .

so the modified equation, with the first correction term, is

ẏ = f(y)− ∆t
2
f ′(y)f(y) . (8.17)

A simple example illustrates these points. The nondimensional harmonic
oscillator equation is r̈ = −r. The solution is r(t) = a sin(t) + b cos(t), which
oscillates but does not grow or decay. We write this in first order as ẋ1 = x2,
ẋ2 = −x1, or

d

dt

(
x1

x2

)
=
(

x2

−x1

)
. (8.18)

Therefore, f(x) =
(

x2

−x1

)
, f ′ =

(
0 1
−1 0

)
, and f ′f =

(
0 1
−1 0

)(
x2

−x1

)
=(

−x1

−x2

)
, so (8.17) becomes

d

dt

(
y1

y2

)
=
(

y2

−y1

)
+

∆t
2

(
y1

y2

)
=
(

∆t
2 t 1
−1 ∆t

2

)(
y1

y2

)
.

We can solve this by finding eigenvalues and eigenvectors, but a simpler trick
is to use a partial integrating factor and set y(t) = e

1
2 ∆t·tz(t), where ż =(

0 1
−1 0

)
z. Since z1(t) = a sin(t) + b cos(t), we have our approximate nu-

merical solution y1(t) = e
1
2 ∆t·t (a sin(t) + b cos(t)). Therefore

‖e(t)‖ ≈
(
e

1
2 ∆t·t − 1

)
. (8.19)

This modified equation analysis confirms that forward Euler is first order
accurate. For small ∆t, we write e

1
2 ∆t·t − 1 ≈ 1

2∆t · t so the error is about
∆t · t (a sin(t) + b cos(t)). Moreover, it shows that the error grows with t. For
each fixed t, the error satisfies ‖e(t)‖ = O(∆t) but the implied constant C(t)
(in ‖e(t)‖ ≤ C(t)∆t) is a growing function of t, at least as large as C(t) ≥ t

2 .
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8.2 Runge Kutta methods

Runge Kutta5 methods are a general way to achieve higher order approximate
solutions of the initial value problem (8.1), (8.2). Each time step consists of
m stages, each stage involving a single evaluation of f . The relatively simple
four stage fourth order method is in wide use today. Like the forward Euler
method, but unlike multistep methods, Runge Kutta time stepping computes
xk+1 from xk without using values xj for j < k. This simplifies error estimation
and adaptive time step selection.

The simplest Runge Kutta method is forward Euler (8.5). Among the second
order methods is Heun’s6

ξ1 = ∆t f(xk, tk) (8.20)
ξ2 = ∆t f(xk + ξ1, tk + ∆t) (8.21)

xk+1 = xk +
1
2

(ξ1 + ξ2) . (8.22)

The calculations of ξ1 and ξ2 are the two stages of Heun’s method. Clearly they
depend on k, though that is left out of the notation.

To calculate xk from x0 using a Runge Kutta method, we apply take k time
steps. Each time step is a transformation that may be written

xk+1 = Ŝ(xk, tk,∆t) .

As in Chapter 6, we express the general time step as7 x′ = Ŝ(x, t,∆t). This
Ŝ approximates the exact solution operator, S(x, t,∆t). We say that x′ =
S(x, t,∆t) if there is a trajectory satisfying the differential equation (8.1) so that
x(t) = x and x′ = x(t+ ∆t). In this notation, we would give Heun’s method as
x′ = Ŝ(x,∆t) = x+ 1

2 (ξ1 + ξ2), where ξ1 = f(x, t,∆t), and ξ2 = f(x+ξ1, t,∆t).
The best known and most used Runge Kutta method, which often is called

the Runge Kutta method, has four stages and is fourth order accurate

ξ1 = ∆t f(x, t) (8.23)

ξ2 = ∆t f(x+
1
2
ξ1, t+

1
2

∆t) (8.24)

ξ3 = ∆t f(x+
1
2
ξ2, t+

1
2

∆t) (8.25)

ξ4 = ∆t f(x+ ξ3, t+ ∆t) (8.26)

x′ = x+
1
6

(ξ1 + 2ξ2 + 2ξ3 + ξ4) . (8.27)

5Carl Runge was Professor of applied mathematics at the turn of the 20th century in
Göttingen, Germany. Among his colleagues were David Hilbert (of Hilbert space) and Richard
Courant. But Courant was forced to leave Germany and came to New York to found the
Courant Institute. Kutta was a student of Runge.

6Heun, whose name rhymes with “coin”, was another student of Runge.
7The notation x′ here does not mean the derivative of x with respect to t (or any other

variable) as it does in some books on differential equations.
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Understanding the accuracy of Runge Kutta methods comes down to Taylor
series. The reasoning of Section 8.1 suggests that the method has error O(∆tp)
if

Ŝ(x, t,∆t) = S(x, t,∆t) + ∆t r , (8.28)

where ‖r‖ = O(∆tp). The reader should verify that this definition of the resid-
ual, r, agrees with the definition in Section 8.1. The analysis consists of ex-
panding both S(x, t,∆t) and Ŝ(x, t,∆t) in powers of ∆t. If the terms agree up
to order ∆tp but disagree at order ∆tp+1, then p is the order of accuracy of the
overall method.

We do this for Heun’s method, allowing f to depend on t as well as x. The
calculations resemble the derivation of the modified equation (8.17). To make
the expansion of S, we have x(t) = x, so

x(t+ ∆t) = x+ ∆tẋ(t) +
∆t2

2
ẍ(t) +O(∆t3) .

Differentiating with respect to t and using the chain rule gives:

ẍ =
d

dt
ẋ =

d

dt
f(x(t), t) = f ′(x(t), t)ẋ(t) + ∂tf(x(t), t) ,

so
ẍ(t) = f ′(x, t)f(x, t) + ∂tf(x, t) .

This gives

S(x, t,∆t) = x+ ∆t f(x, t) +
∆t2

2
(f ′(x, t)f(x, t) + ∂tf(x, t)) +O(∆t3) . (8.29)

To make the expansion of Ŝ for Heun’s method, we first have ξ1 = ∆t f(x, t),
which needs no expansion. Then

ξ2 = ∆t f(x+ ξ1, t+ ∆t)
= ∆t

(
f(x, t) + f ′(x, t)ξ1 + ∂tf(x, t)∆t+O(∆t2)

)
= ∆t f(x, t) + ∆t2

(
f ′(x, t)f(x, t) + ∂tf(x, t)

)
+O(∆t3) .

Finally, (8.22) gives

x′ = x+
1
2

(ξ1 + ξ2)

= x+
1
2

{
∆t f(x, t) +

[
∆t f(x, t) + ∆t2

(
f ′(x, t)f(x, t) + ∂tf(x, t)

)]}
+O(∆t3)

Comparing this to (8.29) shows that

Ŝ(x, t,∆t) = S(x, t,∆t) +O(∆t3) .

which is the second order accuracy of Heun’s method. The same kind of analysis
shows that the four stage Runge Kutta method is fourth order accurate, but it
would take a full time week. It was Kutta’s thesis.
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8.3 Linear systems and stiff equations

A good way to learn about the behavior of a numerical method is to ask what
it would do on a properly chosen model problem. In particular, we can ask how
an initial value problem solver would perform on a linear system of differential
equations

ẋ = Ax . (8.30)

We can do this using the eigenvalues and eigenvectors of A if the eigenvectors
are not too ill conditioned. If8 Arα = λαrα and x(t) =

∑n
α=1 uα(t)rα, then the

components uα satisfy the scalar differential equations

u̇α = λαuα . (8.31)

Suppose xk ≈ x(tk) is the approximate solution at time tk. Write xk =∑n
α=1 uαkrα. For a majority of methods, including Runge Kutta methods and

linear multistep methods, the uαk (as functions of k) are what you would get
by applying the same time step approximation to the scalar equation (8.31).
The eigenvector matrix, R, (see Section ??), that diagonalizes the differential
equation (8.30) also diagonalizes the computational method. The reader should
check that this is true of the Runge Kutta methods of Section 8.2.

One question this answers, at least for linear equations (8.30), is how small
the time step should be. From (8.31) we see that the λα have units of 1/time, so
the 1/ |λα| have units of time and may be called time scales. Since ∆t has units
of time, it does not make sense to say that ∆t is small in an absolute sense, but
only relative to other time scales in the problem. This leads to the following:
Possibility: A time stepping approximation to (8.30) will be accurate only if

max
α

∆t |λα| � 1 . (8.32)

Although this possibility is not true in every case, it is a dominant technical
consideration in most practical computations involving differential equations.
The possibility suggests that the time step should be considerably smaller than
the smallest time scale in the problem, which is to say that ∆t should resolve
even the fastest time scales in the problem.

A problem is called stiff if it has two characteristics: (i) there is a wide range
of time scales, and (ii) the fastest time scale modes have almost no energy. The
second condition states that if |λα| is large (relative to other eigenvalues), then
|uα| is small. Most time stepping problems for partial differential equations are
stiff in this sense. For a stiff problem, we would like to take larger time steps
than (8.32):

∆t |λα| � 1
{

for all α with uα signifi-
cantly different from zero. (8.33)

What can go wrong if we ignore (8.32) and choose a time step using (8.33)
is numerical instability. If mode uα is one of the large |λα| small |uα| modes,

8We call the eigenvalue index α to avoid conflict with k, which we use to denote the time
step.
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it is natural to assume that the real part satisfies Re(λα) ≤ 0. In this case
we say the mode is stable because |uα(t)| = |uα(0)| eλαt does not increase as t
increases. However, if ∆t λα is not small, it can happen that the time step ap-
proximation to (8.31) is unstable. This can cause the uαk to grow exponentially
while the actual uα decays or does not grow. Exercise 8 illustrates this. Time
step restrictions arising from stability are called CFL conditions because the
first systematic discussion of this possibility in the numerical solution of partial
differential equations was given in 1929 by Richard Courant, Kurt Friedrichs,
and Hans Levy.

8.4 Adaptive methods

Adaptive means that the computational steps are not fixed in advance but are
determined as the computation proceeds. Section 3.6, discussed an integration
algorithm that chooses the number of integration points adaptively to achieve
a specified overall accuracy. More sophisticated adaptive strategies choose the
distribution of points to maximize the accuracy from a given amount of work.
For example, suppose we want an Î for I =

∫ 2

0
f(x)dx so that

∣∣∣Î − I∣∣∣ < .06. It

might be that we can calculate I1 =
∫ 1

0
f(x)dx to within .03 using ∆x = .1 (10

points), but that calculating I2 =
∫ 2

1
f(x)dx to within .03 takes ∆x = .02 (50

points). It would be better to use ∆x = .1 for I1 and ∆x = .02 for I2 (60 points
total) rather than using ∆x = .02 for all of I (100 points).

Adaptive methods can use local error estimates to concentrate computational
resources where they are most needed. If we are solving a differential equation
to compute x(t), we can use a smaller time step in regions where x has large
acceleration. There is an active community of researchers developing systematic
ways to choose the time steps in a way that is close to optimal without having
the overhead in choosing the time step become larger than the work in solving
the problem. In many cases they conclude, and simple model problems show,
that a good strategy is to equidistribute the local truncation error. That is, to
choose time steps ∆tk so that the the local truncation error ρk = ∆tk rk is
nearly constant.

If we have a variable time step ∆tk, then the times tk+1 = tk + ∆tk form
an irregular adapted mesh (or adapted grid). Informally, we want to choose a
mesh that resolves the solution, x(t) being calculated. This means that knowing
the xk ≈ x(tk) allows you make an accurate reconstruction of the function x(t),
say, by interpolation. If the points tk are too far apart then the solution is
underresolved. If the tk are so close that x(tk) is predicted accurately by a few
neighboring values (x(tj) for j = k ± 1, k ± 2, etc.) then x(t) is overresolved,
we have computed it accurately but paid too high a price. An efficient adaptive
mesh avoids both underresolution and overresolution.

Figure 8.1 illustrates an adapted mesh with equidistributed interpolation
error. The top graph shows a curve we want to resolve and a set of points that
concentrates where the curvature is high. Also also shown is the piecewise linear
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Figure 8.1: A nonuniform mesh for a function that needs different resolution
in different places. The top graph shows the function and the mesh used to
interpolate it. The bottom graph is the difference between the function and the
piecewise linear approximation. Note that the interpolation error equidistributed
though the mesh is much finer near x = 0.

curve that connects the interpolation points. On the graph it looks as though
the piecewise linear graph is closer to the curve near the center than in the
smoother regions at the ends, but the error graph in the lower frame shows this
is not so. The reason probably is that what is plotted in the bottom frame is
the vertical distance between the two curves, while what we see in the picture is
the two dimensional distance, which is less if the curves are steep. The bottom
frame illustrates equidistribution of error. The interpolation error is zero at the
grid points and gets to be as large as about −6.3 × 10−3 in each interpolation
interval. If the points were uniformly spaced, the interpolation error would be
smaller near the ends and larger in the center. If the points were bunched even
more than they are here, the interpolation error would be smaller in the center
than near the ends. We would not expect such perfect equidistribution in real
problems, but we might have errors of the same order of magnitude everywhere.

For a Runge Kutta method, the local truncation error is ρ(x, t,∆t) = Ŝ(x, t,∆t)−
S(x, t,∆t). We want a way to estimate ρ and to choose ∆t so that |ρ| = e, where
e is the value of the equidistributed local truncation error. We suggest a method
related to Richardson extrapolation (see Section 3.3), comparing the result of
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one time step of size ∆t to two time steps of size ∆t/2. The best adaptive Runge
Kutta differential equation solvers do not use this generic method, but instead
use ingenious schemes such as the Runge Kutta Fehlberg five stage scheme that
simultaneously gives a fifth order Ŝ5, but also gives an estimate of the difference
between a fourth order and a fifth order method, Ŝ5−Ŝ4. The method described
here does the same thing with eight function evaluations instead of five.

The Taylor series analysis of Runge Kutta methods indicates that ρ(x, t,∆t) =
∆tp+1σ(x, t) + O(∆tp+2). We will treat σ as a constant because all the x and
t values we use are within O(∆t) of each other, so variations in σ do not ef-
fect the principal error term we are estimating. With one time step, we get
x′ = Ŝ(x, t,∆t) With two half size time steps we get first x̃1 = Ŝ(x, t,∆t/2),
then x̃2 = Ŝ(x̃1, t+ ∆t/2,∆t/2).

We will show, using the Richardson method of Section 3.3, that

x′ − x̃2 =
(
1− 2−p

)
ρ(x, t,∆t) +O(∆tp+1) . (8.34)

We need to use the semigroup property of the solution operator: If we “run”
the exact solution from x for time ∆t/2, then run it from there for another time
∆t/2, the result is the same as running it from x for time ∆t. Letting x be the
solution of (8.1) with x(t) = x, the formula for this is

S(x, t,∆t) = S(x(t+ ∆t/2), t+ ∆t/2,∆t/2)
= S(S(x, t,∆t/2) , t+ ∆t/2,∆t/2) .

We also need to know that S(x, t,∆t) = x+O(∆t) is reflected in the Jacobian
matrix S′ (the matrix of first partials of S with respect to the x arguments with
t and ∆t fixed)9: S′(x, t,∆t) = I +O(∆t).

The actual calculation starts with

x̃1 = Ŝ(x, t,∆t/2)
= S(x, t,∆t/2) + 2−(p+1)∆t−(p+1)σ +O(∆t−(p+2)) ,

and

x̃2 = Ŝ(x̃1, t+ ∆t,∆t/2)
= S(x̃1, t+ ∆t/2,∆t/2) + 2−(p+1)∆t−(p+1)σ +O(∆t−(p+2)) ,

We simplify the notation by writing x̃1 = x(t+∆t/2)+u with u = 2−(p+1)∆tpσ+
O(∆t−(p+2)). Then ‖u‖ = O(∆t−(p+1)) and also (used below) ∆t ‖u‖ = O(∆t−(p+2))
and (since p ≥ 1) ‖u‖2 = O(∆t−(2p+2)) = O(∆t−(p+2)). Then

S(x̃1, t+ ∆t/2,∆t/2) = S(x(t+ ∆t/2) + u, t+ ∆t/2,∆t/2)

= S(x(t+ ∆t/2), t+ ∆t/2,∆t/2) + S′u+O
(
‖u‖2

)
= S(x(t+ ∆t/2), t+ ∆t/2,∆t/2) + u+O

(
‖u‖2

)
= S(x, t,∆t) + 2−(p+1)∆tpσ + uO

(
∆tp+2

)
.

9This fact is a consequence of the fact that S is twice differentiable as a function of all
its arguments, which can be found in more theoretical books on differential equations. The
Jacobian of f(x) = x is f ′(x) = I.
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Altogether, since 2 · 2−(p+1) = 2−p, this gives

x̃2 = S(x, t,∆t) + 2−p∆tp+1σ +O
(
∆tp+2

)
.

Finally, a single size ∆t time step has

x′ = X(x,∆t, t) + ∆tp+1σ +O
(
∆tp+2

)
.

Combining these gives (8.34). It may seem like a mess but it has a simple
underpinning. The whole step produces an error of order ∆tp+1. Each half
step produces an error smaller by a factor of 2p+1, which is the main idea of
Richardson extrapolation. Two half steps produce almost exactly twice the
error of one half step.

There is a simple adaptive strategy based on the local truncation error es-
timate (8.34). We arrive at the start of time step k with an estimated time
step size ∆tk. Using that time step, we compute x′ = Ŝ(xk, tk,∆tk) and x̃2 by
taking two time steps from xk with ∆tk/2. We then estimate ρk using (8.34):

ρ̂k =
1

1− 2−p
(
x′ − x̃2

)
. (8.35)

This suggests that if we adjust ∆tk by a factor of µ (taking a time step of size
µ∆tk instead of ∆tk), the error would have been µp+1ρ̂k. If we choose µ to
exactly equidistribute the error (according to our estimated ρ), we would get

e = µp+1 ‖ρ̂k‖ =⇒ µk = (e/ ‖ρ̂k‖)1/(p+1)
. (8.36)

We could use this estimate to adjust ∆tk and calculate again, but this may lead
to an infinite loop. Instead, we use ∆tk+1 = µk∆tk.

Chapter 3 already mentioned the paradox of error estimation. Once we
have a quantitative error estimate, we should use it to make the solution more
accurate. This means taking

xk+1 = Ŝ(xk, tk,∆tk) + ρ̂k ,

which has order of accuracy p + 1, instead of the order p time step Ŝ. This
increases the accuracy but leaves you without an error estimate. This gives
an order p + 1 calculation with a mesh chosen to be nearly optimal for an
order p calculation. Maybe the reader can find a way around this paradox.
Some adaptive strategies reduce the overhead of error estimation by using the
Richardson based time step adjustment, say, every fifth step.

One practical problem with this strategy is that we do not know the quanti-
tative relationship between local truncation error and global error10. Therefore
it is hard to know what e to give to achieve a given global error. One way to es-
timate global error would be to use a given e and get some time steps ∆tk, then

10Adjoint based error control methods that address this problem are still in the research
stage (2006).
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redo the computation with each interval [tk, tk+1] cut in half, taking exactly
twice the number of time steps. If the method has order of accuracy p, then the
global error should decrease very nearly by a factor of 2p, which allows us to
estimate that error. This is rarely done in practice. Another issue is that there
can be isolated zeros of the leading order truncation error. This might happen,
for example, if the local truncation error were proportional to a scalar function
ẍ. In (8.36), this could lead to an unrealistically large time step. One might
avoid that, say, by replacing µk with min(µk, 2), which would allow the time
step to grow quickly, but not too much in one step. This is less of a problem
for systems of equations.

8.5 Multistep methods

Linear multistep methods are the other class of methods in wide use. Rather than
giving a general discussion, we focus on the two most popular kinds, methods
based on difference approximations, and methods based on integrating f(x(t)),
Adams methods. Hybrids of these are possible but often are unstable. For some
reason, almost nothing is known about methods that both are multistage and
multistep.

Multistep methods are characterized by using information from previous
time steps to go from xk to xk+1. We describe them for a fixed ∆t. A simple
example would be to use the second order centered difference approximation
ẋ(t) ≈ (x(t+ ∆t)− x(t−∆t)) /2∆t to get

(xk+1 − xk−1) /2∆t = f(xk) ,

or
xk+1 = xk−1 + 2∆t f(xk) . (8.37)

This is the leapfrog11 method. We find that

x̃k+1 = x̃k−1 + 2∆t f(x̃k) + ∆tO(∆t2) ,

so it is second order accurate. It achieves second order accuracy with a single
evaluation of f per time step. Runge Kutta methods need at least two evalua-
tions per time step to be second order. Leapfrog uses xk−1 and xk to compute
xk+1, while Runge Kutta methods forget xk−1 when computing xk+1 from xk.

The next method of this class illustrates the subtleties of multistep methods.
It is based on the four point one sided difference approximation

ẋ(t) =
1

∆t

(
1
3
x(t+ ∆t) +

1
2
x(t)− x(t−∆t) +

1
6
x(t− 2∆t)

)
+O

(
∆t3

)
.

This suggests the time stepping method

f(xk) =
1

∆t

(
1
3
xk+1 +

1
2
xk − xk−1 +

1
6
xk−2

)
, (8.38)

11Leapfrog is a game in which two or more children move forward in a line by taking turns
jumping over each other, as (8.37) jumps from xk−1 to xk+1 using only f(xk).
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which leads to

xk+1 = 3∆t f(xk)− 3
2
xk + 3xk−1 −

1
2
xk−2 . (8.39)

This method never is used in practice because it is unstable in a way that Runge
Kutta methods cannot be. If we set f ≡ 0 (to solve the model problem ẋ = 0),
(8.38) becomes the recurrence relation

xk+1 +
3
2
xk − 3xk−1 +

1
2
xk−2 = 0 , (8.40)

which has characteristic polynomial12 p(z) = z3 + 3
2z

2 − 3z + 1
2 . Since one

of the roots of this polynomial has |z| > 1, general solutions of (8.40) grow
exponentially on a ∆t time scale, which generally prevents approximate solutions
from converging as ∆t → 0. This cannot happen for Runge Kutta methods
because setting f ≡ 0 always gives xk+1 = xk, which is the exact answer in this
case.

Adams methods use old values of f but not old values of x. We can integrate
(8.1) to get

x(tk+1) = x(tk) +
∫ tk+1

tk

f(x(t))dt . (8.41)

An accurate estimate of the integral on the right leads to an accurate time step.
Adams Bashforth methods estimate the integral using polynomial extrapolation
from earlier f values. At its very simplest we could use f(x(t)) ≈ f(x(tk)),
which gives ∫ tk+1

tk

f(x(t))dt ≈ (tk+1 − tk)f(x(tk)) .

Using this approximation on the right side of (8.41) gives forward Euler.
The next order comes from linear rather than constant extrapolation:

f(x(t)) ≈ f(x(tk)) + (t− tk)
f(x(tk))− f(x(tk−1))

tk − tk−1
.

With this, the integral is estimated as (the generalization to non constant ∆t is
Exercise ??):∫ tk+1

tk

f(x(t))dt ≈ ∆t f(x(tk)) +
∆t2

2
f(x(tk))− f(x(tk−1))

∆t

= ∆t
[

3
2
f(x(tk))− 1

2
f(x(tk−1))

]
.

The second order Adams Bashforth method for constant ∆t is

xk+1 = xk + ∆t
[

3
2
f(xk)− 1

2
f(xk−1)

]
. (8.42)

12If p(z) = 0 then xk = zk is a solution of (8.40).
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To program higher order Adams Bashforth methods we need to evaluate the
integral of the interpolating polynomial. The techniques of polynomial interpo-
lation from Chapter 7 make this simpler.

Adams Bashforth methods are attractive for high accuracy computations
where stiffness is not an issue. They cannot be unstable in the way (8.39) is
because setting f ≡ 0 results (in (8.42), for example) in xk+1 = xk, as for Runge
Kutta methods. Adams Bashforth methods of any order or accuracy require one
evaluation of f per time step, as opposed to four per time step for the fourth
order Runge Kutta method.

8.6 Implicit methods

Implicit methods use f(xk+1) in the formula for xk+1. They are used for stiff
problems because they can be stable with large λ∆t (see Section 8.3) in ways
explicit methods, all the ones discussed up to now, cannot. An implicit method
must solve a system of equations to compute xk+1.

The simplest implicit method is backward Euler:

xk+1 = xk + ∆t f(xk+1) . (8.43)

This is only first order accurate, but it is stable for any λ and ∆t if Re(λ) ≤ 0.
This makes it suitable for solving stiff problems. It is called implicit because
xk+1 is determined implicitly by (8.43), which we rewrite as

F (xk+1,∆t) = 0 , where F (y,∆t) = y −∆t f(y)− xk , (8.44)

To find xk+1, we have to solve this system of equations for y.
Applied to the linear scalar problem (8.31) (dropping the α index), the

method (8.43) becomes uk+1 = uk + ∆tλuk+1, or

uk+1 =
1

1−∆tλ
uk .

This shows that |uk+1| < |uk| if ∆t > 0 and λ is any complex number with
Re(λ) ≤ 0. This is in partial agreement with the qualitative behavior of the
exact solution of (8.31), u(t) = eλtu(0). The exact solution decreases in time if
Re(λ) < 0 but not if Re(λ) = 0. The backward Euler approximation decreases in
time even when Re(λ) = 0. The backward Euler method artificially stabilizes a
neutrally stable system, just as the forward Euler method artificially destabilizes
it (see the modified equation discussion leading to (8.19)).

Most likely the equations (8.44) would be solved using an iterative method as
discussed in Chapter 6. This leads to inner iterations, with the outer iteration
being the time step. If we use the unsafeguarded local Newton method, and let
j index the inner iteration, we get F ′ = I −∆t f ′ and

yj+1 = yj −
(
I −∆t f ′(yj)

)−1(
yj −∆t f(yj)− xk

)
, (8.45)
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hoping that yj → xk+1 as j → ∞. We can take initial guess y0 = xk, or, even
better, an extrapolation such as y0 = xk + ∆t(xk − xk−1)/∆t = 2xk − xk−1.
With a good initial guess, just one Newton iteration should give xk+1 accurately
enough.

Can we use the approximation J ≈ I for small ∆t? If we could, the Newton
iteration would become the simpler functional iteration (check this)

yj+1 = xk + ∆t f(yj) . (8.46)

The problem with this is that it does not work precisely for the stiff systems
we use implicit methods for. For example, applied to u̇ = λu, the functional
iteration diverges (|yj | → ∞ as j →∞) for ∆tλ < −1.

Most of the explicit methods above have implicit analogues. Among implicit
Runge Kutta methods we mention the trapezoid rule

xk+1 − xk
∆t

=
1
2
(
f(xk+1) + f(xk)

)
. (8.47)

There are backward differentiation formula, or BDF methods based on higher
order one sided approximations of ẋ(tk+1). The second order BDF method uses
(??):

ẋ(t) =
1

∆t

(
3
2
x(t)− 2x(t−∆t) +

1
2
x(t− 2∆t)

)
+O

(
∆t2

)
,

to get

f(x(tk+1)) = ẋ(tk+1) =
(

3
2
x(tk+1)− 2x(tk) +

1
2
x(tk−1)

)
+O

(
∆t2

)
,

and, neglecting the O
(
∆t2

)
error term,

xk+1 −
2∆t

3
f(xk+1) =

4
3
xk −

1
3
xk−1 . (8.48)

The Adams Molton methods estimate
∫ tk+1

tk
f(x(t))dt using polynomial in-

terpolation using the values f(xk+1), f(xk), and possibly f(xk−1), etc. The
second order Adams Molton method uses f(xk+1) and f(xk). It is the same
as the trapezoid rule (8.47). The third order Adams Molton method also uses
f(xk−1). Both the trapezoid rule (8.47) and the second order BDF method
(8.48) both have the property of being A-stable, which means being stable for
(8.31) with any λ and ∆t as long as Re(λ) ≤ 0. The higher order implicit
methods are more stable than their explicit counterparts but are not A stable,
which is a constant frustration to people looking for high order solutions to stiff
systems.
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8.7 Computing chaos, can it be done?

In many applications, the solutions to the differential equation (8.1) are chaotic.13

The informal definition is that for large t (not so large in real applications) x(t)
is an unpredictable function of x(0). In the terminology of Section 8.5, this
means that the solution operator, S(x0, 0, t), is an ill conditioned function of
x0.

The dogma of Section 2.7 is that a floating point computation cannot give
an accurate approximation to S if the condition number of S is larger than
1/εmach ∼ 1016. But practical calculations ranging from weather forecasting
to molecular dynamics violate this rule routinely. In the computations below,
the condition number of S(x, t) increases with t and crosses 1016 by t = 3 (see
Figure 8.3). Still, a calculation up to time t = 60 (Figure 8.4, bottom), shows
the beautiful butterfly shaped Lorentz attractor, which looks just as it should.

On the other hand, in this and other computations, it truly is impossible
to calculate details correctly. This is illustrated in Figure 8.2. The top picture
plots two trajectories, one computed with ∆t = 4× 10−4 (dashed line), and the
other with the time step reduced by a factor of 2 (solid line). The difference
between the trajectories is an estimate of the accuracy of the computations.
The computation seems somewhat accurate (curves close) up to time t ≈ 5,
at which time the dashed line goes up to x ≈ 15 and the solid line goes down
to x ≈ −15. At least one of these is completely wrong. Beyond t ≈ 5, the
two “approximate” solutions have similar qualitative behavior but seem to be
independent of each other. The bottom picture shows the same experiment with
∆t a hundred times smaller than in the top picture. With a hundred times more
accuracy, the approximate solution loses accuracy at t ≈ 10 instead of t ≈ 5. If
a factor of 100 increase in accuracy only extends the validity of the solution by
5 time units, it should be hopeless to compute the solution out to t = 60.

The present numerical experiments are on the Lorentz equations, which are
a system of three nonlinear ordinary differential equations

ẋ = σ(y − x)
ẏ = x(ρ− z)− y
ż = xy − βz

with14 σ = 10, ρ = 28, and β = 8
3 . The C/C++ program outputs (x, y, z)

for plotting every t = .02 units of time, though there many time steps in each
plotting interval. The solution first finds its way to the butterfly shaped Lorentz
attractor then stays on it, traveling around the right and left wings in a seemingly
random (technically, chaotic) way. The initial data x = y = z = 0 are not close
to the attractor, so we ran the differential equations for some time before time
t = 0 in order that (x(0), y(0), z(0)) should be a typical point on the attractor.

13James Gleick has written a nice popular book on chaos. Steve Strogatz has a more
technical introduction that does not avoid the beautiful parts.

14These can be found, for example, in http://wikipedia.org by searching on “Lorentz at-
tractor”.
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Figure 8.2 shows the chaotic sequence of wing choice. A trip around the left
wing corresponds to a dip of x(t) down to x ≈ −15 and a trip around the right
wing corresponds to x going up to x ≈ 15.

Sections 2.7 and 4.3 explain that the condition number of the problem of
calculating S(x, t) depends on the Jacobian matrix A(x, t) = ∂xS(x, t). This
represents the sensitivity of the solution at time t to small perturbations of the
initial data. Adapting notation from (4.28), we find that the condition number
of calculating x(t) from initial conditions x(0) = x is

κ(S(x, t)) = ‖A(x(0), t)‖ ‖x(0)‖
‖x(t)‖

. (8.49)

We can calculate A(x, t) using ideas of perturbation theory similar to those we
used for linear algebra problems in Section 4.2.6. Since S(x, t) is the value of a
solution at time t, it satisfies the differential equation

f(S(x, t)) =
d

dt
S(x, t) .

We differentiate both sides with respect to x and interchange the order of dif-
ferentiation,

∂

∂x
f((S(x, t)) =

∂

∂x

d

dt
S(x, t) =

d

dt

∂

∂x
S(x, t) =

d

dt
A(x, t) ,

to get (with the chain rule)

d

dt
A(x, t) =

∂

∂x
f(S(x, t))

= f ′(S(x, t)) · ∂xS
Ȧ = f ′(S(x, t))A(x, t) . (8.50)

Thus, if we have an initial value x and calculate the trajectory S(x, t), then we
can calculate the first variation, A(x, t), by solving the linear initial value prob-
lem (8.50) with initial condition A(x, 0) = I (why?). In the present experiment,
we solved the Lorentz equations and the perturbation equation using forward
Euler with the same time step.

In typical chaotic problems, the first variation grows exponentially in time.
If σ1(t) ≥ σ2(t) ≥ · · · ≥ σn(t) are the singular values of A(x, t), then there
typically are Lyapounov exponents, µk, so that

σk(t) ∼ eµkt ,

More precisely,

lim
t→∞

ln(σk(t))
t

= µk .

In our problem, ‖A(x, t)‖ = σ1(t) seems to grow exponentially because µ1 > 0.
Since ‖x = x(0)‖ and ‖x(t)‖ are both of the order of about ten, this, with
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(8.49), implies that κ(S(x, t)) grows exponentially in time. That explains why
it is impossible to compute the values of x(t) with any precision at all beyond
t = 20.

It is interesting to study the condition number of A itself. If µ1 > µn, the
l2 this also grows exponentially,

κl2(A(x, t)) =
σ1(t)
σn(t)

∼ e(µ1−µn)t .

Figure 8.3 gives some indication that our Lorentz system has differing Lya-
pounov exponents. The top figure shows computations of the three singular
values for A(x, t). For 0 ≤ t <≈ 2, it seems that σ3 is decaying exponentially,
making a downward sloping straight line on this log plot. When σ3 gets to
about 10−15, the decay halts. This is because it is nearly impossible for a full
matrix in double precision floating point to have a condition number larger than
1/εmach ≈ 1016. When σ3 hits 10−15, we have σ1 ∼ 102, so this limit has been
reached. These trends are clearer in the top frame of Figure 8.4, which is the
same calculation carried to a larger time. Here σ1(t) seems to be growing expo-
nentially with a gap between σ1 and σ3 of about 1/εmach. Theory says that σ2

should be close to one, and the computations are consistent with this until the
condition number bound makes σ2 ∼ 1 impossible.

To summarize, some results are quantitatively right, including the butterfly
shape of the attractor and the exponential growth rate of σ1(t). Some results
are qualitatively right but quantitatively wrong, including the values of x(t)
for t >≈ 10. Convergence analyses (comparing ∆t results to ∆t/2 results)
distinguishes right from wrong in these cases. Other features of the computed
solution are consistent over a range of ∆t and consistently wrong. There is no
reason to think the condition number of A(x, t) grows exponentially until t ∼ 2
then levels off at about 1016. Much more sophisticated computational methods
using the semigroup property show this is not so.

8.8 Software: Scientific visualization

Visualization of data is indispensable in scientific computing and computational
science. Anomalies in data that seem to jump off the page in a plot are easy
to overlook in numerical data. It can be easier to interpret data by looking at
pictures than by examining columns of numbers. For example, here are entries
500 to 535 from the time series that made the top curve in the top frame of
Figure 8.4 (multiplied by 10−5).

0.1028 0.1020 0.1000 0.0963 0.0914 0.0864 0.0820
0.0790 0.0775 0.0776 0.0790 0.0818 0.0857 0.0910
0.0978 0.1062 0.1165 0.1291 0.1443 0.1625 0.1844
0.2104 0.2414 0.2780 0.3213 0.3720 0.4313 0.4998
0.5778 0.6649 0.7595 0.8580 0.9542 1.0395 1.1034
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Figure 8.2: Two convergence studies for the Lorentz system. The time steps in
the bottom figure are 100 times smaller than the time steps in the to figure. The
more accurate calculation loses accuracy at t ≈ 10, as opposed to t ≈ 5 with a
larger time step. The qualitative behavior is similar in all computations.
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Figure 8.3: Computed singular values of the sensitivity matrix A(x, t) =
∂xS(x, t) with large time step (top) and ten times smaller time step (bottom).
Top and bottom curves are similar qualitatively though the fine details differ.
Theory predicts that middle singular value should be not grow or decay with t.
The times from Figure 8.2 at which the numerical solution loses accuracy are
not apparent here. In higher precision arithmetic, σ3(t) would have continued
to decay exponentially. It is unlikely that computed singular values of any full
matrix would differ by less than a factor of 1/εmach ≈ 1016.
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Figure 8.4: Top: Singular values from Figure 8.3 computed for longer time. The
σ1(t) grows exponentially, making a straight line on this log plot. The computed
σ2(t) starts growing with the same exponential rate as σ1 when roundoff takes
over. A correct computation would show σ3(t) decreasing exponentially and
σ2(t) neither growing nor decaying. Bottom: A beautiful picture of the butterfly
shaped Lorentz attractor. It is just a three dimensional plot of the solution curve.
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Looking at the numbers, we get the overall impression that they are growing in
an irregular way. The graph shows that the numbers have simple exponential
growth with fine scale irregularities superposed. It could take hours to get that
information directly from the numbers.

It can be a challenge to make visual sense of higher dimensional data. For
example, we could make graphs of x(t) (Figure 8.2), y(t) and z(t) as functions
of t, but the single three dimensional plot in the lower frame of Figure 8.4 makes
is clearer that the solution goes sometimes around the left wing and sometimes
around the right. The three dimensional plot (plot3 in Matlab) illuminates the
structure of the solution better than three one dimensional plots.

There are several ways to visualize functions of two variables. A contour plot
draws several contour lines, or level lines, of a function u(x, y). A contour line for
level uk is the set of points (x, y) with u(x, y) = uk. It is common to take about
ten uniformly spaced values uk, but most contour plot programs, including the
Matlab program contour, allow the user to specify the uk. Most contour lines
are smooth curves or collections of curves. For example, if u(x, y) = x2 − y2,
the contour line u = uk with uk 6= 0 is a hyperbola with two components. An
exception is uk = 0, the contour line is an ×.

A grid plot represents a two dimensional rectangular array of numbers by
colors. A color map assigns a color to each numerical value, that we call c(u). In
practice, usually we specify c(u) by giving RGB values, c(u) = (r(u), g(u), b(u)),
where r, g, and b are the intensities for red, green and blue respectively. These
may be integers in a range (e.g. 0 to 255) or, as in Matlab, floating point
numbers in the range from 0 to 1. Matlab uses the commands colormap and
image to establish the color map and display the array of colors. The image is
an array of boxes. Box (i, j) is filled with the color c(u(i, j)).

Surface plots visualize two dimensional surfaces in three dimensional space.
The surface may be the graph of u(x, y). The Matlab commands surf and surfc
create surface plots of graphs. These look nice but often are harder to interpret
than contour plots or grid plots. It also is possible to plot contour surfaces of
a function of three variables. This is the set of (x, y, z) so that u(x, y, z) = uk.
Unfortunately, it is hard to plot more than one contour surface at a time.

Movies help visualize time dependent data. A movie is a sequence of frames,
with each frame being one of the plots above. For example, we could visualize
the Lorentz attractor with a movie that has the three dimensional butterfly
together with a dot representing the position at time t.

The default in Matlab, and most other quality visualization packages, is
to render the user’s data as explicitly as possible. For example, the Matlab
command plot(u) will create a piecewise linear “curve” that simply connects
successive data points with straight lines. The plot will show the granularity of
the data as well as the values. Similarly, the grid lines will be clearly visible in a
color grid plot. This is good most of the time. For example, the bottom frame
of Figure 8.4 clearly shows the granularity of the data in the wing tips. Since
the curve is sampled at uniform time increments, this shows that the trajectory
is moving faster at the wing tips than near the body where the wings meet.
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Some plot packages offer the user the option of smoothing the data using
spline interpolation before plotting. This might make the picture less angu-
lar, but it can obscure features in the data and introduce artifacts, such as
overshoots, not present in the actual data.

8.9 Resources and further reading

There is a beautiful discussion of computational methods for ordinary differen-
tial equations in Numerical Methods by Åke Björk and Germund Dahlquist. It
was Dahlquist who created much of our modern understanding of the subject. A
more recent book is A First Course in Numerical Analysis of Differential Equa-
tions by Arieh Iserles. The book Numerical Solution of Ordinary Differential
Equations by Lawrence Shampine has a more practical orientation.

There is good public domain software for solving ordinary differential equa-
tions. A particularly good package is LSODE (google it).

The book by Sans-Serna explains symplectic integrators and their appli-
cation to large scale problems such as the dynamics of large scape biological
molecules. It is an active research area to understand the quantitative relation-
ship between long time simulations of such systems and the long time behavior
of the systems themselves. Andrew Stuart has written some thoughtful papers
on the subject.

The numerical solution of partial differential equations is a vast subject with
many deep specialized methods for different kinds of problems. For computing
stresses in structures, the current method of choice seems to be finite element
methods. For fluid flow and wave propagation (particularly nonlinear), the ma-
jority relies on finite difference and finite volume methods. For finite differences,
the old book by Richtmeyer and Morton still merit though there are more up
to date books by Randy LeVeque and by Bertil Gustavson, Heinz Kreiss, and
Joe Oliger.

8.10 Exercises

1. We compute the second error correction u2(t) in (8.13). For simplicity,
consider only the scalar equation (n = 1). Assuming the error expansion,
we have

f(xk) = f(x̃k + ∆tu1(tk) + ∆t2u2(tk) +O(∆t3))
≈ f(x̃k) + f ′(x̃k)

(
∆t u1(tk) + ∆t2u2(tk)

)
+

1
2
f ′′(x̃k)∆t2u1(tk)2 +O

(
∆t3

)
.

Also

x(tk + ∆t)− x(tk)
∆t

= ẋ(tk) +
∆t
2
ẍ(tk) +

∆t2

6
x(3)(tk) +O

(
∆t3

)
,
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and

∆t
u1(tk + ∆t)− u1(tk)

∆t
= ∆t u̇1(tk) +

∆t2

2
ü1(tk) +O

(
∆t3

)
.

Now plug in (8.13) on both sides of (8.5) and collect terms proportional
to ∆t2 to get

u̇2 = f ′(x(t))u2 +
1
6
x(3)(t) +

1
2
f ′′(x(t))u1(t)2+??? .

2. This exercise confirms what was hinted at in Section 8.1, that (8.19) cor-
rectly predicts error growth even for t so large that the solution has lost
all accuracy. Suppose k = R/∆t2, so that tk = R/∆t. The error equation
(8.19) predicts that the forward Euler approximation xk has grown by a
factor of eR/2 although the exact solution has not grown at all. We can
confirm this by direct calculation. Write the forward Euler approxima-
tion to (8.18) in the form xk+1 = Axk, where A is a 2 × 2 matrix that
depends on ∆t. Calculate the eigenvalues of A up to second order in ∆t:
λ1 = 1 + i∆t+ a∆t2 +O(∆t3), and λ2 = 1− i∆t+ b∆t2 +O(∆t3). Find
the constants a and b. Calculate µ1 = ln(λ1) = i∆t + c∆t2 + O(∆t3)
so that λ1 = exp(i∆t + c∆t2 + O(∆t3)). Conclude that for k = R/∆t2,
λk1 = exp(kµ1) = eiR/∆teR/2+O(∆t), which shows that the solution has
grown by a factor of nearly eR/2 as predicted by (8.19). This s**t is good
for something!

3. Another two stage second order Runge Kutta method sometimes is called
the modified Euler method. The first stage uses forward Euler to predict
the x value at the middle of the time step: ξ1 = ∆t

2 f(xk, tk) (so that
x(tk + ∆t/2) ≈ xk + ξ1). The second stage uses the midpoint rule with
that estimate of x(tk + ∆t/2) to step to time tk+1: xk+1 = xk + ∆t f(tk +
∆t
2 , xk + ξ1). Show that this method is second order accurate.

4. Show that applying the four stage Runge Kutta method to the linear
system (8.30) is equivalent to approximating the fundamental solution
S(∆t) = exp(∆t A) by its Taylor series in ∆t up to terms of order ∆t4

(see Exercise ??). Use this to verify that it is fourth order for linear
problems.

5. Write a C/C++ program that solves the initial value problem for (8.1),
with f independent of t, using a constant time step, ∆t. The arguments
to the initial value problem solver should be T (the final time), ∆t (the
time step), f(x) (specifying the differential equations), n (the number
of components of x), and x0 (the initial condition). The output should
be the approximation to x(T ). The code must do something to preserve
the overall order of accuracy of the method in case T is not an integer
multiple of ∆t. The code should be able to switch between the three
methods, forward Euler, second order Adams Bashforth, forth order four



8.10. EXERCISES 191

state Runge Kutta, with a minimum of code editing. Hand in output for
each of the parts below showing that the code meets the specifications.

(a) The procedure should return an error flag or notify the calling routine
in some way if the number of time steps called for is negative or
impossibly large.

(b) For each of the three methods, verify that the coding is correct by
testing that it gets the right answer, x(.5) = 2, for the scalar equation
ẋ = x2, x(0) = 1.

(c) For each of the three methods and the test problem of part b, do a
convergence study to verify that the method achieves the theoretical
order of accuracy. For this to work, it is necessary that T should be
an integer multiple of ∆t.

(d) Apply your code to problem (8.18) with initial data x0 = (1, 0)∗.
Repeat the convergence study with T = 10.

6. Verify that the recurrence relation (8.39) is unstable.

(a) Let z be a complex number. Show that the sequence xk = zk satisfies
(8.39) if and only if z satisfies 0 = p(z) = z3 + 3

2z
2 − 3z + 1

2 .

(b) Show that xk = 1 for all k is a solution of the recurrence relation.
Conclude that z = 1 satisfies p(1) = 0. Verify that this is true.

(c) Using polynomial division (or another method) to factor out the
known root z = 1 from p(z). That is, find a quadratic polynomial,
q(z), so that p(z) = (z − 1)q(z).

(d) Use the quadratic formula and a calculator to find the roots of q as

z = −5
4 ±

√
41
16 ≈ −2.85, .351.

(e) Show that the general formula xk = azk1 + bzk2 + czk3 is a solution to
(8.39) if z1, z2, and z3 are three roots z1 = 1, z2 ≈ −2.85, z3 ≈ .351,
and, conversely, the general solution has this form. Hint: we can find
a, b, c by solving a vanderMonde system (Section 7.4) using x0, x1,
and x2.

(f) Assume that |x0| ≤ 1, |x1| ≤ 1, and |x2| ≤ 1, and that b is on the
order of double precision floating point roundoff (εmach) relative to
a and c. Show that for k > 80, xk is within εmach of bzk2 . Conclude
that for k > 80, the numerical solution has nothing in common with
the actual solution x(t).

7. Applying the implicit trapezoid rule (8.47) to the scalar model problem
(8.31) results in uk+1 = m(λ∆t)uk. Find the formula for m and show that
|m| ≤ 1 if Re(λ) ≤ 0, so that |uk+1| ≤ |uk|. What does this say about the
applicibility of the trapezoid rule to stiff problems?

8. Exercise violating time step constraint.
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9. Write an adaptive code in C/C++ for the initial value problem (8.1) (8.2)
using the method described in Section 8.4 and the four stage fourth order
Runge Kutta method. The procedure that does the solving should have
arguments describing the problem, as in Exercise 5, and also the local
truncation error level, e. Apply the method to compute the trajectory
of a comet. In nondimensionalized variables, the equations of motion are
given by the inverse square law:

d2

dt2

(
r1

r2

)
=

−1

(r2
1 + r2

2)3/2

(
r1

r2

)
.

We always will suppose that the comet starts at t = 0 with r1 = 10,
r2 = 0, ṙ1 = 0, and ṙ2 = v0. If v0 is not too large, the point r(t) traces
out an ellipse in the plane15. The shape of the ellipse depends on v0. The
period, P (v0), is the first time for which r(P ) = r(0) and ṙ(P ) = ṙ(0).
The solution r(t) is periodic because it has a period.

(a) Verify the correctness of this code by comparing the results to those
from the fixed time step code from Exercise 5 with T = 30 and
v0 = .2.

(b) Use this program, with a small modification to compute P (v0) in
the range .01 ≤ v0 ≤ .5. You will need a criterion for telling when
the comet has completed one orbit since it will not happen that
r(P ) = r(0) exactly. Make sure your code tests for and reports
failure16.

(c) Choose a value of v0 for which the orbit is rather but not extremely
elliptical (width about ten times height). Choose a value of e for
which the solution is rather but not extremely accurate – the error is
small but shows up easily on a plot. If you set up your environment
correctly, it should be quick and easy to find suitable paramaters
by trial and error using Matlab graphics. Make a plot of a single
period with two curves on one graph. One should be a solid line
representing a highly accurate solution (so accurate that the error is
smaller than the line width – plotting accuracy), and the other being
the modestly accurate solution, plotted with a little “o” for each time
step. Comment on the distribution of the time step points.

(d) For the same parameters as part b, make a single plot of that contains
three curves, an accurate computation of r1(t) as a function of t (solid
line), a modestly accurate computation of r1 as a function of t (“o”
for each time step), and ∆t as a function of t. You will need to use a
different scale for ∆t if for no other reason than that it has different
units. Matlab can put one scale in the left and a different scale on

15Isaac Newton formulated these equations and found the explicit solution. Many aspects
of planetary motion – elliptical orbits, sun at one focus, |r| θ̇ = const – had beed discovered
observationally by Johannes Keppler. Newton’s inverse square law theory fit Keppler’s data.

16This is not a drill.
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the right. It may be necessary to plot ∆t on a log scale if it varies
over too wide a range.

(e) Determine the number of adaptive time stages it takes to compute
P (.01) to .1% accuracy (error one part in a thousand) and how many
fixed ∆t time step stages it takes to do the same. The counting will
be easier if you do it within the function f .

10. The vibrations of a two dimensional crystal lattice may be modelled in a
crude way using the differential equations17

r̈jk = rj−1,k + rj+1,k + rj,k−1 + rj,k+1 − 4rjk . (8.51)

Here rjk(t) represents the displacement (in the vertical direction) of an
atom at the (j, k) location of a square crystal lattice of atoms. Each atom
is bonded to its four neighbors and is pulled toward them with a linear
force. A lattice of size L has 1 ≤ j ≤ L and 1 ≤ k ≤ L. Apply reflecting
boundary conditions along the four boundaries. For example, the equation
for r1,k should use r0,k = r1,k. This is easy to implement using a ghost
cell strategy. Create ghost cells along the boundary and copy appropriate
values from the actual cells to the ghost cells before each evaluation of
f . This allows you to use the formula (8.51) at every point in the lattice.
Start with initial data rjk(0) = 0 and ṙjk(0) = 0 for all j, k except ṙ1,1 = 1.
Compute for L = 100 and T = 300. Use the fourth order Runge Kutta
method with a fixed time step ∆t = .01. Write the solution to a file every
.5 time units then use Matlab to make a movie of the results, with a 2D
color plot of the solution in each frame. The movie should be a circular
wave moving out from the bottom left corner and bouncing off the top and
right boundaries. There should be some beautiful wave patterns inside the
circle that will be hard to see far beyond time t = 100. Hand in a few
of your favorite stills from the movie. If you have a web site, post your
movie for others to enjoy.

17This is one of Einstein’s contributions to science.
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Monte Carlo means using random numbers in scientific computing. More
precisely1, it means using random numbers as a tool to compute something that
is not random. We emphasize this point by distinguishing between Monte Carlo
and simulation. Simulation means producing random variables with a certain
distribution just to look at them. For example, we might have a model of a
random process that produces clouds. We could simulate the model to generate
cloud pictures, either out of scientific interest or for computer graphics. As soon
as we start asking quantitative questions about, say, the average size of a cloud
or the probability that it will rain, we move from pure simulation to Monte
Carlo.

Many Monte Carlo computations have the following form. We express A,
the quantity of interest, in the form

A = Ef [V (X)] . (9.1)

This notation means2 means that X is a random variable or collection of random
variables whose joint distribution is given by f , and V (x) is some scalar quantity
determined by x. For example, x could be the collection of variables describing
a random cloud and V (x) could be the total moisture. The notation X ∼ f
means that X has the distribution f , or is a sample or f .

A Monte Carlo code generates a large number of samples of f , writtenXk, for
k = 1, . . . , N . Sections 9.2 and 9.3 describe how this is done. The approximate
answer is

A ≈ ÂN =
1
N

N∑
k=1

V (Xk) . (9.2)

Section 9.4 discusses the error in (9.2). The error generally is of the order of
N−1/2, which means that it takes roughly four times the computation time
to double the accuracy of a computation. By comparison, the least accurate
integration method in Chapter 3 is the first order rectangle rule, with error
roughly proportional to 1/N .

The total error is the sum of the bias (error in the expected value of the
estimator),

eb = E
[
ÂN

]
−A ,

and the statistical error,
es = ÂN − E

[
ÂN

]
.

The equation (9.1) states that the estimator (9.2) is unbiased, which means
that the error is purely statistical. If the samples Xk are independent of each
other, the error is roughly proportional to the standard deviation, which is the
square root of the variance of the random variable V (X) when X ∼ f :

σ =
√

varf (V (X)) . (9.3)

1This helpful definition is given in the book by Mal Kalos and Paula Whitlock.
2The notation used here is defined in Section 9.1 below.
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More sophisticated Monte Carlo estimators have bias as well as statistical error,
but the statistical error generally is much larger. For example, Exercise 1 dis-
cusses estimators that have statistical error of order 1/N1/2 and bias of order
1/N .

There may be other ways to express A in terms of a random variable. That
is, there may be a random variable, Y ∼ g, with distribution g and a function W
so that A = Eg[W (Y )]. This is variance reduction if varg[W (Y )] < varf [V (X)].
We distinguish between Monte Carlo and simulation to emphasize that variance
reduction in Monte Carlo is possible. Even simple variance reduction strategies
can make a big difference in computation time.

Given a choice between Monte Carlo and deterministic methods, the de-
terministic method usually is better. The large O(1/

√
N) statistical errors

in Monte Carlo usually make it slower and less accurate than a deterministic
method. For example, if X is a one dimensional random variable with proba-
bility density f(x), then

A = E[V (X)] =
∫
V (x)f(x)dx .

Estimating the integral by deterministic panel methods as in Section ?? (error
roughly proportional to 1/N for a first order method, 1/N2 for second order,
etc.) usually estimates A to a given accuracy at a fraction of the cost of Monte
Carlo. Deterministic methods are better than Monte Carlo in most situations
where the deterministic methods are practical.

We use Monte Carlo because of the curse of dimensionality. The curse is
that the work to solve a problem in many dimensions may grow exponentially
with the dimension. For example, consider integrating over ten variables. If we
use twenty points in each coordinate direction, the number of integration points
is 2010 ≈ 1013, which is on the edge of what a computer can do in a day. A
Monte Carlo computation might reach the same accuracy with only, say, 106

points. There are many high dimensional problems that can be solved, as far
as we know, only by Monte Carlo.

Another curse of high dimensions is that some common intuitions fail. This
can lead to Monte Carlo algorithms that may work in principle but also are
exponentially slow in high dimensions. An example is in Section 9.3.7. The
probability that a point in a cube falls inside a ball is less than 10−20 in 40
dimensions, which is to say that it will never happen even on a teraflop computer.

One favorable feature of Monte Carlo is that it is possible to estimate the or-
der of magnitude of statistical error, which is the dominant error in most Monte
Carlo computations. These estimates are often called error bars because they
are indicated as bars on plots. Error bars are statistical confidence intervals,
which rely on elementary or sophisticated statistics depending on the situation.
It is dangerous and unprofessional to do a Monte Carlo computation without
calculating error bars. The practitioner should know how large the error is
likely to be, even if he or she does not include that information in non-technical
presentations.
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In Monte Carlo, simple clever ideas can lead to enormous practical improve-
ments in efficiency and accuracy. This is the main reason I emphasize so strongly
that, while A is given, the algorithm for estimating it is not. The search for more
accurate alternative algorithms is often called “variance reduction”. Common
variance reduction techniques are importance sampling, antithetic variates, and
control variates.

Many of the examples below are somewhat artificial because I have chosen
not to explain specific applications. The techniques and issues raised here in
the context of toy problems are the main technical points in many real applica-
tions. In many cases, we will start with the probabilistic definition of A, while
in practice, finding this is part of the problem. There are some examples in
later sections of choosing alternate definitions of A to improve the Monte Carlo
calculation.

9.1 Quick review of probability

This is a quick review of the parts of probability needed for the Monte Carlo
material discussed here. Please skim it to see what notation we are using and
check Section 9.7 for references if something is unfamiliar.

9.1.1 Probabilities and events

Probability theory begins with the assumption that there are probabilities asso-
ciated to events. Event B has probability Pr(B), which is a number between 0
and 1 describing what fraction of the time event B would happen if we could
repeat the experiment many times. Pr(B) = 0 and Pr(B) = 1 are allowed. The
exact meaning of probabilities is debated at length elsewhere.

An event is a set of possible outcomes. The set of all possible outcomes is
called Ω and particular outcomes are called ω. Thus, an event is a subset of the
set of all possible outcomes, B ⊆ Ω. For example, suppose the experiment is to
toss four coins (a penny, a nickel, a dime, and a quarter) on a table and record
whether they were face up (heads) or face down (tails). There are 16 possible
outcomes. The notation THTT means that the penny was face down (tails), the
nickel was up, and the dime and quarter were down. The event “all heads” con-
sists of a single outcome, HHHH. The event B = “more heads than tails” con-
sists of the five outcomes: B = {HHHH,THHH,HTHH,HHTH,HHHT}.

The basic set operations apply to events. For example the intersection of
events B and C is the set of outcomes both in B and in C: ω ∈ B ∩ C means
ω ∈ B and ω ∈ C. For that reason, B ∩ C represents the event “B and
C”. For example, if B is the event “more heads than tails” above and C is
the event “the dime was heads”, then C has 8 outcomes in it, and B ∩ C =
{HHHH,THHH,HTHH,HHHT}. The set union, B ∪ C is ω ∈ B ∪ C if
ω ∈ B or ω ∈ C, so we call it “B or C”. One of the axioms of probability is

Pr(B ∪ C) = Pr(B) + Pr(C) , if B ∩ C is empty.
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This implies the intuitive fact that

B ⊂ C =⇒ Pr(B) ≤ Pr(C) ,

for if D is the event “C but not B”, then B ∩D is empty, so Pr(C) = Pr(B) +
Pr(D) ≥ Pr(D). We also suppose that Pr(Ω) = 1, which means that Ω includes
every possible outcome.

The conditional “probability of B given C” is given by Bayes’ formula:

Pr(B | C) =
Pr(B ∩ C)

Pr(C)
=

Pr(B and C)
Pr(C)

(9.4)

Intuitively, this is the probability that a C outcome also is a B outcome. If we
do an experiment and ω ∈ C, Pr(B | C) is the probability that ω ∈ B. The
right side of (9.4) represents the fraction of C outcomes that also are in B. We
often know Pr(C) and Pr(B | C), and use (9.4) to calculate Pr(B ∩ C). Of
course, Pr(C | C) = 1. Events B and C are independent if Pr(B) = Pr(B | C),
which is the same as Pr(B ∩C) = Pr(B)Pr(C), so B being independent of C is
the same as C being independent of B.

The probability space Ω is finite if it is possible to make a finite list3 of all the
outcomes in Ω: Ω = {ω1, ω2, . . . , ωn}. The space is countable if it is possible to
make a possibly infinite list of all the elements of Ω: Ω = {ω1, ω2, . . . , ωn, . . .}.
We call Ω discrete in both cases. When Ω is discrete, we can specify the prob-
abilities of each outcome

fk = Pr(ω = ωk) .

Then an event B has probability

Pr(B) =
∑
ωk∈B

Pr(ωk) =
∑
ωk∈B

fk .

9.1.2 Random variables and distributions

A discrete random variable4 is a number, X(ω), that depends on the random
outcome, ω. In the coin tossing example, X(ω) could be the number of heads.
The expected value is (defining xk = X(ωk))

E[X] =
∑
ω∈Ω

X(ω)Pr(ω) =
∑
ωk

xkfk .

The distribution of a discrete random variable is determined by the values xk and
the probabilities fk. Two discrete random variables have the same distribution
if they have the same xk and fk. It often happens that the possible values xk
are understood and only the probabilities fk are unknown, for example, if X is
known to be an integer. We say that f (the numbers fk) is the distribution of
X if Pr(X = xk) = fk. We write this as X ∼ f , and say that X is a sample

3Warning: this list is impractically large even in common simple applications.
4Warning: sometimes ω is the random variable and X is a function of a random variable.
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of f . If X ′ is another random variable, we write X ′ ∼ X and say that X ′ is a
sample of X if X ′ and X have the same distribution.

Random variables X ′ and X are independent if any event determined by X ′ is
independent of any event determined by X. If X ′ and X are independent, then
they are uncorrelated, which means that E[X ′X] = E[X ′]E[X]. The converse is
not true (example below). Let X1, . . ., XN be a sequence of random variables.
We say the Xj are independent if any collection of them is independent of any
disjoint collection. This is not the same as saying that Xj is independent of
Xi whenever j 6= i. We say the Xj are i.i.d. (for “independent, identically
distributed”) samples of X if they are independent and Xj ∼ X for each j.

A complicated random variable or collection of random variables may be
called an experiment. For example, we might consider the experiment of gener-
ating N independent samples of X and dividing the largest one by the small-
est. More precisely, let Xj for 1 ≤ j ≤ N be i.i.d. samples of X, define
Xmax = max1≤j≤N Xj and Xmin = min1≤j≤N Xj , and Y = Xmax/Xmin. Re-
peating the experiment means generating a Y ′ that is an independent sample of
Y .

A bivariate random variable is a two component vector, X = (X1, X2). The
distribution of X is determined by the probabilities fjk = Pr(X1 = xj and X2 =
xk). A random variable with two or more components is multicomponent. Bi-
variate random variables X and X ′ have the same distribution if fjk = f ′jk for
all j, k.

A continuous random variable may be described by a probability density,
f(x), written X ∼ f . We say X ∼ f if Pr(X ∈ B) =

∫
B
f(x)dx for any

measurable5 set B. If X = (X1, . . . , Xn) is a multivariate random variable
with n components, then B ⊆ Rn. If V (x) is a function of n variables, then
E[V (X)] =

∫
Rn

V (x)f(x)dx.
If X is an n component random variable and Y is an m component random

variable, then the pair (X,Y ) is a random variable with n + m components.
The probability density h(x, y) is the joint density of X and Y . The marginal
densities f and g, with X ∼ f and Y ∼ g, are given by f(x) =

∫
h(x, y)dy, and

g(y) =
∫
h(x, y)dx. The random variables X and Y , are independent if and only

if h(x, y) = f(x)g(y). The scalar random variables V = V (X) and W = W (Y )
are uncorrelated if E[VW ] = E[V ]E[W ]. The random variables X and Y are
independent if and only if V (X) is independent of W (Y ) for any (measurable)
functions V and W .

If X is a univariate random variable with probability density f(x), then
it has CDF, or cumulative distribution function (or just distribution function),
F (x) = Pr(X ≤ x) =

∫
x′≤x f(x′)dx′. The distribution function of a discrete

random variable is F (x) = Pr(X ≤ x) =
∑
xk≤x fk. Two random variables have

the same distribution if they have the same distribution function. It may be con-
venient to calculate probability density f(x) by first calculating the distribution

5It is an annoying technicality in probability theory that there may be sets or functions
that are so complicated that they are not measurable. If the set B is not measurable, then we
do not define Pr(B). None of the functions or sets encountered in applied probability fail to
be measurable.
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function, F (x), then using

f(x)dx =
∫ x+dx

x

f(x′)dx′ = F (x+ dx)− F (x) = Pr(x ≤ X ≤ x+ dx) .

If V (X) is a multicomponent function of the possibly multicomponent ran-
dom variable X, then E[V (X)] is the vector whose components are the expected
values of the components of V . We write this in vector notation simply as

µ = E[V (X)] =
∫
x∈Rn

V (x)f(x)dx .

Here V f is the product of the vector, V with the scalar, f .
For a scalar random variable, the variance is

σ2 = var[X] = E
[
(X − µ)2

]
=
∫ ∞
−∞

(x− µ)2
f(x)dx = E

[
X2
]
− µ2 .

The variance is non-negative, and σ2 = 0 only if X is not random. For a
multicomponent random variable, the covariance matrix is the symmetric n×n
matrix,

C = E
[
(X − µ) (X − µ)∗

]
=
∫
Rn

(x− µ) (x− µ)∗ f(x)dx . (9.5)

The diagonal entries of C are the variances

Cjj = σ2
j = var[Xj ] = E

[
(Xj − µj)2

]
.

The off diagonal entries are the covariances

Cjk = E [(Xj − µj) (Xk − µk)] = cov [Xj , Xk] .

The covariance matrix is positive semidefinite in the sense that for any y ∈
Rn, y∗Cy ≥ 0. To see this, for any y, we can define the scalar random variable
V = y∗X. Up to a scaling, V is the component of X in the direction y. Then
we have the formula

y∗Cy = var[V ] ≥ 0 .

If y 6= 0 and y∗Cy = var[V ] = 0, then V = y∗X is equal to y∗µ and is not
random. This means that either C is positive definite or X always lies on the
hyperplane y∗X = C = y∗µ. The formula follows from (9.5)6:

y∗Cy = y∗ (E [(X − µ)(X − µ)∗]) y
= E

[(
y∗(X − µ)

)(
(X − µ)∗y

)]
= E [y∗XX∗µ]− (y∗µµ∗y)

= E
[
V 2
]
− (E [V ])2

= var[V ] .
6We also use the fact that y∗XX∗y = (y∗X) (X∗y) = (y∗X)2, by the associativity of

matrix and vector multiplication and the fact that y∗X is a scalar.



202 CHAPTER 9. MONTE CARLO METHODS

9.1.3 Common random variables

There are several probability distributions that are particularly important in
Monte Carlo. They arise in common applications, and they are useful technical
tools.

Uniform

A uniform random variable is equally likely to anywhere inside its allowed range.
In one dimension, a univariate random variable U is uniformly distributed in
the interval [a, b] if it has probability density f(u) with f(u) = 0 for u /∈ [a, b]
and f(x) = 1/(b− a) if a ≤ x ≤ b. The standard uniform has b = 1 and a = 0.
The standard uniform is important in Monte Carlo because that is what random
number generators try to produce. In higher dimensions, let B be a set with
area b (for n = 2) or volume b (for n ≥ 3). The n component random variable
X is uniformly distributed if its probability density has the value f(x) = b for
x ∈ B and f(x) = 0 otherwise.

Exponential

The exponential random variable, T , with rate constant λ > 0, has probability
density,

f(t) =
{
λe−λt if 0 ≤ t
0 if t < 0. (9.6)

The exponential is a model for the amount of time something until happens
(e.g. how long a light bulb will function before it breaks). It is characterized by
the Markov property, if it has not happened by time t, it is as good as new. To
see this, let λ = f(0), which means λdt = Pr(0 ≤ T ≤ dt). The random time T
is exponential if all the conditional probabilities are equal to this:

Pr(t ≤ T ≤ t+ dt | T ≥ t) = Pr(T ≤ dt) = λdt .

Using Bayes’ rule (9.4), and the observation that Pr(T ≤ t + dt and T ≥ t) =
f(t)dt, this becomes

λdt =
f(t)dt

Pr(T > t)
=

f(t)dt
1− F (t)

,

which implies λ (1− F (t)) = f(t). Differentiating this gives −λf(t) = f ′(t),
which implies that f(t) = Ce−λt for t > 0. We find C = λ using

∫∞
0
f(t)dt = 1.

Independent exponential inter arrival times generate the Poisson arrival
processes. Let Tk, for k = 1, 2, . . . be independent exponentials with rate λ.
The kth arrival time is

Sk =
∑
j≤k

Tj .

The expected number of arrivals in interval [t1, t2] is λ(t2 − t1) and all arrivals
are independent. This is a fairly good model for the arrivals of telephone calls
at a large phone bank.
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Gaussian, or normal

We denote the standard normal by Z. The standard normal has PDF

f(z) =
1√
2π
e−z

2/2 . (9.7)

The general normal with mean µ and variance σ2 is given by X = σZ + µ and
has PDF

f(x) =
1√

2πσ2
e−(x−µ)2/2σ2

. (9.8)

We write X ∼ N (µ, σ2) in this case. A standard normal has distribution
N (0, 1). An n component random variable, X, is a multivariate normal with
mean µ and covariance C it has probability density7

f(x) =
1
Z

exp (−(x− µ)∗H(x− µ)/2) , (9.9)

where H = C−1 and the normalization constant is (we don’t use this) Z =
1/
√

(2π)ndet(C). The reader should check that this is the same as (9.8) when
n = 1.

The class of multivariate normals has the linear transformation property.
Suppose L is an m× n matrix with rank m (L is a linear transformation from
Rn to Rm that is onto Rm). If X is an n dimensional multivariate normal, then
Y is an m dimensional multivariate normal. The covariance matrix for Y is
given by

CY = LCXL
∗ . (9.10)

We derive this, taking µ = 0 without loss of generality (why?), as follows:

CY = E [Y Y ∗] = E
[
(LX) ((LX)∗

]
= E [LXX∗L∗] = LE [XX∗]L∗ = LCXL

∗ .

9.1.4 Limit theorems

The two important theorems for simple Monte Carlo are the law of large numbers
and the central limit theorem. Suppose A = E[X], that the Xk for k = 1, 2, . . .
are iid samples of X, and ÂN is the basic estimator (9.2). The law of large
numbers states8 that ÂN → A as N →∞.

More generally, let ÂN be a family of Monte Carlo estimators of A. (See
Exercise 1 for other estimators.) As usual, the ÂN are random but A is not.
The estimators are consistent if ÂN → A as N →∞. The law of large numbers
states that the estimators (9.2) are consistent.

7The Z here is a normalization constant, not a standard normal random variable. The
double use of Z is unfortunately standard.

8More precisely, the Kolmogorov strong law of large numbers states that limN→∞ bAN = A
almost surely, i.e. that the probability of the limit not existing or being the wrong answer is

zero. More useful for us is the weak law, which states that, for any ε > 0, P (
˛̨̨ bAN −A

˛̨̨
> ε)→ 0

as N →∞. These are related but they are not the same.
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Let V be a random variable with mean A and variance σ2. Let Vk be
independent samples of V , and ÂN = 1

N

∑N
k=1 Vk, and RN = ÂN − A. A

simple calculation shows that E[RN ] = 0 and var[RN ] = σ2/N . The central
limit theorem states that for large N , the distribution of RN is approximately
normal with that mean and variance. That is to say that the distribution of
RN is approximately the same as that of σZ/

√
N with Z ∼ N (0, 1). The

same relation may be expressed as saying that RN has approximately the same
distribution as

(
σ/
√
N
)
Z. In this form, it says that the error in a Monte Carlo

computation is of the order of 1/
√
N with a prefactor of σ and a random, but

Gaussian, contribution. See Section 9.4.

9.1.5 Markov chains

A discrete time Markov chain with m states is characterized by an m × m
transition matrix, P . The time variable, t, is an integer. The state at time t is
X(t), which is one of the numbers 1, . . . ,m. The entries of P are the transition
probabilities

pjk = Pr(X(t+ 1) = k | X(t) = j) . (9.11)

Once the initial state, X(0), is given, we simulate the Markov chain by choosing
successively X(1), then X(2), etc. satisfying the transition probabilities (9.11).

A continuous time Markov chain with m states is given by an m×m matrix
of transition rates, rjk. The time variable, t, is continuous and X(t) is the state
at time t. If j 6= k then

rjk = Rate(j → k) , rjkdt = Pr((X(t+ dt) = k | X(t) = j) . (9.12)

We usually define the diagonal entries of the transition rate matrix to be rjj =
−
∑
k 6=j rjk. With this convention, the occupation probabilities, fj(t) = Pr(X(t) =

j), satisfy
dfj
dt

=
m∑
k=1

fk(t)rkj .

A common way to simulate a continuous time Markov chain is to use the
embedded discrete time chain. Suppose the state at time t is X(t) = j. Then
the time until the next transition is an exponential random variable with rate
λj =

∑
k 6=j rjk. The probability that this transition is to state k is

pjk =
rjk∑
l 6=j rjl

. (9.13)

To simulate the continuous chain, we start with the given j0 = X(0). We choose
T1 to be an exponential with rate parameter λj0 . We set S1 = T1 and choose9

X(S1) = k = j1 according to the probabilities (9.13). Suppose the time of

9If Si is the time of the ith transition, we set X(Si) to be the new state rather than the old
one. This convention is called CADLAG, from the French continue a droit, limite a gauche
(continuous from the right, limit from the left).
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the nth transition is Sn and the transition takes us to state jn. The time to
the next transition is Tn1 , which is an exponential with rate parameter λjn .
The next state is jn+1 = k with probability pjn,k. The next transition time is
Sn+1 = Sn + Tn.

9.2 Random number generators

The random variables used in Monte Carlo are generated by a (pseudo) random
number generator. The procedure double rng() is a perfect random number
generator if

for( k=0; k<n; k++ ) U[k] = rng();

produces an array of iid standard uniform random variables. The best available
random number generators are nearly perfect in this sense for most Monte Carlo
applications. The native C/C++ procedure random() is good enough for most
Monte Carlo (I use it).

Bad ones, such as the native rand() in C/C++ and the procedure in Numer-
ical Recipes give incorrect results in common simple cases. If there is a random
number generator of unknown origin being passed from person to person in the
office, do not use it (without a condom).

The computer itself is not random. A pseudo random number generator
simulates randomness without actually being random. The seed is a collection of
m integer variables: int seed[m];. Assuming standard C/C++ 32 bit integers,
the number of bits in the seed is 32 ·m. There is a seed update function Φ(s) and
an output function Ψ(s). The update function produces a new seed: s′ = Φ(s).
The output function produces a floating point number (check the precision)
u = Ψ(s) ∈ [0, 1]. One call u = rng(); has the effect

s←− Φ(s) ; return u = Ψ(s) ; .

The random number generator should come with procedures s = getSeed();
and setSeed(s);, with obvious functions. Most random number generators set
the initial seed to the value of the system clock as a default if the program
has no setSeed(s); command. We use setSeed(s) and getSeed() for two
things. If the program starts with setSeed(s);, then the sequence of seeds and
“random” numbers will be the same each run. This is helpful in debugging and
reproducing results across platforms. Most random number generators have a
built-in way to get the initial seed if the program does not set one. One common
way is to use the least significant bits from the system clock. In this way, if
you run the program twice, the results will be different. The results of Figure
?? were obtained in that way. It sometimes is recommended to “warm up” the
random number generator by throwing away the first few numbers:

setSeed(17};// Start with the seed equal to 17.
int RandWarmUp = 100;
for ( int i = 0; i < RandWarmUp; i++)

rng(); // Throw away the first RandWarmUp random numbers.
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This is harmless but with modern random number generators unnecessary. The
other use is checkpointing. Some Monte Carlo runs take so long that there is
a real chance the computer will crash during the run. We avoid losing too
much work by storing the state of the computation to disk every so often. If
the machine crashes, we restart from the most recent checkpoint. The random
number generator seed is part of the checkpoint data.

The simplest random number generators use linear congruences. The seed
represents an integer in the range 0 ≤ s < c and Φ is the linear congruence (a
and b positive integers) s′ = Φ(s) = (as+ b)mod c. If c > 232, then we need
more than one 32 bit integer variable to store s. Both rand() and random()
are of this type, but rand() has m = 1 and random() has m = 4. The output
is u = Ψ(s) = s/c. The more sophisticated random number generators are of a
similar computational complexity.

9.3 Sampling

Sampling means producing random variables with a specified distribution. More
precisely, it means using iid standard uniform random variables produced by a
random number generator to produce samples from other distributions. A sim-
ple sampler is a procedure that produces an independent sample of X each time
it is called. Simple samplers are practical mainly for univariate or low dimen-
sional random variables, or for multivariate normals. Complex high dimensional
random variables often require more advanced techniques such as Markov Chain
Monte Carlo. A large Monte Carlo computation may spend most of its time
in the sampler, and it often is possible to improve the performance by paying
attention to the details of the algorithm and coding. Monte Carlo practitioners
are amply rewarded for time spent fine tuning their samplers.

9.3.1 Bernoulli coin tossing

A Bernoulli random variable with parameter p, or a coin toss, is a random
variable, X, with Pr(X = 1) = p and Pr(X = 0) = 1 − p. If U is a standard
uniform, then p = Pr(U ≤ p). Therefore we can sample X using the code
fragment

X=0; if ( rng() <= p) X=1;

Similarly, we can sample a random variable with finitely many values Pr(X =
xk) = pk (with

∑
k pk = 1) by dividing the unit interval into disjoint sub

intervals of length pk. This is all you need, for example, to simulate a simple
random walk or a finite state space Markov chain.

9.3.2 Exponential

If U is standard uniform, then

T =
−1
λ

ln(U) (9.14)
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is an exponential with rate parameter λ. Before checking this, note first that
U > 0 so ln(U) is defined, and U < 1 so ln(U) is negative and T > 0. Next,
since λ is a rate, it has units of 1/Time, so (9.14) produces a positive number
with the correct units. The code T = -(1/lambda)*log( rng() ); generates
the exponential.

We verify (9.14) using the informal probability method. Let f(t) be the PDF
of the random variable of (9.14). We want to show f(t) = λe−λt for t > 0. Let
B be the event t ≤ T ≤ t+ dt. This is the same as

t ≤ −1
λ

ln(U) ≤ t+ dt ,

which is the same as

−λt− λdt ≤ ln(U) ≤ −λt (all negative),

and, because ex is an increasing function of x,

e−λt−λdt ≤ U ≤ e−λt .

Now, e−λt−λdt = e−λte−λdt, and e−λdt = 1− λdt, so this is

e−λt − λdte−λt ≤ U ≤ e−λt .

But this is an interval within [0, 1] of length λ dt e−λt, so

f(t)dt = Pr(t ≤ T ≤ t+ dt)
= Pr(e−λt − λdte−λt ≤ U ≤ e−λt)
= λ dt e−λt ,

which shows that (9.14) gives an exponential.

9.3.3 Markov chains

To simulate a discrete time Markov chain, we need to make a sequence of random
choices from m possibilities. One way to do this uses the idea behind Bernoulli
sampling. Suppose X(t) = j and we want to choose X(t + 1) according to the
probabilities (9.11). Define the partial sums

sjk =
∑
l<k

pjl ,

so that sj1 = 0, sj2 = pj1 = Pr(X(t+ 1) = 1), sj3 = pj1 + pj2 = Pr(X(t+ 1) =
1 or X(t+1) = 2), etc. The algorithm is to set X(t+1) = k if sjk ≤ U < sj,k+1.
This insures that Pr(X(t + 1) = k) = pjk, since Pr(sjk ≤ U < sj,k+1) =
sj,k+1 − sjk = pjk. In specific applications, the description of the Markov chain
often suggests different ways to sample X(t+ 1).

We can simulate a continuous time Markov chain by simulating the embed-
ded discrete time chain and the transition times. Let Sn be the times at which
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the state changes, the transition times. Suppose the transition is from state
j = X(Sn − 0), which is known, to state k = X(Sn + 0), which must be cho-
sen. The probability of j → k is given by (9.13). The probability of j → j is
zero, since Sn is a transition time. Once we know k, the inter-transition time
is an exponential with rate rkk, so we can take (see (9.14), X is the state and
TRate[j] is λj)

S = S - log( rng() )/ TRate[X]; // Update the time variable.

9.3.4 Using the distribution function

In principle, the CDF provides a simple sampler for any one dimensional prob-
ability distribution. If X is a one component random variable with probability
density f(x), the cumulative distribution function is F (x) = Pr(X ≤ x) =∫
x′≤x f(x′dx′. Of course 0 ≤ F (x) ≤ 1 for all x, and for any u ∈ [0, 1], there

is an x with F (x) = u. The reader can check that if F (X) = U then X ∼ f
if and only if U is a standard uniform. Therefore, if double fSolve( double
u) is a procedure that returns x with f(x) = u, then X = fSolve( rng() );
produces an independent X sample each time. The procedure fSolve might in-
volve a simple formula in simple cases. Harder problems might require Newton’s
method with a careful choice of initial guess. This procedure could be the main
bottleneck of a big Monte Carlo code, so it would be worth the programmer’s
time to spend some time making it fast.

For the exponential random variable,

F (t) = Pr(T ≤ t) =
∫ t

t′=0

λe−λt
′
dt′ = 1− e−λt .

Solving F (t) = u gives t = −1
λ ln(1 − u). This is the same as the sampler we

had before, since 1− u also is a standard uniform.
For the standard normal we have

F (z) =
∫ z

z′=−∞

1√
2π
e−z

′2/2dz′ = N(z) . (9.15)

There is no elementary10 formula for the cumulative normal, N(z), but there is
good software to evaluate it to nearly double precision accuracy, both for N(z)
and for the inverse cumulative normal z = N−1(u). In many applications,11

this is the best way to make standard normals. The general X ∼ N (µ, σ2) may
be found using X = σZ + µ.

10An elementary function is one that can be computed using sums and differences, products
and quotients, exponentials and logs, trigonometric functions, and powers.

11There are applications where the relationship between Z and U is important, not only
the value of Z. These include sampling using normal copulas, and quasi (low discrepancy
sequence) Monte Carlo.
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9.3.5 The Box Muller method

The Box Muller algorithm generates two independent standard normals from
two independent standard uniforms. The formulas are

R =
√
−2 ln(U1)

Θ = 2πU2

Z1 = R cos(Θ)
Z2 = R sin(Θ) .

We can make a thousand independent standard normals by making a thousand
standard uniforms then using them in pairs to generate five hundred pairs of
independent standard normals.

The idea behind the Box Muller method is related to the brilliant elementary
derivation of the formula

∫∞
−∞ e−z

2/2 =
√

2π. Let Z = (Z1, Z2) be a bivariate
normal whose components are independent univariate standard normals. Since
Z1 and Z2 are independent, the joint PDF of Z is

f(z) =
1√
2π
e−z

2
1/2

1√
2π
e−z

2
2/2 =

1
2π
e−(z21+z22)/2 . (9.16)

Let R and Θ be polar coordinates for Z, which means that Z1 = R cos(Θ)
and Z2 = R sin(Θ). From (9.16) it is clear that the probability density is
radially symmetric, so Θ is uniformly distributed in the interval [0, 2π], and Θ
is independent of R. The Distribution function of R is

F (r) = Pr (R ≤ r)

=
∫ r

ρ=0

∫ 2π

θ=0

1
2π
e−ρ

2/2dθρdρ

=
∫ r

ρ=0

e−ρ
2/2ρdρ .

With the change of variables (the trick behind the integral) t = ρ2/2, dt = ρdρ,
this becomes ∫ r2/2

t=0

e−tdt = 1− e−r
2/2 .

To sample R, we solve 1 − U = F (R) (recall that 1 − U is a standard uniform
is U is a standard uniform), which gives R =

√
−2 ln(U), as claimed.

9.3.6 Multivariate normals

Let X ∈ Rn be a multivariate normal random variable with mean zero and
covariance matrix C. We can sample X using the Choleski factorization C =
LLT , where L is lower triangular. Note that L exists because C is symmetric
and positive definite. Let Z ∈ Rn be a vector of n independent standard normals
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generated using Box Muller or any other way. The covariance matrix of Z is I
(check this). Therefore, if

X = LZ , (9.17)

then X is multivariate normal (because it is a linear transformation of a multi-
variate normal) and has covariance matrix (see (9.10))

CX = LILt = C .

If we want a multivariate normal with mean µ ∈ Rn, we simply take X = LZ+µ.
In some applications we prefer to work with H = C−1 than with C. Exercise 6
has an example.

9.3.7 Rejection

The rejection algorithm turns samples from one density into samples of another.
Not only is it useful for sampling, but the idea is the basis of the Metropolis
algorithm in Markov Chain Monte Carlo (See Exercise 7). One ingredient is
a simple sampler for the trial distribution, or proposal distribution. Suppose
gSamp() produces iid samples from the PDF g(x). The other ingredient is
an acceptance probability, p(x), with 0 ≤ p(x) ≤ 1 for all x. The algorithm
generates a trial, X ∼ g, and accepts this trial value with probability p(X).
The process is repeated until the first acceptance. All this happens in

while ( rng() > p( X = gSamp() ) ); (9.18)

We accept X is U ≤ p(X), so U > p(X) means reject and try again. Each time
we generate a new X, which must be independent of all previous ones.

The X returned by (9.18) has PDF

f(x) =
1
Z
p(x)g(x) , (9.19)

where Z is a normalization constant that insures that
∫
f(x)dx = 1:

Z =
∫
x∈Rn

p(x)g(x)dx . (9.20)

This shows that Z is the probability that any given trial will be an acceptance.
The formula (9.19) shows that rejection goes from g to f by thinning out samples
in regions where f < g by rejecting some of them. We verify it informally in
the one dimensional setting:

f(x)dx = Pr ( accepted X ∈ (x, x+ dx))
= Pr ( generated X ∈ (x, x+ dx) | acceptance )

=
Pr ( generated X ∈ (x, x+ dx) and accepted)

Pr ( accepted )

=
g(x)dx p(x)

Z
,
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where Z is the probability that a given trial generates an acceptance. An argu-
ment like this also shows the correctness of (9.19) also for multivariate random
variables.

We can use rejection to generate normals from exponentials. Suppose g(x) =
e−x for x > 0, corresponding to a standard exponential, and f(x) = 2√

2π
e−x

2/2

for x > 0, corresponding to the positive half of the standard normal distribution.
Then (9.19) becomes

p(x) = Z
f(x)
g(x)

= Z · 2√
2π
· e
−x2/2

e−x

p(x) = Z · 2√
2π
ex−x

2/2 . (9.21)

This would be a formula for p(x) if we know the constant, Z.
We maximize the efficiency of the algorithm by making Z, the overall prob-

ability of acceptance, as large as possible, subject to the constraint p(x) ≤ 1 for
all x. Therefore, we find the x that maximizes the right side:

ex−x
2/2 = max =⇒ x− x2

2
= max =⇒ xmax = 1 .

Choosing Z so that the maximum of p(x) is one gives

1 = pmax = Z · 2√
2π
exmax−x2

max/2 = Z
2√
2π
e1/2 ,

so
p(x) =

1√
e
ex−x

2/2 . (9.22)

It is impossible to go the other way. If we try to generate a standard expo-
nential from a positive standard normal we get acceptance probability related
to the reciprocal to (9.21):

p(x) = Z

√
2π
2

ex
2/2−x .

This gives p(x)→∞ as x→∞ for any Z > 0. The normal has thinner12 tails
than the exponential. It is possible to start with an exponential and thin the
tails using rejection to get a Gaussian (Note: (9.21) has p(x)→ 0 as x→∞.).
However, rejection cannot fatten the tails by more than a factor of 1

Z . In
particular, rejection cannot fatten a Gaussian tail to an exponential.

The efficiency of a rejection sampler is the expected number of trials needed
to generate a sample. Let N be the number of samples to get a success. The
efficiency is

E[N ] = 1 · Pr(N = 1) + 2 · Pr(N = 2) + · · ·
12The tails of a probability density are the parts for large x, where the graph of f(x) gets

thinner, like the tail of a mouse.
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We already saw that Pr(N = 1) = Z. To have N = 2, we need first a rejection
then an acceptance, so Pr(N = 2) = (1 − Z)Z. Similarly, Pr(N = k) =
(1− Z)k−1Z. Finally, we have the geometric series formulas for 0 < r < 1:

∞∑
k=0

rk =
1

1− r
,

∞∑
k=1

krk−1 =
∞∑
k=0

krk−1 =
d

dr

∞∑
k=0

rk =
1

(1− r)2
.

Applying these to r = 1− Z gives E[N ] = 1
Z . In generating a standard normal

from a standard exponential, we get

Z =
√
π

2e
≈ .76 .

The sampler is efficient in that more than 75% of the trials are successes.
Rejection samplers for other distributions, particularly in high dimensions,

can be much worse. We give a rejection algorithm for finding a random point
uniformly distributed inside the unit ball n dimensions. The algorithm is correct
for any n in the sense that it produces at the end of the day a random point with
the desired probability density. For small n, it even works in practice and is not
such a bad idea. However, for large n the algorithm is very inefficient. In fact, Z
is an exponentially decreasing function of n. It would take more than a century
on any present computer to generate a point uniformly distributed inside the
unit ball in n = 100 dimensions this way. Fortunately, there are better ways.

A point in n dimensions is x = (x1, . . . , xn). The unit ball is the set of points
with

∑n
k=1 x

2
k ≤ 1. We will use a trial density that is uniform inside the smallest

(hyper)cube that contains the unit ball. This is the cube with −1 ≤ xk ≤ 1 for
each k. The uniform density in this cube is

g(x1, . . . , xn) =
{

2−n if |xk| ≤ 1 for all k = 1, . . . , n
0 otherwise.

This density is a product of the one dimensional uniform densities, so we can
sample it by choosing n independent standard uniforms:

for( k = 0; k < n; k++) x[k] = 2*rng() - 1; // unif in [-1,1].

We get a random point inside the unit ball if we simply reject samples outside
the ball:

while(1) { // The rejection loop (possibly infinite!)

for( k = 0; k < n; k++) x[k] = 2*rng() - 1; // Generate a trial vector

// of independent uniforms

// in [-1,1].

ssq = 0; // ssq means "sum of squares"

for( k = 0; k < n; k++ ) ssq+= x[k]*x[k];

if ( ssq <= 1.) break ; // You accepted and are done with the loop.

// Otherwise go back and do it again.

}
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Table 9.1: Acceptance fractions for producing a random point in the unit ball
in n dimensions by rejection.

dimension vol(ball) vol(cube) ratio −ln(ratio)/dim
2 π 4 .79 .12
3 4π/3 8 .52 .22
4 π2/2 16 .31 .29
10 2πn/2/(nΓ(n/2)) 2n .0025 .60
20 2πn/2/(nΓ(n/2)) 2n 2.5× 10−8 .88
40 2πn/2/(nΓ(n/2)) 2n 3.3× 10−21 1.2

The probability of accepting in a given trial is equal to the ratio of the
volume (or area in 2D) of the ball to the cube that contains it. In 2D this is

area(disk)
area(square)

=
π

4
≈ .79 ,

which is pretty healthy. In 3D it is

vol(ball)
vol(cube)

=
4π
3

8
≈ .52 ,

Table 9.1 shows what happens as the dimension increases. By the time the
dimension reaches n = 10, the expected number of trials to get a success is
about 1/.0025 = 400, which is slow but not entirely impractical. For dimension
n = 40, the expected number of trials has grown to about 3 × 1020, which is
entirely impractical. Monte Carlo simulations in more than 40 dimensions are
common. The last column of the table shows that the acceptance probability
goes to zero faster than any exponential of the form e−cn, because the numbers
that would be c, listed in the table, increase with n.

9.3.8 Histograms and testing

Any piece of scientific software is presumed wrong until it proves itself correct
in tests. We can test a one dimensional sampler using a histogram. Divide the
x axis into neighboring bins of length ∆x centered about bin centers xj = j∆x.
The corresponding bins are Bj = [xj − ∆x

2 , xj + ∆x
2 ]. With n samples, the

bin counts are13 Nj = # {Xk ∈ Bj , 1 ≤ k ≤ n}. The probability that a given
sample lands in Bj is Pr(Bj) =

∫
x∈Bj f(x)dx ≈ ∆xf(xj). The expected bin

count is E[Nj ] ≈ n∆xf(xj), and the standard deviation (See Section 9.4) is
σNj ≈

√
n∆x

√
f(xj). We generate the samples and plot the Nj and E[Nj ] on

the same plot. If E[Nj ] � σNj , then the two curves should be relatively close.
This condition is

1√
n∆x

�
√
f(xj) .

13Here # {· · · } means the number of elements in the set {· · · }.
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In particular, if f is of order one, ∆x = .01, and n = 106, we should have reason-
able agreement if the sampler is correct. If ∆x is too large, the approximation∫
x∈Bj f(x)dx ≈ ∆xf(xj) will not hold. If ∆x is too small, the histogram will

not be accurate.
It is harder to test higher dimensional random variables. We can test two and

possibly three dimensional random variables using multidimensional histograms.
We can test that various one dimensional functions of the random X have the
right distributions. For example, the distributions of R2 =

∑
X2
k = ‖X‖2l2 and

Y =
∑
akXk = a ·X are easy to figure out if X is uniformly distributed in the

ball.

9.4 Error bars

For large N , the error in (??) is governed by the central limit theorem. This is
because the numbers Vk = V (Xk) are independent random variables with mean
A and variance σ2 with σ given by (9.3). The theorem states that ÂN − A
is approximately normal with mean zero and variance14 σ2/N . This may be
expressed by writing (∼≈ indicates that the two sides have approximately the
same distribution)

ÂN −A ∼≈
σ√
N

Z , (9.23)

where Z ∼ N (0, 1) is a standard normal.
The normal distribution is tabulated in any statistics book or scientific soft-

ware package. In particular, Pr(|Z| ≤ 1) ≈ .67 and Pr(|Z| ≤ 2) ≈ .95. This
means that

Pr
(∣∣∣ÂN −A∣∣∣ ≤ σ√

N

)
≈ .67 . (9.24)

In the computation, A is unknown but ÂN is known, along with N and (ap-
proximately, see below) σ. The equation (9.24) then says that the confidence
interval,

[ÂN −
σ√
N
, ÂN +

σ√
N

] , (9.25)

has a 67% chance of containing the actual answer, A. The interval (9.25) is
called the one standard deviation error bar because it is indicated as a bar in
plots. The center of the bar is ÂN . The interval itself is a line segment (a bar)
that extends σ√

N
in either direction about its center.

There is a standard way to estimate σ from the Monte Carlo data, starting
with

σ2 = var [V (X)] = E
[(
V (X)−A

)2] ≈ 1
N

N∑
k=1

(V (Xk)−A)2
.

14The mean and variance are exact. Only the normality is approximate.
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Although A is unknown, using ÂN is good enough. This gives the variance
estimator:15

σ2 ≈ σ̂2
N =

1
N

N∑
k=1

(
V (Xk)−A

)2
. (9.26)

The full Monte Carlo estimation procedure is as follows. Generate N in-
dependent samples Xk ∼ f and evaluate the numbers V (Xk). Calculate the
sample mean from (9.2), and the sample variance σ̂2

N from (9.26). The one
standard deviation error bar half width is

1√
N

σ ≈ 1√
N

σ̂N =
1√
N

√
σ̂2
N . (9.27)

The person doing the Monte Carlo computation should be aware of the error
bar size. Error bars should be included in any presentation of Monte Carlo
results that are intended for technically trained people. This includes reports
in technical journals and homework assignments for Scientific Computing.

The error bar estimate (9.27) is not exact. It has statistical error of order
1/
√
N and bias on the order of 1/N . But there is a sensible saying: “Do not

put error bars on error bars.” Even if we would know the exact value of σ, we
would have only a rough idea of the actual error ÂN−A. Note that the estimate
(9.26) has a bias on the order of 1/N . Even if we used the unbiased estimate
of σ2, which has N − 1 instead of N , the estimate of σ still would be biased
because the square root function is nonlinear. The bias in (9.27) would be on
the order of 1/N in either case.

It is common to report a Monte Carlo result in the form A = ÂN ±error bar
or A = ÂN (error bar). For example, writing A = .342± .005 or A = .342(.005)
indicates that ÂN = .342 and σ̂/

√
N = .005. Note that we do not report signif-

icant digits of ÂN beyond the error bar size because they have no information.
Also, we report only one significant digit of the error bar itself. If our estimated
error bar actually were σ̂/

√
N = .0048523, reporting the extra digits would only

be annoying to the reader.
It is the custom in Monte Carlo practice to plot and report one standard

deviation error bars. This requires the consumer to understand that the exact
answer is outside the error bar about a third of the time. Plotting two or
three standard deviation error bars would be safer but would give an inaccurate
picture of the probable error size.

9.5 Variance reduction

Variance reduction means reformulating a problem to lower the variance without
changing the expected value.16 We have seen that the statistical error in a

15The estimator with N−1 in place of N on the right of (9.26) is often called s2 in statistics.
If the difference between N−1 and N is significant, N is too small for Monte Carlo estimation.

16There are some variance reduction methods that are not unbiased, for example, in ap-
proximate solution of stochastic differential equations.
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Monte Carlo computation is of the order of σ/
√
N . We can reduce the error by

increasing N or decreasing σ. Reducing σ allows us to reduce N without losing
accuracy. For example, if we could reduce σ by a factor of 2, we would be able
to reduce N by a factor of 4 and achieve the same accuracy.

There are several general variance reduction tricks, but whether a given one
will help depends very much on the details of the specific application. We give
just a few examples to illustrate the possibilities. The applications are artificial
because explaining real applications would take more pages and time than the
average reader (or writer) wants to spend.

9.5.1 Control variates

A control variate is a function W (X) who’s expected value B = E[W (X)] is
known. We can estimate A using

A = E [V (X)− α (W (X)−B)] . (9.28)

If W (X) is correlated with V (X), then we can reduce the variance of ÂN using
(9.28) instead of (9.1). We generate the samples Xk as usual. For each sample,
we evaluate both V (Xk) and W (Xk) and estimate A using

ÂN =
1
N

N∑
k=1

(
V (Xk)− α (W (Xk)−B)

)
.

The optimal value of α, the value that minimized the variance, is (see Exercise
9) α∗ = ρVW

√
var[V ]/var[W ]. In practical applications, we would estimate α∗

from the same Monte Carlo data. It is not likely that we would know cov[V,W ]
without knowing A = E[V ].

Obviously, this method depends on having a good control variate.

9.5.2 Antithetic variates

We say that R is a symmetry of a probability distribution f if the random
variable Y = R(X) is distributed as f whenever X is. For example, if f(x)
is a probability density so that f(−x) = f(x) (e.g. a standard normal), then
R(x) = −x is a symmetry of f . If U is a standard uniform then 1− U = R(U)
also is standard uniform. If X is a sample of f (X ∼ f), then Y = R(X)
also is a sample of f . This is called the antithetic sample. The method of
antithetic variates is to use antithetic pairs of samples. If A = Ef [V (X)], then
also A = Ef [V (R(X))] and

A = E

[
1
2
(
V (X) + V (R(X))

)]
.
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9.5.3 Importance sampling

Suppose X is a multivariate random variable with probability density f(x) and
that we want to estimate

A = Ef [V (X)] =
∫
Rn

V (x)f(x)dx . (9.29)

Let g(x) be any other probability density subject only to the condition that
g(x) > 0 whenever f(x) > 0. The likelihood ratio is L(x) = f(x)/g(x). Impor-
tance sampling is the strategy of rewriting (9.29) as

A =
∫
Rn

V (x)L(x)g(x)dx = Eg [V (X)L(X)] . (9.30)

The variance is reduced if

varg [V (X)L(X)] ≤ varf [V (X)] .

The term “importance sampling” comes from the idea that the values of x
that are most important in the expected value of V (X) are unlikely in the f
distribution. The g distribution puts more weight in these important areas.

9.6 Software: performance issues

Monte Carlo methods raises many performance issues. Naive coding following
the text can lead to poor performance. Two significant factors are frequent
branching and frequent procedure calls.

9.7 Resources and further reading

There are many good books on the probability background for Monte Carlo,
the book by Sheldon Ross at the basic level, and the book by Sam Karlin and
Gregory Taylor for more the ambitious. Good books on Monte Carlo include
the still surprisingly useful book by Hammersley and Handscomb, the physicists’
book (which gets the math right) by Mal Kalos and Paula Whitlock, and the
broader book by George Fishman. I also am preparing a book on Monte Carlo,
with many parts already posted.

The sampling methods of Section 9.3 all simple samplers. They produce
independent samples of f . There are many applications for which there is no
known practical simple sampler. Most of these can be treated by dynamic
samplers that produce Xk that are not independent of each other. The best
known such Markov Chain Monte Carlo method is the Metropolis algorithm.
The disadvantage of MCMC samplers is that the standard deviation of the
estimator (9.2) may be much larger than σ/

√
N with σ given by (9.3). This is

discussed in the online lecture Monte Carlo notes of Alan Sokal and the book
by Jun Liu.
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The ability to sample essentially arbitrary distributions has led to an ex-
plosion of new applications and improvements in technique. Bayesian statistics
and Bayesian methods in machine learning rely on sampling posterior distribu-
tions. Statisticians use Monte Carlo to calibrate hypothesis testing methods. In
rare event simulation using importance sampling, we may consider essentially
arbitrary importance functions, even when the original has a simple sampler.

Statistical error makes it hard to use the optimization algorithms of Chapter
6 to compute

max
t
φ(t) ,

where
φ(t) = Et[V (X)] . (9.31)

Here Et[·] means that the distribution of X depends on the parameter t in some
way. For example, suppose X is normal with mean zero and variance t and we
want samples to have X2 as large as possible without exceeding 1. This could
be formulated as finding the maximum over t of

φ(t) = Et
[
X2 · 1(X2 ≤ 1)

]
=

1√
2πt

∫ 1

−1

x2e−x
2/2tdx .

If we estimate φ(t) by

φ̂(t) =
1
N

N∑
k=1

V (Xk) ,

the statistical error will be different for each value of t (see exercise 8).
In computational chemistry, using the embedded discrete time Markov chain

as in Section 9.3.3 is called SSA (for “stochastic simulation algorithm”) and
is attributed to Gillespie. Event driven simulation is a more elaborate but
often more efficient way to simulate complex Markov chains either in discrete
or continuous time.

Choosing a good random number generator is important yet subtle. The
native C/C++ function rand() is suitable only for the simplest applications
because it cycles after only a billion samples. The function random() is much
better. The random number generators in Matlab are good, which cannot be
said for the generators in other scientific computing and visualization packages.
Joseph Marsaglia has a web site with the latest and best random number gen-
erators.

9.8 Exercises

1. Suppose we wish to estimate A = φ(B), where B = Ef [V (X)]. For
example, suppose E[X] = 0 and we want the standard deviation σ =(
E
[
X2
])1/2. Here B = E

[
X2
]
, V (x) = x2, and φ(B) =

√
B. Let B̂N

be an unbiased estimator of B whose variance is σ2
B/N . If we estimate A

using ÂN = φ(B̂N ), and N is large, find approximate expressions for the
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bias and variance of ÂN . Show that ÂN is biased in general, but that the
bias is much smaller than the statistical error for large N . Hint: assume
N is large enough so that B̂N ≈ B and

φ(B̂N )− φ(B) ≈ φ′(B)(B̂N −B) +
1
2
φ′′(B)(B̂N −B)2 .

Use this to estimate the bias, E[ÂN−A], and the variance var[ÂN ]. What
are the powers of N in the bias and statistical error?

2. Let (X,Y ) be a bivariate random variable that is uniformly distributed
in the unit disk. This means that h(x, y), the joint density of x and y, is
equal to 1/π if x2 + y2 ≤ 1, and h(x, y) = 0 otherwise. Show that X and
Y are uncorrelated but not independent (hint: calculate the covariance of
X2 and X2.).

3. What is wrong with the following piece of code?

for ( k = 0; k < n; k++ ) {
setSeed(s);
U[k] = rng();
}

4. Calculate the distribution function for an exponential random variable
with rate constant λ. Show that the sampler using the distribution func-
tion given in Section 9.3.4 is equivalent to the one given in Section 9.3.2.
Note that if U is a standard uniform, then 1−U also is standard uniform.

5. If S1 and S2 are independent standard exponentials, then T = S1 + S2

has PDF f(t) = te−t.

(a) Write a simple sampler of T that generates S1 and S2 then takes
T = S1 + S2.

(b) Write a simpler sampler of T that uses rejection from an exponential
trial. The trial density must have λ < 1. Why? Look for a value of
λ that gives reasonable efficiency. Can you find the optimal λ?

(c) For each sampler, use the histogram method to verify its correctness.

(d) Program the Box Muller algorithm and verify the results using the
histogram method.

6. A common problem that arises in statistics and stochastic control is to
sample the n component normal

f(x) =
1
Z

exp

−D
2

n∑
j=0

(xj+1 − xj)2

 . (9.32)

with the convention that x0 = xn+1 = 0. The exponent in (9.32) is a
function of the n variables x1, . . . , xn.
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(a) Determine the entries of the symmetric n × n matrix H so that the
exponent in (9.32) has the form x∗Hx. Show that H is tridiagonal.

(b) Show that the Choleski factorization of H takes the form H = MM∗

where M has nonzero entries only on the main diagonal and the
first subdiagonal. How many operations and how much memory are
required to compute and store M , what power of n?

(c) 17 Find expressions for the entries of M .

(d) Show that if Z is an n component standard normal and we use back
substitution to find X satisfying M∗X = Z, then X is a multivariate
normal with covariance C = H−1. What is the work to do this, as a
function of n?

(e) Let C = H−1 have Choleski factorization C = LL∗. Show that
L = M−1. Show that L, and C itself are full matrices with all
entries non-zero. Use this to find the work and memory needed to
generate a sample of (9.32) using the method of Section 9.3.6.

(f) Find an expression for the entries of C. Hint: Let ej be the standard
column vector whose only non-zero entry is a one in component j.
Let v satisfy Hv = ej . Show that v is linear except at component j.
That is, vk = ak + b for k ≤ j, and vk = ck + d for k ≥ j.

7. Suppose X is a discrete random variable whose possible values are x =
1, . . . , n, and that f(x) = Pr (X = x) is a desired probability distribution.
Suppose pjk are the transition probabilities for an n state Markov chain.
Then f is an invariant or steady state distribution for p if (supposing X(t)
us the state after t transitions)

Pr (X(t) = x) = f(x) for all x
=⇒ Pr (X(t+ 1) = x) = f(x) for all x.

This is the same as fP = f , where f is the row vector with components
f(x) and P is the transition matrix. The ergodic theorem for Markov
chains states that if f is an invariant distribution and if the chain is non-
degenerate, then the Markov chain Monte Carlo (MCMC) estimator,

ÂT =
T∑
t=1

V (X(t)) ,

converges to A = Ef [V (X)], as t → ∞. This holds for any transition
probabilities P that leave f invariant, though some lead to more accu-
rate estimators than others. The Metropolis method is a general way to
construct a suitable P .

17Parts c and f are interesting facts but may be time consuming and are not directly related
to Monte Carlo
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(a) The transition matrix P satisfies detailed balance for f if the steady
state probability of an x→ y transition is the same as the probability
of the reverse, y → x. That is, f(x)pxy = f(y)pyx for all x, y. Show
that fP = f if P satisfies detailed balance with respect to x.

(b) Suppose Q is any n × n transition matrix, which we call the trial
probabilities, and R another n × n matrix whose entries satisfy 0 ≤
rxy ≤ 1 and are called acceptance probabilities. The Metropolis Hast-
ings (more commonly, simply Metropolis) method generates X(t+1)
from X(t) as follows. First generate Y ∼ QX(t),·, which means
Pr(Y = y) = QX(t),y. Next, accept Y (and set X(t + 1) = Y )
with probability RX(t),y. If Y is rejected, then X(t + 1) = X(t).
Show that the transition probabilities satisfy pxy = qxyrxy as long as
x 6= y.

(c) Show that P satisfies detailed balance with respect to f if

rxy = min
(
f(x)qxy
f(y)qyx

, 1
)
. (9.33)

8. Suppose φ(t) is given by (9.31) and we want to estimate φ′(t). We consider
three ways to do this.

(a) The most straightforward way would be to take N samples Xk ∼ ft
and another N independent samples X̃k ∼ ft+∆t then take

φ̂′ =
1

∆t

(
1
N
V (X̃k)− 1

N
V (Xk)

)
.

9. Write an expression for the variance of the random variable Y = V (X)−
α(W (X)−B) in terms of var[V (X)], var[W (X)], the covariance cov[V (X),W (X)],
and α. Find the value of α that minimized the variance of Y . Show that
the variance of Y , with the optimal α is less than the variance of V (X)
by the factor 1− ρ2

VW , where ρVW is the correlation between V and W .

10. A Poisson random walk has a position, X(t) that starts with X(0) = 0. At
each time Tk of a Poisson process with rate λ, the position moves (jumps)
by a N (0, σ2), which means that X(Tk + 0) = X(Tk − 0) + σZk with iid
standard normal Zk. Write a program to simulate the Poisson random
walk and determine A = Pr(X(T ) > B). Use (but do not hard wire) two
parameter sets:

(a) T = 1, λ = 4, σ = .5, and B = 1.

(b) T = 1, λ = 20, σ = .2, and B = 2.

Use standard error bars. In each case, choose a sample size, n, so that
you calculate the answer to 5% relative accuracy and report the sample
size needed for this.
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