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Abstract

Classic techniques to simulate molecular motion, such as molecular dynamics (MD) or Monte Carlo

(MC) simulation, generate individual pathways and spend most of their time in the local minima of

the energy landscape defined over a molecular conformation space. Due to their high computational

cost, it is impractical to compute ensemble properties, that is, properties requiring the analysis of

many molecular pathways, using such techniques. In this thesis, we introduce Stochastic Roadmap

Simulation (SRS) as a new computational framework for exploring the kinetics of molecular mo-

tion by simultaneously examining many pathways. These pathways are compactly encoded in a

graph, which is constructed by sampling a molecular conformation space at random. Each arc in

the graph represents a potential transition of the molecule and is associated with a probability in-

dicating the likelihood of this transition. By viewing the graph as a Markov chain, we compute

ensemble properties efficiently. This computation does not trace any particular pathway explicitly

and circumvents the local minima problem. Furthermore, we formally show that SRS converges to

the same stationary distribution as MC simulation.

We use SRS to study both protein folding and ligand-protein binding. In the former application,

we measure the “kinetic distance” of a protein’s conformation from its native state with respect to its

unfolded state, using an important parameter, called probability of folding (Pfold). We compare our

Pfold computations to those from MC simulation on a two-dimensional fictitious energy landscape,

as well as for three proteins with different representations and energy functions. We find that SRS

produces accurate results, while reducing the computation time by several orders of magnitude. We

then replace the transition state computation in Garbuzynskiy, Finkelstein and Galzitskaya (2004)

with one that uses Pfold. Using the new transition state, we obtain a generally higher correlation with

experiment in folding rate andΦ value predictions, for five small proteins studied by Garbuzynskiy

et al. In the latter application of SRS, we estimate the expected time to escape from a protein binding

site for a ligand. Similar to Pfold, it would be impractical to compute the escape time from a binding
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site with MD or MC simulations. We use escape time to qualitatively analyze the role of amino acids

in the catalytic site of an enzyme by computational mutagenesis, and to distinguish the catalytic site

from other potential binding sites for seven ligand-protein complexes. These applications establish

SRS as a new approach to efficiently and accurately compute ensemble properties of molecular

motion.

In these applications, we sample the conformation space uniformly. We investigate non-uniform

sampling techniques to facilitate future application of SRS to more complex biological systems (e.g.,

large proteins, protein-protein binding). We present some promising sampling schemes.
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Chapter 1

Introduction

Molecular motion is fundamental in many important biological processes. Examples include the

transformation by which proteins acquire their three-dimensional structure (protein folding), and the

binding of a drug to its target (ligand-protein binding). In this thesis, we combine tools from fields

such as robot motion planning and Markov chain theory to study molecular motion. We propose

a new computational framework,Stochastic Roadmap Simulation(SRS), and we apply it to obtain

and analyze both protein folding and ligand-protein binding pathways. We compare our results to

simulations obtained with prior methods, as well as to quantities from wet-lab experiments.

1.1 Motivation

Proteins (Figure1.1) are macromolecules and workhorses of living organisms. They are involved

in diverse functions, such as muscle motion, transport of molecules inside and outside the cell,

recognition and destruction of unrecognized molecules to the body, and catalysis of many important

reactions. However, in order to perform their functions, they need to first assume specific three-

dimensional shapes (their native structure) after they are synthesized in the cell.

Proteins are produced in a special compartment in the cell called the ribosome[Str95]. Each

amino acid, the building block that makes up all proteins, is brought by a transfer RNA molecule to

the ribosome. There, the amino acids (also called residues) are chained together back to back via

peptide bonds to form a string of residues called the polypeptide chain.

1



CHAPTER 1. INTRODUCTION 2

Figure 1.1.Immunoglobulin binding domain of protein G: (left) Cartoon representation showing secondary
structure elements,α helix as cylinder andβ strand as arrow; (right) Atomistic view.

This polypeptide chain then goes through a folding process to achieve a unique intricate three-

dimensional structure that is compact and stable. A vast space of shapes is accessible to the polypep-

tide in this process[Cre99]. If we assume that each amino acid can take one ofm discrete states, a

polypeptide chain ofn residues can transform into one out ofmn structures. Since the number of

amino acids in proteins ranges between 50 and 2000[Str95], assumingm is three, a small protein

of fifty residues selects its unique native structure from 350 possible combinations. This quick esti-

mate ignores the fact that some of these structures involve clash of atoms and are thus not reachable.

Nevertheless, the clash-free space of proteins is still huge. Yet, the folding process is remarkably

fast. Some proteins fold in the order of tens of microseconds[P+]! It is clear that the folded state of

proteins cannot be reached by random fluctuations[Cre99].

Little is known today about folding pathways. Understanding them would help determine why

some proteins do not fold properly to their native state, and instead aggregate in a different struc-

ture, a process calledprotein misfolding. Protein misfolding is believed to cause diseases such as

Alzheimer, Huntington, and Bovine Spongiform Encephalopathy (mad cow). It may also be pos-

sible to block those paths that lead to a misfolded structure[Cre99]. Grasping the principles by

which a linear chain folds to a specific shape would also enable us to design nano-machines that

self-assemble to desired structures[P+].

Similar to protein folding, ligand-protein binding is another process that involves molecular

motion. A ligand is a molecule that docks to a protein to produce a response, such as the catalysis or
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inhibition of reactions or the transmission of a signal[Tol04]. The ligand follows one of a set of paths

to reach its binding site (called catalytic site) on the protein, and the amino acids in that catalytic

site also may move to accommodate the ligand. An example where ligand-protein interactions

occur is the binding of a drug or a toxic agent (the ligand) to an enzyme (mostly a protein) to inhibit

its activity. Inhibition is an important regulatory process for the function of the enzyme[Str95].

The importance of both catalysis and inhibition of molecular reactions in biological systems raises

the need to better understand ligand-protein binding. Such understanding can also impact drug

discovery and development.

The gold standard in studying molecular motion is wet-lab experimentation. For instance, one

can use the covalent bond formation between two sulphur atoms (a.k.a. disulfide bond) of cysteines

(an amino acid) to probe protein folding pathways. A covalent bond involves the sharing of electrons

between two atoms. The cysteines have to come within a few angstroms of each other in space for

the disulfide bond to form. Disulfide bonds allow to gain information about the structural properties

of the protein, and have been used by Creighton[Cre99] to trap intermediate structures for a protein

called bovine pancreatic trypsin inhibitor.

Fersht (1999) describes another technique to study dynamic properties of molecules in solution,

called nuclear magnetic resonance (NMR). NMR applies a strong static magnetic field to a molecule

to detect pairwise hydrogen nuclei closer than five angstroms apart. Based on these distance con-

straints, the structure of a molecule can be reconstructed to a high accuracy for proteins of up to

about 110 amino acids. This technique can also be used to track the motion of proteins in solution.

Φ-value analysis[Fer99] is the only experimental technique that provides atomic level infor-

mation about the intermediary structures visited along the folding pathway. It involves mutating

individual amino acids with protein engineering experiments and measuring the effect of this muta-

tion. Φ values for many proteins are tabulated[IOF95].

The caveat with experimental techniques is that they are slow and expensive. Furthermore,

experiments are limited in their applicability and in the information they can provide. For example,

disulfide bond tracking can be used only for proteins which have cysteines. No existing technique

can track the motion of molecules in atomistic detail over time.

Another approach to study molecular motion is computer simulation. In principle, simulations

enable the analysis of molecular systems at high resolution. Classical techniques, such as Molec-

ular Dynamics (MD) or Monte Carlo (MC) simulation, are commonly applied to obtain molecular
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trajectories. However, they are computationally intensive, and often require supercomputers, spe-

cialized architectures, or distributed computing in order to obtain results in realistic time scales

[Tea01, SP00].

An example quantity computed using simulation is Pfold. At any conformationq of a protein,

Pfold (also called the transmission coefficient) is the best possible measure of the “kinetic distance”

betweenq and the native fold[DPG+98]. More precisely, Pfold is the probability that the folding

process starting fromq folds first before unfolding. However, existing techniques to compute Pfold,

which perform many simulation runs, are extremely time consuming and often impractical. The

authors of[DPG+98] write: “To conclude, we stress that we do not suggest using the transmission

coefficient as a transition coordinate for practical purposes as it is very computationally intensive.”

In this thesis, we describe SRS as a new approach to compute quantities such as Pfold efficiently

and accurately. SRS is both a representation and an algorithm to study many molecular motion path-

ways simultaneously. We apply it to protein folding and ligand-protein binding, obtaining results

that qualitatively and quantitatively agree with wet-lab experiments, as well as other simulations.

Thesis Organization

In the rest of this chapter, we give a brief background on biomolecules and molecular simula-

tions, followed by related work. We then summarize our contribution. In Chapter2, we describe

SRS and its use in computing ensemble properties. We then report on the application of SRS to

the computation of Pfold in Chapter3. We utilize Pfold to make quantitative predictions of param-

eters (folding rates andΦ values) in protein folding in Chapter4. We follow by the application of

SRS to ligand-protein binding in Chapter5. In Chapter6, we discuss extending SRS framework to

non-uniform sampling. We conclude in Chapter7.

1.2 Preliminaries

1.2.1 Protein Structure

The structure of a protein is defined by the spatial arrangement of thousands of atoms, each part

of an amino acid. Twenty different types of amino acids assemble together in a chain, in different

orders, to form the diverse proteins in living organisms. An amino acid (Figure1.2) is composed

of an amino group (NH2), a carboxyl group (COOH), a hydrogen atom and a distinctive R group,
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Figure 1.2.An amino acid. The R region determines the amino acid type.

all attached to a main Cα atom[Str95]. The R group is called thesidechain, and varies from being

a single H atom for glycine to containing a benzene ring for phenylalanine. The N of the amino

group, the Cα atom and C of the carboxyl group form the repeating pattern of a protein. In a protein

made ofn amino acids, this pattern is repeatedn times in sequence, forming the proteinsbackbone.

The amino acid sequence of a protein (theprimary structure) uniquely determines the protein’s

three-dimensional (tertiary) structure. The structures of proteins are diverse. However, they share

common parts, calledsecondarystructure elements. These are theα helices that form helical re-

gions, andβ strands that correspond to extended polypeptide chains (Figure1.1). Adjacentβ strands

may align and make hydrogen bonds between them to formβ sheets.α helices andβ strands are

connected together by loops which differ in length and shape. Finally, some proteins are formed

by the coming together of multiple polypeptide chains. Thequaternarystructure then refers to the

arrangement of these chains that make up the final shape.

1.2.2 Molecular Simulations

We have mentioned MD and MC Simulation as techniques to study molecular motion. They com-

pute thermodynamic and kinetic properties of biological systems. Thermodynamic properties corre-

spond to the steady-state, while kinetic properties are time-dependent. Examples of thermodynamic

properties include the average energy, heat capacity and pressure. A sample kinetic property is the

rate of a reaction.

In order to run these simulation techniques, one has to first decide on a molecular representation

and an energy function.
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Figure 1.3.Vector-based representation of a protein. Each secondary structure element is represented as a
vector. Dashed lines show the loop regions that connectα helices (red) orβ strands (yellow).

1.2.2.1 Molecular Representations

The three-dimensional structure (orconformation) of a molecule is represented by a finite set of

parameters that uniquely define the position of every atom in the molecule. Formally, a conforma-

tion q of d parameters is specified by a tuple(q1, q2, . . . , qd). The set of all conformations form the

conformation spaceC.

To describe the conformation of a molecule, atomistic and linkage models may be used. The

former specifies thexyz locations of all the atoms. In the latter, the linkage structure of a molecule

is exploited to represent each atom in a reference frame defined by three previous atoms, similar to

the representation of a robotic arm[Cra89].

With an atomistic model, a molecule ofN atoms is mapped to a vector of3N coordinates. In

order to reduce the number of parameters, asN may be on the order of thousands, one may consider

only a representative subset of the atoms depending on the problem studied. For instance, the Cα

atoms, which determine the shape of the backbone of the protein, can be selected in the case of

protein folding. Instead, in the case of ligand-protein binding, only the atoms in the catalytic site of

the protein can be selected. If the binding involves only a change in the position of the catalytic site

atoms, the rest of the protein can be assumed rigid.

The above atomistic models are called off-lattice, as there is no constraint on where an atom

may be placed. In contrast, two- and three-dimensional lattices[KS96] that limit the locations

of the atoms may be used to reduce the computational requirements[Wal03] while still providing

interesting results.
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With a linkage model, one uses parameters such as bond lengths, bond angles and torsional

angles (that are formed between four consecutive atoms) to obtain the coordinates of successive

atoms with respect to their predecessors in the chain. The number of parameters required can be

reduced significantly by exploiting the fact that some of these parameters (e.g., bond lengths and

bond angles) are practically constant.

For protein folding, this simplification leads to the often used(φ-ψ)-based representation.φ

is the torsional angle around N-Cα bond, whileψ is around the Cα-C bond. This representation

assigns two degrees of freedom (DOFs) per amino acid, except the first and the last amino acids

which have only one torsional angle. With this representation, one needs2N − 2 parameters for a

protein ofN amino acids. A further simplification (Figure1.3) is to associate vectors to secondary

structural elements (SSE) [SB97]. This reduces the number of parameters to the angles between

SSE vectors, the torsional angle formed by three consecutive SSE vectors, and the length of vectors

corresponding to loop regions. This corresponds to studying the arrangement of these SSEs once

they are formed and is used in Chapter3.

For ligand-protein binding, one often assumes that the protein is rigid and model the ligand

as either rigid or flexible. The flexibility of the ligand can be modeled by assigning a torsional

DOF to each non-terminal atom, while assuming the bond lengths and angles are constant, as

in Chapter5. Representing the protein as non-rigid can be done, for example, by identifying its

main DOFs [TPK02] and including them as additional dimensions of the conformation space of the

ligand-protein complex. Another technique to model the flexibility of the protein without increasing

the number of parameters significantly is to userotamer libraries[JC97, LWRR00] to represent the

sidechain DOFs of the amino acids in the catalytic site. A rotamer is a set of torsional angles that

determine the position of the sidechain atoms of an amino acid. Rotamers are obtained from the

database of protein structures (Protein Data Bank (PDB)[B+77]) by clustering observed torsional

angle combinations. A caveat is that these libraries may not be representative of the shapes the

sidechains assume during the binding process, as they are derived from folded structures. Further-

more, the use of such libraries may bias the sidechain conformations towards those in PDB.

In simulating molecular motion, another important consideration is the representation of the

solvent, usually water. Water plays an important role in both protein folding and ligand-protein

binding. One can represent the solvent explicitly or implicitly. Explicit models represent individual

solvent molecules, while implicit models (such as Generalized Born Surface Area (GB/SA)[TC01])
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mimic average properties of the solvent. The former model is expensive since most of the computa-

tion is spent for the solvent. A practical solution is to use periodic boundary conditions to limit the

number of solvent molecules. Periodic boundary conditions consider an infinite lattice containing

replicas of the atoms in the central box. Whenever an atom moves outside the central box, a replica

image enters into the central box from the other side. Without periodic boundary conditions, one

has to consider a large enough box in order to prevent errors due to boundary conditions.

In general, atomistic representations require more parameters than linkage models to describe

a molecular system. However, a particular advantage of an atomistic model is that a small change

in any parameter describes a local deformation that alters the shape of the molecule by the same

magnitude. In contrast, in the linkage model, a change in a torsional angle located near the midpoint

of the backbone may cause a large global conformational change.

1.2.2.2 Energy Functions

By specifying the molecule’s three-dimensional structure, the conformational parameters also deter-

mine the interactions between the atoms of the molecule and between the molecule and the medium,

such as van der Waals and electrostatic interactions. These interactions give rise to the attractive

and repulsive forces that govern the motion of the molecule and are described by an energy function

E(q). One has to choose a suitable energy model to run a simulation.

A typical energy function has the following form[SDKF99]:

Etotal =
∑

bonds

Kr(r − req)2 +
∑

angles

KΘ(Θ−Θeq)2 +
∑

dihedrals

Kφ[1− cos(nφ)]

+
atoms∑

i<j

[Aij/R12
ij −Bij/R6

ij + qiqj/εRij ]

The first three terms correspond to the bonded interactions, and the last one to the non-bonded

Van der Waals and electrostatic terms. The bonded interactions are bond stretch, angle bending, and

torsional angle steric constraints, respectively. The deviation of a bond length or a bond angle from

its equilibrium value is penalized through the first and second terms. The third term represents the

steric barriers that exist between two atoms separated by three covalent bonds (1,4 pairs), wheren
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(varying between one and three) is a coefficient of symmetry. The Van der Waals term represents

the attraction and repulsion of pairs of non-bonded atoms in proximity of each other. The attraction

occurs at larger distances, due to charge distribution changes in the electronic clouds around atoms.

As atoms become closer, repulsion becomes dominant. Finally, the electrostatic term represents the

attraction or repulsion of two charges in a continuous medium of dielectric constantε.

The computation of the above (or similar) energy function is expensive for a large molecular

system, especially since the number of non-bonded terms can be quadratic. In addition, the energy

computation may be repeated many (possibly millions of) times during a simulation run. For protein

folding, some simple energy models are proposed that are significantly faster to compute, while

being reasonably accurate in predicting experimental quantities. For instance,

• Hydrophobic-Polar (H-P) models[Dil85] classify each amino acid as either hydrophobic or

polar (hydrophilic) and consider the non-bonded contacts between hydrophobic amino acids

in the energy computation. A non-bonded contact occurs when two non-adjacent amino acids

(e.g., their Cα atoms or sidechain centroid) comes in close proximity of each other in space.

This model is based on the assumption that hydrophobic collapse is a guiding force in protein

folding: while polar amino acids tend to be exposed to water, the hydrophobic ones bury

inside the protein and form contacts with other hydrophobic amino acids.

• Gō models(by Gō, as cited in[Tak99]) are based on counting the number of non-bonded

contacts in a protein. In a conformation, the native contacts are those non-bonded contacts

that also exist in the native structure; whereas the non-native ones correspond to non-bonded

contacts that do not exist in the native structure. In a Gō model, the native contacts are favored

while the non-native ones may either be disfavored or ignored. It should be emphasized that

this energy function requires native structure information to determine which contacts are

native. Ḡo models have been very successful in predicting experimental quantities such as

rates for fast folding proteins[GF99, ME99, AB99].

Having chosen an energy function and a molecular representation, one can run MD or MC

simulation to study molecular motion.
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1.2.2.3 Molecular Dynamics

MD integrates Newton’s second law of motion (F = ma) to compute molecular pathways[Hai92].

It is commonly utilized to study the folding of fast proteins, fluctuations of structures around their

stable conformation, and loop and sidechain motions. Given a small time stepdt, and initial condi-

tions (the position, velocity and acceleration of the atoms) at timet, one uses an integration scheme

to find the position and velocity at timet+dt. The acceleration is derived from the force, which

in turn is equal to the gradient of the potential energy function.dt is selected small compared to

the mean time between collisions. As a rule of thumb, it is approximately set to one tenth of the

period of the shortest type of motion in the system, which is the vibration of C-H bond for flexible

molecules. The C-H bond vibrates with a period of 10 femtoseconds (fs,10−15 seconds), and so

dt is about 1 fs. One may doubledt by constraining the higher frequency motions, such as bond

vibrations[Lea96]. But proteins fold on the order of hundreds of microseconds to milliseconds[P+].

Therefore, it takes about1011 steps (or about 30 CPU years) for the simulation to consistently reach

the folded state of a protein. This gives a good indication of the computational cost of MD to study

complex systems.

1.2.2.4 Monte Carlo Simulation

MC simulation–more precisely, the Metropolis algorithm[MRR+53]–is one of the most commonly

used techniques for studying thermodynamic properties of molecular systems[KW86]. It samples

the conformation spaceC of a system of molecules in order to compute quantities such as average

energy and heat capacity, or the distribution of molecules.

MC simulation starts at some initial conformation and performs a random walk inC. Let q

be the conformation at the current step of this random walk. To obtain the next conformation, a

conformationq′ is sampled from a small neighborhood ofq, using a uniform or Gaussian distri-

bution centered atq. The move toq′ is accepted with a probabilityA that depends on the en-

ergy difference∆E = E(q′) − E(q). Define theBoltzmann factorsε = exp(−E(q)/kBT ) and

ε′ = exp(−E(q′)/kBT ), wherekB is the Boltzmann constant andT is the temperature of the sys-

tem. The Metropolis criterion prescribes the acceptance probability as[MRR+53]

A = min(ε′/ε, 1) (1.1)
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Sinceε′/ε = exp(−∆E/kBT ), the conditionε′/ε < 1 holds if and only if∆E > 0. So,

if a move decreases the energy, it is always accepted; otherwise, it is accepted with probability

exp(−∆E/kBT ). If the move fromq to q′ is accepted, the simulation transitions toq′; otherwise,

it stays atq. The procedure repeats to generate a series of sampled conformations, until some

termination condition is satisfied (e.g., the maximal number of steps has been achieved, or the

quantity being computed stabilizes).

This simulation procedure guarantees that when the number of simulation steps grows large

enough, the sampled conformations are distributed according to the Boltzmann distribution[Lea96]:

β(q) =
1

Zβ
exp(−E(q)/kBT ),

whereZβ =
∫
C exp(−E(q)/kBT ) dq is the normalization constant. So any subsetS ⊆ C is sampled

with probability
β(S) =

∫

S
β(q) dq.

Similar to MD, MC simulation is also an important tool to compute molecular pathways[SKS01,

KS96]. But, unlike MD, steps in MC simulation do not have a direct time correspondence.

Both MD and MC simulation have two major drawbacks:

• They compute individual pathways, one at a time; however, many interesting properties of

molecular motion, in particular,ensemble properties, are best characterized statistically over

many pathways. The “new view” of protein folding hypothesizes that proteins fold in a multi-

dimensional energy funnel by following a myriad of pathways, all leading to the same native

structure.

• They suffer from the local minima problem. A typical molecular energy function contains

many local minima, and MD and MC simulation waste considerable computation time trying

to escape from these minima. They easily get trapped in them, repeatedly sampling many

similar conformations without obtaining much new information. Their high computational

cost prevents them from being used to generate and analyze many pathways.
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Figure 1.4.A roadmap (black) superimposed on the contour plot of a fictitious energy landscape (in color)
on a 2-D space.

1.3 Overview of Stochastic Roadmap Simulation

We present SRS as a novel computational framework to overcome the drawbacks of previous sim-

ulation techniques[ABG+02a, AGV+02]. In SRS, we build a directed graph, calledroadmap(see

Figure1.4 for an illustration). The nodes of the roadmap are randomly sampled conformations.

Each node is connected by arcs to its nearest neighbors, and a weightPij is assigned to the arc

between two nodesvi andvj . Pij estimates the probability for the molecule to transition fromvi

to vj , and is derived from the energy of conformations represented by nodesvi andvj . SRS is

applicable to any molecular representation, provided that the energy functionE depends only on

the parameters of a conformation in this representation. It does not requireE to have any particular

properties or functional forms.

The probabilities attached to the arcs of a roadmap directly express the stochastic nature of

molecular motion. We view the motion of the molecule on the roadmap as a random walk similar

to a MC simulation run. More precisely, at each step of the random walk, a molecule either stays at

the current node or moves to a neighboring node according to the assigned transition probabilities.

However, to compute ensemble properties of molecular motion efficiently, we avoid performing

explicit simulation runs. Instead, we treat the roadmap as a Markov chain and apply methods

from Markov chain theory, in particular first-step analysis[TK94], to process all pathways in the

roadmap simultaneously, rather than one at a time. Conceptually, this is equivalent to performing

infinitely many simulation runs simultaneously and extracting statistics from them, but it results in
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tremendous gain in computational efficiency.

By focusing on one pathway at a time, a MC simulation run can produce a higher density

of samples along this particular one-dimensional pathway. In contrast, SRS is by necessity a

coarser-grained method. It must spread the samples (the nodes of the roadmap) over the entire

high-dimensional conformation space or a subset of interest. On the other hand, SRS examines

many pathways at once and obtains interesting information not easily accessible by classic meth-

ods. Tests of SRS on several protein folding and ligand-protein binding examples indicate empir-

ically that SRS computes ensemble properties satisfactorily, even with rather coarse roadmaps. In

addition, we show formally that, with appropriately defined transition probabilities, SRS and MC

simulation converge to the same stationary distribution, the Boltzmann distribution.

We tested SRS on two problems. One is the computation of the probability of folding (Pfold) in

protein folding. We used Pfold to predict experimental quantities (folding rates andΦ values). The

other problem is the computation of the average escape time of a ligand from the funnel of attraction

of a binding site on a protein. We used escape time to distinguish the catalytic site of a protein from

other potential binding sites, as well as to verify qualitatively the role of amino acids in the catalytic

site of an enzyme.

1.4 Related Work

1.4.1 Probabilistic Roadmap

SRS is derived from probabilistic roadmap (PRM) methods[KŠLO96] developed for robot motion

planning. Motion planning deals with finding a collision-free path of a robot between a start and

an end configuration in an environment with obstacles. Similar to a conformation of a molecule, a

configurationof a robot determines the position and orientation of every link of the robot. The main

idea of PRM is to capture the connectivity of a geometrically complex high-dimensional space

by constructing a graph, called a roadmap. The roadmap contains local paths (usually straight

line segments) connecting points randomly sampled from that space. The original PRM method

consists of two stages: a preprocessing and a query phase. In the preprocessing phase, random

configurations, calledmilestones, are sampled in free space. Pairs of milestones are then connected

to form the roadmap. In the query phase, given non-colliding start and end configurations of the

robot, these configurations are first connected to the nearest milestones in the roadmap. Then a
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search algorithm is used to find a path between them.

PRM planners provide a practical solution to the path planning problem, at the expense of

completeness. A complete path planning algorithm finds a path if one exists, and returns failure

otherwise. PRM, on the other hand, is only probabilistically complete, that is, it returns a path

with high probability if one exists. However, PRM planners have successfully solved complex

problems in high-dimensional configuration spaces, with diverse motion constraints (kinodynamics,

equilibrium, visibility, contact, etc.)[CLH+05].

1.4.2 Application of Probabilistic Roadmaps to Molecular Motion

Robot motion planning and computing molecular trajectories are related problems: Both involve

finding continuous paths in a high dimensional space between two points. In addition, robots and

molecules can be represented similarly, such as with a linkage model. However, these problems

differ in the following aspects: For robots, a single path is usually adequate, whereas many paths are

required for molecules in order to compute ensemble properties. Furthermore, for robots, usually

a collision-free path is sought. Collision checking can be viewed as computing a binary energy

function, which is 0 if the robot does not collide, and 1 otherwise. In contrast, molecules move in a

continuous energy landscape, and the sought molecular trajectories are those that cross low energy

regions of this landscape.

The close analogy between robot motion planning and computing molecular trajectories sug-

gests that tools from the former domain, such as PRMs, may be applied to the latter. Singh, Latombe

and Brutlag (1999) first introduced PRM methods to the study of molecular motion, more specifi-

cally ligand-protein binding[SLB99]. PRM methods have since been applied to protein folding as

well [ASBL01, SA01, ADS02, STD+03].

These earlier works adapt PRMs to molecular motion by (a) assigning a heuristic weight to

the arcs based on the energy difference between molecular conformations, and (b) by extracting

multiple trajectories from the roadmap, one at a time. The arc weight tries to capture the “ener-

getic difficulty” of making a transition along the arc. Classic search techniques are used to extract

individual “energetically favorable” paths from the roadmap.

For instance, Singh et al. (1999) extracted the “shortest” paths from random start conformations

to the ligand conformation at the catalytic site as well as to other low-energy conformations of the

ligand. They found that the paths to the catalytic site have a higher average weight compared to
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paths to other low-energy regions, suggesting the existence of an energy barrier in the pathways

towards the catalytic site. Song and Amato (2001) and Amato, Dill and Song (2002) similarly

studied protein folding with a PRM. They sampled nodes with a normal distribution around the

folded protein conformation. They then extracted paths, that they analyzed to determine the order of

formation of secondary structure elements. They obtained good correspondence with experimental

data. Apaydın, Singh, Brutlag and Latombe (2001) also studied protein folding with PRMs, where

they extracted multiple paths from random starting conformations in order to detect energy barriers

along the folding pathways.

The previous works described above consider only a very small subset of all the paths encoded

in the roadmap. The number of paths represented in a roadmap is very large. An obvious lower

bound for this number can be obtained by considering a two-dimensional grid, with only vertical

and horizontal connections. A roadmap of 144 nodes can be compared to such a grid of size 12x12.

In a 12x12 grid, the number of self-avoiding walks from its lower left to upper right corner is

182413291514248049241470885236 (a 30 digit number)[Knu95]. Considering the paths between

any given pairs of nodes, as well as roadmaps with more than four connections per node increases

the number of encoded paths within a roadmap even further.

The above discussion of the number of paths shows that SRS is fundamentally different from

previous roadmap-based techniques. In SRS, we assign a transition probability to each arc that al-

lows us to encode the stochastic nature of molecular motion. This assignment enables us to analyze

globallyall the pathways contained in a roadmap. It also allows us to establish a formal relationship

between SRS and MC simulation.

1.4.3 Other Techniques to Study Molecular Motion

In addition to MD and MC simulations, a number of other techniques are available to study molec-

ular motion without following individual molecular trajectories. These include master equation

analysis and double-ended methods such as self penalty walk, nudged elastic band and stochastic

difference equation.
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1.4.3.1 Master Equation Analysis

Similar to SRS, master equation analysis[Wal03] computes a graph whose nodes represent molecu-

lar conformations. Then, all the paths encoded within this graph are analyzed by solving the master

equation. Master equation relates the change in occupation probabilities of conformations repre-

sented by a node to the occupation probabilities of its neighbors as well as the rates of transitions

between these nodes. These rates depend on the energy difference between the conformations rep-

resented by the start and the end nodes, as well as an intrinsic rate of transition,ko. ko determines

how fast the molecule transitions from a conformation to its neighbor, when the energy difference

is favorable.

Examples that study protein folding kinetics using master equation analysis include[CHKB98]

and[IF01]. In [CHKB98], a 12-monomer heteropolymer is studied in a two-dimensional lattice. The

authors exhaustively enumerate all conformations, and therefore, are limited to very small proteins

on a lattice in the plane. Similarly, in[IF01], all allowed conformations in the model are generated.

Both approaches compute quantities such as protein folding rates.

Instead of generating all allowed conformations, stationary points of the underlying energy land-

scape may also be used as nodes of the graph in master equation analysis. The stationary points of

interest are the local minima and the one-saddles. They correspond to conformations where the gra-

dient vanishes and the Hessian matrix (matrix of partial second derivatives of the energy function)

has zero and one negative eigenvalue, respectively[Wal03]. The local minima correspond to regions

where a molecule is more likely to be found, whereas the one-saddles correspond to the “easiest”

transitions between these minima. These points can be computed using techniques from computa-

tional chemistry. We also employ some of these techniques in Chapter6 to add stationary points to

our roadmaps.

SRS differs from master equation analysis in the following aspects. First, SRS does not require

the enumeration of all conformations or sampling the conformations corresponding to the station-

ary points. We randomly sample conformations, and this allows us to apply SRS to complex and

realistic molecular systems with diverse representations, ranging from off-lattice protein models to

flexible ligand-protein complexes. Second, we use SRS to compute ensemble properties of molec-

ular motion, such as Pfold and escape time. These quantities enable the prediction of properties

of molecular motion, such asΦ values in protein folding (Chapter4). We are not aware of such

computation with master equation analysis.
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1.4.3.2 Double-Ended Methods

Methods that compute paths between a given start and end conformation are also proposed, such as

self penalty walk (SPW)[CE90], nudged elastic band (NEB)[HJJ00, Wal03] and stochastic difference

equation (SDE)[PR03].

SPW and NEB compute the path between a given pair of local minima. They start with an

approximate discrete trajectory, obtained using, for instance, linear interpolation. They then mod-

ify the location of these intermediary conformations in order to approximate the sought pathway.

This is achieved by the minimization of a meta-energy function. This function computes the en-

ergy of a polymer, whose individual monomers correspond each to the conformations along the

pathway, including the start and the end. It has terms for the individual monomers’ energy as well

as the interaction between them. The latter terms keep the intermediary conformations at approxi-

mately the same distance of each other; and prevent their accumulation close to the saddle[Lea96]

or their collapsing to the start and end conformations. SPW has been employed to find the path-

way between two conformations of myoglobin as well as the diffusion of carbon monoxide through

leghaemoglobin (Elber & Karplus 1987, as cited in[Lea96]). NEB has been employed to study paths

for atomic clusters[TW04].

Stochastic Difference Equation (SDE) involves solving a boundary value problem in which a

stationary point for the action derived from the conformations along the pathway is sought. The

action is given as:Y =
∫ B
A

√
2(E − U)dl, whereA is the start andB is the end conformation,E

is the total energy,U is the potential energy, anddl is an element of length. This method filters out

the small motions and gives an approximation to the exact trajectory. It has been applied to find the

folding trajectories of protein A in[GES02].

These techniques help overcome the time gap between the longest molecular simulations to

date and the folding of real proteins. However, like classical simulation techniques, they result in

individual trajectories. For instance, 130 independent trajectories are obtained in[GES02].

1.4.4 Molecular Motion in the Context of Systems Biology

In the cell, molecular processes, such as the folding of proteins and the catalysis of reactions, occur

continuously, and are interconnected. For instance, protein synthesis requires the catalysis of many

enzymes[Str95]. It is important to study protein folding and ligand-protein binding separately, but it



CHAPTER 1. INTRODUCTION 18

is also necessary to understand how these processes are interconnected in a biological system. The

latter is the subject of systems biology.

The goal of systems biology is to integrate different types of biological information, not only

about molecular motion, but also those from other sources, such as microarrays or protein-protein

interaction experiments, to obtain a model of a living system. It focuses on how these different

components are interdependent. The development of a model for a biological system will enable the

prediction of its response to various inputs, such as a new drug candidate. This has the potential of

dramatically accelerating the time gap between the identification of drug leads and their marketing

(which is currently about a decade). Similar to the SPICE tool developed for electrical circuit

simulation, the bio-spice project[A+02] aims to simulate living organisms.

Simulating molecular motion efficiently and accurately will provide important data to the sys-

tems biologist about molecular interactions in the cell. Combined with other data sources, this will

allow improved understanding of biological systems.

1.4.5 Protein Structure Prediction vs. Folding Pathway Prediction?

“Protein folding” refers to two distinct problems in literature: One–folding pathway prediction–

refers to following the process of geometric transformations of the protein. The other–protein struc-

ture prediction–is concerned with finding the native structure reached at the end of this pathway

without necessarily considering how this state is attained. Molecular simulation techniques men-

tioned above attempt to solve the former problem, although they are naturally applicable to the latter

one as well, since the native structure is at the end of the folding pathway. However, due to the cost

of these simulations, more specialized and faster techniques may be preferable for protein structure

prediction.

Some well known protein structure prediction techniques use machine learning or conforma-

tional search. For instance, if the amino acid sequence of the target protein is homologous (>30%

sequence similarity) to another protein of known structure, the known structure is a very good start-

ing point for the search. In this search, molecular modeling and minimization techniques can be

used. In contrast, ab-initio structure prediction targets proteins for which no homologous sequence

is known. For such proteins, conformational search from scratch is time consuming due to the size

of the space to be sampled. Rosetta[SBRB99] is a recent technique that successfully does ab-initio

protein structure prediction using known proteins structural information. It concatenates fragments
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of three and nine amino acids obtained from the known structures with sequences similar to the

target sequence. The resulting structures are then scored with a function which has both sequence-

dependent terms favoring the collapse of hydrophobic amino acids and global terms that favorβ

strands to pack asβ sheets. A good overview of this work and other protein structure prediction

techniques can be found in[Len01].

The work presented in this thesis requires the knowledge of the native structure to compute en-

semble properties of protein folding, and therefore, it cannot be directly used for protein structure

prediction. However, efficient sampling techniques from robotics, such as those studied in Chap-

ter6, may help in more efficiently searching the conformational space to find the native structure.

1.5 Summary of Contribution

The main contributions of this thesis are the following:

• The development of SRS, a new and efficient approach to study molecular motion. This is

made possible by the use of existing tools from Markov chain theory to analyzeall paths

encoded in a roadmap without any explicit simulation, and therefore, without encountering

local minima problems faced by classical techniques.

• The application of SRS to the computation of ensemble properties of molecular motion, such

as Pfold in protein folding and escape time in ligand-protein binding.

• The establishment of a formal connection between SRS and MC simulation. Both SRS and

MC converge to the same stationary distribution (Boltzmann distribution).

• The use of Pfold in the quantitative prediction of experimental quantities, folding rates andΦ

values.

• The use of escape time in the qualitative verification of the role of amino acids in the binding

site of an enzyme by computational mutagenesis and in distinguishing the catalytic site from

other potential binding sites.

SRS was jointly developed with Carlos Guestrin and David Hsu, and its applications to ligand-

protein binding was studied with Carlos Guestrin and Chris Varma. The computation of quantitative
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parameters (folding rates,Φ values) was jointly done with T.-H. Chiang and D. Hsu. The formal

proof of convergence of SRS is due to Carlos Guestrin, but nevertheless included in the appendix of

this thesis for completeness.



Chapter 2

Stochastic Roadmap Simulation

In SRS, we first construct a roadmap that provides a discrete representation of molecular motion in

a selected conformation space. This roadmap compactly encodes a large number of motion paths

and enables us to compute ensemble properties of molecular motion efficiently.

Throughout this chapter,C denotes the selected conformation space, either the conformation

space of a single molecule, or the conformation space of a molecular complex.

2.1 Roadmap Construction

A roadmapG is a directed graph. Each nodev of G is a randomly sampled conformation inC
and has energyE(v). Each arc from nodevi to nodevj carries a weightPij ∈ [0, 1], which

represents the probability that the molecule will move tovj , given that it is currently atvi. The

probabilityPij is 0 if there is no arc fromvi to vj . Otherwise, it depends on the energy difference

∆Eij = E(vj)− E(vi).

To construct a roadmap, we first sample conformations fromC. We discard all non-physical

conformations, such as those that have steric clashes. In a continuous model, such as the vector-

based protein representation described in Chapter3, we use the uniform distribution to sample

conformations. We pick values for each conformational parameterq1, q2, . . . uniformly at random

from its allowable range (see Chapter6 for a discussion of non-uniform sampling strategies). In a

discrete model, such as the simplified protein representation described in Chapter4, we sample all

21
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allowed conformations.

Next, for each nodevi, we find its nearest neighbors using a distance function that depends on

the domain of study. For instance, we use the RMS distance[Lea96] in Chapter3. We then create an

arc betweenvi and every neighboring nodevj and attach to it the transition probabilityPij defined

by

Pij =
1
di

min(1,
εj/dj

εi/di
) (2.1)

whereεi andεj are the Boltzmann factors atvi andvj , anddi anddj are the number of neighbors

of vi andvj . If there is no arc betweenvi andvj , then they are considered too far apart for their

energy difference to be a good basis for estimating the transition probability, and we setPij = 0.

The molecule can still move fromvi to vj , but the move necessarily traverses one or several other

nodes of the roadmap. Finally, a self-transition probabilityPii = 1 −∑
j 6=i Pij is attached to each

nodevi, thus ensuring that the transition probabilities from any node sum up to 1. We retain the

roadmap only if it contains a single connected component.

2.2 Connection Schemes

We propose two connection schemes. The first one is thek-nn scheme, where we connect a node to

its k nearest neighbors. We setk to an integer multiple of the number of degrees of freedom (DOF)

of the system, to roughly give a direction of motion for each DOF. The second one is themaxRadius

scheme, where we select a radiusr that corresponds to a maximum conformational displacement

we allow along an arc. We connect each node to all nodes within a distance ofr.

These schemes may produce roadmaps with different number of connected components (cc) for

a given set of nodes and a fixedk, r. With few nodes, one may obtain a single cc with thek-nn

scheme, whereas maxRadius scheme would probably create several cc’s. In contrast, as the number

of nodes increases, thek-nn scheme may create multiple cc’s, since some nodes may form complete

subgraphs. A possible strategy to resolve this issue is to increasek by one for the nodes forming this

subgraph or for all nodes, until all nodes are interconnected. On the other hand, maxRadius scheme

is more likely to create a single cc as the number of nodes increases.

The two connection schemes also differ in the resulting arc lengths in the roadmap. The arcs

in the k-nn scheme may vary widely in length and some may be too long, corresponding to large

conformational changes. Those arcs may not correspond to a realistic motion of the molecule. The
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maxRadius scheme prevents this problem by bounding the extent of a conformational change.

A practical issue with the maxRadius scheme is the selection of the radiusr. Many cc’s are

obtained with a smallr, while a larger allows undesired large conformational changes. In contrast,

k-nn adaptively adjustsr for each node. A candidate forr is the maximum distance between any

node and itskth-nearest neighbor, which can be found with thek-nn scheme.

In our previous work[ABG+02a, ABG+02b] we used both schemes in roadmap construction. In

this thesis, we report experimental results obtained with thek-nn scheme.

2.3 Stochastic Roadmap Simulation

The underlying idea in SRS is to compute properties of molecular systems using the information

encoded in the roadmap. We previously mentioned in Section1.2.2.4that MC simulation computes

such properties by following a random walk in the conformation spaceC. Similarly, we can perform

a random walk in the roadmapG as follows: At nodevi of G, we choose a nodevj uniformly at

random from the set of neighbors ofvi and propose a move tovj . The move is accepted with

probability

Aij = min(
εj/dj

εi/di
, 1) (2.2)

Expressions (1.1) and (2.2) are similar, except for the additional factordi/dj . This factor is

needed because, while the neighborhoods of all sampled conformations in MC simulation have the

same size, the number of neighbors may vary from one node to another for a random walk on the

roadmap. This variation is present even in thek-nn scheme, since a nodevi may have more thank

arcs. This happens ifvi is connected to a nodevj sincevi is among thek-nearest neighbors tovj , but

vj is not among thek-nearest neighbors tovi. Sincevi hasdi neighbors and each one is chosen with

probability1/di, the transition probability fromvi to vj is (1/di)Aij , which, after simplification,

is equal toPij given in (2.1). Hence, with our choice of transition probabilities, every path in the

roadmap corresponds to a MC simulation run.

Therefore, we can compute ensemble properties by following a random walk in the roadmap,

in a manner similar to MC simulation. However, we can avoid the costly explicit simulationand

consider all the paths encoded in a roadmap simultaneously by using tools from Markov chain

theory, as described in Section2.5.
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2.4 Relationship With Monte Carlo Simulation

In contrast to the heuristic arc weights used in[SLB99, ASBL01, SA01], the transition probability as-

signment enables us to establish a formal relationship between SRS and MC simulation[ABG+02a].

We now describe this important relationship.

2.4.1 Stationary Distribution of a Markov Chain

A Markov chain is a stochastic process that takes values from a finite or countable set of states

s1, s2, . . . , sn. The probabilityPij of going from statesi to sj depends only on statessi andsj .

Under suitable conditions, a Markov chain has an associated limit distributionπ = (π1, π2, . . .) that

can be obtained as follows. Starting at an arbitrary initial state, perform a random walk over the set

of states. At each step of this walk, make a move to the next state with the transition probability

Pij . If we let the walk continue infinitely, then under the condition that the Markov chain isergodic,

each nodevi is visited with a fixed probabilityπi in the limit, regardless of the starting node[TK94].

Soπ describes the limit behavior ofall possible random walks. The probabilityπi gives the fraction

of the time thatvi is visited in the limit.

The limit distributionπ satisfies the following self-consistent equations[TK94]:

πi =
∑

j

πjPji for all i. (2.3)

With the additional constraints thatπi ≥ 0 for all i and
∑

i πi = 1, the solution to Eq. (2.3) is

guaranteed to be a well-defined probability distribution. Eq. (2.3) says that, as the number of steps

in the random walk goes to infinity, the distributionπ no longer changes from one step of the random

walk to the next. For this reason,π is called thestationary distribution.

If the conformation space of a molecule is discretized into a finite set of states, MC simulation

over this space can be described by a Markov chain with appropriately defined transition proba-

bilities. The stationary distribution of the Markov chain then gives the limit behavior of the MC

simulation.
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2.4.2 Stationary Distribution of Stochastic Roadmap Simulation

We mentioned in Section1.2.2.4that MC simulation generates sample conformations with a distri-

bution that converges to the Boltzmann distributionβ. So, in the limit, the probability of sampling

any subsetS ⊆ C is
β(S) =

1
Zβ

∫

S
exp(−E(q)/kBT ) dq.

Now we would like to ask the same question for SRS. What is the limit behavior of SRS? In other

words, if we perform an arbitrary long random walk on the roadmap as described above, what is the

probability of sampling a subsetS ⊆ C? Since, by construction, a roadmap is connected, it defines

an ergodic Markov chain with transition probabilitiesPij [TK94]. So, the limit behavior of SRS is

governed by the stationary distribution of this Markov chain, given by the following lemma:

Lemma 1 A roadmap defines a Markov chain with stationary distribution

πi =
1

Zπ
exp(−E(vi)/kBT ) for all i, (2.4)

whereZπ =
∑

i exp(−E(vi)/kBT ) is a normalization constant.

Proof: See AppendixA.1. 2

To estimate the probability of sampling a setS, we simply sum the stationary distributionπ over

all the nodesvi that lie inS:

π(S) =
∑

vi∈S

πi =
1

Zπ

∑

vi∈S

exp(−E(vi)/kBT ).

If SRS represents the stochastic motion of a molecule with the same limit behavior as MC sim-

ulation, then we expect the limit distributions of these two methods to converge. In other words,

π(S) should approximateβ(S) to any arbitrary precision, given a suitably dense roadmap. This

is formally summarized in Theorem1. In the appendix, we provide a complete statement of the

theorem.

Theorem 1 Let S be any subset of the conformation spaceC with relative volumeµ(S) > 0. For

anyε > 0, δ > 0, andγ > 0, a roadmap withN uniformly sampled nodes (whereN is polyno-

mial in ln(1/γ), ‖ exp(−E(v)/kBT )‖S , 1/µ(S), the normalization constantZβ, 1/ε and1/δ), the

difference between the probabilityβ(S) and the estimateπ(S) from the roadmap is bounded by:
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Figure 2.1.Average error in SRS estimates of the stationary distribution.

(1− δ)β(S)− ε ≤ π(S) ≤ (1 + δ)β(S) + ε, (2.5)

with probability at least1− γ, where‖f‖S = supv f(v)− infv f(v)

andZβ =
∫
C exp(−E(q)/kBT ) dq.

Proof: See AppendixA.2. 2

The theorem says that, with high probability, the stationary distributionπ associated with a

roadmap can approximateβ, the Boltzmann distribution, to any desired level of accuracy character-

ized by the relative errorδ and the absolute errorε. In particular, for any subsetS of C, the theorem

tells us that there existsN such that if we sampleN uniformly distributed nodes in the roadmap,

and find the points falling intoS, the sum of the stationary distribution on this subset of points will

converge to the Boltzmann distributionβ in S. Since MC simulation also approachesβ in the limit,

it follows that both SRS and MC simulation converge to the same limit distribution.

Figure2.1illustrates empirically the result of Theorem1. It shows that the error in our roadmap

estimates of the stationary distribution decreases as the size of the roadmap increases, as predicted

by the theorem. The plot was obtained by evaluating our roadmap estimates of stationary distribu-

tion on a fictitious energy landscape in a two-dimensional conformation space. We divided the space

into 100 equally-sized binsBi, i = 1, 2, . . . , 100. We generated roadmaps of increasing sizes and

computed the stationary distributionπ(Bi) on the roadmap. The Boltzmann distributionβ(Bi) for

each binBi was estimated by MC integration. Figure2.1shows the average error in our estimates,

that is,(1/100)
∑100

i=1 |π(Bi)− β(Bi)|.
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Furthermore, Theorem1 studies the asymptotic convergence rate of the roadmap estimate. For

any desired level of approximation (a given absolute errorε, relative errorδ, and confidence level

γ), the number of nodes required is polynomial in1/ε, 1/δ, andln(1/γ). The size of the roadmap

also depends polynomially on the range of values for the Boltzmann factor‖ exp(−E(v)/kBT )‖S ,

the normalization constantZβ, and the inverse1/µ(S) of the relative volume ofS, whereµ(S) is

defined as the ratio of the volume ofS to the volume ofC. Although this bound demonstrates the

polynomial convergence of SRS, in practice this bound may be overly pessimistic and our conver-

gence may be faster, as suggested by the results presented in this thesis.

A consequence of the above result is that every ensemble property that can be computed by

averaging from many MC simulation runs, assuming unlimited computation time, can also be com-

puted by SRS. The novelty of the SRS framework is the way computation is organized. The pre-

computation of a roadmap and the subsequent query of this roadmap result in major computational

savings.

2.5 Roadmap Query

A roadmapG encodes considerable information on molecular motion. For instance, given two

nodesvi andvj in G, we could compute the most likely pathway fromvi to vj by searching for

a minimum-weight path fromvi to vj in a graph similar toG, but with− lnPij as arc weights.

This would lead to results similar to those presented in[SLB99, ASBL01, SA01]. However, since a

roadmap explicitly captures the stochastic nature of molecular motion, it allows us to take advantage

of powerful tools from the Markov chain theory. We now focus on one such tool, known asfirst-step

analysis.

To illustrate our description, consider a roadmapG built in the conformation space of a protein.

Assume that the native structure of this protein is known. LetF stand for the set of nodes inG that

are within some RMS radius of the native structure. We refer toF as the folded state. Assume we

are interested in knowing, for every nodevi in G, the expected number of transitions,ti, to go from

vi to the folded state, that is, any node inF . A naive method to computeti would be to perform

many MC simulation runs, starting fromvi, and average the number of transitions taken by each

run. This computation would have to be repeated for eachvi. Instead, we use first-step analysis.

Suppose that we start at some nodevi 6∈ F and perform one step of transition. First,ti is increased

by one. Then, we either enter the folded state or reach another nodevj 6∈ F . In the former case,
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t1 = 1 + P11 · t1 + P12 · t2 + P13 · t3 + P15 · t5
Figure 2.2.Illustration for first-step analysis.

we simply stop. In the latter case, the expected number of steps from then on istj . So, we get the

following system of linear equations:

ti = 1 +
∑

vj∈F
Pij · 0 +

∑

vj 6∈F
Pij · tj for everyvi 6∈ F . (2.6)

In the second term of (2.6), Pij is multiplied by zero, because we stop as soon as we enter the folded

state. See Figure2.2for an illustration.

The linear system (2.6) contains one equation and one unknown for each nodevi 6∈ F . By

solving this system, we obtainti for all the nodes simultaneously, without performing any explicit

simulation. We also consider all pathways encoded withinG.

To solve the linear system (2.6), we rewrite it in matrix form:

(I −Q) · t = b, (2.7)

whereI is the identity matrix,Q is a matrix whose entries are the transition probabilitiesPij , t is

the vector of unknownsti, i = 1, 2, . . ., andb is a vector collecting the remaining constant terms in

(2.6). Since a roadmap usually contains many nodes, the size ofI−Q is large, so direct methods for

solving (2.7), such as Gaussian elimination, are impractical. However, the ergodicity of the Markov

chain defined by the roadmap guarantees that a unique solution to (2.7) exists. So iterative methods

can instead be used. In particular, the naive iteration

t(k+1) = Q · t(k) + b

converges to the unique solution. This iterative method amounts to performing many simulation runs
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simultaneously using matrix multiplication. More efficient iterative methods, such as the conjugate-

gradient method[Saa96], can also be used. Furthermore, since every node in the roadmap is directly

connected to a relatively small number of neighboring nodes,Q is a sparse matrix. Sparse-matrix

ordering algorithms greatly reduce the running time of iterative solvers [GL89, GMS92].

2.6 What is Represented by a Roadmap Node? A Roadmap Arc?

The nodes in a roadmap correspond to molecular conformations. They may represent unique con-

formations, or sets of conformations sharing a similar property. For instance, a node may consist of

all conformations having the same number of native contacts.

Depending on whether a node represents a single or a set of conformations, the energy associated

with it corresponds to potential or free energy. The free energy includes terms for both enthalpy and

entropy. Enthalpy is closely related to potential energy. The entropy is proportional to the logarithm

of the number of conformations represented by the node.

Similar to the energy associated with the node, the arcs of the roadmap represent transitions

that depend on the node’s content. If the nodes represent single conformations, an arc represents an

individual pathway–“amicro-route” [WD03]–corresponding to a single conformation’s trajectory.

In contrast, an arc represents a set of pathways–“amacro-route” [WD03]–when the node represents

multiple conformations. These pathways may, for instance, correspond to a given order of formation

of native contacts.



Chapter 3

Computing the Probability of Folding

In this chapter, we describe the application of SRS to compute theprobability of folding(Pfold)

parameter. We compare SRS Pfold computations with those from MC simulation on four examples.

We find that SRS provides accurate results, but is much faster.

3.1 What is the Probability of Folding?

In the introduction, we stressed the importance of thekineticprotein folding process. Analyzing this

process requires finding the specific geometric transformations a protein undergoes during folding,

as well as distinguishing the conformations that are “closer” to the native structure along the folding

pathways from those that are “further away.” To address this type of questions, the probability of

folding (Pfold)–also known as the transmission coefficient–has been introduced to measure how far

away a protein conformation is from the native conformation kinetically[DPG+98]. For a folding

process dominated by two stable states, a folded stateF and an unfolded stateU , the Pfold valueτ

for a conformationq is the probability of reachingF beforeU , starting fromq. If τ > 0.5, then

the protein is more likely to fold first than to unfold first, and therefore,q is kinetically closer to the

folded state. Trivially, ifq is inF , thenτ = 1, and ifq is in U , thenτ = 0. The Pfold value atq is

not associated with any particular folding pathway, but depends on all possible pathways fromq. It

thus describes the average behavior of the folding process. In this sense, it is an ensemble property.

30
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Figure 3.1.First-step analysis for Pfold computation. The Pfold at node i is written as a function of Pfold at
the neighbors of i. Imposing boundary conditions at the folded and unfolded states and solving the resulting
set of linear equations allows the computation of Pfold for all nodes.

3.2 First-Step Analysis

Using SRS, we can compute Pfold as follows. Letvi, i = 1, 2, . . . be the nodes of the computed

roadmap, andτi be the Pfold value forvi. First-step analysis yields the following equation for every

nodevi not inF or U :

τi =
∑

vj∈F
Pij · 1 +

∑

vj∈U
Pij · 0 +

∑

vj 6∈(F∪U)

Pij · τj . (3.1)

It is obtained by conditioning on the first transition. After one step of transition, we have three

possibilities:

1. We reach a node inF . Then, we have reachedF beforeU with probability 1.

2. We reach a node inU . Then, we have reachedU beforeF , and the probability of reachingF
beforeU is 0.

3. We reach a nodevj not inF , nor inU . The valueτi then depends on the value ofτj .

Linear system (3.1) has the same matrix form as the example in Section2.5. A unique solution exists

and can be obtained by an iterative solver. Figure3.1 illustrates Pfold computation with first-step



CHAPTER 3. COMPUTING THE PROBABILITY OF FOLDING 32

−100

−50

0

50

100

−100

−50

0

50

100
−6

−4

−2

0

2

4

6

−100 −80 −60 −40 −20 0 20 40 60 80 100
−100

−80

−60

−40

−20

0

20

40

60

80

100

−
4

−4

−4

−
4

−4

−
2

−2

−2

−2

−2

−2

−2

−
2

−2

−2

−2

−2

0

0

0

0

0

0
0

0

0

0

0

0

0

0

0

0

0

0 0

2

2

2

2

2

2

2

2

2

2

2

2

2

24

4

4

4

4

4

4

Figure 3.2.The two-dimensional fictitious energy landscape used in our study, along with its contour plot.

analysis.

We can improve the accuracy and potentially the speed of the iterative solver by setting all the

self-transition probabilities in the roadmap to 0 and renormalizing the other probabilities. Set

P ′
ii = 0 for all i,

P ′
ij = Pij/

∑
k 6=i Pik for all i 6= j

(3.2)

and solve the linear system

τi =
∑

vj∈F
P ′

ij · 1 +
∑

vj∈U
P ′

ij · 0 +
∑

vj 6∈(F∪U)

P ′
ij · τj . (3.3)

If we think in terms of performing a random walk on the roadmap as described in Section2.4, then

setting the self-transition probabilities to 0 is equivalent to accepting all proposed moves. It is easy

to verify that the linear systems (3.3) and (3.1) have the same solution by substituting (3.2) into

(3.3). However, if we write (3.3) in the matrix form, the matrixI −Q contains 1 in all its diagonal

entries, which are greater than or equal to the corresponding entries in the matrix for (3.1). So (3.3)

tends to be a better conditioned system for iterative methods.

3.3 Experimental Results

We now show our results on four examples. We first studied a simple energy function in a two-

dimensional fictitious conformation space. We used this synthetic landscape in order to perform

more extensive comparisons than is practically possible with real proteins. In the other three exam-

ples, we studied real proteins. In all cases, we compared Pfold values computed by SRS to those
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Figure 3.3.The Pfold values computed by SRS and MC simulation on a fictitious energy function.

from MC simulation. We also compared the running times of both techniques.

We implemented both SRS and MC simulator in C++. We used meschach library[SL94] as the

linear system solver of SRS. We made our software for the synthetic landscape and vector-based

representation (Section3.3.2) available on the internet[Apa04].

3.3.1 Example in Two-Dimensional Space

3.3.1.1 Energy Function

In this example, we constructed the “energy” landscapeE as a linear combination of radially sym-

metric Gaussians over a two-dimensional space, with a paraboloid centered at the origin and at

(-50,-50) (Figure3.2). We picked the centers, the decay rates, and the heights of the Gaussians at

random. The energy at the origin and at (-50,-50) was approximately -4.88 and -4.98. We defined

E to extend from -100 to +100 along both dimensions. The energy varied roughly between -5 and

+5.

3.3.1.2 Details of SRS and MC Simulation

In MC simulation, we selected the maximum step size as±2 in each dimension. This corresponds

to a step size of±0.01 in each dimension in normalized coordinates. The normalization maps each

axis ofE from its current boundaries to between zero and one. We used uniform sampling within

the range defined by this maximum step size in each dimension to find the next conformation. We



CHAPTER 3. COMPUTING THE PROBABILITY OF FOLDING 34

0 2000 4000 6000 8000 10000 12000
0.5

0.6

0.7

0.8

0.9

1

num nodes

co
rr

el
at

io
n 

co
ef

fic
ie

nt

Synthetic landscape, 100 data points, MC vs. SRS

100 MC runs/node
500 MC runs/node
1000 MC runs/node

0 2000 4000 6000 8000 10000 12000
0.5

0.6

0.7

0.8

0.9

1

num nodes

co
rr

el
at

io
n 

co
ef

fic
ie

nt

Synthetic landscape, 100 data points, MC vs. SRS

Figure 3.4.Correlation coefficientκ as a function of the number of nodes in the roadmap in a two-dimensional
fictitious energy landscape: (left) comparison of roadmap results to MC simulations with 100, 500 and 1000
MC simulations per conformation; (right) the distribution of the correlation coefficient of SRS to MC with
1000 simulations per conformation. The red line inside each box shows the median correlation to MC. The
lower and upper endpoints of the box correspond to the lower and upper quartiles of the correlation. The
extending lines from the box show the extent of the correlation data, and the red “+” signs show the outliers.

shortened this range as necessary, so that after a step the new conformation would always lie within

the bounds ofE. We stopped each run as soon as it entered within the folded or unfolded states.

In SRS, we used the Euclidean distance for finding neighboring nodes. We connected each node

to four nearest neighbors.

We assigned the folded and unfolded states to the circular regions of radius 1 around the min-

ima at the origin and at (-50,-50), respectively. This corresponds to a region of radius 0.005 in

normalized parameters.

3.3.1.3 Results

We first used MC simulation to compute Pfold for 100 sampled conformations, with 1000 simula-

tions per conformation. We then used SRS to compute Pfold, with a roadmap of approximately

10,000 randomly sampled nodes. We added the 100 previously sampled conformations to the

roadmap.

We plot the results computed with SRS and MC along the horizontal and vertical axes in Fig-

ure3.3. All the points in the plot lie close to the diagonal line, indicating that the results from the

two methods are in good correspondence.

We conducted further tests by varying the number of nodes sampled by SRS and the number of
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MC simulation runs per conformation. We performed 100 to 1000 MC simulations for each node.

We varied the number of random samples in SRS between 100 and 10,000.

In each test, we summarized the correspondence between the results from the two methods by

their normalized correlation coefficient, which is defined as

κ(x, y) =
〈xy〉 − 〈x〉〈y〉√

(〈x2〉 − 〈x〉2)(〈y2〉 − 〈y〉2)

for two vectorsx and y, where〈·〉 denotes the operation of taking the average. Note that the

magnitude ofκ is always between0 and1, with 0 indicating no correlation and 1 indicating perfect

correlation. We show these results in Figure3.4. In this figure, we indicate the number of nodes in

the roadmap along the horizontal axis, and the correlation coefficientκ along the vertical axis. We

show the averageκ over many roadmaps on the left. There are three curves in this plot, respectively

corresponding to 100, 500, and 1000 MC simulation runs per conformation. They show a generally

similar trend. κ improves rather quickly as the number of nodes in the roadmap increases. In

addition, we show the distribution ofκ over many roadmaps for a given roadmap size on the right.

For each roadmap size, we show the median correlation to MC with the red line inside each box,

and the lower and upper quartiles of the correlation with the lower and upper endpoints of the box,

respectively. The extending lines (“whiskers”) from the box show the extent of the correlation data,

and the red “+” signs show the outliers. We present the correlation of roadmaps with MC with

1000 simulations per conformation. We observe from this plot that due to random sampling, the

quality of Pfold from SRS for a given roadmap size varies. However, this variation decreases as

more random samples are added. Nevertheless, outliers exist, for instance, SRS with 10,000 nodes

has a correlation of 0.76 to MC in one case in Figure3.4. This is significantly lower than the median

correlation of 0.98 for the same size roadmaps.

Similar toκ, we computed the average absolute differenceL1(x, y) = 〈|x− y|〉 for two vectors

x and y corresponding to the Pfold values obtained by SRS and MC for several roadmaps.L1

distance is also between 0 and 1, 0 corresponding to a perfect match between SRS and MC. We

show the results of these additional tests in Figure3.5. We indicate the number of nodes in the

roadmap along the horizontal axis and theL1 distance along the vertical axis. We show the average

L1 distance of SRS to MC with 100, 500, and 1000 runs per conformation on the left in Figure3.5,

and the distribution ofL1 distance on the right. We use the same plotting technique to show the

variation as in Figure3.4. Both the average and the variation ofL1 distance decrease as a function
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Figure 3.5.L1 distance as a function of the number of nodes in the roadmap in a two-dimensional fictitious
energy landscape: (left) comparison of roadmap results to MC simulations with 100, 500 and 1000 MC
simulations per conformation; (right) the distribution ofL1 distance of SRS to MC with 1000 simulations
per conformation. The red line inside each box shows the medianL1 distance to MC. The lower and upper
endpoints of the box correspond to the lower and upper quartiles of theL1 distance. The extending lines from
the box show the extent of the data, and the red “+” signs show the outliers.

Figure 3.6. Two proteins used in our study: 1ROP (one monomer) and 1HDD (circled) in complex with
DNA.

of roadmap size.

In a typical run, SRS took about 14 seconds to construct a roadmap of 2,000 nodes and obtain

Pfold for all the nodes on a pentium III 1Ghz machine with 1GB of memory. In comparison, the time

needed to perform 100 MC runs at each of the 2,000 nodes of the roadmap on the same machine

is around 160,000 seconds. However, this comparison of running times is of limited interest, since

the cost of computing our fictitious energy function is much smaller than that of computing any

reasonable energy function for a real protein.
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Figure 3.7.Degrees of freedom in our protein model: vector angle (left), dihedral angle (middle), and twist
angle (right). In addition, the length of some vectors is variable.

3.3.2 Example With Vector-Based Representation

More interestingly, we tested SRS on two proteins with vector-based representation (Figure3.6).

These are ColE1 repressor of primer and engrailed homeodomain, which are identified as 1ROP

and 1HDD, respectively, in the Protein Data Bank[B+77]. 1ROP is a dimer made of two identical

monomers, each containing 56 residues forming twoα helices connected by a loop. As in[STD95],

we study a single monomer in isolation. 1HDD contains 57 residues forming threeα helices packed

against each other.

3.3.2.1 Vector-Based Representation

In our implementation, we encoded the conformation of a protein with the vector-based model

previously used in[SB97, ASBL01]. This representation describes a protein as a sequence of vectors,

each associated with a secondary structure element (SSE). It loosely corresponds to studying the

folding process after the protein has acquired the molten globule state, an observed intermediate for

some proteins[Cre99]. This state has nearly the same secondary structure as the final fold, but the

tertiary structure is not as compact.

We consider the following DOFs (Figure3.7):

• Vector angle: We assign this DOF to the extremity of each vector, except the last one. The

corresponding parameter is the angle made by the vectors ending and starting at this point.

This angle varies between0 andπ.

• Dihedral angle: We associate this DOF to every three consecutive vectors. The parameter is

the angle made by the plane containing the first two vectors and the plane containing the last

two. This angle varies between -π andπ.
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Figure 3.8.Hydrophobic-Polar model energy function terms: exclusion energy (left) and H-H interactions
(right). The distance (horizontal axis) is between a pair of sidechain centroids.

• Twist angle: We associate this DOF with everyα helix. A coordinate frame is attached to this

SSE with its z axis aligned with the element vector. The DOF parameter is the angle between

the x axis of this frame and the orientation of the first amino acid on that vector. The twist

of anα helix about its own axis does not affect the positions and orientations of other SSEs.

This angle varies between -π andπ.

• Vector length: We associate this DOF with each loop. The parameter is the length of the loop

vector, which is allowed to vary within a range that is a function of the number of amino acids

in the loop. The minimum and maximum values of the length are 0.5Å and 6̊A per amino acid

in the loop.

In our model, 1ROP has 6 DOFs, and 1HDD has 12 DOFs.

3.3.2.2 Energy Function

We used the Hydrophobic-Polar (H-P) model as the energy function[STD95], which consists of two

terms measuring the hydrophobic interaction and the excluded volume (Figure3.8). In this model,

amino acids are classified into two groups, hydrophobic (H) and hydrophilic (or polar, P). H-H con-

tacts are favorable, whereas H-P or P-P contacts do not contribute to the energy. The exclusion term

ensures that no two atoms are too close. These terms are a function of the distances between side-

chain centroids, for the conformation of interest. This model assumes that hydrophobic interactions

drive the folding process and that the specific identity of the side-chains is only responsible for the

fine-tuning of the fold.
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Figure 3.9.The Pfold values computed by SRS and MC simulation for 1ROP and 1HDD.

3.3.2.3 Details of SRS and MC Simulation

In SRS, to find the nearest neighbors of a node, we used the cRMS distance, which is defined

as follows. For two conformations of a protein,P andQ, given their Cα or sidechain centroid

coordinatespi and qi, i = 1, . . . , n, cRMS(P, Q) = minT

√
1
n

∑
i ‖pi − Tqi‖2 whereT is a

matrix denoting a rigid body transformation (rotation and translation). We used the Bioinformatics

Template Library (BTL)[WPBM] to computeT givenP andQ. BTL uses the technique of[Kea89]

to findT . We connected each node to itsk-nearest neighbors, wherek is the number of DOFs in the

system.

In MC simulation, we set the maximum step size to±0.05 in the normalized coordinates, for

each DOF. During the simulation, if the vector length DOF became close to the boundary of its

range, we lowered this maximum step size in order to keep the vector length within its range. For

the dihedral and twist angles, this was not necessary, since these DOF parameters can wrap around

their limits, that is,−π is equivalent toπ for these parameters. Finally, we specifically adjusted the

vector angle when it crossed its boundary. Note that this crossing corresponds to a singularity, since

when the vector angle is 0 orπ, three consecutive points are collinear, and the dihedral angle that

involves these three points is undefined. In such crossings, we adjusted the corresponding vector

angles and dihedral angles so as to maintain their correct range.

In both SRS and MC simulation, we discarded conformations that had an exclusion energy term

greater than 1 kcal/mol. We defined the folded state to be all conformations within a small cRMS

distance of the native structure (3Å for 1ROP and 5̊A for 1HDD), and the unfolded state to be all
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Figure 3.10.Correlation coefficientκ as a function of the number of nodes in the roadmap for 1ROP: (left)
comparison of roadmap results to MC simulations with 100, 200 and 300 MC simulations per conformation;
(right) the distribution of the correlation coefficient of SRS to MC with 300 simulations per conformation.
The red line inside each box shows the median correlation to MC. The lower and upper endpoints of the box
correspond to the lower and upper quartiles of the correlation. The extending lines from the box show the
extent of the correlation data, and the red “+” signs show the outliers.

the conformations within 10̊A of the fully extended conformation.

3.3.2.4 Results

We computed Pfold values at about 75 randomly selected conformations for 1ROP and 56 confor-

mations for 1HDD, using both SRS and MC simulation. With SRS, we computed the estimates with

roadmaps having increasing numbers of nodes. In MC simulation, we performed up to 300 runs at

each of the selected conformations. We provide the scatter plots in Figure3.9. The correlation and

L1 distance results for 1ROP are in Figures3.10and3.11, for 1HDD the corresponding plots are

in Figures3.12and3.13. Similar to the two-dimensional case, the correlation rapidly increases (to

about 0.9 and 0.8 for 1ROP and 1HDD, respectively), while theL1 distance decreases rapidly and

stays constant (at about 0.1 for both proteins). We plot the distribution ofκ andL1 distance as in

the synthetic landscape.

The total time to generate a roadmap with 2,000 nodes and compute the Pfold values forall

these nodes was about 10 minutes (about 9 minutes for 1HDD) on a 2.8 MHz Intel Xeon processor

machine, with 1 Gigabyte of memory. In comparison, it took between five minutes and 20 hours

for 1ROP (two minutes to 2.5 hours for 1HDD) of computation time in order to execute 300 MC

simulation runs required to estimate Pfold at just one conformation. Therefore, SRS provides a
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Figure 3.11.L1 distance as a function of the number of nodes in the roadmap for 1ROP: (left) comparison
of roadmap results to MC simulations with 100, 200 and 300 MC simulations per conformation; (right) the
distribution of theL1 distance of SRS to MC with 300 simulations per conformation. The red line inside
each box shows the medianL1 distance to MC. The lower and upper endpoints of the box correspond to the
lower and upper quartiles of theL1 distance. The extending lines from the box show the extent of the data,
and the red “+” signs show the outliers.
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Figure 3.12.Correlation coefficientκ as a function of the number of nodes in the roadmap for 1HDD: (left)
comparison of roadmap results to MC simulations with 100, 200 and 300 MC simulations per conformation;
(right) the distribution of the correlation coefficient of SRS to MC with 300 simulations per conformation.
The red line inside each box shows the median correlation to MC. The lower and upper endpoints of the box
correspond to the lower and upper quartiles of the correlation. The extending lines from the box show the
extent of the correlation data, and the red “+” signs show the outliers.
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Figure 3.13.L1 distance as a function of the number of nodes in the roadmap for 1HDD: (left) comparison
of roadmap results to MC simulations with 100, 200 and 300 MC simulations per conformation; (right) the
distribution of theL1 distance of SRS to MC with 300 simulations per conformation. The red line inside
each box shows the medianL1 distance to MC. The lower and upper endpoints of the box correspond to the
lower and upper quartiles of theL1 distance. The extending lines from the box show the extent of the data,
and the red “+” signs show the outliers.

speedup of at least two orders of magnitude.

3.3.3 Beta Hairpin

We also studied the folding kinetics of beta hairpin (Figure3.14), the last 16 amino acids of protein

G (PDB id:1GB1). This small polypeptide has been experimentally shown to have the basic char-

acteristics of protein folding[MTHE97], and its folding has been studied with simulation by many

researchers[ZSP01, GS01].

3.3.3.1 Cα-Based Representation

We used the Cα-based Ḡo model representation of Zhou and Karplus (1999). This model only

considers the Cα atoms, which are connected by pseudo-bonds. The length of a pseudo-bond varies

between0.9d and1.1d, whered = 3.80 Å is the average distance between consecutive Cα atoms

in a protein. In this model, the DOFs are the pseudo-bond vector and dihedral angles, and the

pseudo-bond vector lengths. We define these DOFs by the position of consecutive Cα atoms, as in

the vector-based representation. With this representation, beta hairpin has 42 DOFs.
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Figure 3.14.Protein G (tube) superimposed with the beta hairpin (cartoon). We study beta hairpin in isolation.

3.3.3.2 Energy Function

We used the energy function in[ZK99a]. Briefly, this function considers the contacts of a conforma-

tion in assessing its energy. In this function, a contact is defined as a pair of Cα atoms at a distance

range ofσc = 4.27Å to 1.5σc = 6.41Å. Native contacts are those that are present in the native struc-

ture and are assigned an energy ofBN ε. In contrast, non-native contacts are those that do not exist

in the native structure and are assigned an energy ofBoε. Bo > BN andε is a positive number that

corresponds to the energy scale. Abias gap, given byg = 1 − Bo/BN , is defined as a coefficient

that is related to the stability of native contacts with respect to non-native ones. For instance, if

no distinction is made between native and non-native contacts, the bias gap is zero. There is also

a chirality term that favors right-handedα helices; it is applied only to four consecutive Cα atoms

that have a positive dihedral angle in the native structure. It has a value ofεb = 4 ∗ |BN | ∗ ε if

the dihedral angle is between−π and 0 in a given conformation, and zero otherwise. The energies

corresponding to contacts and the chirality term are added to obtain the full energy. In our model,

we setBN to -1 andBo to 0.3. The bias gap was then 1.3, corresponding to the large-gap model

in [ZK99b].

3.3.3.3 Details of SRS and MC Simulation

In constructing the roadmap, we used cRMS distance on Cα atoms to find the nearest neighbors

of each node efficiently. We connected each conformation tok nearest neighbors, wherek is the
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Figure 3.15.The Pfold values computed by SRS and MC simulation for beta hairpin.

number of DOFs.

We run MC with a normalized maximum step size of 0.001 in each dimension. We also ran

MC with larger step sizes, but this resulted in lower correlation between SRS and MC. This may be

due to the fact that we represent the beta hairpin as a long chain. In this long chain, a small step

in an angle close to the start causes a large conformational change in the end point of this protein,

therefore producing non-physical conformational jumps in MC simulation. We did not run MC with

a smaller step size, as it was computationally very expensive. Similar to the MC simulation with

vector-based representation (Section3.3.2.3), we adjusted this maximum step size and ensured that

each of the DOF parameters fall within its range.

We defined the folded state to contain all conformations within 3Å cRMS distance of the native

structure, and the unfolded state to contain all the conformations within 5Å of the fully extended

conformation.

3.3.3.4 Results

We computed Pfold values at about 97 randomly selected conformations, using both SRS and MC

simulation. With SRS, we computed the estimates with roadmaps having increasing numbers of

nodes. In MC simulation, we performed up to 30 runs at each of the selected conformations. Due

to the computational cost of MC simulation, we performed a small number of MC simulations for

this protein. We provide the scatter plots in Figure3.15.
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Figure 3.16.Correlation coefficientκ as a function of the number of nodes in the roadmap for beta hairpin:
(left) comparison of roadmap results to MC simulations with 10, 20 and 30 MC simulations per conformation;
(right) the distribution of the correlation coefficient of SRS to MC with 30 simulations per conformation. The
red line inside each box shows the median correlation to MC. The lower and upper endpoints of the box
correspond to the lower and upper quartiles of the correlation. The extending lines from the box show the
extent of the correlation data, and the red “+” signs show the outliers.

We also plot the correlation coefficientκ as a function of roadmap size and its distribution

in Figure3.16, and theL1 distance and its distribution in Figure3.17. The average correlation

reaches about 0.58±0.1 while the averageL1 distance is about 0.13±0.2 for a roadmap of 5000

nodes. Similar to the two-dimensional landscape and the vector-based representation results,κ and

the L1 distance increase and become rather constant quickly. However,κ is lower than previous

examples, andL1 distance is higher. This may be due to the low number of MC simulations and the

high number of DOFs involved in this example.

The total time to generate a roadmap with 2,000 nodes and compute the Pfold values forall

these nodes was about 4 -5 minutes on a 2.8 MHz Intel Xeon processor machine, with 1 Gigabyte

of memory. In comparison, it took between 2 and 80 hours of computation time in order to execute

30 MC simulation runs required to estimate Pfold at just one conformation for the beta hairpin.

While SRS did about 50,000 energy computations for a roadmap of 2,000 nodes, 30 MC simulations

required more than107 energy computations per conformation. Hence, SRS produces similar results

by at least six orders of magnitude faster in this example.
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Figure 3.17.L1 distance as a function of the number of nodes in the roadmap for beta hairpin: (left) compar-
ison of roadmap results to MC simulations with 10, 20 and 30 MC simulations per conformation; (right) the
distribution of theL1 distance of SRS to MC with 30 simulations per conformation. The red line inside each
box shows the medianL1 distance to MC. The lower and upper endpoints of the box correspond to the lower
and upper quartiles of theL1 distance. The extending lines from the box show the extent of the data, and the
red “+” signs show the outliers.

3.4 Discussion

In this chapter, we presented the computation of Pfold with MC and SRS on four examples. The

number of DOFs involved in these examples was 2,6,12 and 42. We obtained accurate Pfold results

with SRS much quicker than MC.

We can compare the step sizes in both simulations. With MC simulation, we used a maximum

normalized step size of 0.01, 0.05, 0.05 and 0.001 along each dimension, respectively. In contrast,

with SRS, we can have an estimate of the normalized size of each arc in each dimension in ad

dimensional space as follows: Since the nodes are uniformly distributed, we assume that each node

occupies the same volume, equal to1
N in the unit hypercube, for a roadmap ofN nodes. Assuming

this volume is covered by a hypercube of lengthm in each dimension, the volume of the hypercube

is equal tomd, and therefore,md = 1
N . Assuming that the arc between two nodes start and end

at the center of these hypercubes, the arc length in each dimension is given bym. Therefore, the

arc length in normalized coordinates along each dimension is( 1
N )

1
d . For a roadmap of 2,000 nodes,

the normalized arc length along each dimension in our examples is then 0.02, 0.28, 0.53 and 0.83.

These are much larger quantities compared to the corresponding MC step sizes.

Despite the huge disparity between the MC step size and the roadmap arc length in each dimen-

sion, especially for higher dimensional examples, SRS produces accurate results compared to MC.
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This is probably due to the simultaneous consideration of a large number of pathways in SRS. Even

though some arcs may be too long and may not correspond to realistic transitions, the considera-

tion of all possible pathways compensate the error due to such arcs. Furthermore, the underlying

energy landscape in our examples probably has a smooth profile, allowing the estimation of the arc

transition probability by the consideration of only the start and the end energies.



Chapter 4

Computation of Rates andΦ Values

Using Pfold

In this chapter, we make quantitative predictions of folding rates andΦ values in protein folding.

With a simplified protein model and using Pfold, we estimate these parameters for five proteins.

4.1 Simplified Models

In the introduction, we mentioned wet-lab experiments as a way of probing the protein folding

process. Two quantities that can be measured with experiment on protein folding are the fold-

ing rate andΦ values. The rate corresponds to the speed of folding, whereasΦ values provide

information about the folding mechanism of individual amino acids. A number of researchers

independently succeeded in accurately predicting these quantities using simplified protein mod-

els[AB99, ME99, GF99]. These models consider a continuous stretch of amino acids as either folded

or unfolded, and also limit the number of such stretches, thus restricting the set of allowed confor-

mations. The folded and unfolded combination of these stretches of amino acids form an ensemble

of conformations, called a “microstate”. Another common assumption they make is to consider only

the native contacts in assessing the energy of a protein microstate, thus using a Gō model similar to

the one in Section3.3.3. The number and position of folded stretches of a microstate determine the

enthalpy and the entropy, and thus, the free energy of that microstate. Assuming an elementary step

of folding as the folding of a single amino acid or a single protein fragment, these works consider

48
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the pathways from the unfolded to the folded state to find the microstates at the energy barriers.

These microstates form the transition state ensemble (TSE) and are used to compute the folding

rates andΦ values, as described in Section4.3.

In this chapter, we use the simplified protein model of[GF99, GFG04] and compute the TSE

using Pfold. We then compute folding rates andΦ values with this TSE using the method described

in [GFG04], and compare our results to those obtained by[GFG04] as well as to experiment. Our

results suggest that Pfold captures better the TSE than a previous technique that is based on finding

the energetic bottlenecks along folding pathways.

4.2 Rates andΦ Values

The folding time of the faster proteins is in the order of microseconds, whereas slower ones take

seconds. Assuming protein folding is according to first order kinetics model, the probability of

having folded by timet, Pf (t), is given byPf (t) = 1 − e−kt for a protein whose folding rate is

k [ZSP01]. It can be observed that if a protein folds according to first-order kinetics, by timeτ=1
k ,

about 63% of the protein is folded. Using the transition state theory, the folding rate can be written

as a function that depends exponentially on the energy difference between the unfolded state and the

transition state[Wal03]. The transition state is the point of maximum energy of the reaction energy

profile along a suitable reaction coordinate[Fer99].

Φ value [Fer99] is a quantity that shows the degree of foldedness of an amino acid in a given

protein in the transition state of the folding process.Φ values vary between 0 and 1, corresponding

to the amino acid being unfolded and folded in the transition state, respectively. To measureΦ

values experimentally, one mutates the amino acid for whichΦ value is desired. The change in

the free energy of the transition state and the folded state with respect to the unfolded state is then

measured.

TheΦ value is given by the following formula:

ΦF =
∆GTSE−U −∆GTSE′−U ′

∆GF−U −∆GF ′−U ′
(4.1)

where primes (’) denote the energy after the mutation,G denotes the free energy,F denotes the

folded state andU denotes the unfolded state in a protein. To illustrate this relation, suppose we

computeΦ value for a given isoleucine (Ile). A protein engineering experiment mutates the large
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Ile to a smaller alanine. The contacts made by Ile are thus removed in the folded state. Furthermore,

suppose Ile is also folded in the transition state. Then, the contacts and the environment of Ile will

be disrupted at the transition state as much as in the folded state. Therefore, the change in the

transition state energy with respect to the unfolded state will be the same as the change in the folded

state energy with respect to the unfolded state, and soΦ value will be 1. A similar explanation can

be made forΦ values of0, and the values in between. The mutations inΦ-value analysis are selected

so as not to introduce new contacts for the mutated amino acid, and an amino acid is replaced with

one with smaller sidechain.

4.3 Prediction of Rates andΦ Values in Garbuzynskiy et al.

We use the simplified protein representation and energy function of[GF99, GFG04] in our study.

Here we briefly describe this model and its use to compute rates andΦ values.

4.3.1 Protein Representation, Energy Function and Graph Construction

This model divides the protein into fragments of five amino acids each. Each fragment can be

either folded or unfolded. A folded fragment maintains all its native contacts within the fragment

and with all other folded fragments. On the other hand, an unfolded fragment becomes a coil and

loses all its contacts. A microstate in this model can be represented in binary format, where each 0

corresponds to an unfolded fragment and 1 to a folded one. For instance, 000...0 corresponds to the

unfolded microstate, and 111...1 to the folded microstate. This model defines a closed loop as an

unfolded region flanked by folded ones. For instance, 10011 has one closed loop, whereas 000111

has no closed loop. Another simplification is to assume up to two closed loops in a microstate.

This restriction reduces the number of unfolded fragments to at most four but is still considered

valid [GFG04].

A microstateS in this representation is associated with a free energy, which depends on the

number of native contacts, the number of residues in the unfolded part ofS, and the absolute tem-

perature.

Garbuzynskiy et al. create a graph by sampling all allowed microstates, and connecting each

microstateS to all others obtainable fromS by the folding or unfolding of a single fragment.
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4.3.2 Computation of the Transition State Ensemble

The next step is to analyze this graph using dynamic programming to find which microstates form

part of the TSE. Two related definitions for the TSE are proposed in[GF99, GFG04]. In the first,

a microstate is part of TSE if it has the lowest maximum energy among all the pathways from the

unfolded to the folded state. The maximum energy along a pathw from U to F is the bottleneck on

that path, the microstate that has the lowest such maximum energy along all pathways corresponds

to the easiest passage fromU to F, and is part of transition state. The second definition relaxes the

criterion for a microstate to be part of the transition state and places a microstateq into the TSE ifq

has the highest energy among all the paths that are constrained to go through itself. In their earlier

work [GF99], the authors observe a higher correlation with experimentalΦ values with this latter

definition and use it in[GFG04]. [GF99, GFG04] use an efficient dynamic programming scheme to

compute the TSE. This scheme visits each node twice and decides for each microstate whether to

put it into the TSE.

Note that the pathways considered in[GF99, GFG04] are only a very small subset of all the

potential paths encoded in their graph. Their folding pathways only allow monotonic increases in

the number of folded fragments. In contrast, all paths are taken into account with Pfold computation.

Our implementation of the technique in[GFG04] finds that a large percentage of the nodes (about

80-90%) are placed into the TSE.

4.3.3 Computation of Rates andΦ Values

Once the TSE is computed, the next step is to compute the rates andΦ values. We use the method

in [GFG04] to compute these quantities. In summary, the rate depends on the free energy difference

between the unfolded state and the TSE. The energy of the TSE is computed as a sum of the Boltz-

mann factors of each microstate that belongs to the TSE, and therefore lower energy microstates

contribute more to the TSE energy.

Garbuzynskiy et al. computeΦ values by counting the number of native contacts removed due

to the mutation of a given amino acid. The mutation deletes the contacts of the corresponding

amino acid in the folded state, as well as in a subset of the microstates that belong to the TSE. The

microstates that are affected by the mutation are those that have a folded fragment at the site of

mutation. Garbuzynskiy et al. obtain the change in the number of native contacts in the TSE by a

weighted combination of the change of the number of native contacts of individual microstates that
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Figure 4.1. The experimental and predicted folding rates. Experimental (red open circle), prediction of
Garbuzynskiy et al. (blue closed circle), prediction with Pfold (green plus). The correlation of predicted
folding rates to experiment with the method by Garbuzynskiy et al. is 0.67, with Pfold, it is 0.83.

Φ value correlation
PDB data # amino # mutated to experiment

id source acids positions in[GFG04] with Pfold

1PGB X-Ray 56 20 0.74 0.78
1SRM NMR 56 26 0.63 0.65
1SHG X-Ray 57 13 0.81 0.78
1BF4 X-Ray 63 15 0.58 0.28
2CI2 X-Ray 64 34 0.35 0.51

Table 4.1.Proteins studied for rate andΦ value predictions, and the correlation with experimentalΦ values
in [GFG04] and with Pfold.

belong to the TSE. The weighting favors the contribution of the lower energy microstates.

4.4 Experimental Results

We computed folding rates andΦ values for five small proteins previously studied in[GFG04] and

tabulated in Table4.1. We considered only the heavy atoms (sans hydrogens) in these proteins,

and used the protein representation, energy function, and the graph construction described in Sec-

tion 4.3.1. We first computed Pfold using the SRS framework. We then assigned a microstate into

the TSE if its Pfold ranges between 0.4 and 0.6. Using this TSE, we computed rates andΦ values.

Below, we also provide the results from[GFG04] for these proteins as a reference. Note that, our

work differs from[GFG04] only in the TSE computation. This allows us to fairly compare the two

TSE computation techniques, while keeping all other parameters the same.
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Figure 4.2.Φ values obtained with Pfold for 1PGB and 1SRM.

Figure 4.3.Φ values obtained with Pfold for 1SHG and 1BF4.

Figure 4.4.Φ values obtained with Pfold for 2CI2.
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We report our results in Figures4.1through4.4, and in Table4.1, as well as in[Chi04]. Overall,

the correlation to experiment results is higher with our approach. We obtain a correlation of 0.83

for folding rates, compared to a correlation of 0.67 in[GFG04]. For Φ values, we have a higher

correlation to experiment for proteins 1PGB (0.78 vs. 0.74), 1SRM (0.65 vs. 0.63) and 2CI2 (0.51

vs. 0.35), whereas for 1SHG (0.78 vs. 0.81) and 1BF4 (0.28 vs. 0.58), we have a lower correlation.

These results suggest that Pfold captures better the TSE in protein folding. Rather than considering

the maxima along energy profiles obtained from a subset of the paths, Pfold computation takes into

account all the paths encoded in the graph. According to[Fer99], the transition state in protein

folding is in a wide saddle with many dips in the energy landscape. The approach in[GFG04] does

not correspond well to this definition, since it does not capture the “width” and ruggedness of the

TSE, by focusing on finding the maximum energy point. In contrast, Pfold has a range that allows

to find microstates around the peak. Note that our correlation is much lower for 1BF4, compared to

the one obtained by[GFG04]. In Figure4.3, the rightΦ value diagram suggests that our predictions

are good for the amino acids one through forty-five, but incorrect for amino acids fifty and above.

For the other four proteins, ourΦ value predictions generally correspond well to the experimental

results along the whole protein sequence.

4.5 Discussion

In this chapter, we employed Pfold to predict experimental quantities in protein folding, in partic-

ular folding rates andΦ values. We used the simplified protein model and free energy function

of [GFG04], and replaced their TSE computation with Pfold computation. For five small proteins

previously studied in[GFG04], we obtained a better correlation with experimental rates. For three

out of these five proteins, we also obtained a better correlation with experimentalΦ values.

The previous method that considers energetic bottlenecks and our method that uses Pfold result in

very different TSE’s for the considered proteins. With Pfold, we placed about 20% of the microstates

into the TSE for a Pfold range of[0.4, 0.6], as compared to more than 80% with previous work.

Furthermore, the contribution of most of the microstates placed into the TSE in previous work was

negligible since these microstates were of high energy. We found that the TSE found with Pfold is

about in the middle of the reaction coordinate, whereas previous work found microstates in the full

range of the reaction coordinate as part of TSE.
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Note that, for the five small proteins we considered, both previous work[GFG04] and our re-

sults overestimate the folding rate, or underestimate the energy barrier. To address this and also to

improve the predictions, our technique should be tested on larger proteins in the future. Computing

Pfold with off-lattice models with Ḡo model or other energy functions is also important to improve

the prediction accuracy.



Chapter 5

Analysis of Ligand-Protein Interactions

Ligand-protein binding is another important biological process, in which a small molecule, the

ligand, attaches itself to a specific site, usually a cavity on the surface of a larger receptor protein in

order to inhibit or enhance activities at the site. Enzymes work by binding to ligands and accelerate

reactions by at least six orders of magnitude[Str95]. A protein often has several cavities where

a ligand could potentially bind. We refer to them aspotential binding sites. The computational

analysis of ligand-protein binding has already attracted considerable attention[MGH+98, WKK99].

5.1 Escape Time

Let us consider the conformation spaceC of a ligand-protein complex with a suitably defined energy

function. A bound conformationq ∈ C generally corresponds to a local energy minimum and has

a funnel of attractionaroundq to stabilize the ligand. Following[CV01], we define the funnel of a

bound conformationq as the set of all conformations within 10Å of q in RMSD. Figure5.1shows

the ligand conformations sampled in and around the funnel of attraction of catalytic site for lactate

dehydrogenase.

An interesting measure of affinity of a ligand to a potential binding site is the expected amount

of time the ligand would take to escape the funnel of attraction of this site. At the catalytic (or active)

site, the ligand is usually bound with very high affinity. So, one would expect that it takes longer for

the ligand to escape from this site’s funnel, than from the funnels of other potential binding sites.

Similarly, lowering the affinity of a protein to the ligand (for instance, by mutating a residue in the

56
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Figure 5.1.Funnel of attraction of a binding site for lactate dehydrogenase. White dots correspond to the
center of gravity of the ligand conformations sampled in and around the funnel of attraction. The funnel is
defined as all ligand conformations within 10Å rmsd of the ligand conformation in the bound state.

catalytic site) should result in a faster escape of the ligand. With MC simulation, a natural choice to

estimate the ligand’s escape time is to count the number of simulation steps:

Definition 1 The escape timeτ from a potential binding sitev is the expectednumber of MC

simulation steps, starting fromv, required for the ligand to reach a conformation outside the funnel

of attractionA of v. 2

Below we use SRS to estimate the escape time defined as above.

5.2 Ligand-Protein Modeling and Energy Function

We represent the ligand-protein complexes as in[SLB99, ASBL01, AGV+02]. The protein is consid-

ered rigid, while the ligand is flexible. One atom in the ligand is designated to be the base and is

assigned 5 DOFs relative to a coordinate system attached to the protein; an additional torsional DOF

is associated with each other non-terminal atom. Rings are assumed rigid and are assigned no DOF.

Bond angles and lengths are considered constant. The ligand’s set of DOF define the parameters of

a conformation of the ligand-protein complex.

To calculate the energy of interaction between the ligand and the protein, as well as the inter-

nal energy of the ligand, we used a potential function that incorporates electrostatic and van der
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Figure 5.2.First-step analysis for escape time computation. Similar to Pfold, escape time at node i is written
as a function of escape time at the neighbors of i. Imposing boundary conditions outside the funnel and
solving the resulting set of linear equations allows the computation of escape time for all nodes in the funnel.

Waals components as in[SLB99]. Since the standard Coulombic equation of electrostatic interac-

tion is valid only for an infinite medium of uniform dielectric, it cannot be used here. The dielectric

discontinuity between protein and solvent generates induced or reflected charges that can play a sig-

nificant role in the binding process. Hence, we modeled electrostatics using the Poisson-Boltzmann

equation, which is a widely accepted model of electrostatic interactions in solution and models

solvent and ionic effects.

We used the Delphi program[SH90] to solve the equation on a three-dimensional grid around

the rigid protein at a resolution of either 1A or 0.5A. The van der Waals potentials are computed at

the same grid resolution by calculating for each grid point the potential contribution of all receptor

atoms within a threshold distance of 10Å. Since Van der Waals interactions decay rapidly, this cutoff

reduces the computational expensiveness without compromising the accuracy[Sch02].

We compute the energy of interaction of every ligand atom with the protein by indexing the

atoms center to the nearest grid point and retrieving the van der Waals and electrostatic potentials at

this point. The total energy of interaction is computed by summing the contributions of each atom.

The ligand’s internal energy is computed by applying the standard van der Waals and Coulombic

equations to each non-bonded pair of ligand atoms. Since a ligand is small and flexible, we assume

that its surface is not well defined and hence use the standard Coulombic equation, with a dielectric

constant between 60-80.
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5.3 First-Step Analysis

We first construct a roadmapG over the ligand-protein conformation space. We then apply first-step

analysis to obtain a system of equations almost identical to equation (2.6). LetA be the set of nodes

in G that lie in the funnel of the bound conformationqb. Let ti be the expected number of transitions

to reach a conformation outside ofA, starting from a nodevi ∈ A. We have

ti = 1 +
∑

vj 6∈A
Pij · 0 +

∑

vj∈A
Pij · tj for everyvi ∈ A. (5.1)

The solution of the above equations gives an estimate of the escape time for every node in the

funnel, including the bound conformationqb. We define the average escape time from the funnel as

the escape time starting fromqb. See Figure5.2.

5.4 Analyzing the Effects of Mutations

We first applied SRS to analyze the effects of mutations in the catalytic site of a protein on the

escape time of a ligand.

5.4.1 Computational Mutagenesis

Computational mutagenesis is a new and exploratory area of computer-aided protein design. It is

based on the biological method of site-directed mutagenesis. A few amino acids are either deleted

entirely or replaced by other amino acids, or alternatively, the side chains of amino acids are altered.

Site-directed mutagenesis has proven useful for many studies, including substrate recognition and

identification of catalytic amino acids[CWC+86]. The mutations made through this method are spe-

cific in terms of what changes are made, local in terms of exactly which amino acids are affected,

and sound in terms of having no significant structural impact. Computational mutagenesis embodies

these concepts from site-directed mutagenesis, but enables mutations to be performedin silico pro-

viding the obvious benefits of speed and ease at perhaps the expense of model accuracy. Reyes and

Kollman, for example, showed encouraging early results in utilizing computational mutagenesis to

study binding specificity[RK00].
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Figure 5.3.The chemical environment of LDH-NADH-substrate complex. Hydrogen atoms are not shown.

5.4.2 Mutagenesis Study on Lactate Dehydrogenase

Here, we employ computational mutagenesis in order to study the sensitivity of SRS when applied

to the analysis of ligand-protein interactions by computing escape times from funnels. In one series

of tests, we used oxamate (an inactive analogue of pyruvate) and lactate dehydrogenase.

Lactate dehydrogenase (LDH) LDH is a well-studied enzyme[CWHH85, Har89] that, when

bound to its coenzyme NADH, is able to catalyze the reduction of pyruvate to lactate. LDH has

been proposed as a general framework on which to design and synthesize new enzymes[DWH+91].

We use dogfish apo-lactate dehydrogenase (PDB id: 1LDM) and oxamate (an analog of pyruvate)

as a model on which to perform computational mutagenesis.

The catalytic site of LDH is well understood. The chemical environment of oxamate in its

bound conformation in the LDH-NADH-substrate complex is depicted in Figure5.3. The amino-

acids that play a significant role in the catalytic activity of the enzyme are shown. Arg169 assists

in orienting and binding the substrate[HCW+87]. Arg106 polarizes the carbonyl bond on the sub-

strate[CWC+86]. His193 is an important catalytic residue, which donates a proton to the substrate

during its reduction[HLSR75]. His193 is then stabilized by Asp166[CBA+88]. In native LDH,

before the binding of the coenzyme or the substrate, a loop of polypeptide chain (residues 97 to

107) is positioned away from the catalytic site. After the binding of coenzyme and the substrate,

a rearrangement in protein structure is induced which results in the loop being positioned over the

catalytic site as shown in Figure5.3.

Mutations Two sets of mutations were performed on LDH based largely on priorin vitro work

[DWH+91]. The first set consisted of changing charged and catalytic amino acids (His193→ Ala,
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Mutant
Bound Energy

(kcal/mol)
Escape Time Expected Effect

Wild type 0.233467 2.1e+06 N/A
His193→ Ala and Arg106→ Ala 4.526738 7.7e+03 Decrease in escape time.

His193→ Ala -1.370748 4.6e+04 Decrease in escape time.
Arg106→ Ala 1.305369 7.2e+03 Decrease in escape time.
Asp195→ Asn -9.258782 1.1e+07 Increase in escape time.
Gln101→ Arg -8.516694 1.4e+06 No effect
Thr245→ Gly -6.628186 1.8e+05 Decrease in escape time.

Table 5.1.Effects of mutations on the catalytic site.

Arg106→ Ala, and both His193→ Ala and Arg106→ Ala). These mutants cause a large reduction

in the energetic structure of the catalytic site, thus, can provide insights into the sensitivity of SRS

to coarse changes in the system. On the other hand, the second set of mutants (Asp195→ Asn,

Gln101→ Arg, Thr245→ Gly) play a cursory role in catalysis and thus were expected to have a

less significant effect; so it can provide us with insights into the sensitivity of SRS to fine changes

in the system, as they cause small or no reduction in the energetic structure of the catalytic site.

Mutations were performed using Sybyl (distributed by Tripos Inc.). No structural re-calculation

or minimization was performed, hence assuming as in[RK00] that the structural change upon mu-

tation is insignificant. We computed 20 roadmaps for every mutation. The roadmaps generated

contained 10,000 nodes uniformly sampled in a region within 15Å in RMSD of the bound confor-

mation.

Our results are summarized in Table5.1. The variations of the average computed escape times

relative to wild type (given in column 3) agree with the role of residues previously determined by

experiment by Clarke et al. (1986) and others, as cited in Wilks et al. (1988).

His193→ Ala His193 is an important catalytic and charged amino acid. Replacing His193 with

Ala would cause a significant reduction in the energetic structure of the catalytic site[WHF+88],

which results in less tight binding between enzyme and substrate, therefore, decreasing the affinity

of the substrate for the enzyme. We would expect a faster escape from the bound conformation. Our

computed escape time for this mutation is three orders of magnitude smaller than the escape time

from wild type protein, qualitatively agreeing with experiment.

Arg106→ Ala Arg106 is also an important and charged amino acid. Similar to His193, we would

expect a significant reduction in the energetic structure of the catalytic site[WHF+88], which would

lead to a reduced affinity between enzyme and substrate. Thus, the substrate would be able to escape
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in less time from the bound conformation when compared to wild type. Our computed escape time

for this mutation is two orders of magnitude smaller than the escape time from wild type protein,

qualitatively agreeing with experiment.

His193→ Ala and Arg106→ Ala Both His193 and Arg106 are necessary catalytic and charged

amino acids for enzymatic function of LDH. Thus, their replacement with Alanine would result in

a significant reduction in energetic structure of the chemical environment of the LDH-substrate-

complex[WHF+88]. Therefore, we would expect the substrate to quickly escape from the catalytic

site. Our computed escape time for this mutation is three orders of magnitude smaller than the

escape time from wild type protein, qualitatively agreeing with experiment.

Asp195→ Asn Asp195 likely plays a significant role in charge conservation by providing a neg-

ative charge. Thus, its replacement with the neutral Asn would likely affect the energetic structure

of the catalytic site[WHF+88] by increasing the affinity of the substrate for the catalytic site. This

would result in slower escape for the substrate. Our computed escape time for this mutation is one

order of magnitude larger than the escape time from wild type protein, qualitatively agreeing with

experiment.

Gln101→ Arg Gln101 plays an important role in loop movement[WHF+88]. Recall that binding

of NADH and substrate induces a conformational change on the loop region causing it to close over

the catalytic site. Gln101 is replaced by Arg which is a positively charged amino acid, however,

the location of the mutation is on the outside of the loop. Therefore, the additional charge can be

assumed to be negligible when computing escape time. Furthermore, since our LDH is held rigid

in these experiments, the Gln101→ Arg mutation is not expected to cause significant change in

escape times. Our computed escape time for this mutation is of the same order of magnitude as the

escape time from wild type protein, qualitatively agreeing with experiment.

Thr245 → Gly Thr245 employs a large side chain and thus reduces the total volume of the cat-

alytic site. In order to increase the volume of the catalytic site without causing significant energetic

restructuring of the catalytic site, Thr245 was replaced by Gly, which has a much smaller side chain

resulting in a net increase in total volume of the catalytic site[WHF+88]. Thus, escaping should be-

come easier for the substrate. Our computed escape time for this mutation is one order of magnitude
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Table 5.2.Ligand-protein complexes used in the experiments and the number of DOFs.
Protein Ligand DOFs
1LDM oxamate 7
1A05 3-isopropylmalate 10
3TPI Ile-Val 13
4TS1 hydroxylamine 9
1CJW COA-S-ACETYL tryptamine 21
1AID THK UCSF8 14
1STP streptavidin 11

smaller than the escape time from wild type protein, qualitatively agreeing with experiment.

5.5 Predicting the Catalytic Site

An enzyme may have several potential binding sites. Therefore, it is important to be able to predict

which is the catalytic site, the site that enables specific biological functions, such as inhibition or

catalysis. We hypothesize that due to higher energy barriers, longer escape time results from the

funnel of attraction of the catalytic site and may serve as a basis for prediction.

We applied our method to seven different ligand-protein complexes whose catalytic sites are

known. They are listed in Table5.2. For each complex, the number of DOFs of the ligand is listed

in column 3 of the table.

To find potential binding sites, we picked random conformations and performed energy min-

imization from them. In the end, in addition to the true bound conformation, we retained four

obtained conformations as the potential binding conformations, based on their energies (they must

be among the lowest), their distance to the protein surface (the distance between the ligand’s center

of gravity and the closest protein atom center should be less than 5Å), and their distance from each

other (any two binding site must be further apart than 10Å RMSD).

We computed 20 roadmaps for every potential binding site. Each roadmap had 10,000 nodes.

These nodes were uniformly sampled in a region within 15Å in RMSD of the bound conformation.

We then solved for the escape times using equation (5.1). The averaged results are listed in Table5.3.

Every row of the table shows the escape-time estimates for the various binding sites of a ligand-

protein complex.

In four of the seven cases, the escape time for the catalytic site is larger (escape is slower)

than those for the other binding sites by at least two orders of magnitude, clearly distinguishing the
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Table 5.3.Escape times from binding sites.
Binding Sites

Protein Active 1 2 3 4
1LDM 5.8e+06 1.6e+07 1.1e+06 3.7e+06 4.5e+05
1AO5 4.1e+10 1.2e+07 7.9e+06 1.2e+05 2.9e+04
3TPI 1.0e+10 1.1e+06 1.8e+05 1.0e+05 6.6e+05
4TS1 2.4e+10 5.4e+06 4.2e+07 7.2e+05 2.2e+06
1CJW 6.3e+06 8.2e+06 5.6e+05 1.5e+05 1.9e+05
1AID 1.4e+06 2.8e+07 5.0e+05 1.2e+05 2.1e+06
1STP 7.0e+08 6.4e+06 2.2e+06 8.5e+05 2.0e+06

catalytic site. In two other cases (1LDM and 1CJW), the escape time for the catalytic site is close to

the largest. In one case (1AID), the escape time fails to give a clear indication on the catalytic site.

This failure may have several causes. The size of the roadmaps may be too small to estimate the

escape times accurately. The energy function that we use may not be detailed enough to capture all

significant interactions between the ligand and the protein. Finally, it is possible that the catalytic

site may not always have the highest escape time in nature.

For each binding site, our software took about seven minutes (on a 1GHz Pentium-III PC with

1GB of memory) in total to construct the roadmap and solve the linear systems yielding the escape-

time estimates.

5.6 Discussion

In this chapter, we applied SRS framework to study ligand-protein binding interactions. We com-

puted the escape time from the funnel of attraction of a binding site using SRS, and used escape time

in a computational mutagenesis study and in distinguishing the catalytic site from a set of binding

sites. Similar to Pfold, computing escape time with MC simulation would be very time consum-

ing. Unlike previous chapters, we confined our samples to a subset of the conformational space to

compute escape times.

The escape times reported in this chapter correspond to the number of steps in the roadmap.

Therefore, these results depend on the number of nodes of the roadmap. One can study the depen-

dence of the escape time on the number of nodes. Also, associating time information to the arcs of

the roadmap may allow the quantitative prediction of binding and dissociation times, which is of

practical importance in drug discovery research.



Chapter 6

Extending Stochastic Roadmap

Simulation

In previous chapters, we described SRS and its application in the computation of ensemble proper-

ties. We also showed that the stationary distribution of SRS converges to Boltzmann distribution. In

these computations, we constructed a roadmap by sampling uniformly at random from the confor-

mation space, or a subset of it. An exception is the exhaustive sampling we used in Chapter4, made

possible by a simplified representation. However, in general, we cannot clearly expect to sample all

conformations. In this chapter, we discuss techniques for extending SRS by non-uniform sampling.

With such sampling, we can use SRS in more complex biological problems in higher dimensional

systems. Since the number of nodes required to cover a space ofn dimensions at a given resolution

increases exponentially withn, one has to sample non-uniformly in order to study complex systems.

In this chapter, we propose a change in transition probabilities attached to the arcs of the roadmap

to maintain the stationary distribution property of SRS in a non-uniform sampling setting. We also

discuss some promising non-uniform sampling techniques to compute Pfold accurately and provide

empirical results. However, the results of this chapter are still preliminary.
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Figure 6.1.(left) A sample one-dimensional energy landscape with constant energy. (right) The correct Pfold

variation in this landscape. As can be seen, Pfold at x=0 should be 0.5, however a non-uniform sampling
scheme with original transition probabilities causes incorrect (>0.5) Pfold estimation at x=0. Furthermore,
the transition probability assignment in equation (6.1) is not appropriate for the correct computation of Pfold.

6.1 Non-Uniform Sampling

We are interested in whether we can sample the conformation spaceC non-uniformly to construct

a roadmap, and still maintain the stationary distribution property of SRS, and compute Pfold accu-

rately. Towards this goal, we raise and attempt to answer the following questions in this chapter:

• If we are given a non-uniform sampling strategy, can we do the rest of the computation,

such as transition probability assignment, as described in Chapter2, and still maintain the

stationary distribution property of SRS and compute ensemble properties accurately?

• If the answer is negative, can we adjust SRS to a given non-uniform sampling strategy so

that its stationary distribution still converges to Boltzmann distribution, and we can compute

ensemble properties accurately?

• Which non-uniform sampling strategy should one use to compute ensemble properties accu-

rately and efficiently?

We discuss these questions next.
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6.1.1 SRS with a Given Non-Uniform Sampling Scheme

The answer to the first question above is negative in general. For instance, the stationary distribution

no longer converges to Boltzmann distribution with SRS using a non-uniformly sampled roadmap.

We illustrate this with the following example: Suppose we construct two roadmaps, one uniformly

sampled, and the other having twice the sampling density in a subset of the same conformational

space. It is clear that a random walk in the non-uniformly sampled roadmap has a higher chance

of being found in the more densely sampled region compared to a random walk in the uniform

roadmap. Therefore, the stationary distribution of SRS with the non-uniformly sampled roadmap

does no longer converge to Boltzmann distribution.

Similarly, we can not compute ensemble properties accurately with the SRS framework de-

scribed earlier, with a given non-uniform sampling distribution. For instance, suppose we have

an energy landscape in one dimension in which all conformations have the same energy (Fig-

ure 6.1). Assume the landscape extends from−10 to +10, and the unfolded state corresponds

to x ∈ [−6,−4] and the folded one tox ∈ [4, 6]. In this landscape, the correct Pfold value atx = 0

is 0.5, and it varies linearly between0 and1 along the line starting at the boundary of the unfolded

state towards the boundary of the folded state. However, using a roadmap that has twice the sam-

pling density on the (x < 0) side of the space with respect to the (x > 0) side, and that connects

each sample to maximum two neighbors, SRS would result in incorrect Pfold values. It would take

more steps in the roadmap to go fromx = 0 to x = −5, since thex < 0 side is sampled more

densely. Thus, it will appear as if the probability of reachingx = +5 starting fromx = 0 is higher

than the probability of reachingx = −5. Therefore, Pfold from SRS would appear as greater than

0.5 atx = 0.

6.1.1.1 Maintaining the Stationary Distribution Property

We propose a change in SRS in the transition probability assignment that maintains the stationary

distribution property in a non-uniform sampling setting. We adjust the transition probabilities ac-

cording to the sampling density at the endpoints of the arc. The suggested transition probability

change is:

Pij =
1
di

min(1,
εj/djσj

εi/diσi
) (6.1)
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Figure 6.2.A non-uniformly sampled roadmap with about 1000 nodes. Nodes were sampled with a normal
distribution centered at the origin. The stationary distribution was computed with the transition probability in
equation (2.1) and with equation (6.1), and the results are shown in Figure6.3.
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Figure 6.3. Difference between the stationary distribution in the non-uniformly sampled roadmap and the
Boltzmann distribution as a function of number of nodes in the roadmap, with the transition probabilities
assigned using (left) equation (2.1) and (right) equation (6.1).
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whereσi andσj are the probabilities of sampling nodesvi andvj , and the other terms are the same

as in equation (2.1).

We demonstrate this transition probability assignment in a two-dimensional fictitious energy

landscape. We constructed roadmaps of varying sizes with non-uniform sampling. We sampled

the nodes with a normal distribution around the origin. We show an example roadmap in Fig-

ure6.2. After the roadmap construction, we computed the stationary distribution. We then divided

the two-dimensional space into bins as in Section2.4, and compared the stationary distribution in

the roadmap falling into each bin with the Boltzmann distribution for that bin, as estimated by MC

integration. Our results are in Figure6.3. We obtained both plots with the same roadmaps. However,

we used different the transition probability assignments for the arcs. We obtained the plot on the

left with the transition probability assignment in equation (2.1). We observe that the stationary dis-

tribution difference with Boltzmann distribution decreases only slightly. We used equation (6.1) for

the plot on the right. We observe that the difference between stationary distribution and Boltzmann

distribution goes to the same level as in Figure2.1, suggesting that the new transition probability as-

signment correctly preserves the stationary distribution property of SRS in a non-uniform sampling

setting.

6.1.1.2 Computing Ensemble Properties Accurately

In general, we need a different transition probability assignment than equation (2.1) or equation (6.1)

to compute Pfold or escape time correctly with a non-uniformly sampled roadmap. For instance, in

the example in Figure6.1, if we use equation (6.1), we obtain a transition probability of0.5 on

all arcs, except for the arc that crossesx = 0, assumingx = 0 is not sampled. This arc would

have a transition probability of0.5 to the right, and a transition probability of0.25 to the left. This

assignment causes an incorrect Pfold computation atx = 0 by SRS. Note that, if we assign the

reverse transition probability to the arc that crossesx = 0, that is,p = 0.25 for the transition to the

right andp = 0.5 for the reverse transition, we can compute the correct Pfold with this roadmap.

6.1.2 Finding a Good Non-Uniform Sampling Scheme for SRS

Now we would like to address the second question: Which non-uniform sampling distribution can

we use in SRS to compute ensemble properties accurately and efficiently? We propose and briefly

describe a number of sampling schemes below.
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6.1.2.1 Gaussian Sampling

In order to improve the accuracy and efficiency of SRS, we may sample more nodes in regions of

low energy and where energy varies quickly. Molecules tend to occupy low energy regions, corre-

sponding to their stable conformations. Furthermore, our transition probability assignment (equa-

tion (2.1)) only considers the energies of the endpoints of the arcs, potentially causing inaccuracies

in regions where energy changes quickly.

We can adapt a technique from robotic motion planning, gaussian sampling[BOvdS99], to com-

bine these two insights. The original technique samples a greater density of points near obstacles.

It samples two conformations that are near each other, by first picking a random conformation and

then choosing randomly a distanced which is normally distributed. Next, it samples a second con-

formation at a distanced of the original. If one of these two conformations is colliding, and the other

is not, then it retains the non-colliding conformation. We can adapt gaussian sampling to energy

landscapes by sampling two conformations, evaluating their energies, and retaining one with high

probability if that conformation has “low” and the other conformation has “high” energy. We would

then sample conformations in low and “chaotic” energy regions. With this technique, we may cover

the space with relatively few nodes.

6.1.2.2 Resampling Regions of High Pfold Variation

A related strategy to gaussian sampling is to iteratively sample in regions where the variation in

the ensemble property is high. First, a uniform coarse roadmap can be constructed. Then, one

can compute Pfold on this roadmap and compute the Pfold variation at each of the nodes. The Pfold

variation at a node can be computed with respect to the Pfold at its neighbors. The nodes at which

the Pfold variation is the highest are then selected as regions to be sampled further. This process

can be repeated until the variation in Pfold value at each node is below a threshold or the number of

samples reaches a threshold.

There are some practical issues related to roadmap connection with this technique. After an

iteration, we may either discard the previous roadmap and link the existing nodes from scratch, or

we may just connect the new samples to the rest of the roadmap. Linking from scratch with ak

nearest connection scheme may create clusters if many points are sampled around an original node

andk is unchanged for the nodes in that cluster. On the other hand, keeping the original arcs would

preserve the inaccuracies in the original coarse roadmap.
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Figure 6.4.Comparison of uniform and arc discretized (or “augmented”) roadmaps. The critical points on
energy profiles along the arcs of a uniform roadmap are sampled and connected to their nearest neighbors
to obtain augmented roadmaps. The blue curve corresponds to the uniform roadmap, and the red curve to
the augmented one. On the left, the average difference between MC and SRS as a function of the number of
nodes is shown. On the right, the error as a function of time is provided. With respect to both the number of
nodes and the running time, augmented roadmaps perform better in this two-dimensional fictitious landscape.

6.1.2.3 Arc Discretization

One strategy to overcome the potential inaccuracies due to our transition probability assignment

is to shorten the arcs. We can make them shorter by sampling at the critical points along their

energy profile, to form “sub-arc”s. The critical points are the peaks and minimums of the energy.

With this method, each sub-arc would go through a monotonic energy profile, and therefore our

transition probability assignment for the sub-arc would no longer cause any inaccuracies. We can

then connect each of the critical points to the rest of the roadmap as well. This can be iteratively

repeated.

An important consideration with this technique is obtaining the energy profiles. We can achieve

this by linearly interpolating between the conformational parameters of the arc endpoints. How-

ever, linear interpolation provides one of many potential pathways, and may not be very reliable

in especially in high dimensions, where there are many potential pathways. We may also use a

domain-specific interpolation technique such as elastic network interpolation (ENI) for protein fold-

ing [KCJ02]. This technique considers nearby pairs of atoms in both protein conformations at the

endpoints and interpolates their pairwise distances. However, ENI requires an atomistic represen-

tation of the molecule. With a linkage model such as our Cα-based representation, we may not be

able to represent the intermediary conformations returned by ENI.



CHAPTER 6. EXTENDING STOCHASTIC ROADMAP SIMULATION 72

0 1000 2000 3000 4000 5000 6000
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

num nodes

co
rr

el
at

io
n 

co
ef

fic
ie

nt

uniform roadmap, 100 data points

0 1000 2000 3000 4000 5000 6000
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

num nodes

co
rr

el
at

io
n 

co
ef

fic
ie

nt

Critical point based roadmap

Figure 6.5.Correlation coefficientκ as a function of the number of nodes in uniform (left) and critical-point
based (right) roadmaps in a two-dimensional fictitious energy landscape. The distribution ofκ, as compared
to MC with 1000 simulations per conformation, is shown. In these plots, the red line inside each box shows
the median correlation to MC. The lower and upper endpoints of the box correspond to the lower and upper
quartiles of the correlation. The extending lines from the box show the extent of the correlation data, and the
red “+” signs show the outliers.

We implemented arc discretization in a two-dimensional fictitious energy landscape, using linear

interpolation. We show the results comparing the uniformly sampled roadmaps with those with

critical points along arcs (“augmented” roadmaps) in Figure6.4. The average error between MC

and SRS is less with augmented roadmaps, for a given number of nodes or for a given amount of

computation time. Note that we did not optimize the arc discretization code, with a more careful

implementation, we can further improve the efficieny of the arc-discretized roadmaps in 2-D.

6.1.2.4 Sampling Critical Points of the Energy Landscape

One can also sample the critical points not just along arcs as in the previous technique, but on the

whole energy landscape in order to capture its properties with fewer nodes. The critical points of

interest are the local minima and the 1-saddles. The 1-saddles correspond to the easiest transition

from one local minimum to the next. The energy function at a 1-saddle is a maximum in one

direction and a minimum in all directions perpendicular to this one. Indeed, MC simulation visits

these critical points in its trajectory. Starting from any conformation, it most likely goes to a nearby

local minimum first and stays at that basin. It then escapes with a low probability from that basin

through the 1-saddle. By sampling the local minima and the 1-saddles, we may obtain a roadmap

that compactly represents paths obtained by MC simulation.

We implemented this technique in a two-dimensional fictitious landscape. We used steepest
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Figure 6.6.L1 distance as a function of the number of nodes in uniform (left) and critical point-based (right)
roadmaps in a two-dimensional fictitious energy landscape. The distribution ofL1 distance, as compared to
MC with 1000 simulations per conformation, is shown. In these plots, the red line inside each box shows
the medianL1 distance to MC. The lower and upper endpoints of the box correspond to the lower and upper
quartiles of theL1 distance. The extending lines from the box show the extent of the data, and the red “+”
signs show the outliers.

descent[Lea96] to find the local minima, and the dimer method[HJ99] to find the saddles. The

steepest descent simply follows the gradient of the energy function, which is approximated by finite

differences. The dimer method is a technique from computational chemistry which samples a pair

of nearby conformations (thus the name), it then moves this pair in the landscape towards the saddle

point by rotation and translation steps. The rotation places the dimer in the direction of minimum

curvature, on which is the saddle point. The translation step, on the other hand, moves the dimer

along this direction up in energy towards the saddle point. In order to find the local minima con-

nected by the saddle, we performed a steepest descent search from the saddle point. We then added

an arc to the roadmap for the resulting saddle-local minimum pair. In addition to the critical points,

we sampled random conformations, and connected each critical point or random conformation to

its k nearest neighbors. We varied the number of random samples.

We show our results in Figure6.5and Figure6.6. As in Chapter3, we show the distribution of

the correlation coefficientκ and theL1 distance over many roadmaps for a given roadmap size. The

results from each roadmap is compared to MC with 1000 MC simulations per conformation. For

each roadmap size, the median value ofκ andL1 distance is shown with the red line in the middle

of each box. The lower and upper quartiles ofκ andL1 distance are shown with the lower and upper

endpoints of the box, respectively. The whiskers show the extent of the data, and the outliers are

shown with red “+” signs. The left figure shows the result with uniformly sampled roadmap, and the

right one with critical points. In Figure6.5, one can observe that, with critical points,κ increases
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very quickly to about0.96 with about 500 nodes, a level attained by a uniformly sampled roadmap

at about 5,000 nodes. Furthermore, there is little variation in the Pfold values obtained by the critical

point based roadmaps, as shown by the small size of the boxes. Similarly, Figure6.6shows that the

medianL1 distance between Pfold values obtained by MC and critical point based roadmaps is on

the order of 0.03 with about 400 nodes, a level still not attained by uniformly sampled roadmaps

with 5000 nodes. These figures suggest that, by using critical points, we obtain the same quality

in Pfold values with a roadmap that has an order of magnitude less nodes compared to a uniform

roadmap.

6.2 Discussion

In this chapter, we discussed our preliminary work on extending SRS to higher dimensions. We

gave examples that demonstrate the need to adjust the transition probabilities in general, when sam-

pling non-uniformly. We suggested transition probability assignments that account for non-uniform

sampling, and that depend on the sampling density at the nodes of the roadmap. We also mentioned

a number of promising sampling schemes, and provided experimental results on computing Pfold

with two of these strategies.

A practical problem in the proposed transition probability assignments is the sampling density

estimation at the nodes. In our examples, we used known sampling distributions and did not have

this problem. In arbitrary sampling distributions, one can estimate the sampling density using an

approach such as the one in[HKLR02]. This technique counts the number of conformations within a

neighborhood of the node, this quantity is proportional to the sampling density at that conformation.

The critical point finding approach to construct roadmaps has some difficulties: First, critical

point finding is an expensive process. But, it is part of a pre-computation. Second, empirical

observations suggest that the number of local minima in an energy landscape grows exponentially

as a function of the number of atoms[Wal03]. Therefore, in a large system, one can expect to

find only a small subset of all the critical points. Nevertheless, enhancing a uniformly sampled

roadmap by adding critical points and their connections may improve the results. Third, in high

dimensions, many local minima close to each other may be found in wide and rugged basins of the

energy landscape. This may result in adding many nodes to the roadmap without significant new

information. This can be prevented by clustering these local minima. Another technique to remove

insignificant pairs of critical points uses the concept of topological persistence[ELZ00] and discards
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the saddles and corresponding local minima if they are very close in energy.

The further development of these techniques would enable the study of realistic energy land-

scapes, and thus accurate estimation of ensemble properties. This would improve the quantitative

prediction of experimental quantities such asΦ values and folding rates, by taking into account

non-native interactions, which are currently omitted in many studies of protein folding.



Chapter 7

Conclusion

7.1 Summary of Main Results

SRS is a new computational framework for representing molecular motion, and computing ensem-

ble properties of such motion. It is closely related to MC simulation. Each path represented by

SRS can be interpreted as a MC simulation run. Furthermore, we formally show that SRS con-

verges to the same stationary distribution as MC simulation. A salient feature of SRS is that it

compactly encodes many pathways simultaneously. Unlike classic MD and MC simulations, which

study one pathway at a time, SRS processes many pathways together. In addition, SRS does not

explicitly simulate molecular motion, but rather solves a set of linear equations derived from the

encoded pathways. As a result, SRS avoids the local minima problem and achieves tremendous

gains in computational efficiency, as demonstrated in Chapter3. Thus, it enables studies that would

otherwise be impractical.

We tested SRS on problems in protein folding and ligand-protein binding. In Chapter3, we

computed the Pfold parameter. Pfold measures the “kinetic distance” between a protein conformation

and the native structure. Our experiments on a two-dimensional fictitious energy landscape and on

three real proteins with different energy functions and representations show that SRS reduces the

running time by several orders of magnitude, while obtaining accurate results, when compared to

MC simulation.

Then in Chapter4, we used the Pfold parameter to estimate the transition state ensemble for

various proteins using the representation and Gō model proposed in[GF99, GFG04]. Compared to
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previous work[GFG04], this resulted in better quantitative predictions of protein folding rates and

Φ values.

In Chapter5, we computed estimates of the expected time for a ligand to escape from the funnel

of attraction of a binding site. This estimate was used to measure the effects of mutations on the

catalytic site of an enzyme. We observed biologically expected changes in escape time, such as a

faster escape when a neutral amino acid replaced a charged one responsible for orienting the ligand.

We also used escape time to distinguish the catalytic site of a protein from other potential binding

sites on several ligand-protein complexes. Similar to Pfold, it is very expensive to compute escape

time using traditional simulations.

We mentioned that the number of nodes required to compute ensemble properties accurately in

a space ofd dimensions may grow exponentially as a function ofd. In Chapter6, we presented our

preliminary work on reducing the number of nodes by non-uniform sampling. We proposed a new

transition probability assignment to maintain the stationary distribution property in a non-uniform

sampling setting. We discussed potential techniques to reduce the number of nodes. We presented

the results with two of these techniques in a two-dimensional fictitious energy landscape, obtaining

favorable results.

7.2 Future Work

SRS is a promising tool for drug discovery and the study of molecular motion. However, it can be

improved by addressing the following computational problems.

1. Constructing larger roadmaps, with millions of nodes or more: In this thesis, we constructed

roadmaps having up to 10,000 nodes. Constructing larger roadmaps requires the incorporation

of sparse iterative solvers, such as[RP04], as well as exploiting the parallelizability properties

of roadmaps[AD99]. With more nodes, SRS can be applied to more complex biological

systems.

2. Extraction of other relevant information from roadmaps: The roadmap is a data structure that

represents multiple molecular pathways. In this thesis, we focused on the endpoint of these

pathways. The events along each pathway, such as the presence of intermediary or trap states

in protein folding, may also be detected automatically.
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We also did not exploit the connectivity of a roadmap, and discarded a roadmap if it had

multiple connected components. Such a roadmap may actually contain crucial information

on the reachability of a subset of the conformational space. There may be a large energy

barrier preventing reaching a given region, such as the folded state. This may be related to

the misfolding of certain proteins. Similarly, when there is a single connected component,

some of the regions of the conformational space may be practically unreachable due to very

small transition probabilities to those regions. This can similarly be analyzed to understand

the properties of the molecular motion and the underlying energy landscape.

3. Roadmap simplification: SRS efficiently computes ensemble properties of molecular motion,

and can be used to accurately predict experimental quantities. However, it does not pro-

vide an intuitive understanding of the underlying molecular motion. This is partially due to

the difficulty of visualizing the roadmaps lying in high dimensional energy landscapes. A

higher level understanding of molecular motion can be obtained by simplifying a roadmap.

For instance, one can cluster similar nodes into macrostates, as in[SSP04]. Or, one can em-

ploy topological persistence from computational geometry[ELZ00] to discard pairs of local

minima and saddles, that are close in energy and in the conformation space. This filtering

allows to distinguish and retain the major features of the landscape, while discarding minor

up-and-downs.

4. Understanding how SRS accuracy depends on system properties and roadmap parameters: It

is not clear how the accuracy of ensemble properties computed with SRS depends on param-

eters selected in constructing a roadmap. These parameters include the number of nodes and

the connection scheme. Furthermore, the properties of the underlying energy landscape also

affect this accuracy. Finally, the estimation of ensemble properties with MC also depends on

the step size and the move set used in MC simulation.

A first step towards this understanding is the empirical study in[Sin03]. This study com-

pared SRS and MC in discretized, randomly generated and two-dimensional fictitious energy

landscapes. The discretization allowed the exact computation of ensemble properties with-

out needing to run MC simulations. The number of energy maxima and minima, and their

location was automatically selected. In SRS, many parameters were systematically changed,

such as the number of nodes, the local path planning algorithm, and the neighbor selection

criterion. Generalizing the results of this study to realistic continuous energy landscapes in

high dimensions is needed.
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5. New roadmap construction techniques: In our roadmaps, we sampled in the conformation

spaceC of the molecule. Two other sampling techniques that can be used in a roadmap

construction are:

• sampling from the state (conformation and velocity) space, as in kinodynamic motion

planning[HKLR02], or

• sampling conformations obtained by other simulation techniques, such as molecular

dynamics (MD).

Both techniques sample kinetically accessible and thus relevant conformations in the land-

scape, and also associate a time with each arc. In fact, MD trajectories of a 12-residue trypto-

phan zipper beta hairpin were recently used to compute folding rates in[SSP04] with roadmaps

and first-step analysis.

Furthermore, improvements may be made in the transition probability assignment, the dis-

tance function, and the computation of nearest neighbors. Considering the energy profile,

as in Chapter6, could provide more accurate transition probability assignments. Distance

functions better than cRMSD, and that correspond better to MC distance can lead to faster

distance computations, similar to[SL03].

Our preliminary work on non-uniform sampling in Chapter6 provides further directions to

pursue in constructing roadmaps non-uniformly.

SRS can be applied to study new biological problems. The future work may:

1. Use more detailed molecular representations and energy computations: The accuracy of the

results may be improved by using atomistic representations, force fields and explicit solvent

models, as well as by incorporating the flexibility of proteins specifically in ligand-protein

binding.

2. Address new biological applications, such as protein-protein docking, protein folding in the

cell with the assistance of chaperone proteins, and the folding/misfolding mechanism of pro-

teins involved in diseases such as Alzheimer’s.

Prediction of other quantities such as binding and dissociation constants in ligand-protein

binding is also an application area. Another application in ligand-protein binding is drug
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screening, by computing the escape and binding time of drug candidates to distinguish the

lead drug molecule from others.

It can be seen that we have only scratched the surface of the problems related to molecular

motion in this thesis. Further work along these lines will no doubt improve our understanding of

the basic processes of life.



Appendix A

Stationary Distribution of SRS

A.1 Proof of Lemma 1

Lemma 1

A roadmap defines a Markov chain with stationary distribution

πi =
1

Zπ
exp(−E(vi)/kBT ) for all i, (A.1)

whereZπ =
∑

i exp(−E(vi)/kBT ) is a normalization constant.

Proof: We would like to prove that the distributionπ given in equation (2.4) is the stationary

distribution for the Markov chain induced by the roadmapG. First, note that it is sufficient to show

thatπ satisfies the detailed balance[TK94]:

πiPij = πjPji, (A.2)

because if (A.2) holds, then
∑

j πjPji =
∑

j πiPij = πi
∑

i Pij = πi, as required by the condition

for a stationary distribution, given in (2.3). Now consider two nodesvi andvj from the roadmap.

Without loss of generality, assumeεj/dj

εi/di
< 1. We have

Pij =
1
dj

exp(−∆Eij/kBT ) and Pji =
1
dj

.

Substituting these expressions into (A.2), we can easily verify that (A.2) is satisfied, after some

simplification. 2
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A.2 Proof of Theorem 1

Theorem1

Let S be any subset of the conformation spaceC with relative volumeµ(S) > 0. For anyε > 0,

δ > 0, andγ > 0, a roadmap withN uniformly sampled nodes (whereN is polynomial inln(1/γ),

‖ exp(−E(v)/kBT )‖S , 1/µ(S), the normalization constantZβ, 1/ε and1/δ), the difference be-

tween the probabilityβ(S) and the estimateπ(S) from the roadmap is bounded by:

(1− δ)β(S)− ε ≤ π(S) ≤ (1 + δ)β(S) + ε, (A.3)

with probability at least1− γ, where‖f‖S = supv f(v)− infv f(v)

andZβ =
∫
C exp(−E(q)/kBT ) dq.

Proof: Let S be any subset of the conformation spaceC with relative volumeµ(S) > 0. For any

ε > 0, δ > 0, andγ > 0, there existsN , such that in a roadmap withN uniformly sampled nodes,

the difference between the probabilityβ(S) and the estimateπ(S) from the roadmap is given by

(1− δ)β(S)− ε ≤ π(S) ≤ (1 + δ)β(S) + ε, (A.4)

with probability at least1− γ.

Furthermore, if‖ exp(−E(v)/kBT )‖S ≥ 1, then the number of roadmap nodesN required is

given by

N = ln(6/γ)‖ exp(−E(v)/kBT )‖2
S ·

max





4[
(µ(S)− ε) +

√
(µ(S) + ε)2 + 4εα(C)

] [√
(µ(S) + ε)2 + 4εα(C)− (µ(S) + ε)

]2 ,

4[√
(µ(S) + ε)2 + 4εα(C)− (µ(S) + ε)

]2 ,

[α(C) + µ(S)(δ + 1)]3

2α(C)2µ(S)3δ2 [α(C) + µ(S)(δ + 1) + α(C)δ] ,

[α(C) + µ(S)(δ + 1)]2

α(C)2µ(S)2δ2

}
.
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where‖f‖S = supv f(v)− infv f(v).

Our proof will require the application of Hoeffding’s inequality. We present here the simplified

version of the inequality needed for the proof:

Lemma 2 (Hoeffding’s inequality [Hoe63]) Let Y be a random variable distributed according to

P (Y ) such thatY ∈ [a, b]. LetY1, . . . , Yn ben independent, identically distributed samples from

P (Y ) and the empirical meanY = 1
n

∑
i Yi, then:

P (Y −E[Y ] ≥ ε) ≤ e
− 2nε2

(b−a)2 , and

P (E[Y ]− Y ≥ ε) ≤ e
− 2nε2

(b−a)2 .2

(A.5)

For simplicity of presentation, assume without loss of generality that the volume of the confor-

mation space is one:µ(C) = 1, where the volume of some setF is denoted byµ(F), that is,µ(F)

represents the proportion of the total volume ofC occupied byF .

Theorem1 holds forany confidence levelγ > 0. In the proof, we will divide thisγ in three

parts: γ1 > 0, γ2 > 0 andγ3 > 0, such thatγ1 + γ2 + γ3 ≤ γ as our proof will require three

applications of Hoeffding’s inequality.

Our first lemma will bound the number of points that fall in the set of interestS:

Lemma 3 For a uniformly sampled roadmap ofN points, for anyε1 > 0, let K be the number of

roadmap points that fall in the setS, then:

µ(S)− ε1 ≤ K

N
≤ µ(S) + ε1; (A.6)

with probability at least1− γ1, whereγ1 ≥ 2e−2Nε2
1 .

Proof: Application of Hoeffding’s inequality, where the random variableY is the indicator that a

point falls in the setS. By the law of large numbers,E[Y ] = µ(S)/µ(C) = µ(S). The empirical

meanY = K/N andY is an indicator, thus,Y ∈ [0, 1]. The proof is concluded by applying

Lemma2. 2

We would like to have, with high probability, at least one node in theS. (This constraint can be

relaxed, but the proof becomes more complicated.) Thus, we must choose the number of nodesN
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such thatK > 0 with probability at least1 − γ1. Using the constraint in Lemma3, we know that

K ≥ bN(µ(S)− ε1)c. Thus:
N ≥ d1/(µ(S)− ε1)e .

For the remainder of the proof, we can assume, with probability at least1− γ1, thatK > 0.

For the next step of the proof, we will need a definition: for some setF ⊂ C, let’s define the

Boltzmann integralin this set as:

α(F) =
∫

F
exp(−E(v)/kBT )dv.

Note thatα(C) corresponds to the partition functionZβ. Under this definition, we can write the

Boltzmann distribution as:
β(F) =

α(F)
α(C) .

We will denote the range of a functionf as‖f‖S = supv f(v)− infv f(v). Our next lemma implies

that we can estimate the Boltzmann integral with samples:

Lemma 4 For any setF , let Yi beM uniformly sampled points inF , for anyε > 0, then:

α(F)− ε · µ(F) ≤ µ(F)
M

∑

i

exp(−E(Yi)/kBT ) ≤ α(F) + ε · µ(F); (A.7)

with probability at least1− γ, where

γ ≥ 2 exp
( −2Mε2

‖ exp(−E(v)/kBT )‖2
S

)
.

Proof: Define a random variableY = exp(−E(v)/kBT ), wherev ∈ F . Note thatE[Y ] =

α(F)/µ(F). The proof is concluded by applying Hoeffding’s inequality. 2

We will apply Lemma4 twice, first for computing the Boltzmann integral in the setS, obtaining

the bound:

α(S)− ε2µ(S) ≤ µ(S)
K

∑

i∈S

exp(−E(Yi)/kBT ) ≤ α(S) + ε2µ(S); (A.8)

with probability at least:1− γ2, where

γ2 ≥ 2 exp
( −2Kε2

2

‖ exp(−E(v)/kBT )‖2
S

)
.
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The second bound concerns the integral over the whole space:

α(C)− ε3 ≤ 1
N

∑

j

exp(−E(Yj)/kBT ) ≤ α(C) + ε3; (A.9)

with probability at least:1− γ3, where

γ3 ≥ 2 exp
( −2Nε2

3

‖ exp(−E(v)/kBT )‖2
S

)
.

In the remainder of this proof, we will assume that equations (A.6), (A.8) and (A.9) hold, that

is, the argument holds with probability at least1− (γ1 + γ2 + γ3) ≥ 1− γ.

Next, note that from Lemma1 the stationary distribution on the roadmap can be rewritten as:

π(S) =
∑

i∈S exp(−E(Yi)/kBT )∑
j exp(−E(Yj)/kBT )

.

Applying the bound on Equation (A.6) we get:

(
µ(S)− ε1

K/N

) ∑
i∈S exp(−E(Yi)/kBT )∑
j exp(−E(Yj)/kBT )

≤ π(S) ≤
(

µ(S) + ε1

K/N

) ∑
i∈S exp(−E(Yi)/kBT )∑
j exp(−E(Yj)/kBT )

;

rearranging:(
µ(S)− ε1

µ(S)

)
µ(S)/K

∑
i∈S exp(−E(Yi)/kBT )

1/N
∑

j exp(−E(Yj)/kBT )

≤ π(S) ≤
(

µ(S) + ε1

µ(S)

)
µ(S)/K

∑
i∈S exp(−E(Yi)/kBT )

1/N
∑

j exp(−E(Yj)/kBT )
.

We can now apply the bounds in Equations (A.8) and (A.9):
(

µ(S)− ε1

µ(S)

)
α(S)− ε2µ(S)

α(C) + ε3
≤ π(S) ≤

(
µ(S) + ε1

µ(S)

)
α(S) + ε2µ(S)

α(C)− ε3
.

This expression can be rewritten as:
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(1− δ)
α(S)
α(C) − ε ≤ π(S) ≤ (1 + δ)

α(S)
α(C) + ε;

which finally leads us to the statement of our theorem:

(1− δ)β(S)− ε ≤ π(S) ≤ (1 + δ)β(S) + ε;

whereε andδ impose the following constraints:

ε ≥ ε2(µ(S) + ε1)
α(C)− ε3

; (A.10)

δ ≥ ε1α(C) + ε3µ(S)
µ(S) (α(C)− ε3)

. (A.11)

In addition to these two constraints, we have the constraints imposed by the confidence levels

γ1, γ2 andγ3:

N ≥ ln(2/γ1)
2ε2

1

; (A.12)

N ≥ ln(2/γ2)‖ exp(−E(v)/kBT )‖2
S

2(µ(S) + ε1)ε2
2

; (A.13)

N ≥ ln(2/γ3)‖ exp(−E(v)/kBT )‖2
S

2ε2
3

; (A.14)

γ ≥ γ1 + γ2 + γ3. (A.15)

Given anyε > 0, δ > 0 andγ > 0, we can use constraints (A.10) — (A.15) to obtain the

required number of nodesN in the roadmap to satisfy the theorem.

To obtain a simpler convergence rate, we can simplify these constraints by imposing:ε1 = ε2 =

ε3 = ε̃ andγ1 = γ2 = γ3 = γ/3.

Let’s first consider theε constraint on Equation (A.10), which can now be written as:

ε ≥ ε̃(µ(S) + ε̃)
α(C)− ε̃

.

Rearranging, we have that:
0 ≤ εα(C)− ε̃2 − ε̃(µ(S) + ε).

Solving for ε̃ , we obtain:
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ε̃ ≤
√

(µ(S) + ε)2 + 4εα(C)− (µ(S) + ε)
2

(A.16)

Using a similar manipulation of theδ constraint on Equation (A.11), we can write:

ε̃ ≤ α(C)µ(S)δ
α(C) + µ(S)(δ + 1)

. (A.17)

We can now consider the constraints onN given by Equations (A.12) — (A.14). Note that

for the case ofε1 = ε2 = ε3 = ε̃ andγ1 = γ2 = γ3, only the constraints in Equation (A.13)

and Equation (A.14) will be binding, assuming‖ exp(−E(v)/kBT )‖S ≥ 1, that is, the range of

Boltzmann ratio is greater than 1 inS. These constraints can now be written as:

N ≥ max
{

ln(6/γ)‖ exp(−E(v)/kBT )‖2
S

2(µ(S) + ε̃)ε̃2
,

ln(6/γ)‖ exp(−E(v)/kBT )‖2
S

ε̃2

}
.

Substituting the constraints oñε given by Equations (A.16) and (A.17), we can obtain the value

of N :

N = ln(6/γ)‖ exp(−E(v)/kBT )‖2
S ·

max





4[
(µ(S)− ε) +

√
(µ(S) + ε)2 + 4εα(C)

] [√
(µ(S) + ε)2 + 4εα(C)− (µ(S) + ε)

]2 ,

4[√
(µ(S) + ε)2 + 4εα(C)− (µ(S) + ε)

]2 ,

[α(C) + µ(S)(δ + 1)]3

2α(C)2µ(S)3δ2 [α(C) + µ(S)(δ + 1) + α(C)δ] ,

[α(C) + µ(S)(δ + 1)]2

α(C)2µ(S)2δ2

}
.

2
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