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Chapter 1

Introduction to Matrices

1.1 Definition of a Matrix

Definition 1.1.1 (Matrix). A rectangular array of numbers is called a matriz.

The horizontal arrays of a matrix are called its ROWS and the vertical arrays are called
its COLUMNS. A matrix is said to have the ORDER m x n if it has m rows and n columns.
An m x n matrix A can be represented in either of the following forms:

aii a2 -+ QAln a11 a2 -+ Aln
a21 a2 -+ A2p a21 a2 -t A2p
A= ] ] ] ] or A= ,
Gml Am2 - Qmn Gml Am2 *° Qmp
th -th

where a;; is the entry at the intersection of the " row and j** column. In a more concise
manner, we also write Apxn = [ai;] or A = [aijlmxn 08 A = [a;;]. We shall mostly
be concerned with matrices having real numbers, denoted R, as entries. For example, if
37
|45
A matrix having only one column is called a COLUMN VECTOR; and a matrix with
only one row is called a ROW VECTOR. WHENEVER A VECTOR IS USED, IT SHOULD
BE UNDERSTOOD FROM THE CONTEXT WHETHER IT IS A ROW VECTOR OR A COLUMN

VECTOR. ALSO, ALL THE VECTORS WILL BE REPRESENTED BY BOLD LETTERS.

then a11 =1, a2 =3, a13 =7, as1 =4, aso =5, and a3 = 6.

Definition 1.1.2 (Equality of two Matrices). Two matrices A = [a;;] and B = [b;;] having
the same order m x n are equal if a;; = byj for each i =1,2,... ,m and j =1,2,...,n.

In other words, two matrices are said to be equal if they have the same order and their
corresponding entries are equal.

Example 1.1.3. The linear system of equations 2x + 3y = 5 and 3x + 2y = 5 can be
2 3 : 5

identified with the matrix 5 9 . 5| Note that x and y are indeterminate and we can

think of x being associated with the first column and y being associated with the second

column.
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1.1.1  Special Matrices

Definition 1.1.4. 1. A matriz in which each entry is zero is called a zero-matriz, de-
noted by 0. For example,

00 0 00
02><2: [0 0] and 02><3: [0 0 0]

2. A matriz that has the same number of rows as the number of columns, is called a
square matriz. A square matrix is said to have order n if it is an n X n matriz.

3. The entries a1, a2, . . ., ny of annxn square matriz A = [a;;] are called the diagonal
entries (the principal diagonal) of A.

4. A square matriz A = [a;;] is said to be a diagonal matriz if a;; = 0 for i # j. In
other words, the non-zero entries appear only on the principal diagonal. For example,

4 0
the zero matrixz 0, and [O 1] are a few diagonal matrices.

A diagonal matrix D of order n with the diagonal entries dy,ds, ..., d, is denoted by
D = diag(dy,...,dy). If d; = d for all i = 1,2,...,n then the diagonal matriz D is
called a scalar matrix.

5. A scalar matriz A of order n is called an IDENTITY MATRIX if d = 1. This matrix is
denoted by I,.

10
F le, Iy =
or example, Iy [O )

100
] and I3 = [0 1 0| . The subscript n is suppressed in
0 01

case the order is clear from the context or if no confusion arises.

6. A square matriz A = [a;;] is said to be an UPPER TRIANGULAR matriz if a;; = 0 for

1> 7.
A square matriz A = [a;j] is said to be a LOWER TRIANGULAR matriz if a;; = 0 for
i <j.
A square matriz A is said to be TRIANGULAR if it is an upper or a lower triangular
matriz.
01 4 0 00
For example, [0 3 —1| is upper triangular, |1 0 0] is lower triangular.
0 0 —2 0 11

Exercise 1.1.5. Are the following matrices upper triangular, lower triangular or both?

air a2 - Gy
0 axp - a2
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2. The square matrices 0 and I or order n.

3. The matriz diag(1,—1,0,1).

1.2 Operations on Matrices

Definition 1.2.1 (Transpose of a Matrix). The transpose of an m x n matriz A = [a;;] is
defined as the n x m matric B = [b;j], with bjj = a;; for 1 <i <m and 1 < j < n. The
transpose of A is denoted by Al.

1 4 5

That is, if A =
01 2

10
] then A® = |4 1| . Thus, the transpose of a row vector is a
5 2

column vector and vice-versa.

Theorem 1.2.2. For any matriz A, (A%)! = A.

Proof. Let A = [a;;], A" = [b;;] and (A")" = [¢;;]. Then, the definition of transpose gives
cij = bji = a;; forall 4,7

and the result follows. O

Definition 1.2.3 (Addition of Matrices). let A = [a;;] and B = [b;;] be two m xn matrices.
Then the sum A+ B is defined to be the matriz C = [¢;;] with ¢;j = a;j + b;.

Note that, we define the sum of two matrices only when the order of the two matrices
are same.

Definition 1.2.4 (Multiplying a Scalar to a Matrix). Let A = [a;;] be an m x n matriz.
Then for any element k € R, we define kA = [ka;j).

1 45

For example, if A =
01 2

] and k =5, then 5A =

5 20 25
0 5 10|

Theorem 1.2.5. Let A, B and C' be matrices of order m x n, and let k,£ € R. Then
1. A+ B=B+A (commutativity).
2. (A+B)+C=A+(B+C) (associativity).
3. k(CA) = (k0)A.
4. (k+0)A=kA+ 1A
Proof. Part 1.
Let A = [ai;] and B = [b;;]. Then
A+ B = [aij] + [bij] = [aij + bij] = [bij + aij] = [big] + [ay] = B+ A

as real numbers commute.
The reader is required to prove the other parts as all the results follow from the prop-
erties of real numbers. O
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Definition 1.2.6 (Additive Inverse). Let A be an m x n matriz.

1. Then there exists a matrizx B with A+ B = 0. This matriz B is called the additive
inverse of A, and is denoted by —A = (—1)A.

2. Also, for the matriz Opxn, A+0 =0+ A= A. Hence, the matrix O,,xn is called the
additive identity.

Exercise 1.2.7. 1. Find a 3 x 3 non-zero matriz A satisfying A = A.
2. Find a 3 x 3 non-zero matriz A such that A = —A.
3. Find the 3 x 3 matriz A = [a;;] satisfying a;; = 1 if i # j and 2 otherwise.
4. Find the 3 x 3 matriz A = [ai;] satisfying a;; =1 if |i — j| <1 and 0 otherwise.
5. Find the 4 x 4 matriz A = [a;;] satisfying a;j =i+ j.
6. Find the 4 x 4 matriz A = |a;;] satisfying a;; = 277,
7. Suppose A+ B = A. Then show that B = 0.
8. Suppose A+ B = 0. Then show that B = (—1)A = [—ayj].
1 -1

9. Let A=12 3| and B=
0 1

2 3 -1

L1 9 . Compute A+ B! and B + A,

1.2.1 Multiplication of Matrices

Definition 1.2.8 (Matrix Multiplication / Product). Let A = [a;;] be an m x n matriz
and B = [b;;] be an n x r matriz. The product AB is a matriz C = [c;5] of order m x r,
with

n
Cij = E @ikbrj = aitbij + aioba; + - -+ + ainby;.

k=1
blj
. Bos
That is, if Apuxn = | a1 a2 -+ i | and By, = ?j then
IR _ bmj |

AB = [(AB)ijlmxr and (AB);; = ajbij + aiobaj + - -+ + ainbp;.

Observe that the product AB is defined if and only if
THE NUMBER OF COLUMNS OF A = THE NUMBER OF ROWS OF B.
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a b ¢

For example, if A = i e f

a B v 9
and B= |z y =z t| then
u v ow s

aoc+br+cu af+by+cv ay+bz+cw ad+bt+cs

AB =
do+er+ fu df+ey+ fv dy+ez+ fw di+et+ fs

. (1.2.1)

Observe that in Equation (1.2.1), the first row of AB can be re-written as

a-[a B 5]+b-[a: y 2 t}—l—c-[u v ow s].

That is, if Row;(B) denotes the i-th row of B for 1 < i < 3, then the matrix product AB
can be re-written as

a- Rowy(B)+b- Rows(B)+ ¢ Rows(B)

AB =
d- Rowy(B)+e- Rowy(B) + f- Rows(B)

(1.2.2)

Similarly, observe that if Col;(A) denotes the j-th column of A for 1 < j < 3, then the
matrix product AB can be re-written as

AB = { Coly (A) - a + Cola(A) - & + Colz(A) - u,
COll(A) . ,8 + COlQ(A) -y + COlg(A) - v,

Coly(A) - v+ Cola(A) - z + Colz(A) - w
Coly(A) -6 + Cola(A) - t + Colz(A) - 5] . (1.2.3)

Remark 1.2.9. Observe the following:

1. In this example, while AB is defined, the product BA is not defined.

However, for square matrices A and B of the same order, both the product AB and
BA are defined.

2. The product AB corresponds to operating on the rows of the matrix B (see Equa-
tion (1.2.2)). This is ROW METHOD for calculating the matriz product.

3. The product AB also corresponds to operating on the columns of the matrix A (see
Equation (1.2.3)). This is COLUMN METHOD for calculating the matriz product.

4. Let A = [a;;] and B = [b;;] be two matrices. Suppose ay, az, ..., a, are the rows
of A and by, ba, ..., by, are the columns of B. If the product AB is defined, then
check that

alB
agB
AB = [Aby, Abg, ..., Aby] =
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1 2 0 1 0 -1
Example 1.2.10. Let A= |1 0 1| and B= |0 0 1 |. Use the row/column
0 -1 1 0 -1 1

method of matriz multiplication to

1. find the second row of the matriz AB.
Solution: Observe that the second row of AB is obtained by multiplying the second
row of A with B. Hence, the second row of AB is

1-1,0,-1]4+0-[0,0,1] +1-[0,—1,1] = [1,—1,0].

2. find the third column of the matrix AB.
Solution: Observe that the third column of AB is obtained by multiplying A with
the third column of B. Hence, the third column of AB 1is

1 2 0 1
—1- 1| 4+1-{0|+1-[1]=]0
0 -1 1 0

Definition 1.2.11 (Commutativity of Matrix Product). Two square matrices A and B
are said to commute if AB = BA.

Remark 1.2.12. Note that if A is a square matriz of order n and if B is a scalar matriz of
order n then AB = BA. In general, the matriz product is not commutative. For example,

1 1
consider A = and B = 8 . Then check that the matriz product
AB:20#11:BA.
00 11

Theorem 1.2.13. Suppose that the matrices A, B and C are so chosen that the matric
multiplications are defined.

1. Then (AB)C = A(BC). That is, the matriz multiplication is associative.

2. For any k € R, (kA)B = k(AB) = A(kB).

3. Then A(B + C) = AB + AC. That is, multiplication distributes over addition.
4. If A is an n x n matriz then Al, = I, A = A.

5. For any square matriz A of order n and D = diag(dy,ds, ..., d,), we have

e the first row of DA is dy times the first row of A;
e forl <i<mn, the ith row of DA is d; times the ith row of A.

A similar statement holds for the columns of A when A is multiplied on the right by
D.
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Proof. Part 1. Let A = [aijlmxn, B = [bijlnxp and C = [¢ij]pxq- Then

(BC)y; Z brece; and  (AB)y = Z ikbpe-
= =

Therefore,

(A(BC))U = Zalk (BO), Zam(z breces)
=1

- k=1
n p n p

= > ain(brece;) =D (ainbre)ce
k=1 k=1 (=1
p n t

S e = 3 (4B) e
(=1 k=1 =1

= ((4B)C),;.

Part 5. For all j =1,2,...,n, we have

(DA)ij =Y dipar; = diai
k=1

as d; = 0 whenever i # k. Hence, the required result follows.

The reader is required to prove the other parts. O

Exercise 1.2.14. 1. Find a 2 x 2 non-zero matriz A satisfying A> =0

2.

3.

Find a 2 x 2 non-zero matriz A satisfying A> = A and A # I.

Find 2 x 2 non-zero matrices A, B and C satisfying AB = AC but B # C. That is,
the cancelation law doesn’t hold.

. Let A= |0 0 1|. Compute A+ 3A% — A3 and a A3 + bA + cA?.

1 00

Let A and B be two matrices. If the matriz addition A + B is defined, then prove
that (A + B)t = A + Bt. Also, if the matriz product AB is defined then prove that
(AB)! = BtAL.

Let A = [a1,as,...,a,] and Bt = [by,bs,...,b,]. Then check that order of AB is
1 x 1, whereas BA has order n x n. Determine the matriz products AB and BA.

Let A and B be two matrices such that the matriz product AB is defined.

(a) If the first row of A consists entirely of zeros, prove that the first row of AB
also consists entirely of zeros.

(b) If the first column of B consists entirely of zeros, prove that the first column of
AB also consists entirely of zeros.
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(¢) If A has two identical rows then the corresponding rows of AB are also identical.

(d) If B has two identical columns then the corresponding columns of AB are also

tdentical.
1 1 =2 1
8 Let A= |1 -2 1| and B= |0 1|. Use the row/column method of matriz
0 1 1 -1 1

multiplication to compute the

(a) first row of the matriz AB.

(b) third row of the matriz AB.

(c¢) first column of the matriz AB.
(d) second column of the matriz AB.
(e) first column of BLA?.

(f) third column of BtA!.

(g) first row of BtA!.

(h) second row of BLA?.

9. Let A and B be the matrices given in Ezercise 1.2.14.8. Compute A — At (3AB)! —
4B'A and 3A — 2At.

10. Let n be a positive integer. Compute A™ for the following matrices:
11
0 1

Can you guess a formula for A™ and prove it by induction?

111 111
, 01 1/, 111
00 1 111

11. Construct the matrices A and B satisfying the following statements.

(a) The matriz product AB is defined but BA is not defined.
(b) The matriz products AB and BA are defined but they have different orders.
(¢) The matriz products AB and BA are defined and they have the same order but

AB # BA.
| a+b
12. Let A be a 3 x 3 matriz satisfying A |b| = |b—c| . Determine the matrixz A.
c 0

13. Let A be a 2 X 2 matrix satisfying A

b
= [a ] . Can you construct the matriz A
a

satisfying the above? Why!
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1.2.2 Inverse of a Matrix

Definition 1.2.15 (Inverse of a Matrix). Let A be a square matriz of order n.
1. A square matriz B is said to be a LEFT INVERSE of A if BA = I,,.
2. A square matriz C is called a RIGHT INVERSE of A, if AC = I,,.

3. A matriz A is said to be INVERTIBLE (or is said to have an INVERSE) if there exists
a matriz B such that AB = BA = 1,.

Lemma 1.2.16. Let A be an n X n matrixz. Suppose that there exist n X n matrices B and
C such that AB = I, and CA = 1I,, then B=C.

Proof. Note that
C=CI,=C(AB)=(CA)B=1,B=B.

O

Remark 1.2.17. 1. From the above lemma, we observe that if a matriz A is invertible,
then the inverse is unique.

2. As the inverse of a matriz A is unique, we denote it by A~'. That is, AA™! =

ATTA=1T.
a b
Example 1.2.18. 1. Let A= d] .
c
d -=b
: -1_ _1
(a) If ad — bc # 0. Then verify that A~! = = [—c a] .

(b) If ad—bc = 0 then prove that either [a b] = ac d] for some o € R or [a ¢] = S[b d]
for some B € R. Hence, prove that A is not invertible.

92 _
(¢) In particular, the inverse of [4 :; equals % [74 23]. Also, the matrices
L2 , Lo and 42 do not have inverses.
0 0 4 0 6 3
1 2 3 -2 0 1
2. Let A=12 3 4|.ThenA”'=]0 3 -2
3 4 6 1 -2 1

Theorem 1.2.19. Let A and B be two matrices with inverses A~' and B~", respectively.
Then
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Proof. Proof of Part 1.
By definition AA™! = A=A = I. Hence, if we denote A~! by B, then we get AB = BA = I.
Thus, the definition, implies B~ = A, or equivalently (A~1)~1 = A.
Proof of Part 2.
Verify that (AB)(B~'A~Y) =1 = (B 'A71)(AB).
Proof of Part 3.
We know AA~! = A=1A = I. Taking transpose, we get
(AAH = (A1A)Y =TT = (A HIA = A (A D =1
Hence, by definition (A%)~! = (4A~1)L. O
We will again come back to the study of invertible matrices in Sections 2.2 and 2.5.

Exercise 1.2.20. 1. Let A be an invertible matriz and let r be a positive integer. Prove
that (A=1)" = A~",

. , —cos(f) sin(6) cos(f) sin(f)
2. Find the inverse of [ sin () cos(@)] and [_ sin(9) cos(@)]'

3. Let Ay, Ao, ..., A, be invertible matrices. Prove that the product A1As--- A, is also
an invertible matriz.

4. Let xt =[1,2,3] and y* = [2,—1,4]. Prove that xy' is not invertible even though x'y
is inwvertible.

5. Let A be an n x n invertible matriz. Then prove that

(a) A cannot have a row or column consisting entirely of zeros.

(b) any two rows of A cannot be equal.

(c) any two columns of A cannot be equal.

(d) the third row of A cannot be equal to the sum of the first two rows, whenever
n > 3.

(e) the third column of A cannot be equal to the first column minus the second
column, whenever n > 3.

1 2
6. Suppose A is a 2 x 2 matriz satisfying (I +3A)~! = [2 N Determine the matriz
A.
-2 0 1
7. Let A be a 3x 3 matriz such that (I—A)~'= |0 3 —2|. Determine the matriz
1 -2 1

A [Hint: See Example 1.2.18.2 and Theorem 1.2.19.1].
8. Let A be a square matriz satisfying A3 + A — 2] = 0. Prove that A~ = % (A2 + I) .

9. Let A = la;;] be an invertible matriz and let p be a nonzero real number. Then
determine the inverse of the matriz B = [p*~Ja;;).
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1.3 Some More Special Matrices

Definition 1.3.1. 1. A matrizx A over R is called symmetric if At = A and skew-
symmetric if A' = —A.

2. A matriz A is said to be orthogonal if AA' = A'A = 1.

1 2 3 0 1 2
Example 1.3.2. 1. Let A= |2 4 —1| and B = |-1 0 -3|. Then A is a
3 -1 4 -2 3 0

symmetric matriz and B is a skew-symmetric matriz.

1 1 1
V3oV VB

2. Let A= ? —1% 02 . Then A is an orthogonal matriz.
V6 V6 V6

3. Let A = [a;j] be an n x n matriz with a;j equal to 1 if i —j = 1 and 0, otherwise.
Then A" = 0 and A® # 0 for 1 < ¢ < n — 1. The matrices A for which a positive
integer k exists such that A*¥ = 0 are called NILPOTENT matrices. The least positive
integer k for which A¥ = 0 is called the ORDER OF NILPOTENCY.

4. Let A = . Then A? = A. The matrices that satisfy the condition that A> = A

[N
[N

are called IDEMPOTENT matrices.

Exercise 1.3.3. 1. Let A be a real square matriz. Then S = %(A + AY) is symmetric,
T = 1(A — A') is skew-symmetric, and A= S +T.

2. Show that the product of two lower triangular matrices is a lower triangular matrix.
A similar statement holds for upper triangular matrices.

3. Let A and B be symmetric matrices. Show that AB is symmetric if and only if
AB = BA.

4. Show that the diagonal entries of a skew-symmetric matriz are zero.

5. Let A, B be skew-symmetric matrices with AB = BA. Is the matriz AB symmetric
or skew-symmetric?

6. Let A be a symmetric matriz of order m with A2 = 0. Is it necessarily true that
A=07?

7. Let A be a nilpotent matriz. Prove that there exists a matriz B such that B(I+ A) =
I=(I+A)B [ Hint: If A* =0 then look at I — A+ A? — - 4 (—1)F=1Ak1].
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1.3.1 Submatrix of a Matrix

Definition 1.3.4. A matriz obtained by deleting some of the rows and/or columns of a
matriz s said to be a submatriz of the given matrix.

Lds , a few submatrices of A are
01 2

11, 12) H 13) [; )

L 4] are not submatrices of A. (The reader is advised

For example, if A =

A

But the matrices 14 and
10 0 2

to give reasons.)
Let A be an n x m matrix and B be an m X p matrix. Suppose r < m. Then, we can

H
decompose the matrices A and B as A = [P Q] and B = Pk where P has order n x r

and H has order r x p. That is, the matrices P and () are submatrices of A and P consists
of the first r columns of A and @ consists of the last m — r columns of A. Similarly, H
and K are submatrices of B and H consists of the first r rows of B and K consists of the
last m — r rows of B. We now prove the following important theorem.

Theorem 1.3.5. Let A = [a;;] = [P Q] and B = [b;;] = [g] be defined as above. Then

AB = PH + QK.

Proof. First note that the matrices PH and QK are each of order n x p. The matrix
products PH and QK are valid as the order of the matrices P, H, () and K are respectively,
nxr, rxp nx(m-=r)and (m—r)xp Let P = [P;], Q = [Qi], H = [H;], and
K = [ki;]. Then, for 1 <i<nand 1< j <p, we have

m T m
(AB)ij = Zaikbkj = Zaikbkj + Z ik bk
k=1 k=1 k=r+1

= Y PuHi+ Y QukKy
k=1 k=r+1
= (PH)ij + (QK)ij = (PH + QK)yj.

Remark 1.3.6. Theorem 1.3.5 is very useful due to the following reasons:
1. The order of the matrices P,Q,H and K are smaller than that of A or B.

2. It may be possible to block the matriz in such a way that a few blocks are either
identity matrices or zero matrices. In this case, it may be easy to handle the matrix
product using the block form.
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3. Or when we want to prove results using induction, then we may assume the result for
r X r submatrices and then look for (r +1) x (r + 1) submatrices, etc.

a b
For example, if A = L 20 and B= |c¢ d|, Then
2 50
e f
1 2 ]a b 0 a+2c b+ 2d
AB = = .
2 4 L al "ol €= aa i se 24 5a
0o -1 2
IfA=1|3 1 4 |, then A can be decomposed as follows:
—2 -3
0| -1 2 | 0 —1] 2
A= 3 1 4 |,or A= 3 1 4 | ,or
| 2| 5 -3 | -2 5 |-3
0 1] 2 ]
A= 3 1 4 and so on.
-2 5 | -3
mi Mo S1 52
Suppose A= ny |P Q| andB= r; |E F/| .Thenthematrices P, Q, R, S
no R S 9 G H

and F, F, G, H, are called the blocks of the matrices A and B, respectively.

Even if A+ B is defined, the orders of P and F may not be same and hence, we may
not be able to add A and B in the block form. But, if A+ B and P + E is defined then
P+FE Q+F
R+G S+H|’

Similarly, if the product AB is defined, the product PE need not be defined. Therefore,
we can talk of matrix product AB as block product of matrices, if both the products AB
PE+QG PF+QH
RE+SG RF+SH|

That is, ONCE A PARTITION OF A IS FIXED, THE PARTITION OF B HAS TO BE PROPERLY
CHOSEN FOR PURPOSES OF BLOCK ADDITION OR MULTIPLICATION.

A+B=

and PFE are defined. And in this case, we have AB =

Exercise 1.3.7. 1. Complete the proofs of Theorems 1.2.5 and 1.2.13.

1/2 0 0 1 0 0 2 2 2 6
2.LetA=|0 1 0|,B=1|-2 1 0| andC=12 1 2 5 |. Compute
0 01 -3 0 1 3 3 4 10

(a) the first row of AC,
(b) the first row of B(AC),
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(¢) the second row of B(AC), and
(d) the third row of B(AC).
(e) Let x! =[1,1,1,—1]. Compute the matriz product Cx.

Y1
Y2

. Determine the 2 x 2 matriz

3. Let x = [m] andy =
Z2

(a) A such that the y = Ax gives rise to counter-clockwise rotation through an angle
.

(b) B such that y = Bx gives rise to the reflection along the line y = (tan~y)x.
Now, let C and D be two 2 X 2 matrices such that y = Cx gives rise to counter-
clockwise rotation through an angle 8 and y = Dx gives rise to the reflection
along the line y = (tan §) x, respectively. Then prove that

(c) y = (AC)x ory = (CA)x give rise to counter-clockwise rotation through an
angle a + 5.

(d) y = (BD)x ory = (DB)x give rise to rotations. Which angles do they repre-

sent?

(e) What can you say about'y = (AB)x ory = (BA)x ¢

4 Let A — 1 0 B - Cf)Sa —sin« and C — C?Se —sin@ Ifx = 1
0 -1 sinaw  cosa sinf cosf T9
andy = YU then geometrically interpret the following:
Y2

(a) y = Ax, y = Bx and y = Cx.
(b) y=(BC)x, y=(CB)x, y =(BA)x andy = (AB)x.
5. Consider the two coordinate transformations
v =anyrtawny .0 Y1 = bi1z1 + bi2z2
Ty = a21y1 + ay2 Y2 = boa1z1 + bzo
(a) Compose the two transformations to express x1,xo in terms of z1, z2.

(b) If xt = [x1, ma], y' = [y1, y2] and z' = [21, 23] then find matrices A, B and C
such that x = Ay, y = Bz and x = Cz.

(c) Is C = AB?

6. Let A be an n x n matriz. Then trace of A, denoted tr(A), is defined as

tr(A) = a1 + age + -+ - app.-

4 -3
-5

3

5 . Compute tr(A) and tr(B).

(a) Let A =

2] and B =
2



1.3. SOME MORE SPECIAL MATRICES 19

10.

11.

12.

(b) Then for two square matrices, A and B of the same order, prove that
i. tr (A+B) = tr(A)+ tr(B).
ii. tr (AB) = tr (BA).

(c) Prove that there do not exist matrices A and B such that AB — BA = cl,, for
any ¢ # 0.

Let A and B be two m x n matrices with real entries. Then prove that

(a) Ax =0 for all n x 1 vector x with real entries implies A = 0, the zero matriz.

(b) Ax = Bx for all n x 1 vector x with real entries implies A = B.

Let A be an n X n matrix such that AB = BA for all n X n matrices B. Show that
A = al for some a € R.

1 2 3
2 1 1}

(a) Find a matriz B such that AB = Is.

Let A =

(b) What can you say about the number of such matrices? Give reasons for your
answer.

(¢) Does there exist a matriz C such that CA = Is? Give reasons for your answer.

1 0|0 1 1 22 1
0O 1|1 1 1 1] 2 1
Let A = and B = . Compute the matriz product
0O 1|1 0 1 1] 1 1
0 1|0 1 -1 1|11
AB using the block matriz multiplication.
P Q o . .
Let A = R S| If P,QQ,R and S are symmetric, is the matriz A symmetric? If A
is symmetric, is it necessary that the matrices P,Q, R and S are symmetric?
A A
Let A be an (n+1) x (n+ 1) matriz and let A = 20 where Aqy is annxn
21 C

inwvertible matriz and ¢ is a real number.

(a) If p=c— A21A1_11A12 18 mon-zero, prove that

At o] 1 [AFA
R I
is the inverse of A.
0 —-1]2 0 —-1] 2
(b) Find the inverse of the matrices | 1 1 |4 | and | 3 1 | 4
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13. Let x be an n x 1 matriz satisfying x'x = 1.

(a) Define A = I, — 2xx'. Prove that A is symmetric and A?> = I. The matriz A
is commonly known as the HOUSEHOLDER MATRIX.

(b) Let a # 1 be a real number and define A = I, —axx'. Prove that A is symmetric
and invertible [Hint: the inverse is also of the form I, + fxx' for some value of

Bl

14. Let A be an n x n invertible matrix and let x and y be two n X 1 matrices. Also,
let B be a real number such that a« = 1+ By’ A='x # 0. Then prove the famous
Shermon-Morrison formula

g

— DA xytA™t
o

(A+pxy') "t =471

This formula gives the information about the inverse when an invertible matriz is
modified by a rank one matriz.

15. Let J be an n X n matriz having each entry 1.

(a) Prove that J? =n.J.
(b) Let aq, s, P1, P2 € R. Prove that there exist ag, 53 € R such that

(onlp + B1J) - (agly + BoJ) = asly, + B3J.

(c) Let a, f € R with o # 0 and a +npf # 0 and define A = ad,, + fJ. Prove that
A is invertible.

16. Let A be an upper triangular matriz. If A*A = AA* then prove that A is a diagonal
matriz. The same holds for lower triangular matrix.

1.4 Summary

In this chapter, we started with the definition of a matrix and came across lots of examples.
In particular, the following examples were important:

1. The zero matrix of size m x n, denoted 0,,x, or O.
2. The identity matrix of size n x n, denoted I,, or I.
3. Triangular matrices

4. Hermitian/Symmetric matrices

5. Skew-Hermitian/skew-symmetric matrices

6. Unitary/Orthogonal matrices

We also learnt product of two matrices. Even though it seemed complicated, it basically
tells the following:
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1. Multiplying by a matrix on the left to a matrix A is same as row operations.

2. Multiplying by a matrix on the right to a matrix A is same as column operations.

21
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Chapter 2

System of Linear Equations

2.1 Introduction

Let us look at some examples of linear systems.

1. Suppose a,b € R. Consider the system ax = b.

(a) If a # 0 then the system has a UNIQUE SOLUTION z = 3.
(b) If a =0 and
i. b # 0 then the system has NO SOLUTION.

ii. b = 0 then the system has INFINITE NUMBER OF SOLUTIONS, namely all
z € R.

2. Consider a system with 2 equations in 2 unknowns. The equation ax + by = ¢
represents a line in R? if either a # 0 or b # 0. Thus the solution set of the system

a1x + by = c¢1, asx + boy = ¢

is given by the points of intersection of the two lines. The different cases are illustrated
by examples (see Figure 1).

(a) UNIQUE SOLUTION
z+ 2y =1 and x + 3y = 1. The unique solution is (x,y)" = (1,0).
Observe that in this case, a1bs — asby # 0.

(b) INFINITE NUMBER OF SOLUTIONS
r+2y = 1 and 2x + 4y = 2. The solution set is (z,y)! = (1 — 2y,y)! =
(1,0)" + y(—2,1)" with y arbitrary as both the equations represent the same
line. Observe the following:

i. Here, a1by — aob; =0, a1co — ase; = 0 and bycg — bacy = 0.
ii. The vector (1,0)" corresponds to the solution x = 1,y = 0 of the given

system whereas the vector (—2, 1) corresponds to the solution z = -2,y = 1
of the system = + 2y = 0,2z + 4y = 0.

23
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(¢) NO SOLUTION
x+ 2y = 1 and 2z + 4y = 3. The equations represent a pair of parallel lines and
hence there is no point of intersection. Observe that in this case, a1by —asb; =0
but ajco — agey # 0.

No Solution Infinite Number of Solutions Unique Solution: Intersecting Lines
Pair of Parallel lines Coincident Lines P: Point of Intersection

Figure 1 : Examples in 2 dimension.

3. As a last example, consider 3 equations in 3 unknowns.
A linear equation az +by+cz = d represent a plane in R? provided (a, b, c) # (0,0,0).
Here, we have to look at the points of intersection of the three given planes.

(a) UNIQUE SOLUTION
Consider the system v +y+2 =3, x+4y+2z =7 and 4o+ 10y — 2z = 13. The
unique solution to this system is (x,y,2)! = (1,1,1)!; i.e. THE THREE PLANES
INTERSECT AT A POINT.

(b) INFINITE NUMBER OF SOLUTIONS
Consider the system z+y+2 =3, z+2y+2z=>5and 3z +4y+4z =11. The
solution set is (z,y, 2)! = (1,2—z,2)" = (1,2,0)! +2(0, —1,1), with z arbitrary.
Observe the following;:
i. Here, the three planes intersect in a line.
ii. The vector (1,2,0)" corresponds to the solution z = 1,y = 2 and z = 0 of
the linear system z4+y+2 =3, z+2y+2z=>5and 3x+4y+4z = 11. Also,
the vector (0,—1,1)! corresponds to the solution x = 0,y = —1 and z = 1
of the linear system x +y+2 =0, z+2y+2z=0and 3z +4y + 42 = 0.

(¢) No SoLuTION
The system 2 +y+ 2z =3, =+ 2y+ 2z =5 and 3z + 4y + 42 = 13 has no
solution. In this case, we get three parallel lines as intersections of the above
planes, namely
i. a line passing through (1,2,0) with direction ratios (0,—1,1),
ii. a line passing through (3,1,0) with direction ratios (0,—1,1), and
iii. a line passing through (—1,4,0) with direction ratios (0,—1,1).

The readers are advised to supply the proof.

Definition 2.1.1 (Linear System). A system of m linear equations in n unknowns x1,xa, . ..

s a set of equations of the form
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anx1 +aipr2 + -+ apr, = b

a1 + axry + -+ awmr, = by
(2.1.1)

U171 + a2 + -+ ATy, = by

where for 1 <i<n, and 1 < j <m; a;;,b; € R. Linear System (2.1.1) is called HOMOGE-
NEOUS if by =0=by = --- = b,, and NON-HOMOGENEOUS otherwise.

We rewrite the above equations in the form Ax = b, where

ain a2 - Qip 1 by

a1 a2 - G, T2 bo
A= , x=| . |,and b=

Aml Am2 - Amn Tn bm

The matrix A is called the COEFFICIENT matrix and the block matrix [A b], is called
the AUGMENTED matrix of the linear system (2.1.1).

Remark 2.1.2. 1. The first column of the augmented matriz corresponds to the coeffi-
cients of the variable 1.

2. In general, the j th column of the augmented matriz corresponds to the coefficients of

the variable xj, for j =1,2,...,n.

3. The (n+ 1)th column of the augmented matrix consists of the vector b.

h

4. The ith row of the augmented matrix represents the it equation fori=1,2,...,m.

That is, fori=1,2,...,m and j = 1,2,...,n, the entry a;; of the coefficient matrix

th

A corresponds to the ith linear equation and the j° variable x;.

Definition 2.1.3. For a system of linear equations Ax = b, the system Ax = 0 is called
the ASSOCIATED HOMOGENEOUS SYSTEM.

Definition 2.1.4 (Solution of a Linear System). A solution of Ax = b is a column vector
y with entries yi1,Y2, ..., Yn such that the linear system (2.1.1) is satisfied by substituting
y; in place of x;. The collection of all solutions is called the SOLUTION SET of the system.

That is, if y* = [y1,92,..,Yn] is a solution of the linear system Ax = b then Ay = b
holds. For example, from Example 3.3a, we see that the vector y' = [1,1,1] is a solution

1 1 1
of the system Ax =b, where A= [1 4 2 |, x! =[z,y,2] and bt = [3,7,13].
4 10 -1

We now state a theorem about the solution set of a homogeneous system. The readers
are advised to supply the proof.

Theorem 2.1.5. Consider the homogeneous linear system Ax = 0. Then
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1. The zero vector, 0 = (0,...,0)!, is always a solution, called the TRIVIAL solution.

2. Suppose x1,Xo are two solutions of Ax = 0. Then ki1xq1 + koxo is also a solution of
Ax = 0 for any k1,ks € R.

Remark 2.1.6. 1. A non-zero solution of Ax = 0 is called a NON-TRIVIAL solution.

2. If Ax = 0 has a non-trivial solution, say 'y # 0 then z = cy for every ¢ € R is also
a solution. Thus, the existence of a mon-trivial solution of Ax = 0 is equivalent to
having an infinite number of solutions for the system Ax = 0.

3. If u,v are two distinct solutions of Ax = b then one has the following:

(a) u—v is a solution of the system Ax = 0.
(b) Define x5, =u—v. Then xj is a solution of the homogeneous system Ax = 0.

(¢) That is, any two solutions of Ax = b differ by a solution of the associated
homogeneous system Ax = 0.

(d) Or equivalently, the set of solutions of the system Ax = b is of the form, {xo +
xp}; where xg is a particular solution of Ax = b and xj, is a solution of the
associated homogeneous system Ax = 0.

2.1.1 A Solution Method

Example 2.1.7. Solve the linear system y+ 2z =2, 2x+3z2=5, v +y+ z = 3.

01 1 2
Solution: In this case, the augmented matrixis [2 0 3 5| and the solution method
1 1 1 3
proceeds along the following steps.
1. Interchange 15¢ and ond equation.
20 +32z =5 2 0 3 5
y+z =2 01 1 2
r+y+z =3 1 11 3
2. Replace 15t equation by 15t equation times %
z+ %z = g 1 0 % g
y+z =2 01 1 2
r+y+z =3 1 1 3

rrge =3 Lo 3o
y+z =2 01 1 2

1 _ 1 1 1
— 3% =3 01 -5 3
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4. Replace ard equation by ard equation minus the ond equation.

3 _5 3 5
£E+§Z =3 1 0 5 b}
y+z =2 01 1 2
3 __3 3 3
—5% =% 00 -5 —3
5. Replace ard equation by ard equation times %2
erie =3 YRR
y+z =2 01 1 2
z =1 0 0 1 1

The last equation gives z = 1. Using this, the second equation gives y = 1. Finally,
the first equation gives z = 1. Hence the solution set is {(z,y,2)! : (z,9,2) = (1,1,1)}, A
UNIQUE SOLUTION.

In Example 2.1.7, observe that certain operations on equations (rows of the augmented
matrix) helped us in getting a system in Item 5, which was easily solvable. We use this
idea to define elementary row operations and equivalence of two linear systems.

Definition 2.1.8 (Elementary Row Operations). Let A be an m x n matriz. Then the
elementary row operations are defined as follows:

1. R;;: Interchange of the it and the jth row of A.
2. For c # 0, Ry(c): Multiply the kM row of A by c.

3. For ¢ # 0, R;;(c): Replace the jth row of A by the jth row of A plus c times the ith
row of A.

Definition 2.1.9 (Equivalent Linear Systems). Let [A b] and [C' d] be augmented ma-
trices of two linear systems. Then the two linear systems are said to be equivalent if [C' d]
can be obtained from [A b| by application of a finite number of elementary row operations.

Definition 2.1.10 (Row Equivalent Matrices). Two matrices are said to be row-equivalent
if one can be obtained from the other by a finite number of elementary row operations.

Thus, note that linear systems at each step in Example 2.1.7 are equivalent to each
other. We also prove the following result that relates elementary row operations with the
solution set of a linear system.

Lemma 2.1.11. Let Cx = d be the linear system obtained from Ax = b by application of
a single elementary row operation. Then Ax =b and Cx = d have the same solution set.

Proof. We prove the result for the elementary row operation R;j(c) with ¢ # 0. The reader
is advised to prove the result for other elementary operations.
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In this case, the systems Ax = b and Cx = d vary only in the i th equation. Let
(a1, @9, ...,ay) be a solution of the linear system Ax = b. Then substituting for «;’s in
place of z;’s in the Eh and jth equations, we get

ag10q + g0 + - - agpay, = by, and ajroq + ajoan + - a0y, = bj.
Therefore,
(ag1 + caji)on + (ake + cajo)as + -+ - + (akn + cajn)ay, = by + cb;. (2.1.2)

But then the kth equation of the linear system Cx = d is

(ak1 + caji)x1 + (ag2 + cajo)xe + -+ + (agp + cajn) Ty, = by + cbj. (2.1.3)
Therefore, using Equation (2.1.2), (aj,a2,...,a,) is also a solution for ith Equation
(2.1.3).

Use a similar argument to show that if (81, 52, ..., 8,) is a solution of the linear system

Cx = d then it is also a solution of the linear system Ax = b. Hence, the required result
follows. O

The readers are advised to use Lemma 2.1.11 as an induction step to prove the main
result of this subsection which is stated next.

Theorem 2.1.12. Two equivalent linear systems have the same solution set.

2.1.2 Gauss Elimination Method

We first define the Gauss elimination method and give a few examples to understand the
method.

Definition 2.1.13 (Forward/Gauss Elimination Method). The Gaussian elimination method
is a procedure for solving a linear system Ax = b (consisting of m equations in n unknowns)
by bringing the augmented matriz

ail a2 - Aun 0 Q1 | b
A b= ast Qg2 cc+ G2y v G2 | b
Am1 Gm2 Gmm  Qmp | by
to an upper triangular form
cii cy o G o Cin | di ]
0 coo -+ com 0 cCop | d2
0 0 e Com  Con | dim |

by application of elementary row operations. This elimination process is also called the
forward elimination method.
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We have already seen an example before defining the notion of row equivalence. We
give two more examples to illustrate the Gauss elimination method.

Example 2.1.14. Solve the following linear system by Gauss elimination method.

z+y+z2=3, x+2y+2z2=5,3xr+4y+4z2=11

1 1 1 3
Solution: Let A= |1 2 2| and b= | 5 . The Gauss Elimination method starts
3 4 4 11
with the augmented matrix [A b] and proceeds as follows:
1. Replace ond equation by ond equation minus the 18t equation.
rT+y+z =3 1 11 3
Y+ z —9 011 2
3r+4y+4z =11 3 4 4 11
2. Replace 34 equation by 3'¢ equation minus 3 times 150 equation.
cty+z =3 111 3
y+z =2 01 1 2
Y+ z =2 01 1 2
3. Replace ard equation by ard equation minus the ond equation.
e 3 1113
v Jyr ° - ) 01 1 2
Z =
Y 000 0

Thus, the solution set is {(x,y,2)" : (z,y,2) = (1,2 — 2,2)} or equivalently {(x,y,2)" :
(z,y,2) = (1,2,0)+2(0,—1,1)}, with z arbitrary. In other words, the system has INFINITE
NUMBER OF SOLUTIONS. Observe that the vector y' = (1,2,0) satisfies Ay = b and the
vector z' = (0,—1,1) is a solution of the homogeneous system Ax = 0.

Example 2.1.15. Solve the following linear system by Gauss elimination method.

r+y+z2=3, x+2y+2z=5 3x+4y+4z =12

1 1 1 3
Solution: Let A= |1 2 2| and b= | 5 |. The Gauss Elimination method starts
3 4 4 12

with the augmented matrix [A b] and proceeds as follows:

1. Replace ond equation by ond equation minus the 18t equation.

z+y+=z =3 1 11 3
y+z =2 01 1 2
3r+4y+4z =12 3 4 4 12



30 CHAPTER 2. SYSTEM OF LINEAR EQUATIONS

2. Replace ard equation by 3rd equation minus 3 times 150 equation.

r+y+z =3 111 3

y+z =2 01 1 2

y+z =3 0 1 1 3

3. Replace ard equation by ard equation minus the ond equation.
r+y+z =3 1 11 3

y+z =2 01 1 2

0 =1 0 001

The third equation in the last step is
Ox 4+ 0y +0z = 1.
This can never hold for any value of x,y, z. Hence, the system has NO SOLUTION.

Remark 2.1.16. Note that to solve a linear system Ax = b, one needs to apply only the
row operations to the augmented matriz [A b].

Definition 2.1.17 (Row Echelon Form of a Matrix). A matriz C' is said to be in the row
echelon form if

1. the rows consisting entirely of zeros appears after the non-zero rows,

2. the first non-zero entry in a non-zero row is 1. This term is called the LEADING TERM
or a LEADING 1. The column containing this term is called the LEADING COLUMN.

3. In any two successive non-zero rows, the leading 1 in the lower row occurs farther to
the right than the leading 1 in the higher row.

0 O 4 2 1o 2 3
Example 2.1.18. The matrices |() 0 @ 1l and | 0O 0 0 @ 4 are in
0 0 0 0 o 00 0o (O
row-echelon form. Whereas, the matrices
0 (D 4 2] [MW10 2 3 10 2 3
00 0 0[,|]0 00 4| and 0 00 0 (1)
o0 W1 Looo 0o 0o 00 () 4

are not in row-echelon form.

Definition 2.1.19 (Basic, Free Variables). Let Ax = b be a linear system consisting of
m equations in n unknowns. Suppose the application of Gauss elimination method to the
augmented matriz [A b] yields the matriz [C d].

1. Then the variables corresponding to the leading columns (in the first n columns of
[C d]) are called the BASIC variables.
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2. The variables which are not basic are called FREE variables.

The free variables are called so as they can be assigned arbitrary values. Also, the basic
variables can be written in terms of the free variables and hence the value of basic variables
in the solution set depend on the values of the free variables.

Remark 2.1.20. Observe the following:

1. In Example 2.1.14, the solution set was given by
(x,y,2) = (1,2 —2,2) = (1,2,0) + 2(0,—1,1), with z arbitrary.
That is, we had x, y as two basic variables and z as a free variable.

2. FExample 2.1.15 didn’t have any solution because the row-echelon form of the aug-
mented matriz had a row of the form [0,0,0,1].

3. Suppose the application of row operations to [A b] yields the matriz [C d]| which
is in row echelon form. If [C' d] has r non-zero rows then [C d] will consist of r
leading terms or r leading columns. Therefore, THE LINEAR SYSTEM Ax = b WILL
HAVE 1 BASIC VARIABLES AND n — r FREE VARIABLES.

Before proceeding further, we have the following definition.

Definition 2.1.21 (Consistent, Inconsistent). A linear system is called CONSISTENT if it
admits a solution and is called INCONSISTENT if it admits no solution.

We are now ready to prove conditions under which the linear system Ax = b is consis-
tent or inconsistent.

Theorem 2.1.22. Consider the linear system Ax = b, where A is an m X n matrix
and x' = (x1,29,...,1,). If one obtains [C d] as the row-echelon form of [A b] with
d! = (dl,dg, cee ,dm) then

1. Ax = b is inconsistent (has no solution) if [C d] has a row of the form [0 1], where
0! = (0,...,0).

2. Ax = b is consistent (has a solution) if [C d] has NO ROW OF THE FORM [0 1].
Furthermore,

(a) if the number of variables equals the number of leading terms then Ax = b has
A UNIQUE SOLUTION.

(b) if the number of variables is strictly greater than the number of leading terms
then Ax = b has INFINITE NUMBER OF SOLUTIONS.

Proof. PART 1: The linear equation corresponding to the row [0' 1] equals

0xy 4+ 0z + -+ 0x, = 1.
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Obviously, this equation has no solution and hence the system Cx = d has no solution.
Thus, by Theorem 2.1.12, Ax = b has no solution. That is, Ax = b is inconsistent.

PART 2: Suppose [C' d] has r non-zero rows. As [C' d] is in row echelon form there
exist positive integers 1 < i1 < i3 < ... < 7, < n such that entries ¢y, for 1 < ¢ < r
are leading terms. This in turn implies that the variables z;, for 1 < j < r are the basic
variables and the remaining n — r variables, say x;,,x¢,,..., 2, ,, are free variables. So

for each ¢, 1 < ¢ < r, one obtains x;, + Y cyxp = dy (k> ip in the summation as [C' d]
k>iy
is a matrix in the row reduced echelon form). Or equivalently,

T n—r
x;, = dp — g Coi; Ti; — E cu,xp, for 1 <1<
j=0+1 s=1

Hence, a solution of the system C'x = d is given by
T
e, =0for s=1,...,n—rand z; =dy,z;_, =dr_1 —dp,...,x; =dy — Zc&jdj.
j=2

Thus, by Theorem 2.1.12 the system Ax = b is consistent. In case of Part 2a, there are no
free variables and hence the unique solution is given by

n
ITn = dnyxn—l = dn—l - dna s T = dl - E Cﬁijdj'
=2

In case of Part 2b, there is at least one free variable and hence Ax = b has infinite number
of solutions. Thus, the proof of the theorem is complete. O

We omit the proof of the next result as it directly follows from Theorem 2.1.22.
Corollary 2.1.23. Consider the homogeneous system Ax = 0. Then
1. Ax = 0 is always consistent as 0 is a solution.

2. If m <n thenn—m > 0 and there will be at least n —m free variables. Thus Ax =0
has infinite number of solutions. Or equivalently, Ax = 0 has a non-trivial solution.

We end this subsection with some applications related to geometry.

Example 2.1.24. 1. Determine the equation of the line/circle that passes through the
points (—1,4),(0,1) and (1,4).
Solution: The general equation of a line/circle in 2-dimensional plane is given by
a(z? +y?) +bx +cy +d =0, where a,b,c and d are the unknowns. Since this curve
passes through the given points, we have

a((=1)2+4?) + (-1)b+4c+d = =0
a((024+1*)+ (0)b+1lc+d = =0
(D2 +4°)+()b+4c+d = =0.

a
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Solving this system, we get (a,b,c,d) = (%d,O, —%d, d). Hence, taking d = 13, the

equation of the required circle is

3(z% +¢%) — 16y + 13 = 0.

2. Determine the equation of the plane that contains the points (1,1,1),(1,3,2) and
(2,-1,2).
Solution: The general equation of a plane in 3-dimensional space is given by ax +
by+cz+d =0, where a,b,c and d are the unknowns. Since this plane passes through
the given points, we have

atbtctd = =0
a+3b+2c+d = =0
2a —b+2c+d = =0.

Solving this system, we get (a,b,c,d) = (—%d, —g, —%d, d). Hence, taking d = 3, the
equation of the required plane is —4x —y + 2z + 3 = 0.

2 3 4
3. Let A= |0 -1 0
0 -3 4

(a) Find a non-zero xt € R such that Ax = 2x.

(b) Does there exist a non-zero vector y' € R® such that Ay = 4y ?

Solution of Part 3a: Solving for Ax = 2x is same as solving for (A — 2I)x = 0.

0 3 40
This leads to the augmented matriz [0 —3 0 0] . Check that a non-zero solution
0 4 20

is given by x' = (1,0,0).
Solution of Part 3b: Solving for Ay = 4y is same as solving for (A —41)y = 0.

-2 3 40
This leads to the augmented matriz | 0 —5 0 0] . Check that a non-zero solution
0 -3 00
is given by y' = (2,0,1).
Exercise 2.1.25. 1. Determine the equation of the curve y = ax? + bx + ¢ that passes

through the points (—1,4),(0,1) and (1,4).
2. Solve the following linear system.
(a) z+y+z+w=0,z—y+z+w=0and —x+y+3z+3w=0.
(b)) x+2y=1, c+y+2=4and 3y +2z = 1.
(c) x+y+z2z=3, 24+y—z=1andx+y+ 72z =6.
(d) +y+z=3, z+y—z=1andx+y+4z=6.
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(e) x+y+z=3, 24+y—z=1, x4+y+4z=6 andx+y—4z=—1.

3. For what values of ¢ and k, the following systems have i) no solution, 1ii) a unique
solution and 1) infinite number of solutions.
(a) c+y+2=3, x+2y+cz=4, 20+3y+2cz=k.
(b)) x+y+2z=3, x+y+2cz2="7, v+ 2y+3cz=k.
(c) x+y+22=3, x+2y+cz=5, z+2y+4z=k.
(d) kx+y+z=1, z+ky+z=1, x+y+kz=1
(e) c+2y—2=1 20+3y+kz=3, x+ky+3z=2.
(f) e —2y=1,x—y+kz=1, ky+4z=6.
4. For what values of a, does the following systems have i) no solution, i) a unique
solution and 1) infinite number of solutions.
(a) x4+2y+32=4, 22 +5y+52=06, 2z + (a® —6)z = a+ 20.
(b) z+y+2=3, 2z+5y+4z =a, 3z + (a* — 8)z = 12.
5. Find the condition(s) on x,y, z so that the system of linear equations given below (in
the unknowns a,b and c) is consistent?
(a) a+2b—3c==x,2a+6b—1lc=y, a—2b+Tc==z
(b) a+b+5c=z, a+3c=y, 2a—b+4c=z
(c) a+2b+3c=x, 2a+4b+ 6¢c =1y, 3a+6b+9c =z

6. Let A be an n xn matriz. If the system A?x = 0 has a non trivial solution then show
that Ax = 0 also has a non trivial solution.

7. Prove that we need to have 5 set of distinct points to specify a general conic in 2-
dimensional plane.

8. Letu! = (1,1,-2) and vt = (—1,2,3). Find condition on xz,y and z such that the
system cu' + dv! = (z,y, z) in the unknowns c and d is consistent.

2.1.3 Gauss-Jordan Elimination

The Gauss-Jordan method consists of first applying the Gauss Elimination method to get
the row-echelon form of the matrix [A b] and then further applying the row operations
as follows. For example, consider Example 2.1.7. We start with Step 5 and apply row
operations once again. But this time, we start with the 314 1o,

2I1d

I. Replace equation by ond equation minus the 3rd equation.

:E—I—%Z
Y
z

Il
— N Nt
o O =
o = O
— O Nw
— = Njot
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II. Replace 15¢ equation by 15¢ equation minus 3 times 3rd equation.

xr =1 1 0 01
Yy = 01 01
z =1 0011

II1. Thus, the solution set equals {(x,vy,2)" : (z,y,2) = (1,1,1)}.

Definition 2.1.26 (Row-Reduced Echelon Form). A matriz C is said to be in the row-
reduced echelon form or reduced row echelon form if

1. C is already in the row echelon form;
2. the leading column containing the leading 1 has every other entry zero.

A matriz which is in the row-reduced echelon form is also called a row-reduced echelon

matriz.
0 () 4 2 M 1o 2 3
Example 2.1.27. Let A= |0 0 @ 1l andB=1]1 0 0 0 4 |. Then A
0 0 0 0 0O 0 0 O

and B are in row echelon form. If C and D are the row-reduced echelon forms of A and
o () o -2 M 10 0 o

B, respectively then C = |0 0 @ 1|land D=0 0 0 @ 0 |.
00 0 0 o 00 o (U

Definition 2.1.28 (Back Substitution/Gauss-Jordan Method). The procedure to get The
row-reduced echelon matriz from the row-echelon matriz is called the BACK SUBSTITUTION.
The elimination process applied to obtain the row-reduced echelon form of the augmented
matrix is called the GAUSS-JORDAN ELIMINATION METHOD.

That is, the Gauss-Jordan elimination method consists of both the forward elimination
and the backward substitution.

Remark 2.1.29. Note that the row reduction involves only row operations and proceeds
from LEFT TO RIGHT. Hence, if A is a matriz consisting of first s columns of a matriz C,
then the row-reduced form of A will consist of the first s columns of the row-reduced form

of C.
The proof of the following theorem is beyond the scope of this book and is omitted.
Theorem 2.1.30. The row-reduced echelon form of a matriz is unique.

Remark 2.1.31. Consider the linear system Ax = b. Then Theorem 2.1.30 implies the
following:

1. The application of the Gauss Elimination method to the augmented matrix may yield
different matrices even though it leads to the same solution set.
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2. The application of the Gauss-Jordan method to the augmented matriz yields the same
matriz and also the same solution set even though we may have used different sequence
of row operations.

Example 2.1.32. Consider Ax = b, where A is a 3 X 3 matriz. Let [C' d] be the row-
reduced echelon form of [A b|. Also, assume that the first column of A has a non-zero
entry. Then the possible choices for the matriz [C' d] with respective solution sets are given
below:

1 0 0 d

1. |0 1 0 dy|. Ax =Db has a UNIQUE SOLUTION, (x,¥,2) = (d1,ds2,ds).
0 0 1 ds
(10 a d| [1 a 0 d] 1 a B d

2. 10 1 B dof, 0 1 dy| or |0 0O 0 1]|. Ax = Db has NO SOLUTION for
0 0 0 1 0 0 0 1 0 00 O
any choice of a, 3. )
(1 0 a di] [1 o 0 &] [1 a 8 &

310 1 8 da|,]0 O 1 do|,|0 O O O|. Ax = b has INFINITE NUMBER
0 00 O 0 0 0 O 0 0 0 O
OF SOLUTIONS for every choice of o, 3.

Exercise 2.1.33. 1. Let Ax = b be a linear system in 2 unknowns. What are the

possible choices for the row-reduced echelon form of the augmented matriz [A bl?

2. Find the row-reduced echelon form of the following matrices:

00 1 011 3 0 -1 1 b =23

3 3 -3 -3
10 3/,/0013],|-2 o0 S I
307 1100 -5 1

-1 -1 2 =2

3. Find all the solutions of the following system of equations using Gauss-Jordan method.
No other method will be accepted.

T +y -2u + v 2
z 4+ u + 20 = 3

v + w = 38

v + 2w )

2.2 Elementary Matrices

In the previous section, we solved a system of linear equations with the help of either the
Gauss Elimination method or the Gauss-Jordan method. These methods required us to
make row operations on the augmented matrix. Also, we know that (see Section 1.2.1 )
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the row-operations correspond to multiplying a matrix on the left. So, in this section, we

try to understand the matrices which helped us in performing the row-operations and also

use this understanding to get some important results in the theory of square matrices.

Definition 2.2.1. A square matriz E of order n is called an ELEMENTARY MATRIX if it
1s obtained by applying exactly one row operation to the identity matriz, I,.

Remark 2.2.2. Fiz a positive integer n. Then the elementary matrices of order n are of

three types and are as follows:

1. Ej;j corresponds to the interchange of the ith and the jth row of I,.

2. For ¢ #0, Ex(c) is obtained by multiplying the Kt row of I, by c.

3. For ¢ # 0, Eyj(c) is obtained by replacing the jth row of I, by the jth row of I, plus

th

¢ times the "' row of I,.
Example 2.2.3. 1. In particular, for n =3 and a real number ¢ # 0, one has

10 ¢ 0 0] 10 0
Eyxs=10 0 1|, E1(e)=10 1 0|, and Es2(c) =10 1 ¢
010 0 01 0 0 1

1230 (1 2 3 0

2. Let A=12 0 3 4| and B= 1|3 4 5 6| . Then B is obtained from A by the
3 45 6 2 0 3 4

interchange of 21 gnd 374 rou. Verify that

1 00
EypA=10 0 1
010

011 2
3. Let A=12 0 3 5|. Then B =
1 1 1 3

1
0
0

o = O

A. The readers are advised to verify that

30 1 230

3 4/=1(3 4 5 6| =28

5 6 2 0 3 4

0 1

0 1| is the row-reduced echelon form of
11

B = Egg(—l) . Egl(—l) . E3(1/3) . E23(2) . E23 . Elg(—2) . E13 <A
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Or equivalently, check that

111 3 1 1 1 3
Ei3A = A =12 0 3 5|, Ep(-2)41=A4,=10 -2 1 —1|,
01 1 2 0 1 1 2
(1 1 1 3 1 113
EyAy = As3=10 1 1 2|, Fs2A43=4,=10 1 1 2|,
0 -2 1 -1 00 3 3
(1 1 1 3 100 1
E3(1/3)A; = As= (0 1 1 2|, En(-DA4s5=A4¢= 1[0 1 1 2|,
00 1 1 001 1
1001
Esp(-1)A4g = B=10 1 0 1].
001 1

Remark 2.2.4. Observe the following:

1. The inverse of the elementary matriz E;; is the matriz E;j itself. That is, F;jE;; =
I= EZ]EZ]

2. Let ¢ # 0. Then the inverse of the elementary matriz Ey(c) is the matriz Ey(1/c).
That is, Ex(c)Ex(1/c) = I = Ex(1/c)Ex(c).

3. Let ¢ # 0. Then the inverse of the elementary matriz E;;(c) is the matriz E;;(—c).
That iS, Eij(C)Ei'(—C) =1= Eij(—C)Eij(C).

That is, all the elementary matrices are invertible and the inverses are also elemen-
tary matrices.

4. Suppose the row-reduced echelon form of the augmented matriz [A b] is the matriz
[C d]. As row operations correspond to multiplying on the left with elementary
matrices, we can find elementary matrices, say Ey, Es, ..., Ey, such that

By Ep1- B Ei-[A b]=[C d].

That is, the Gauss-Jordan method (or Gauss Elimination method) is equivalent to
multiplying by a finite number of elementary matrices on the left to [A b].

We are now ready to prove a equivalent statements in the study of invertible matrices.

Theorem 2.2.5. Let A be a square matriz of order n. Then the following statements are

equivalent.
1. A is invertible.
2. The homogeneous system Ax = 0 has only the trivial solution.

3. The row-reduced echelon form of A is I,.
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4. A is a product of elementary matrices.

Proof. 1 = 2

As A is invertible, we have A=A = I, = AA~!. Let x( be a solution of the homoge-
neous system Ax = 0. Then, Axyg = 0 and Thus, we see that 0 is the only solution of the
homogeneous system Ax = 0.

2=3
Let x! = [21,%9,...,7,]. As 0 is the only solution of the linear system Ax = 0, the
final equations are 1 = 0,292 =0,...,z, = 0. These equations can be rewritten as

1-21+0-22+0-23+---+0-2, =

0O-z74+1-220+0-234+---+0-2, = 0
O-z1+0-29+1-234+---+0-2, = 0
O-z1+0-29+0-2354+---+1-2, = 0.

That is, the final system of homogeneous system is given by I, - x = 0. Or equivalently,
the row-reduced echelon form of the augmented matrix [A 0] is [[,, 0]. That is, the
row-reduced echelon form of A is I,,.

3= 14

Suppose that the row-reduced echelon form of A is I,,. Then using Remark 2.2.4.4,
there exist elementary matrices E1, Es, ..., E; such that

E\Fy--- EyA =1, (2.2.4)

Now, using Remark 2.2.4, the matrix Ej_1 is an elementary matrix and is the inverse of
E; for 1 < j < k. Therefore, successively multiplying Equation (2.2.4) on the left by
El_l,EQ_I,...,Ek_l, we get
—1 -1 —1 -1
A=E B By By

and thus A is a product of elementary matrices.

4=1

Suppose A = E1Es - -- Ey; where the E;’s are elementary matrices. As the elementary
matrices are invertible (see Remark 2.2.4) and the product of invertible matrices is also
invertible, we get the required result. O

As an immediate consequence of Theorem 2.2.5, we have the following important result.
Theorem 2.2.6. Let A be a square matriz of order n.
1. Suppose there exists a matriz C such that CA = I,,. Then A" exists.

2. Suppose there exists a matriz B such that AB = I,,. Then A~! exists.
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Proof. Suppose there exists a matrix C such that CA = I,,. Let xg be a solution of the
homogeneous system Ax = 0. Then Axg = 0 and

X0 = [n - Xp = (CA)X() = C(AXO) = CO =0.

That is, the homogeneous system Ax = 0 has only the trivial solution. Hence, using
Theorem 2.2.5, the matrix A is invertible.
Using the first part, it is clear that the matrix B in the second part, is invertible. Hence

AB =1, = BA.
Thus, A is invertible as well. O

Remark 2.2.7. Theorem 2.2.6 implies the following:

1. “if we want to show that a square matriz A of order n is invertible, it is enough to
show the existence of

(a) either a matriz B such that AB = I,
(b) or a matriz C' such that CA = I,,.

2. Let A be an invertible matriz of order n. Suppose there exist elementary matrices
E\,Es, ..., E} such that E\Fy---E A =1,. Then A~ = E1Es - - - E},.

Remark 2.2.7 gives the following method of computing the inverse of a matrix.
Summary: Let A be an n X n matrix. Apply the Gauss-Jordan method to the matrix
[A I,]. Suppose the row-reduced echelon form of the matrix [A I,,] is [B C]. If B = I,,,
then A=! = C or else A is not invertible.

0 01
Example 2.2.8. Find the inverse of the matriz |0 1 1| using the Gauss-Jordan method.
111

0 0 1(1 0 O
Solution: let us apply the Gauss-Jordan method to the matrix | 0 1 1|0 1 0
1 1 1]0 0 1
(000 1|1 0 0] 11 1]0 01
>
1 0 1 Ris| 01 1/0 10
1 1 1|10 0 1 00 1|1 0 O
'111001'ﬂ 1 10]-101
2.0110104§010—110
00 1|1 0 o |fs 00 1 0
(11 0l-1 01 1 0 0 11
3.010—1101%—301011
0011 00 0011 0 0
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0 -1 1
Thus, the inverse of the given matriz is |—1 1 0
1 0 0
Exercise 2.2.9. 1. Find the inverse of the following matrices using the Gauss-Jordan
method. ;
1 2 3 1 3 3 2 11 0 0
(4) |1 3 2|, (@) |2 3 2|, (wi) |1 2 1|, (w) [0 2
2 47 2 47 11 2 2 1
2. Which of the following matrices are elementary?
201_%00 1 -1 0 1 00 00 1] [o o1
01 0f,|]0 1 0|,{0 1 0O],[5 1 0f, 1 0/,]1 0 O
0 01 0 01 0 0 1 0 01 1 00 0 10
2 1] |
3. Let A= L 9l Find the elementary matrices Fq, Fo, E5 and E4 such that By - E3 -
Ey-Ey-A=1I
1 11
4. Let B= |0 1 1| . Determine elementary matrices E1, Es and E3 such that Ej -
0 0
Ey-Ei-B=1Is.

5. In Ezercise 2.2.9.8, let C = E4 - E3- Ey - E1. Then check that AC = I5.
6. In Exercise 2.2.9.4, let C = E3 - Ey - E1. Then check that BC = I3.
7. Find the inverse of the three matrices given in FExample 2.2.3.3.

8. Let A be a1l x 2 matriz and B be a 2 x 1 matriz having positive entries. Which of
BA or AB is invertible? Give reasons.

9. Let A be an n x m matriz and B be an m X n matriz. Prove that

(a) the matriz I — BA is invertible if and only if the matriz I — AB is invertible
[Hint: Use Theorem 2.2.5.2].

(b) (I — BA)™' =1+ B(I — AB)~'A whenever I — AB is invertible.

(¢c) (I — BA)™'B = B(I — AB)~! whenever I — AB is invertible.

(d) (A= + B~ 1)~ = A(A+ B)™'B whenever A, B and A + B are all invertible.

We end this section by giving two more equivalent conditions for a matrix to be invert-
ible.

Theorem 2.2.10. The following statements are equivalent for an n X n matriz A.

1. A is invertible.
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2. The system Ax = b has a unique solution for every b.
3. The system Ax = b is consistent for every b.

Proof. 1 = 2
Observe that xg = A~'b is the unique solution of the system Ax = b.
2=3
The system Ax = b has a solution and hence by definition, the system is consistent.
3=1
For 1 < i < n, define e; = (0,...,0, \1// ,0,...,0)%, and consider the linear
;th position
system Ax = e;. By assumption, this system has a solution, say x;, for each 7, 1 < i < n.
Define a matrix B = [x1,X2,...,X,]|. That is, the it column of B is the solution of the
system Ax = e;. Then

AB = A[x1,Xg2...,X,] = [Ax1, AXg ..., Ax,] = [e1,e2...,e,] = I),.
Therefore, by Theorem 2.2.6, the matrix A is invertible. O

We now state another important result whose proof is immediate from Theorem 2.2.10
and Theorem 2.2.5 and hence the proof is omitted.

Theorem 2.2.11. Let A be an n X n matriz. Then the two statements given below cannot
hold together.

1. The system Ax = b has a unique solution for every b.
2. The system Ax = 0 has a non-trivial solution.

Exercise 2.2.12. 1. Let A and B be two square matrices of the same order such that
B = PA for some invertible matriz P. Then, prove that A is invertible if and only
if B is invertible.

2. Let A and B be two m x n matrices. Then prove that the two matrices A, B are
row-equivalent if and only if B = PA, where P is product of elementary matrices.
When is this P unique?

3. Let bt = [1,2,—1,-2]. Suppose A is a 4 x 4 matriz such that the linear system
Ax = b has no solution. Mark each of the statements given below as TRUE or FALSE ?
(a) The homogeneous system Ax = 0 has only the trivial solution.
(b) The matriz A is invertible.
(c) Let ¢t =[—1,-2,1,2]. Then the system Ax = ¢ has no solution.
(d) Let B be the row-reduced echelon form of A. Then
i. the fourth row of B is [0,0,0,0].
ii. the fourth row of B is [0,0,0,1].
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iti. the third row of B is necessarily of the form [0,0,0,0].
iv. the third row of B is necessarily of the form [0,0,0,1].
v. the third row of B is necessarily of the form [0,0,1,«|, where « is any real
number.

2.3 Rank of a Matrix

In the previous section, we gave a few equivalent conditions for a square matrix to be
invertible. We also used the Gauss-Jordan method and the elementary matrices to compute
the inverse of a square matrix A. In this section and the subsequent sections, we will mostly
be concerned with m x n matrices.

Let A by an m X n matrix. Suppose that C' is the row-reduced echelon form of A. Then
the matrix C is unique (see Theorem 2.1.30). Hence, we use the matrix C' to define the
rank of the matrix A.

Definition 2.3.1 (Row Rank of a Matrix). Let C' be the row-reduced echelon form of a
matrix A. The number of non-zero rows in C is called the row-rank of A.

For a matrix A, we write ‘row-rank (A)’ to denote the row-rank of A. By the very
definition, it is clear that row-equivalent matrices have the same row-rank. Thus, the
number of non-zero rows in either the row echelon form or the row-reduced echelon form
of a matrix are equal. Therefore, we just need to get the row echelon form of the matrix
to know its rank.

1 2 11
Example 2.3.2. 1. Determine the row-rank of A= 12 3 1 2
11 2 1
Solution: The row-reduced echelon form of A is obtained as follows:
1 2 11 1 2 1 1 1 2 11 (1 0 0 1
2312, -0 -1 -1 0] =101 10 = |01 O0O0
11 21 0 -1 1 0 00 20 0010
The final matriz has 3 non-zero rows. Thus row-rank(A) = 3. This also follows
from the third matrix.
12 111
2. Determine the row-rank of A= 12 3 1 2 2
11011
Solution: row-rank(A) = 2 as one has the following:
1 2 1 1 1 1 2 1 11 1 2 1 11
2312 2f - [0 -1 -1 00 = 1]01 100
11011 0 -1 -1 0 0 00000

The following remark related to the augmented matrix is immediate as computing the
rank only involves the row operations (also see Remark 2.1.29).
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Remark 2.3.3. Let Ax = b be a linear system with m equations in n unknowns. Then
the row-reduced echelon form of A agrees with the first n columns of [A b, and hence

row-rank(A) < row-rank([A b]).

Now, consider an m X n matrix A and an elementary matrix F of order n. Then the
product AE corresponds to applying column transformation on the matrix A. Therefore,
for each elementary matrix, there is a corresponding column transformation as well. We
summarize these ideas as follows.

Definition 2.3.4. The column transformations obtained by right multiplication of elemen-
tary matrices are called COLUMN OPERATIONS.

1 2 31
Example 2.3.5. Let A= |2 0 3 2|. Then
3 4 5 3
1 1 -1
00 e RN pas
A0100:2302 andA0010:2030
3 54 3 3450
0 0 01 00 0 1

Remark 2.3.6. After application of a finite number of elementary column operations (see
Definition 2.3.4) to a matrix A, we can obtain a matriz B having the following properties:

1. The first nonzero entry in each column is 1, called the leading term.

2. Column(s) containing only 0’s comes after all columns with at least one non-zero
entry.

3. The first non-zero entry (the leading term) in each non-zero column moves down in
successive columns.

We define COLUMN-RANK of A as the number of non-zero columns in B.

It will be proved later that row-rank(A) = column-rank(A). Thus we are led to the
following definition.

Definition 2.3.7. The number of non-zero rows in the row-reduced echelon form of a
matriz A is called the RANK of A, denoted rank(A).

we are now ready to prove a few results associated with the rank of a matrix.

Theorem 2.3.8. Let A be a matrixz of rank r. Then there exist a finite number of elemen-
tary matrices E1, Es, ..., Es and 1, Fy, ..., Fp such that

I, 0
E\Ey...BEs ARFE,... F)= (; 0].
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Proof. Let C be the row-reduced echelon matrix of A. Asrank(A) = r, the first r rows of C
are non-zero rows. S0 by Theorem 2.1.22, C' will have r leading columns, say i1, %2, ..., .
Note that, for 1 < s <r, the igh column will have 1 in the sth row and zero, elsewhere.
We now apply column operations to the matrix C. Let D be the matrix obtained from
C by successively interchanging the st and igh column of C for 1 < s < 7. Then D has

the form [{; ﬁ] , where B is a matrix of an appropriate size. As the (1,1) block of D is

an identity matrix, the block (1,2) can be made the zero matrix by application of column
operations to D. This gives the required result. O

The next result is a corollary of Theorem 2.3.8. It gives the solution set of a homo-
geneous system Ax = 0. One can also obtain this result as a particular case of Corol-
lary 2.1.23.2 as by definition rank(A) < m, the number of rows of A.

Corollary 2.3.9. Let A be an m x n matriz. Suppose rank(A) =r < n. Then Ax = 0 has
infinite number of solutions. In particular, Ax = 0 has a non-trivial solution.

Proof. By Theorem 2.3.8, there exist elementary matrices F1q, ..., FEs; and Fi,..., F; such

I, 0

that ElEQ---ES AFlFQ---Fg = . Define P = ElEQ"'ES andQ = F1F2"'Fg.

I
Then the matrix PAQ = [(; 8 . As E;’s for 1 <4 < s correspond only to row operations,

we get AQ = | C ‘ 0 |, where C is a matrix of size m x r. Let @Q1,Q2,...,Q, be the
columns of the matrix Q. Then check that AQ; = 0 for ¢ = r + 1,...,n. Hence, the
required results follows (use Theorem 2.1.5). O

Exercise 2.3.10. 1. Determine ranks of the coefficient and the augmented matrices
that appear in Exercise 2.1.25.2.

2. Let P and @Q be invertible matrices such that the matrixz product PAQ is defined.
Prove that rank(PAQ) = rank(A).

1 00
010

and B = . Find P and @ such that B = PAQ.

4. Let A and B be two matrices. Prove that

(a) if A+ B is defined, then rank(A + B) < rank(A) + rank(B),
(b) if AB is defined, then rank(AB) < rank(A) and rank(AB) < rank(B).

5. Let A be a matriz of rank r. Then prove that there exists invertible matrices B;, C;

such that
0O O S3 0 0 0 0 0

where the (1,1) block of each matrixz is of size v x r. Also, prove that Ay is an

s BQACQ = and BgACg ==

9

invertible matrix.
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6. Let A be an m X n matriz of rank r. Then prove that A can be written as A = BC,
where both B and C' have rank r and B is of size m x r and C is of size X n.

7. Let A and B be two matrices such that AB is defined and rank(A) = rank(AB).
Then prove that A = ABX for some matriz X. Similarly, if BA is defined and
rank (A) = rank (BA), then A = YBA for some matriz Y. [Hint: Choose invertible

A 0 B i [As A

o o) s = (Paem) = [

c 0

. C_lAl 0 _
0 O]DeﬁneX—R{ 0 O}Ql./

matrices P, Q satisfying PAQ = [ } . Now find
R an invertible matriz with P(AB)R = [

8. Suppose the matrices B and C are invertible and the involved partitioned products
are defined, then prove that

A Bl o c-!
C o0 B! —B7lAC |’
_ : Ann A Bi1 B
9. Suppose A~' = B with A = and B = . Also, assume that
A21 A22 B21 B22

Aq1 is invertible and define P = Ay — A21A1_11A12. Then prove that

A Al2
Agg — A1 AT Ara
AL+ (A Ap)PH(An AL —(A Ap) Pt
—P7 (An A P! '

(a) A is row-equivalent to the matriz ,

(b) P is invertible and B =

We end this section by giving another equivalent condition for a square matrix to be
invertible. To do so, we need the following definition.

Definition 2.3.11. A n x n matriz A is said to be of FULL RANK if rank(A) = n.

Theorem 2.3.12. Let A be a square matriz of order n. Then the following statements are
equivalent.

1. A is invertible.
2. A has full rank.

3. The row-reduced form of A is I,,.

Proof. 1 = 2
Let if possible rank(A) = r < n. Then there exists an invertible matrix P (a product
B, B
of elementary matrices) such that PA = 01 02 , where Bj is an r X r matrix. Since A

is invertible, let A= = gll , where C7 is an r X n matrix. Then
2
P =PI, = P(AA™') = (PA)A™" = By Byl |Crl 1B+ BoCh
0 O Cy 0
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Thus, P has n — r rows consisting of only zeros. Hence, P cannot be invertible. A
contradiction. Thus, A is of full rank.

2=3

Suppose A is of full rank. This implies, the row-reduced echelon form of A has all
non-zero rows. But A has as many columns as rows and therefore, the last row of the

row-reduced echelon form of A is [0,0,...,0,1]. Hence, the row-reduced echelon form of A
is I,.

3=1

Using Theorem 2.2.5.3, the required result follows. U

2.4 Existence of Solution of Ax =b

In Section 2.2, we studied the system of linear equations in which the matrix A was a square
matrix. We will now use the rank of a matrix to study the system of linear equations even
when A is not a square matrix. Before proceeding with our main result, we give an example
for motivation and observations. Based on these observations, we will arrive at a better
understanding, related to the existence and uniqueness results for the linear system Ax = b.

Consider a linear system Ax = b. Suppose the application of the Gauss-Jordan method
has reduced the augmented matrix [A b] to

(©) 2 —1 2 8]
0
0
0
0
0

o O O =
O O O W

S O B~ N =

0 0 0 O

Then to get the solution set, we observe the following.
Observations:

1. The number of non-zero rows in C' is 4. This number is also equal to the number of
non-zero rows in [C' d]. So, there are 4 leading columns/basic variables.

2. The leading terms appear in columns 1,2,5 and 6. Thus, the respective variables
T1,T9,T5 and xg are the basic variables.

3. The remaining variables, z3, x4 and x7 are free variables.

Hence, the solution set is given by

T 8 —2x3 + x4 — 277 8 —2 1 -2
T 1-— xr3 — 3:E4 — 53}7 1 -1 -3 -5
T3 I3 0 1 0 0

Ty = Ty =0 4+23| 0| +x4| 1| +27]| 0|,
x5 2+ a7 2 0 0 1

Te 4 — Iy 4 0 0 -1
_337_ i Iy ] _0_ _O_ _0_ _1_
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where 3,4 and x7 are arbitrary.

8 -2 (1] -2
1 -1 -3 -5
0 1 0 0
Let xg= (0], uy={0|,us=1{1|andugz=| 0
2 0 0 1
4 0 0 -1
0 0 0 1

Then it can easily be verified that Cxy = d, and for 1 <i < 3, Cu; = 0. Hence, it follows
that Axg =d, and for 1 <i <3, Au; =0.

A similar idea is used in the proof of the next theorem and is omitted. The proof
appears on page 87 as Theorem 3.3.26.

Theorem 2.4.1 (Existence/Non-Existence Result). Consider a linear system Ax = b,
where A is an m X n matriz, and x, b are vectors of orders n x 1, and m x 1, respectively.
Suppose rank (A) = r and rank([A b]) = r,. Then ezxactly one of the following statement
holds:

1. If r <rg, the linear system has no solution.
2. if ro =, then the linear system is consistent. Furthermore,

(a) if r=n then the solution set contains a unique vector xq satisfying Axg = b.

(b) if r < mn then the solution set has the form
{x0+ kiay + koug + -+ kp—puy—p = k€R 1 <i<n-—r}
where Axg =b and Au; =0 for 1 <i<n-—r.
Remark 2.4.2. Let A be an m X n matriz. Then Theorem 2.4.1 implies that
1. the linear system Ax = b is consistent if and only if rank(A) = rank([A b]).
2. the vectors u;, for 1 < i <mn —r, correspond to each of the free variables.

Exercise 2.4.3. In the introduction, we gave 3 figures (see Figure 2) to show the cases
that arise in the Fuclidean plane (2 equations in 2 unknowns). It is well known that in the
case of Euclidean space (3 equations in 3 unknowns), there

1. is a figure to indicate the system has a unique solution.
2. are 4 distinct figures to indicate the system has no solution.
3. are 3 distinct figures to indicate the system has infinite number of solutions.

Determine all the figures.
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2.5 Determinant

In this section, we associate a number with each square matrix. To do so, we start with the
following notation. Let A be an n xn matrix. Then for each positive integers a;;’s 1 < i < k
and §;’s for 1 < j < ¢, we write A(ay,... ,ak‘ﬂl, ..., B¢) to mean that submatrix of A,
that is obtained by deleting the rows corresponding to «;’s and the columns corresponding
to B;’s of A.

1 2

1
Example 2.5.1. Let A = |1 9 7
2

=W N
N N W

. Then A(1|2) = [

A3 = [1 3] and

A(1,2]1,3) = [4].

With the notations as above, we have the following inductive definition of determinant
of a matrix. This definition is commonly known as the expansion of the determinant along
the first row. The students with a knowledge of symmetric groups/permutations can find
the definition of the determinant in Appendix 7.1.15. It is also proved in Appendix that
the definition given below does correspond to the expansion of determinant along the first
TOW.

Definition 2.5.2 (Determinant of a Square Matrix). Let A be a square matriz of order n.
The determinant of A, denoted det(A) (or |A|) is defined by

a, ZfA = [a] (n = 1)7
det(A) = % (_1)1+ja1j det (A(lb))y otherwise.
j=1

Example 2.5.3. 1. Let A= [-2]. Then det(A) = |A| = —2.

2 Let A = |¢
C

Z] . Then, det(A) = |A] = a |A(1|1)| = b |A(1]2)| = ad — be. For

1 2 1 2
example, if A = then det(A) = =1-5-2.-3=-1.
3 5 3 5
ailr a2 ais
3. Let A= az1 a2 a3 - Then,
agr a2 as3
det(A) =|A| = aq1det(A(1]1)) — a1z det(A(1]2)) + a13 det(A(1]3))
age a3 a1 a3 ag1 a2
= an — a2 + ais
agz ass asy ags asr  as2

= aj1(axass — azgasy) — aiz(agiasz — aziazs)

+a13(agasy — azia) (2.5.1)
bz 31 2 1 2 3
LetA= |2 3 1|. Then|A| =1 _9. 3. —4-92(3)+3(1) = 1.
¢ 122 en |4 2 92 1 9| T o (3)+3(1)
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Exercise 2.5.4. Find the determinant of the following matrices.

12
i)

o O O

4
0
0

7

3
2
0

3

w o O

0 0
2 0
-7 1
2 0

1

5 1 a®
ol iii) |1 b b?
6 1 ¢ ¢

Definition 2.5.5 (Singular, Non-Singular). A matriz A is said to be a SINGULAR if
det(A) = 0. It is called NON-SINGULAR if det(A) # 0.

We omit the proof of the next theorem that relates the determinant of a square matrix

with row operations. The interested reader is advised to go through Appendix 7.2.

Theorem 2.5.6. Let A be an n x n matriz. If

1. B is obtained from A by interchanging two rows then det(B) = — det(A),

2. B is obtained from A by multiplying a row by ¢ then det(B) = cdet(A),

3. B is obtained from A by replacing the jth row by jth row plus c times the ith row,
where i # j then det(B) = det(A),

4. all the elements of one row or column of A are 0 then det(A) =0,

5. two rows of A are equal then det(A) = 0.

6. A is a triangular matriz then det(A) is product of diagonal entries.

Since det(I,,) = 1, where I,, is the n x n identity matrix, the following remark gives the

determinant of the elementary matrices. The proof is omitted as it is a direct application
of Theorem 2.5.6.

Remark 2.5.7. Fiz a positive integer n. Then

1. det(E;;) = —1, where E;j corresponds to the interchange of the ith and the jth row
of I,.

2. For ¢ # 0, det(Fx(c)) = ¢, where Ex(c) is obtained by multiplying the kM row of I,

by c.

3. For ¢ # 0, det(E;;(c)) = 1, where E;;(c) is obtained by replacing the jth row of I

by the jth row of I, plus c times the i

th row of I,.

Remark 2.5.8. Theorem 2.5.6.1 implies that “one can also calculate the determinant by

expanding along any row.” Hence, the computation of determinant using the k-th row for

1<k <n s given by

det(A) =

n

> (1) ay; det (A(k]5)).

Jj=1
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1 3
2 —1|. Thus, using
0

2
Example 2.5.9. 1. Let A= |1
1
2
3
1 -1

2
Solution: Check that |1
1

Theorem 2.5.6, det(A) =2-1-2-(—1) = —4.

2 2 6 8
11 2 4
2. Let A= . Determine det(A).
1 3 2 6
3 3 5 8

Solution: The successive application of row operations Ry(2), Ro1(—1), Rg1(—1),
R41(—3), Rog and Rss(—4) and the application of Theorem 2.5.6 implies

1 1 3 4

2 -1 2
det(A):2-(—1)-8 o o|=-t

00 0 —4

Observe that the row operation Ry(2) gives 2 as the first product and the row operation
Rosz gives —1 as the second product.

Remark 2.5.10. 1. Let u' = (u1,u2) and vt = (v1,vs) be two vectors in R%. Consider
the parallelogram on vertices P = (0,0)!,Q =u, R=u+v and S = v (see Figure 3).
Then Area (PQRS) = |ujve — ugvy|, the absolute value of w2
v1 U2

uxXv

P ¢
Figure 3: Parallelepiped with vertices P,Q, R and S as base

Recall the following: The dot product of u' = (uy,uz) and vt = (v1,v2), denoted
ue v, cquals ue v = ujvy + ugvy, and the length of a vector u, denoted £(u) equals
l(u) = \J/u? + u3. Also, if 0 is the angle between u and v then we know that cos() =
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f(u)e(v)”
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(w)l(v)

uev 2
Area(PQRS) = {((u)l(v)sin(f) = K(u)ﬁ(v)\/l — <€7>

= V()24 L(v)2 — (ue V)2 = \/(ujvy — ugvy)?

= |U1U2 — UQU1|.

That is, in R2, the determinant is + times the area of the parallelogram.

2. Consider Figure 3 again. Let u' = (uy, us,u3), vt = (v1,v2,v3) and w' = (w1, ws, w3)

be three vectors in R3. Then u e v = uiv + ugvs + usvs and the cross product of u

and v, denoted u X v, equals

u

XV = (U2'U3 — U3vV2,U3V1 — UIV3, U1V — u21)1).

The vector u x v is perpendicular to the plane containing both u and v. Note that if

ug = v3 = 0, then we can think of u and v as vectors in the XY -plane and in this

case l(u X v) = |ugve — ugv1| = Area(PQRS). Hence, if v is the angle between the

vector w and the vector u X v, then

w; w2 w3

volume (P) = Area(PQRS) - height = |lw e (u X v)| = £ |u; us wug|.

V1 v2 U3

In general, for any n x n matriz A, it can be proved that | det(A)| is indeed equal to the

volume of the n-dimensional parallelepiped. The actual proof is beyond the scope of this

book.

Exercise 2.5.11. In each of the questions given below, use Theorem 2.5.6 to arrive at

your answer.

a b ac a b aa+pBb+c
,B=le f ag| and C = |e [ «ae+Bf+g| for some
h j ot h j ah+p5+7¢
and 3. Prove that det(B) = adet(A) and det(C) = det(A).
1 -1 0
and B = |1 0 —1|. Prove that 3 divides det(A) and
0 -1 1

a b c]

1. Let A = |e f g
h 7 ¢

complex numbers o

1 3 2]

2. Let A = |2 3 1
1 5 3

det(B) = 0. :

2.5.1 Adjoint of a Matrix

Definition 2.5.12 (Minor, Cofactor of a Matrix). The number det (A(i|7)) is called the
(i,j)th minor of A. We write A;; = det (A(i]5)). The (i,j)th cofactor of A, denoted Cjj,

is the number (—

1) Ay
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Definition 2.5.13 (Adjoint of a Matrix). Let A be an n x n matriz. The matric B = [b;j]
with byj = Cj;, for 1 <i4,5 <n is called the Adjoint of A, denoted Adj(A).

3 4 2 =7
1| . Then Adj(A) = [-3 —1 5| as
2

1
Example 2.5.14. Let A= |2
1 1 0o -1

N W N

Cip= (D" A; =4,09 = (—1)* Ay =2,..., 033 = (—1)33 433 = —1.
Theorem 2.5.15. Let A be an n X n matriz. Then
n n . .
1. fOT 1 S ) S n, Z aij Cij = Z aij(—l)’ﬂ Aij = det(A),
Jj=1 J=1

2. f07’ ) 75 6, Z Qg ng = Z a,-j(—l)“j Agj = O, and
j=1

J=1

3. A(Adj(A)) = det(A)I,. Thus,

whenever det(A) #0 one has A™! =

1 .
T AU, (2.5.2)

Proof. PART 1: It directly follows from Remark 2.5.8 and the definition of the cofactor.
PART 2: Fix positive integers i,¢ with 1 < i # ¢ < n. And let B = [b;;] be a square

N pow equals the ;th

matrix whose
as that of A.
Then by construction, the it and £t rows of B are equal. Thus, by Theorem 2.5.6.5,

det(B) = 0. As A(¢|j) = B(¢]j) for 1 < j < n, using Remark 2.5.8, we have

row of A and the remaining rows of B are the same

0=det(B) = > (=1)bydet(B(L]f)) =D (—1)"ay det(B(L]5))
j=1 Jj=1
= > (-D)"ay;det(A(]5)) = ai;C;. (2.5.3)
j=1 Jj=1

This completes the proof of Part 2.
PART 3:, Using Equation (2.5.3) and Remark 2.5.8, observe that

[A(Adj(A))} = kZZI air(Adj(4)) ;= kzzl ainCie = { deto(:él), -

y if i = j.

Thus, A(Adj(A)) = det(A)I,. Therefore, if det(A) # 0 then A (mAdj(A)) = Ip.
Hence, by Theorem 2.2.6,
1
-1

= qerca) AU
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1 -1 0 -1 1 -1
Example 2.5.16. For A= [0 1 1|, Adj(A)= 1|1 1 —1| and det(4) = —2.
1 2 1 -1 -3 1
/2 —1/2 1/2
Thus, by Theorem 2.5.15.8, A=t = |-1/2 —1/2 1/2

12 3/2 —1/2

The next corollary is a direct consequence of Theorem 2.5.15.3 and hence the proof is
omitted.

Corollary 2.5.17. Let A be a non-singular matriz. Then

det(A)v if j =k,

(Adj(A)) A = det(A) I, and ;aij cik:{ N ik

The next result gives another equivalent condition for a square matrix to be invertible.
Theorem 2.5.18. A square matriz A is non-singular if and only if A is invertible.

Proof. Let A be non-singular. Then det(A) # 0 and hence A~! = mAdj(A) as .

Now, let us assume that A is invertible. Then, using Theorem 2.2.5, A = E1FE5--- E}, a
product of elementary matrices. Also, by Remark 2.5.7, det(F;) # 0 for each 7, 1 < i < k.
Thus, by a repeated application of the first three parts of Theorem 2.5.6 gives det(A) # 0.
Hence, the required result follows. O

We are now ready to prove a very important result that related the determinant of
product of two matrices with their determinants.

Theorem 2.5.19. Let A and B be square matrices of order n. Then
det(AB) = det(A) det(B) = det(BA).

Proof. Step 1. Let A be non-singular. Then by Theorem 2.5.15.3, A is invertible. Hence,
using Theorem 2.2.5, A = E1F, - - - E, a product of elementary matrices. Then a repeated
application of the first three parts of Theorem 2.5.6 gives

det(AB) = det(ElEg cee EkB) = det(El) det(EQ cee EkB)
det(El) det(EQ) det(E3 cee EkB)
det(ElEg) det(Eg) det(E4 cee EkB)

= det(E1Ey--- E)det(B) = det(A) det(B).

Thus, if A is non-singular then det(AB) = det(A) det(B). This will be used in the second
step.
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Step 2. Let A be singular. Then using Theorem 2.5.18 A is not invertible. Hence,
.So, A= P7IC

)

there exists an invertible matrix P such that PA = C, where C = [%1

and therefore

C\B

det(AB) = det((P71C)B) = det(P~Y(CB)) = det (P—l 0

C\B
0

= det(P)-0=0=0-det(B) = det(A) det(B).

= det(P7Y) - det <

) as P~! is non-singular

Thus, the proof of the theorem is complete. O

The next result relates the determinant of a matrix with the determinant of its trans-
pose. As an application of this result, determinant can be computed by expanding along
any column as well.

Theorem 2.5.20. Let A be a square matriz. Then det(A) = det(A?).

Proof. If A is a non-singular, Corollary 2.5.17 gives det(A) = det(A?).

If A is singular, then by Theorem 2.5.18, A is not invertible. Therefore, A’ is also
not invertible (as A’ is invertible implies A~! = ((At)_l)t)). Thus, using Theorem 2.5.18
again, det(A') = 0 = det(A). Hence the required result follows. O

2.5.2 Cramer’s Rule

Let A be a square matrix. Then using Theorem 2.2.10 and Theorem 2.5.18, one has the
following result.

Theorem 2.5.21. Let A be a square matriz. Then the following statements are equivalent:
1. A is invertible.
2. The linear system Ax = b has a unique solution for every b.
3. det(A) # 0.

Thus, Ax = b has a unique solution FOR EVERY b if and only if det(A) # 0. The next
theorem gives a direct method of finding the solution of the linear system Ax = b when

det(A) # 0.
Theorem 2.5.22 (Cramer’s Rule). Let A be an n x n matriz. If det(A) # 0 then the

unique solution of the linear system Ax = b is

o det(Aj)
¥ T det(A)

forj=1,2,... n,

where Aj is the matriz obtained from A by replacing the jth column of A by the column
vector b.
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Proof. Since det(A) # 0, A is invertible and hence the row-reduced echelon form of A is
I. Thus, for some invertible matrix P,

RREF[A|b] = P[A[b] = [PA|Pb] = [I|d],

where d = Ab. Hence, the system Ax = b has the unique solution z; = d;, for 1 < j < n.
Also,
[e1,e2,...,e,] =1 =PA=[PA[;,1],PA[:,2],...,PA[:,n].

Thus,
PA; = P[A[1],... A, j—1],b,A[;,j +1],..., A, n]]
= [PA[,1],...,PA[;,j —1],Pb, PA[:;,j + 1],..., PA[;,n]]
[

€1,...,€51, dvej-i-lv s 7en]
and hence det(PA;) = d;, for 1 < j < n. Therefore,
det(Aj) N det(P) det(Aj) N det(PAj) . dj

= = =— =d,;.
det(A) det(P) det(A) det(PA) 1 J
det(A;) .
Hence, z; = dot( AJ) and the required result follows. O
b1 a2 -+ aig a1 by aiz - aig
by az -+ a as;1 by azz -+ a
In Theorem 2.5.22 A1 = | . o .n yAs = | ] L .n and so
bn ap2 - Anp Gnl bn ap3 - QAnn
aip - ap—1 by
(1/ DY a _ b
on till 4, = 12 et
Q1lp  *° App—1 bn
1 2 3 1
Example 2.5.23. Solve Ax = b using Cramer’s rule, where A= |2 3 1| andb= |1
1 2 2 1
Solution: Check that det(A) =1 and x' = (—1,1,0) as
1 2 3 1 1 3 1 2 1
r1=1|1 3 1|l=-1,2o=12 1 1|=1, and z3=12 3 1| =0
1 2 2 11 2 1 21
2.6 Miscellaneous Exercises
Exercise 2.6.1. 1. Show that a triangular matriz A is invertible if and only if each

diagonal entry of A is non-zero.

2. Let A be an orthogonal matriz. Prove that det A = £1.
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10.

11.

12.

MISCELLANEOUS EXERCISES o7

. Prove that every 2 x 2 matriz A satisfying tr(A) = 0 and det(A) = 0 is a nilpotent

matriz.

. Let A and B be two non-singular matrices. Are the matrices A+ B and A — B

non-singular? Justify your answer.

. Let A be an n x n matriz. Prove that the following statements are equivalent:

(a) A is not invertible.

(b) rank(A) # n.

(c) det(A) = 0.

(d) A is not row-equivalent to I,,.

(e) The homogeneous system Ax = 0 has a non-trivial solution.

(f) The system Ax = b is either inconsistent or it is consistent and in this case it
has an infinite number of solutions.

(9) A is not a product of elementary matrices.

For what value(s) of \ does the following systems have non-trivial solutions? Also,
for each value of \, determine a non-trivial solution.

(a) A\ =2)z+y=0, 2+ (A+2)y=0.
(b) Az +3y =0, (A+6)y =0.

Let x1,x9,...,2, be fized reals numbers and define A = [aijlnxn with a;; = :Eg_l.
Prove that det(A) = [[ (z; — ;). This matriz is usually called the Van-der
1<i<j<n

monde matrix.
Let A = [ajj]nxn with a;j = max{i,j}. Prove that det A = (—1)""!n.

Let A = [a;j]nxn with a;; = Zﬂ%l Using induction, prove that A is invertible. This
matriz 1s commonly known as the Hilbert matriz.

Solve the following system of equations by Cramer’s rule.
Hretytz—w=lLz+y—z4+w=2, 2x4+y+z—w="7,x+y+z+w=3.
War—y+z—w=1,zrz+y—z4+w=2, 2s+y—z—w="7xr—y—z+w=3.

Suppose A = [a;j] and B = [b;;] are two n x n matrices with b;; = p'~Ja;; for
1 <i,5 <n for some non-zero p € R. Then compute det(B) in terms of det(A).

The position of an element a;; of a determinant is called even or odd according as
i+ j is even or odd. Show that

(a) If all the entries in odd positions are multiplied with —1 then the value of the
determinant doesn’t change.

(b) If all entries in even positions are multiplied with —1 then the determinant
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1. does not change if the matrix is of even order.
i1. 1is multiplied by —1 if the matriz is of odd order.
Let A be a Hermitian (A* = A?) matriz. Prove that det A is a real number.
Let A be an n x n matriz. Then A is invertible if and only if Adj(A) is invertible.
Let A and B be invertible matrices. Prove that Adj(AB) = Adj(B)Adj(A).

A B
C D
|A| # 0. Then show that rank (P) = n if and only if D = CA™'B.

Let P = be a rectangular matriz with A a square matriz of order n and

2.7 Summary

In this chapter, we started with a system of linear equations Ax = b and related it to the

augmented matrix [A |b]. We applied row operations to [A |b] to get its row echelon form

and the row-reduced echelon forms. Depending on the row echelon matrix, say [C' |d], thus

obtained, we had the following result:

1.

2.

If [C' |d] has a row of the form [0 |1] then the linear system Ax = b has not solution.

Suppose [C' |d] does not have any row of the form [0 |1] then the linear system Ax = b
has at least one solution.

(a) If the number of leading terms equals the number of unknowns then the system
Ax = b has a unique solution.

(b) If the number of leading terms is less than the number of unknowns then the
system Ax = b has an infinite number of solutions.

The following conditions are equivalent for an n x n matrix A.

1.

2.

7.

8.

A is invertible.

The homogeneous system Ax = 0 has only the trivial solution.
The row reduced echelon form of A is 1.

A is a product of elementary matrices.

The system Ax = b has a unique solution for every b.

The system Ax = b has a solution for every b.

rank(A) = n.

det(A) # 0.

Suppose the matrix A in the linear system Ax = b is of size m x n. Then exactly one

of the following statement holds:
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1. if rank(A) < rank([A |b]), then the system Ax = b has no solution.
2. if rank(A) = rank([A |b]), then the system Ax = b is consistent. Furthermore,

(a) if rank(A) = n then the system Ax = b has a unique solution.

(b) if rank(A) < n then the system Ax = b has an infinite number of solutions.
We also dealt with the following type of problems:

1. Solving the linear system Ax = b. In the next chapter, we will see that this leads us
to the question “is the vector b a linear combination of the columns of A”?

2. Solving the linear system Ax = 0. In the next chapter, we will see that this leads us
to the question “are the columns of A linearly independent/dependent”?

(a) If Ax =0 has a unique solution, the trivial solution, then the columns of A are
linear independent.

(b) If Ax = 0 has an infinite number of solutions then the columns of A are linearly
dependent.

3. Let b® = [by,ba,...,by]. Find conditions of the b;’s such that the linear system
Ax = b always has a solution. Observe that for different choices of x the vector Ax
gives rise to vectors that are linear combination of the columns of A. This idea will
be used in the next chapter, to get the geometrical representation of the linear span
of the columns of A.
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Chapter 3

Finite Dimensional Vector Spaces

3.1 Finite Dimensional Vector Spaces

Recall that the set of real numbers were denoted by R and the set of complex numbers
were denoted by C. Also, we wrote I to denote either the set R or the set C.

Let A be an m x n complex matrix. Then using Theorem 2.1.5, we see that the solution
set of the homogeneous system Ax = 0, denoted V, satisfies the following properties:

1. The vector 0 € V as A0 = 0.

2. If x € V then A(ax) = a(Ax) = 0 for all @« € C. Hence, ax € V for any complex
number «. In particular, —x € V whenever x € V.

3. Let x,y € V. Then for any o, 5 € C, ax,By € V and A(ax+ fy) =0+0=0. In
particular, x +y € Vand x+y =y +x. Also, (x+y)+z=x+ (y + 2).

That is, the solution set of a homogeneous linear system satisfies some nice properties. We
use these properties to define a set and devote this chapter to the study of the structure
of such sets. We will also see that the set of real numbers, R, the Euclidean plane, R? and
the Euclidean space, R3, are examples of this set. We start with the following definition.

Definition 3.1.1 (Vector Space). A vector space over F, denoted V(F) or in short V (if
the field F is clear from the context), is a non-empty set, satisfying the following axioms:

1. VECTOR ADDITION: To every pair u,v € V there corresponds a unique element
ud® v inV (called the addition of vectors) such that
(a) u® v =vdu (Commutative law).
(b)) (udv)dw=ud (vadw) (Associative law).

(¢) There is a unique element O in V (the zero vector) such that u ® 0 = u, for
every u € V (called the additive identity ).

(d) For every u € V there is a unique element —u € V such that u @ (—u) = 0
(called the additive inverse).

61



62 CHAPTER 3. FINITE DIMENSIONAL VECTOR SPACES

2. SCALAR MULTIPLICATION: For each u € V and o € F, there corresponds a unique
element a« @ u in V (called the scalar multiplication) such that
(a) a- (BOU) = (af) ©u for every o, 3 € F and u € V.
(b) 1©u=u for every u € V, where 1 € R.
8. DISTRIBUTIVE LAWS: RELATING VECTOR ADDITION WITH SCALAR MULTIPLICATION
For any o, 8 € F and u,v € V, the following distributive laws hold:
(a) a®(udVv)=(adu) & (aOV).
(b)) (a+p)Ou=(aoOu) & (FoOu).

Note: the number 0 is the element of F whereas 0 is the zero vector.

Remark 3.1.2. The elements of F are called SCALARS, and that of V' are called VECTORS.
If F = R, the vector space is called @ REAL VECTOR SPACE. If F = C, the vector space is
called a COMPLEX VECTOR SPACE.

Some interesting consequences of Definition 3.1.1 is the following useful result. Intu-
itively, these results seem to be obvious but for better understanding of the axioms it is
desirable to go through the proof.

Theorem 3.1.3. Let V' be a vector space over F. Then
1. u® v =u implies v=0.
2. a®u =0 if and only if either u is the zero vector or o = 0.
3. (-1)®u= —u for everyu € V.

Proof. PART 1: For each u € V, by Axiom 3.1.1.1d there exists —u € V such that —u®u =
0. Hence, u @ v = u is equivalent to

—ud(udv)=—-udu<= (—udbu)dv=0<<=00v=0<=v=0.
PART 2: As 0 =0® 0, using Axiom 3.1.1.3, we have
a®0=a0060)=(ac0) & (¢c0).
Thus, for any o € F, Axiom 3.1.1.3a gives a ©® 0 = 0. In the same way,
0OGu=0+0cGu=(06u) ®(0eu).

Hence, using Axiom 3.1.1.3a, one has 0 @ u =0 for any u € V.

Now suppose a®u = 0. If & = 0 then the proof is over. Therefore, let us assume a # 0
(note that « is a real or complex number, hence é exists and

1 1 1
0=—00=-0(adu)=(—a)Odu=1Gu=u
a a o

as 1 ® u = u for every vector u € V. Thus, if @ # 0 and o ® u = 0 then u = 0.
PART 3: As0=0u= (14 (—1))u=u+ (—1)u, one has (—1)u = —u. O
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Example 3.1.4. The readers are advised to justify the statements made in the examples

given below.

1.

Let A be an m x n matriz with complex entries and suppose rank(A) = r < n. Let
V' denote the solution set of Ax = 0. Then using Theorem 2.4.1, we know that V
contains at least the trivial solution, the 0 vector. Thus, check that the set V satisfies
all the azioms stated in Definition 3.1.1 (some of them were proved to motivate this
chapter).

The set R of real numbers, with the usual addition and multiplication of real numbers
(i.e., ® =+ and ® = -) forms a vector space over R.

Let R? = {(x1,22) : 21,22 € R}. Then for x1,22,y1,y2 € R and o € R, define
(z1,22) ® (Y1,92) = (21 + Y1, 22 + y2) and a © (21,72) = (ax1, azs).

Then R? is a real vector space.

. Let R™ = {(ay,a2,...,a,) : a; € R;1 <i < n} be the set of n-tuples of real numbers.

Foru=(a,...,ap), v=(b1,...,by) inV and o € R, we define
udv=_(a1+b1,...,a, +by) and a©u=(aaqy,...,aa)

(called component wise operations). Then V is a real vector space. This vector space
R™ is called the real vector space of n-tuples.

Recall that the symbol © represents the complexr number /—1.

Consider the set C = {x + iy : x,y € R} of complex numbers and let zy = x1 + iy
and zy = o + iys. Define

71 ®zo = (z1 + x2) +i(y1 +y2), and
(a) for any a € R, define o ® z1 = (axy1) + i(owr). Then C is a real vector space as
the scalars are the real numbers.
(b) (a+1iB8) ® (x1 +iy1) = (axy — Py1) + i(ays + Bxy) for any a+ i € C. Here,

the scalars are complex numbers and hence C forms a complex vector space.

Let C" = {(21,22,...,2n) : 2 € C,1 < i < n}. For (z1,...,2,), (w1,...,w,) € C"
and o € F, define

(215 oy 2n) @ (W1, .. cywy) = (21 Fwiy...y2n +wy), and
a®(z1,..,2n) = (@z1,...,az).
Then it can be verified that C™ forms a vector space over C (called complex vector

space) as well as over R (called real vector space). Whenever there is no mention of
scalars, it will always be assumed to be C, the complex numbers.
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Remark 3.1.5. If the scalars are C then i(1,0) = (i,0) is allowed. Whereas, if the
scalars are R then i(1,0) # (3,0).

Fiz a positive integer n and let P, (R) denote the set of all polynomials in x of degree
< n with coefficients from R. Algebraically,

Po(R) = {ap + a12 + aga® + -+ + a,2" 1 a; €R,0 < i < n}.

Let f(x) = ag + a1z + agz® + - - - + apa™, g(x) = by + b1z + box? + - - - + bpa™ € Pp(R)
for some a;,b; € R, 0 < i < n. It can be verified that P,(R) is a real vector space
with the addition and scalar multiplication defined by

flx)y®g(x) = (ap+bo)+ (a1 +b1)x+ -+ (an +by)x", and
a® flr) = aa+aaz+--+ aax”  for a € R.

Let P(R) be the set of all polynomials with real coefficients. As any polynomial
ag + a1z + - + apmx™ also equals ag + a1z + - + @™ +0 - 2T 4o 40 2P,
whenever p > m, let f(x) = ag+arx+---+apa?, g(x) =bg+bix+- -+ baP € P(R)
for some a;,b; € R, 0 <4 < p. So, with vector addition and scalar multiplication is
defined below (called coefficient-wise), P(R) forms a real vector space.

f@)@g(x) = (ao+bo)+ (a1 +bi)z+ -+ (ap+bpa’ and
a® flx) = aag+aaiz+---+aapa? for a € R.

Let P(C) be the set of all polynomials with complex coefficients. Then with respect to
vector addition and scalar multiplication defined coefficient-wise, the set P(C) forms
a vector space.

Let V=Rt ={z € R:xz > 0}. This is NOT a vector space under usual operations
of addition and scalar multiplication (why?). But R is a real vector space with 1 as
the additive identity if we define vector addition and scalar multiplication by

udv=u-v and a®u=u® foral u,v € R" and o € R.

Let V ={(z,y) : x,y € R}. For any a € R and x = (x1,22),y = (y1,y2) € V, let
x®y=(r1+y+1L,x24+y2—3) and a ®x = (ar1 +a —1,axs — 3a + 3).
Then V is a real vector space with (—1,3) as the additive identity.

Let My(C) denote the set of all 2 x 2 matrices with complex entries. Then My(C)
forms a vector space with vector addition and scalar multiplication defined by

ap 612] [b1 b2] a4+ b1 as+ by
S —
as aq b3 b4

AdB=
a3 +bs aq+ by

, a®A=
aas  aay

aaq 01(12]
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13. Fix positive integers m and n and let M,,«,(C) denote the set of all m x n matrices
with complex entries. Then My, x,(C) is a vector space with vector addition and
scalar multiplication defined by

A®B= [aij] ©® [bw] = [aij + bij], a@A=a® [aij] = [aaij].
In case m = n, the vector space My, xn(C) will be denoted by M, (C).

14. Let C([—1,1]) be the set of all real valued continuous functions on the interval [—1,1].
Then C([—1,1]) forms a real vector space if for all x € [—1,1], we define

(fog)(x) = f(x)+g(x) forall f,g € C([-1,1]) and
(a® f)(x) = af(z) foral a € R and f € C([-1,1]).

15. Let V and W be vector spaces over I, with operations (+,e) and (®,©®), respectively.
Let V.x W ={(v,w):veV,we W} Then V x W forms a vector space over F, if
for every (vi,wi), (va,ws2) € VX W and o € R, we define

(vi,w1) @ (vo,w3) = (vi+ve, Wi W), and
ao(vi,wy) = (aevi,a®wi).

vi + vo and wi @ wo on the right hand side mean vector addition in V and W,
respectively. Similarly, o e vi and o ® wy correspond to scalar multiplication in V
and W, respectively.

From now on, we will use ‘u+ v’ for ‘u® v’ and ‘a-u or au’ for ‘a ®u’.

Exercise 3.1.6. 1. Verify all the axioms are satisfied in all the examples of vector
spaces considered in Example 3.1.4.

2. Prove that the set M, «n(R) for fixed positive integers m and n forms a real vector
space with usual operations of matriz addition and scalar multiplication.

3. Let V={(z,y) : =,y € R*}. For x = (x1,22),y = (y1,92) €V, define
x+y = (21 +y1, 72 +y2) and ax = (ax,0)
for all « € R. Is V' a vector space? Give reasons for your answer.

4. Let a,b € R with a < b. Then prove that C([a, b)), the set of all complex valued
continuous functions on |a, b] forms a vector space if for all x € [a, b], we define
(fog)(x) = [flx)+g(x) forall f,g € C([a, b]) and
(a® f)x) = af(z) foral a € R and f € C([a, b]).
5. Prove that C(R), the set of all real valued continuous functions on R forms a vector
space if for all x € R, we define

(fog)z) = [flx)+g(x) foral f,geCR) and
(a® f)x) = af(x) forall a € R and f € C(R).
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3.1.1  Subspaces

Definition 3.1.7 (Vector Subspace). Let S be a NON-EMPTY SUBSET of V. The set S over
F is said to be a subspace of V(F) if S in itself is a vector space, where the vector addition
and scalar multiplication are the same as that of V(IF).

Example 3.1.8. 1. Let V(IF) be a vector space. Then the sets given below are subspaces
of V. They are called TRIVIAL SUBSPACES.

(a) S = {0}, consisting only of the zero vector O and
(b) S =1V, the whole space.

2. Let S = {(z,y,2) €R3: 2+ 2y — 2 = 0}. Then S is a subspace of R (S is a plane
in R? passing through the origin).

3. Let S = {(v,y,2) ER}:x+y+2=0,x—y—2z=0} Then S is a subspace of R?
(S is a line in R3 passing through the origin,).

4. Let S = {(z,y,2) €R3:2— 3z =0}. Then S is a subspace of R>.
5. The vector space Pp(R) is a subspace of the vector space P(R).

6. Prove that S = {(z,y,2) € R® : . +y + 2z = 3} is not a subspace of R3 (S is still a
plane in R but it does not pass through the origin,).

7. Prove that W = {(x,0) € R? : x € R} is a subspace of R?.

8. Let W = {(z,0) € V : xz € R}, where V is the vector space of Example 3.1.4.11.
Then (2,0) ® (y,0) = (x +y + 1,—-3) ¢ W. Hence W is not a subspace of V' but
S ={(x,3) :x € R} is a subspace of V.. Note that the zero vector (—1,3) € V.

c d
o =a for any scalar o € C. Hence,

9. LetW:{ @ b

€ My(C) :a= E}. Then the condition a = d forces us to have

(a) W is not a vector subspace of the complex vector space Ms(C), but

(b) W is a vector subspace of the real vector space My(C).

We are now ready to prove a very important result in the study of vector subspaces.
This result basically tells us that if we want to prove that a non-empty set W is a subspace
of a vector space V(F) then we just need to verify only one condition. That is, we don’t
have to prove all the axioms stated in Definition 3.1.1.

Theorem 3.1.9. Let V(F) be a vector space and let W be a non-empty subset of V.. Then
W is a subspace of V if and only if au + v € W whenever a, 8 € F and u,v € W.

Proof. Let W be a subspace of V' and let u,v € W. Then for every «, 5 € F, au, fv € W
and hence au+ v € W.

Now, let us assume that au+ v € W whenever «, 8 € F and u,v € W. Need to show,
W is a subspace of V. To do so, observe the following:
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. Taking a =1 and 8 =1, we see that u+ v € W for every u,v € W.
. Taking o = 0 and 8 = 0, we see that 0 € W.

. Taking 5 = 0, we see that cau € W for every @ € F and u € W and hence using

Theorem 3.1.3.3, —u = (—1)u € W as well.

. The commutative and associative laws of vector addition hold as they hold in V.

. The axioms related with scalar multiplication and the distributive laws also hold as

they hold in V.

Thus, we have the required result. O

Exercise 3.1.10. 1. Determine all the subspaces of R,R? and R3.

2.

3.

6.

Prove that a line in R? is a subspace if and only if it passes through (0,0) € R2.

Let V = {(a,b) : a,b € R}. Is V a vector space over R if (a,b) & (¢,d) = (a + ¢,0)
and o @ (a,b) = (aa,0)? Give reasons for your answer.

. Let V =R. Definex y=x —y and a ©® x = —ax. Which vector space axioms are

not satisfied here?
Which of the following are correct statements (why!)?

(a) S ={(x,y,2) € R?: 2z =22} is a subspace of R>.
(b) S ={ax:aecF} forms a vector subspace of V(F) for each fixzed x € V.
(c) S={a(1,1,1) + B(1,-1,0) : a, B € R} is a vector subspace of R3.
(d) All the sets given below are subspaces of C(]—1,1]) (see Example 3.1.4.14).
. W=A{feC(-1,1)): f(1/2) = 0}.
i. W={feC(-11]): £(0) =0, f(1/2) = 0}.
ii. W=A{feC(-1,1]): f(=1/2) = 0, f(1/2) = 0}.
w. W={feC(-1,1]): f'()emists }.
(e) All the sets given below are subspaces of P(R)?

i. W={f(z) e P(R): deg(f(x)) = 3}.

Y

i, W = {f(z) € P(R) : deg(f(x)) = 0}.

iii. W={f(x) e PR): f(1) =0}

w. W={f(z) e P[R): f(0)=0,f(1) =0}
(f) Let A= i 1] and b = [_11] . Then {x : Ax = b} is a subspace of R?
(9) Let A= 1 . Then {x: Ax = 0} is a subspace of R3.

Which of the following are subspaces of R™(R)?
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cxp > 0}

cx1 + 2w9 = das}.

: 1 18 rational }.

cxy = 23}

. either x1 or xo or both are 0}.

2] < 1)

)
)
)
)
)
)

7. Which of the following are subspaces of 1)C™(R) )C"(C)?
(a) {(z1,22,...

(b) {(z1, 2o, ..
(c) {(z1,22,...

,2Zn) 21 18 real }.

S Zn) 21+ 22 =Z3 )
s2n) | 21 =] 22 [

)

)

)

] Are the sets given below subspaces of R3?
1

(a) W = {x! € R?: Ax = 0}.

(b) W = {bt € R3: there exists x' € R® with Ax = b}.
(c) W= {xt e R®:x'A = 0}.

(d) W ={bt € R3: there exists x' € R® with x'A = b'}.

9. Fiz a positive integer n. Then M, (R) is a real vector space with usual operations

of matriz addition and scalar multiplication. Prove that the sets W C M, (R), given
below, are subspaces of M, (R).

(a) W={A:
(b) W={A:
(c) W={A:
(d) W={A:
(e) W={A:
(f) W={A:
(9) W={A=
(h) W={A=

At = A}, the set of symmetric matrices.

At = — A}, the set of skew-symmetric matrices.
A is an upper triangular matriz}.

A is a lower triangular matriz}.

A is a diagonal matriz}.

trace(A) = 0}.

(@ij) : a11 + az = 0}.

(aij) - a1 + age + - - - + ag, = 0}.

10. Fiz a positive integer n. Then My, (C) is a complex vector space with usual operations
of matriz addition and scalar multiplication. Are the sets W C M, (C), given below,
subspaces of M, (C)? Give reasons.

(a) W ={A: A* = A}, the set of Hermitian matrices.
(b) W ={A: A* = —A}, the set of skew-Hermitian matrices.
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(c) W ={A: A is an upper triangular matriz}.
(d) W ={A: A is a lower triangular matriz}.
(e) W ={A: A is a diagonal matriz}.

(f) W ={A: trace(A) = 0}.

(9) W ={A = (ai) : an1 + a2z = 0}.

(h) W ={A = (a;j) : az1 + age + -+ + ag, = 0}.

What happens if M, (C) is a real vector space?
11. Prove that the following sets are not subspaces of M, (R).
(a) G={A € M,(R) : det(A) = 0}.

(b) G={A € M,(R) : det(A) # 0}.
(¢) G={A¢€ M,(R):det(A) =1}.

3.1.2 Linear Span

Definition 3.1.11 (Linear Combination). Let uj,us,...,u, be a collection of vectors
from a vector space V(). A vector u € V' is said to be a linear combination of the vectors
ui,...,u, if we can find scalars aq,...,a, € F such that u = ajuy + agug + - - - + @, Uy.

Example 3.1.12. 1. Is (4,5,5) a linear combination of (1,0,0), (2,1,0), and (3,3,1)%
Solution: The vector (4,5,5) is a linear combination if the linear system

a(1,0,0) +6(2,1,0) +¢(3,3,1) = (4,5,5) (3.1.1)
in the unknowns a,b,c € R has a solution. The augmented matriz of Equation (3.1.1)
1 2 3 4
equals |0 1 3 5| and it has the solution oy = 4,0 = —10 and ag = 5.
0 015

2. Is (4,5,5) a linear combination of the vectors (1,2,3),(—1,1,4) and (3,3,2)7
Solution: The vector (4,5,5) is a linear combination if the linear system

a(1,2,3) + b(—1,1,4) +¢(3,3,2) = (4,5,5) (3.1.2)

in the unknowns a,b,c € R has a solution. The row reduced echelon form of the
10 2 3

augmented matriz of Equation (3.1.2) equals |0 1 —1 —1|. Thus, one has an
00 0 O

infinite number of solutions. For example, (4,5,5) = 3(1,2,3) — (—1,1,4).

3. Is (4,5,5) a linear combination of the vectors (1,2,1),(1,0,—1) and (1,1,0).
Solution: The vector (4,5,5) is a linear combination if the linear system

a(1,2,1) + b(1,0,—1) + ¢(1,1,0) = (4,5,5) (3.1.3)
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in the unknowns a,b,c € R has a solution. An application of Gauss elimination

11 1 4
method to Equation (3.1.3) gives |0 1 1 3| . Thus, Equation (3.1.3) has no so-
0 0 0 1

lution and hence (4,5,5) is not a linear combination of the given vectors.

Exercise 3.1.13. 1. Prove that every x € R? is a unique linear combination of the
vectors (1,0,0), (2,1,0), and (3,3,1).

2. Find condition(s) on x,y and z such that (x,y, z) is a linear combination of (1,2, 3), (—1,1,4)
and (3,3,2)?

3. Find condition(s) on x,y and z such that (x,y,z) is a linear combination of the
vectors (1,2,1),(1,0,—1) and (1,1,0).

Definition 3.1.14 (Linear Span). Let S = {uj,us,...,u,} be a non-empty subset of a
vector space V(F). The linear span of S is the set defined by

L(S) = {ajuwi+aus+---+ayu, o €F,1<i<n}
If S is an empty set we define L(S) = {0}.

Example 3.1.15. 1. Let S = {(1,0),(0,1)} C R% Determine L(S).
Solution: By definition, the required linear span is

L(S) = {a(1,0) + b(0,1) : a,b € R} = {(a,b) : a,b € R} = R2. (3.1.4)

2. For each S C R3, determine the geometrical representation of L(S).

(a) S={(1,1,1),(2,1,3)}.

Solution: By definition, the required linear span is
L(S) ={a(1,1,1) +b(2,1,3) : a,b € R} = {(a + 2b,a + b,a + 3b) : a,b € RB.1.5)

Note that finding all vectors of the form (a + 2b,a + b,a + 3b) is equivalent to
finding conditions on x,y and z such that (a + 2b,a + b,a + 3b) = (x,y, 2), or
equivalently, the system

a+2b=z,a+b=y,a+3b==z

always has a solution. Check that the row reduced form of the augmented matrix
1 0 2y —x

equals [0 1 T —y . Thus, we need 2z —y — z = 0 and hence
0 0 z4+y—2z

L(S) = {a(1,1,1) + b(2,1,3) : a,b € R} = {(x,y,2) € R®: 22 — y — z = ((B.1.6)

Equation (3.1.5) is called an algebraic representation of L(S) whereas Equa-
tion (3.1.6) gives its geometrical representation as a subspace of R3.
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(b) S= {(17 27 1)7 (17 07 _1)7 (17 17 0)}
Solution: As in Example 3.1.15.2, we need to find condition(s) on x,y,z such
that the linear system

a(1,2,1) +6(1,0,—1) +¢(1,1,0) = (z,y, 2) (3.1.7)

in the unknowns a, b, ¢ is always consistent. An application of Gauss elimination

1 1 1 T
method to Equation (3.1.7) gives |0 1 % 2:(:3—y . Thus,
00 0 z—y—+=

L(S)={(z,y,2): x —y+2z=0}.

(c) S={(1,2,3),(~1,1,4),(3,3,2)}.

Solution: We need to find condition(s) on x,y,z such that the linear system
a(1,2,3) +b(—1,1,4) +¢(3,3,2) = (z,y, 2)

in the unknowns a, b, ¢ is always consistent. An application of Gauss elimination
method gives 5x — Ty + 3z = 0 as the required condition. Thus,

L(S) ={(z,y,2) : bx —Ty+3z=0}.

S =1{(1,2,3,4),(—-1,1,4,5),(3,3,2,3)} C R*. Determine L(S).
Solution: The readers are advised to show that

L(S) = {(z,y,z,w) : 2z — 3y + w = 0, 5z — Ty + 3z = 0}.

Exercise 3.1.16. For each of the sets S, determine the geometric representation of L(S).

1.

2.

AN

7.

8.

S={-1} CR.
S={z}CR
S={V15} CR

S =1{(1,0,0),(0,1,0),(0,0,1)} c R3.

,(0,1,0),(3,0,3)} Cc R3.

) ( (0,
) ( (
S =1{(1,0,1),(1,1,0),(3,—4,3)} C R3.
S ={(1,2,1),(2,0,1), (1,
)

S ={(1,0,1,1),(0,1,0,1),(3,0,3,1)} C R*,

Definition 3.1.17 (Finite Dimensional Vector Space). A wvector space V (F) is said to be
finite dimensional if we can find a subset S of V', having finite number of elements, such
that V. = L(S). If such a subset does not exist then V is called an infinite dimensional
vector space.
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Example 3.1.18. 1. The set {(1,2),(2,1)} spans R? and hence R? is a finite dimen-
sional vector space.

2. The set {1,1 + 2,1 — x + 22,23, 2*, 25} spans P5(C) and hence P5(C) is a finite
dimensional vector space.

3. Fiz a positive integer n and consider the vector space Pp(R). Then P, (C) is a finite
dimensional vector space as Pp(C) = L({1,z,2%,...,2"}).

4. Recall P(C), the vector space of all polynomials with complex coefficients. Since degree
of a polynomial can be any large positive integer, P(C) cannot be a finite dimensional
vector space. Indeed, checked that P(C) = L({1,z,22,...,2",...}).

Lemma 3.1.19 (Linear Span is a Subspace). Let S be a non-empty subset of a vector
space V(F). Then L(S) is a subspace of V(F).

Proof. By definition, S C L(S) and hence L(S) is non-empty subset of V. Let u,v € L(S5).
Then, there exist a positive integer n, vectors w; € S and scalars oy, 5; € F such that
u=a;wy+aswsg + -+ a,w, and v = fywy + fowso + - - - + B, w,. Hence,

au+ bv = (acy + bB1)wy + - - + (acy, + bBy)wy, € L(S)

for every a,b € F as aa; + bp; € F for i = 1,...,n. Thus using Theorem 3.1.9, L(S) is a
vector subspace of V(IF). O

Remark 3.1.20. Let W be a subspace of a vector space V(F). If S C W then L(S) is a
subspace of W as W is a vector space in its own right.

Theorem 3.1.21. Let S be a non-empty subset of a vector space V. Then L(S) is the
smallest subspace of V' containing S.

Proof. For every u € S, u = l.u € L(S) and hence S C L(S). To show L(S) is the
smallest subspace of V' containing S, consider any subspace W of V' containing S. Then by
Remark 3.1.20, L(S) C W and hence the result follows. O

Exercise 3.1.22. 1. Find all the vector subspaces of R? and R3.
2. Prove that {(z,y,2) € R?: ax 4 by +cz = d} is a subspace of R? if and only if d = 0.

3. Let W be a set that consists of all polynomials of degree 5. Prove that W is not a
subspace P(R).

4. Determine all vector subspaces of V', the vector space in Example 3.1.4.11.
5. Let P and Q be two subspaces of a vector space V.

(a) Prove that PN Q is a subspace of V.
(b) Give examples of P and @ such that P UQ is not a subspace of V.
(¢) Determine conditions on P and @Q such that P U Q a subspace of V7
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(d) Define P+ Q ={u+v:u€ P,veQ}. Provethat P+ Q is a subspace of V.
(e) Prove that L(IPUQ) =P+ Q.

6. Letzy = (1,0,0), zo = (1,1,0), z3 = (1,2,0), =4 = (1,1,1) and let S = {x1,x2, x3,24}.
Determine all x; such that L(S) = L(S \ {z;}).

7. Let P = L{(1,0,0),(1,1,0)} and Q@ = L{(1,1,1)} be subspaces of R3. Show that
P+Q=R3and PNQ = {0}. If u € R3, determine up,uq such that u = up + ug
where up € P and ug € Q. Is it necessary that up and ug are unique?

8. Let P = L{(1,-1,0),(1,1,0)} and Q = L{(1,1,1),(1,2,1)} be subspaces of R3. Show
that P+ Q = R3 and PN Q # {0}. Also, find a vector u € R? such that u cannot be
written uniquely in the form u =up + ug where up € P and ug € Q.

In this section, we saw that a vector space has infinite number of vectors. Hence, one
can start with any finite collection of vectors and obtain their span. It means that any
vector space contains infinite number of other vector subspaces. Therefore, the following
questions arise:

1. What are the conditions under which, the linear span of two distinct sets are the
same?

2. Is it possible to find/choose vectors so that the linear span of the chosen vectors is
the whole vector space itself?

3. Suppose we are able to choose certain vectors whose linear span is the whole space.
Can we find the minimum number of such vectors?

We try to answer these questions in the subsequent sections.

3.2 Linear Independence

Definition 3.2.1 (Linear Independence and Dependence). Let S = {uj,ug,...,u,} be a
non-empty subset of a vector space V(). The set S is said to be linearly independent if the
system of equations

aiuy + asug + - + apuy, = 0, (3.2.1)

in the unknowns «;’s 1 <1 < m, has only the trivial solution. If the system (3.2.1) has a
non-trivial solution then the set S is said to be linearly dependent.

Example 3.2.2. Is the set S a linear independent set? Give reasons.

1. Let S = {(1,2,1),(2,1,4),(3,3,5)}.
Solution: Consider the linear system a(1,2,1) 4+ b(2,1,4) + ¢(3,3,5) = (0,0,0) in
the unknowns a,b and c. It can be checked that this system has infinite number of
solutions. Hence S is a linearly dependent subset of R3.
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2. Let S ={(1,1,1),(1,1,0),(1,0,1)}.
Solution: Consider the system a(1,1,1) + b(1,1,0) + ¢(1,0,1) = (0,0,0) in the
unknowns a,b and c. Check that this system has only the trivial solution. Hence S
is a linearly independent subset of R3.

In other words, if S = {uy,...,u,,} is a non-empty subset of a vector space V, then
one needs to solve the linear system of equations

aju; +asus + -+ auy, =0 (3.2.2)

in the unknowns aq,...,a,. If 0y = ag =--- = a,;, = 0 is THE ONLY SOLUTION of (3.2.2),
then S is a linearly independent subset of V. Otherwise, the set S is a linearly dependent
subset of V. We are now ready to state the following important results. The proof of only
the first part is given. The reader is required to supply the proof of other parts.

Proposition 3.2.3. Let V(F) be a vector space.
1. Then the zero-vector cannot belong to a linearly independent set.
2. A non-empty subset of a linearly independent set of V' is also linearly independent.
3. Bvery set containing a linearly dependent set of V' is also linearly dependent.

Proof. Let S = {0 = uj,uy,...,u,} be a set consisting of the zero vector. Then for any
v # 0, yuyoug+- - -+0u,, = 0. Hence, the system aju;+asus+- - -+, 1, = 0, has a non-
trivial solution (aq,9,...,a,) = (7,0...,0). Thus, the set S is linearly dependent. O

Theorem 3.2.4. Let {vi,va,...,v,} be a linearly independent subset of a vector space
V(F). If for some v € V, the set {vi,va,...,Vp, vV} is a linearly dependent, then v is a
linear combination of vi,va,...,Vp.

Proof. Since {vi,...,vp, v} is linearly dependent, there exist scalars ¢y, ..., ¢pt1, NOT ALL
ZERO, such that
c1vi + v + -+ vy + cpp1v = 0. (3.2.3)

CLAIM: c¢py1 # 0.

Let if possible ¢, 11 = 0. As the scalars in Equation (3.2.3) are not all zero, the linear system
a;vi+- - -+a,v, = 0 in the unknowns a, . . . , a; has a non-trivial solution (cy, ..., ¢,). This
by definition of linear independence implies that the set {vy,...,v,} is linearly dependent,
a contradiction to our hypothesis. Thus, c,+1 # 0 and we get

1
v=———(cvi+- - +cpvp) € L(Vi,Va,...,Vp)
Cp+1
as —=4- ¢ F for 1 <14 < p. Thus, the result follows. O

Cp+1

We now state a very important corollary of Theorem 3.2.4 without proof. The readers
are advised to supply the proof for themselves.
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Corollary 3.2.5. Let S = {uy,...,u,} be a subset of a vector space V(F). If S is linearly

1.

2.

dependent then there exists a k, 2 < k < n with L(uy,...,u;) = L(uy,...,ux_1).

independent and there is a vector v € V with v & L(S) then {uy,...,u,, v} is also
a linearly independent subset of V.

Exercise 3.2.6. 1. Consider the vector space R?. Let u; = (1,0). Find all choices for

10.

11.

12.

15.

the vector ug such that {uy,us} is linearly independent subset of R?. Does there exist
vectors ug and ug such that {uy,ua,uz} is linearly independent subset of R??

Let S = {(1,1,1,1),(1,-1,1,2),(1,1,—1,1)} C R*. Does (1,1,2,1) € L(S)? Further-
more, determine conditions on x,y,z and u such that (x,y,z,u) € L(S).

Show that S = {(1,2,3),(—2,1,1),(8,6,10)} C R? is linearly dependent.

. Show that S = {(1,0,0), (1,1,0), (1,1,1)} C R3 is linearly independent.

Prove that {uy,uy,...,u,} is a linearly independent subset of V(F) if and only if
{uj,u; +uy,...,u; + - +u,} is linearly independent subset of V (F).

Find 3 vectors u,v and w in R* such that {u,v,w} is linearly dependent whereas
{w,v},{u,w} and {v,w} are linearly independent.

What is the mazimum number of linearly independent vectors in R3?
Show that any set of k vectors in R3 is linearly dependent if k > 4.
Is {(1,0), (1,0)} a linearly independent subset of C? (R)?

Suppose V' is a collection of vectors such that V(C) as well as V(R) are vector spaces.
Prove that the set {uy,...,u,iuy,...,iug} is a linearly independent subset of V(R)
if and only if {uy,...,ux} is a linear independent subset of V(C).

Let M be a subspace of V' and let u,v € V. Define K = L(M,u) and H = L(M, V).
If ve K and v & M prove that u € H.

Let A € M,(R) and let x and y be two non-zero vectors such that Ax = 3x and
Ay = 2y. Prove that x and 'y are linearly independent.

2 1 3

Let A= 1|4 —1 3|. Determine non-zero vectors X,y and z such that Ax = 6x,
3 -2 5

Ay = 2y and Az = —2z. Use the vectors x,y and z obtained here to prove the

following.

(a) A%v = 4v, where v = cy + dz for any real numbers ¢ and d.
(b) The set {x,y,z} is linearly independent.
(¢) Let P =[x, y, z| be a 3 x 3 matriz. Then P is invertible.
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6 0 0
(d) Lee D= |0 2 0 |. Then AP = PD.
00 -2

14. Let P and Q be subspaces of R™ such that P+ @Q = R"™ and PN Q = {0}. Prove that
each u € R" is uniquely expressible as u = up +ug, where up € P and ug € Q.

3.3 Bases

Definition 3.3.1 (Basis of a Vector Space). A basis of a vector space V' is a subset B of
V' such that B is a linearly independent set in V' and the linear span of B is V. Also, any
element of B is called a basis vector.

Remark 3.3.2. Let B be a basis of a vector space V(F). Then for each v € V, there
n
exist vectors ui,ug,...,u, € B such that v =) a;u;, where a; € F, for 1 <i < n. By

i=1
convention, the linear span of an empty set is {0}. Hence, the empty set is a basis of the

vector space {0}.

Lemma 3.3.3. Let B be a basis of a vector space V(F). Then each v € V is a unique
linear combination of the basis vectors.

Proof. On the contrary, assume that there exists v € V that is can be expressed in at least
two ways as linear combination of basis vectors. That means, there exists a positive integer
p, scalars «;, 8; € F and v; € B such that

V=01Vl +ava+ -+ v, and v = B1vy + fava + -+ BV
Equating the two expressions of v leads to the expression
(1 = Br)vi + (a2 — B2)va + -+ + (ap — Bp)vp = 0. (3.3.1)

Since the vectors are from B, by definition (see Definition 3.3.1) the set S = {vy,va,...,v,}
is a linearly independent subset of V. This implies that the linear system c1vqy + covy +
-+ 4 ¢pvp = 0 in the unknowns cy, ¢, ..., ¢, has only the trivial solution. Thus, each of
the scalars o; — f3; appearing in Equation (3.3.1) must be equal to 0. That is, a; — 3; =0
for 1 <i <p. Thus, for 1 <i <p, o; = 5; and the result follows. O

Example 3.3.4. 1. The set {1} is a basis of the vector space R(R).
2. The set {(1,1),(1,—1)} is a basis of the vector space R?(R).

3. Fiz a positive integer n and let ¢; = (0,...,0, 1 ,0,...,0) € R" for 1 <i <mn.

ith place
Then B = {e1,es,...,e,} is called the standard basis of R".

(a) B={e1} = {1} is a standard basis of R(R).
(b) B = {e1, ey} with e; = (1,0) and ez = (0,1) is the standard basis of R?.
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(¢) B=1{ey,es, e3} withe; = (1,0,0),e2 = (0,1,0) and e3 = (0,0, 1) is the standard
basis of R3.

(d) B={(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1)} is the standard basis of R*.
4. Let V ={(z,9,0) : 2,y € R} C R3. Then B = {(2,0,0),(1,3,0)} is a basis of V.

5. Let V ={(x,y,2) ER3: 2 +y— 2= 0} be a vector subspace of R®. As each element
(z,y,2) € V satisfies x +y — z = 0. Or equivalently z = x +y and hence

(z,y,2) = (x, 9,2 +y) = (2,0,2) + (0,y,9) = x(1,0,1) +y(0,1,1).
Hence {(1,0,1),(0,1,1)} forms a basis of V.

6. Let V.={a+ib: a,b € R} be a complex vector space. Then any element a + ib € V
equals a +ib = (a + ib) - 1. Hence a basis of V is {1}.

7. Let V.= {a+1ib: a,b € R} be a real vector space. Then {1,i} is a basis of V(R) as
a+ib=a-1+b-ifora,beR and {1,i} is a linearly independent subset of V(R).

8. In C?, (a+ib,c+id) = (a +ib)(1,0) + (c +1id)(0,1). So, {(1,0),(0,1)} is a basis of
the complex vector space C2.

9. In case of the real vector space C?, (a+ib,c+id) = a(1,0) +b(i,0) +c(0,1) 4+ d(0, 7).
Hence {(1,0), (4,0),(0,1),(0,4)} is a basis.

10. B = {e1,eq,...,e,} is the standard basis of C". But B is not a basis of the real
vector space C™.

Before coming to the end of this section, we give an algorithm to obtain a basis of
any finite dimensional vector space V. This will be done by a repeated application of
Corollary 3.2.5. The algorithm proceeds as follows:

Step 1: Let vi € V with vi # 0. Then {v;} is linearly independent.

Step 2: If V = L(vy), we have got a basis of V. Else, pick vo € V such that vy & L(vy).
Then by Corollary 3.2.5.2, {vy,vs} is linearly independent.

Step i: Either V = L(vy,va,...,v;) or L(vy,va,...,v;) # V.
In the first case, {vy,ve,...,Vv;} is a basis of V. In the second case, pick v;11 € V
with vi11 & L(vy,va,...,v;). Then, by Corollary 3.2.5.2, the set {vy,va,...,Vviy1}
is linearly independent.

This process will finally end as V is a finite dimensional vector space.

Exercise 3.3.5. 1. Let uy,ug,...,u, be basis vectors of a vector space V. Then prove
n
that whenever Y a;u; = 0, we must have a; =0 for each i =1,...,n.
i=1

2. Find a basis of R® containing the vector (1,1, —2).



78 CHAPTER 3. FINITE DIMENSIONAL VECTOR SPACES

3. Find a basis of R® containing the vector (1,1,—2) and (1,2, —1).

4. Is it possible to find a basis of R* containing the vectors (1,1,1,-2), (1,2,—1,1) and
(1,-2,7,—11)7

5. Let S = {v1,va,...,vp} be a subset of a vector space V (F). Suppose L(S) =V but S
is not a linearly independent set. Then prove that each vector in V can be expressed
in more than one way as a linear combination of vectors from S.

6. Show that the set {(1,0,1),(1,,0),(1,1,1 — i)} 4s a basis of C3.
7. Find a basis of the real vector space C™ containing the basis B given in Example 10.

8. Find a basis of V = {(z,y,2z,u) ER*: 2 —y—2=0,2+2—u=0}.

1
9. Let A= |0
0

O = O

110
2 3 0|. PFind a basis of V = {x' € R% : Ax = 0}.
0 01

10. Prove that {1,z,22,...,2",...} is a basis of the vector space P(R). This basis has
an infinite number of vectors. This is also called the standard basis of P(R).

11. Let ut = (1,1,-2),vt = (-1,2,3) and w* = (1,10,1). Find a basis of L(u,v,w).
Determine a geometrical representation of L(u,v,w)?

12. Prove that {(1,0,0),(1,1,0),(1,1,1)} is a basis of C>. Is it a basis of C3(R)?

3.3.1 Dimension of a Finite Dimensional Vector Space

We first prove a result which helps us in associating a non-negative integer to every finite
dimensional vector space.

Theorem 3.3.6. Let V' be a vector space with basis {vi,Vva,...,v,}. Let m be a positive
integer with m > n. Then the set S = {wq,wa,..., W, } CV is linearly dependent.

Proof. We need to show that the linear system
A1W1 + aoWo + -+ + Wy, = 0 (3.3.2)

in the unknowns a1, as,...,q, has a non-trivial solution. We start by expressing the
vectors w; in terms of the basis vectors v;’s.

As {vy,va,...,v,} is a basis of V, for each w; € V, 1 < i < m, there exist unique
scalars a;j, 1 <i <mn, 1 <j <m,such that

Wi = ai1vi+agive+ -+ anpiva,

W2 = a12Vi+agve+ -+ anovy,

W = Q1pnV1+a2mVve+ -+ apmVap.
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Hence, Equation (3.3.2) can be rewritten as

n n n
(o551 E a1V + Qo E a2V + -t o, E AimVj =0.
j=1 j=1 j=1

Or equivalently,

(in: a,-ah-) Vi + <§: aia2i> Vo + -+ <§: a,-am-> Vp = 0. (333)
i=1 =1 i=1

Since {v1,...,v,} is a basis, using Exercise 3.3.5.1, we get

m m m
E o;a1; = E Qi = -+ = E ;an; = 0.

Therefore, finding «;’s satisfying Equation (3.3.2) reduces to solving the homogeneous

a1 ai;p a2 -+ Aaim
o9 az1 a2 - G2m
system Ao =0 wherea=| | and A= | |
Qm anl Ap2 - OGpm

Since n < m, Corollary 2.1.23.2 (here the matrix A is m x n) implies that Ao = 0
has a non-trivial solution. hence Equation (3.3.2) has a non-trivial solution and thus
{w1,wa,...,W,,} is a linearly dependent set. O

Corollary 3.3.7. Let By = {uy,...,u,} and By = {v1,..., v} be two bases of a finite
dimensional vector space V.. Then m = n.

Proof. Let if possible, m > n. Then by Theorem 3.3.6, {v1,...,V,,} is a linearly dependent
subset of V', contradicting the assumption that By is a basis of V. Hence we must have
m < n. A similar argument implies n < m and hence m = n. O

Let V be a finite dimensional vector space. Then Corollary 3.3.7 implies that the
number of elements in any basis of V' is the same. This number is used to define the
dimension of any finite dimensional vector space.

Definition 3.3.8 (Dimension of a Finite Dimensional Vector Space). Let V' be a finite
dimensional vector space. Then the dimension of V', denoted dim(V'), is the number of
elements in a basis of V.

Note that Corollary 3.2.5.2 can be used to generate a basis of any non-trivial finite
dimensional vector space.

Example 3.3.9. The dimension of vector spaces in Example 3.5.4 are as follows:
1. dim(R) =1 in Example 3.3.4.1.

2. dim(R?) = 2 in Example 3.8.4.2.
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3. dim(V') = 2 in Ezample 3.3.4.4.
4. dim(V) = 2 in Example 3.3.4.5.
5. dim(V) =1 in Example 3.3.4.6.
6. dim(V) = 2 in Example 3.3.4.7.
7. dim(C?) = 2 in Example 3.3.4.8.
8. dim(C%(R)) = 4 in Ezample 3.3.4.9.

9. For fized positive integer n, dim(R"™) = n in Example 3.3.4.3 and in Example 3.5.4.10,
one has dim(C") =n and dim(C"(R)) = 2n.

Thus, we see that the dimension of a vector space dependents on the set of scalars.

Example 3.3.10. Let V be the set of all functions f : R"—R with the property that
fx+y)=f(x)+ f(y) and f(ax) = af(x) for allx,y € R" and o € R. For any f,g €V,
and t € R, define

(f@9)(x) = f(x)+9(x) and (t© f)(x) = f(tx).

Then it can be easily verified that V is a real vector space. Also, for 1 < i < n, define
the functions e;(x) = e,-((xl,xg, . ,a;n)) = x;. Then it can be easily verified that the set
{e1,e2,...,e,} is a basis of V and hence dim(V') = n.

The next theorem follows directly from Corollary 3.2.5.2 and Theorem 3.3.6. Hence,
the proof is omitted.

Theorem 3.3.11. Let S be a linearly independent subset of a finite dimensional vector
space V. Then the set S can be extended to form a basis of V.

Theorem 3.3.11 is equivalent to the following statement:
Let V' be a vector space of dimension n. Suppose, we have found a linearly independent
subset {vy,...,v,} of V with » < n. Then it is possible to find vectors v,;1,...,v, in V
such that {vi,vs,...,v,} is a basis of V. Thus, one has the following important corollary.

Corollary 3.3.12. Let V be a vector space of dimension n. Then
1. any set consisting of n linearly independent vectors forms a basis of V.
2. any subset S of V' having n vectors with L(S) =V forms a basis of V.
Exercise 3.3.13. 1. Determine dim(P,(R)). Is dim(P(R)) finite?

2. Let W1 and Wy be two subspaces of a vector space V' such that Wy C Wa. Show that
W1 = Ws if and only if dim(W7) = dim(Ws).
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3. Consider the vector space C(|—m, 7|). For each integer n, define e,(x) = sin(nz).
Prove that {e, : n=1,2,...} is a linearly independent set.
[Hint: For any positive integer {, consider the set {ek,,...,ex,} and the linear system

aq sin(kiz) + agsin(kex) + - -+ + agsin(kex) =0 for all = € [—m, 7]

in the unknowns o, ...,o,. Now for suitable values of m, consider the integral
/7r sin(mz) (aq sin(k12) + ag sin(kax) + - - - + ay sin(kex)) dz
to get the required result.]
4. Determine a basis and dimension of W = {(z,y,2z,w) € R* 12 +y — 2z +w = 0}.

5. Let Wy be a subspace of a vector space V. If dim(V) = n and dim(Wy) = k with
k > 1 then prove that there exists a subspace Wo of V' such that Wi N Wy = {0},
Wi+ Wy =V and dim(Ws3) = n — k. Also, prove that for each v € V there exist
unique vectors w1 € Wi and wo € Wy such that v = wq + wo. The subspace Wy is
called the complementary subspace of W1 in V.

6. Is the set, W = {p(z) € Ps(R) : p(—1) = p(1) = 0} a subspace of Ps(R)? If yes,
find its dimension.

3.3.2 Application to the study of C”

In this subsection, we will study results that are intrinsic to the understanding of linear
algebra, especially results associated with matrices. We start with a few exercises that
should have appeared in previous sections of this chapter.

Exercise 3.3.14. 1. Let V. = {A € M3(C) : tr(A) = 0}, where tr(A) stands for the
trace of the matriz A. Show that V is a real vector space and find its basis. Is

W:{[a b] :c:—_b} a subspace of V' ¢
c —a

2. In each of the questions given below, determine whether the given set is a vector space
or not? If it is a vector space, find the dimension and a basis.

(a) sln(R) ={A € M,(R) : tr(A) =0}.
(b) Su(R) ={A € M,(R) : A= A"}

(c) Ap(R) = {A € M,(R) : A+ At =0}.
(d) s1,(C) = {A € M,(C) : tr(A) = 0}.
(¢) Sn(C) = {A € M,(C) : A= A*}.

(f) An(C)={A e M,(C) : A+ A* =0}.

3. Does there exist an A € My(C) satisfying A% # 0 but A3 = 0.

4. Prove that there does not exist an A € M,,(C) satisfying A™ # 0 but A"t = 0. That
is, if A is an n X n nilpotent matriz then the order of nilpotency < n.
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5. Let A € M,(C) be a triangular matriz. Then the rows/columns of A are linearly
independent subset of C™ if and only if a;; # 0 for 1 <i<n.

6. Prove that the rows/columns of A € M,(C) are linearly independent if and only if
det(A) # 0.

7. Prove that the rows/columns of A € M, (C) span C™ if and only if A is an invertible
matrix.

8. Let A be a skew-symmetric matriz of odd order. Prove that the rows/columns of A
are linearly dependent. Hint: What is det(A)?

We now define subspaces that are associated with matrices.

Definition 3.3.15. Let A € My, xn(C) and let Ry, Ry, ..., R, € C" be the rows of A and
aj,as,...,a, € C™ be its columns. We define

1. Column Space(A), denoted Col(A), as Col(A) = L(aj,as,...,a,) = {Ax : x €
cry cCcm,

2. Column Space(A*), as Col(A*) = {A*x:x € C™} C C",
3. Null Space(A), denoted N(A), as N(A) = {x € C": Ax = 0}.
4. Range(A), denoted R(A), as Im(A) = R(A) ={y : Ax =y for some x € C"}.

Note that the “column space” of A consists of all b such that Ax = b has a solution.
Hence, Col(A) = Im(A). We illustrate the above definitions with the help of an example
and then ask the readers to solve the exercises that appear after the example.

11 1 =2
Example 3.3.16. Compute the above mentioned subspaces for A= |1 2 -1 1

1 -2 7 -11
Solution: Verify the following

1. R(A) = L(Ry, Re, R3) = {(w,y,2,u) € C*: 3z — 2y = 2,52 — 3y + u = 0} = C(A*)
2. C(A) = L(ay,ag,a3,a4) = {(7,y,2) € C3: 4o — 3y — 2 = 0} = R(A*)
3. N(A) = {(z,y,z,u) € C*: 2+ 32— 5u =0,y — 2z + 3u = 0}.
4. N(A*) = {(z,y,2) € C3: 2 +42 =0,y — 3z = 0}.
Exercise 3.3.17. 1. Let A € My,xn(C). Then prove that

(a) R(A) is a subspace of C",
(b) C(A) is a subspace of C™,
(¢c) N(A) is a subspace of C",
(d) N(AY) is a subspace of C™,
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(e) R(A) = C(A") and C(A) = R(AL).

1 2 1 3 2 2 4 0 6
2 2 2 4 -1 —2
2. Let A = and B = 0 g
-2 4 0 8 -3 -5 1 -4
2 5 6 10 -1 -1 1 2

(a) Find the row-reduced echelon forms of A and B.

(b) Find Py and Py such that PiA and PoB are in row-reduced echelon form.
(c) Find a basis each for the row spaces of A and B.

(d) Find a basis each for the range spaces of A and B.

(e) Find bases of the null spaces of A and B.

(f) Find the dimensions of all the vector subspaces so obtained.

Lemma 3.3.18. Let A € M, (C) and let B = EA for some elementary matriz E. Then
R(A) =R(B) and dim(R(A)) = dim(R(B)).

Proof. We prove the result for the elementary matrix E;;(c), where ¢ # 0 and 1 < i <
j < m. The readers are advised to prove the results for other elementary matrices. Let
R, Ry, ..., Ry, be the rows of A. Then B = E;j(c)A implies
R(B) = L(Rl, oo, R, R+ CR]‘,RZ'_H, ... ,Rm)
= {alRl + -+ Oéi_lRi_l + a,(R, + CRj) + -
+amBRym i ap e R 1<l <m}

= {ZagRg +ai(cRj) rap e R, 1 <4< m}
/=1

= {Zﬁsz:ﬁgGR,lﬁme} = L(Ry,...,Ryn) = R(A)

/=1

Hence, the proof of the lemma is complete. O
We omit the proof of the next result as the proof is similar to the proof of Lemma 3.3.18.

Lemma 3.3.19. Let A € My, (C) and let C = AE for some elementary matriz E. Then
C(A) =C(C) and dim(C(A)) = dim(C(C)).

The first and second part of the next result are a repeated application of Lemma 3.3.18
and Lemma 3.3.19, respectively. Hence the proof is omitted. This result is also helpful in
finding a basis of a subspace of C™.

Corollary 3.3.20. Let A € M,,»n(C). If

1. B is in row-reduced echelon form of A then R(A) = R(B). In particular, the non-zero
rows of B form a basis of R(A) and dim(R(A)) = dim(R(B)) = Row rank(A).
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2. the application of column operations gives a matriz C that has the form given in
Remark 2.3.6, then dim(C(A)) = dim(C(C)) = Column rank(A) and the non-zero
columns of C form a basis of C(A).

Before proceeding with applications of Corollary 3.3.20, we first prove that for any
A € Myxn(C), Row rank(A) = Column rank(A).

Theorem 3.3.21. Let A € M,;,xn(C). Then Row rank(A) = Column rank(A).

Proof. Let Ri, R, ..., Ry, be the rows of A and C1,Cs,...,C, be the columns of A. Let
Row rank(A) = r. Then by Corollary 3.3.20.1, dim(L(Rl, Rs, ... ,Rm)) = r. Hence, there

exists vectors
utl = (ull,...,uln),ué = (u21,...,u2n),...,ui = (Uply.. oy Upp) €ER"

with
R; € L(u},ub,... u') eR", forall i,1 <i<m.

Therefore, there exist real numbers «;;, 1 <i <m, 1 < j <r such that

T T T
t t
Ry = anuj + -+ agpu, = <E Q13U E Q1iU2, - - - § aliuin) )
i=1 i=1 i—1
T T T
t t
Ry = aoiuj + - + agru, = E Q241 , E QU2 - - . § QUi |
i=1 i=1 i—1

and so on, till

I8 T T
t t
Ry, = apiuy + -+ apru, = < E Qi Ui, g Qi U2y« « s E amiuin) .
i=1 i=1 i=1

So,

- ; o - L
> aqiug 11 12 a1y
]
2_ Qg Q22 Qar

Cy = : =up | . | tua | . |+ tun

. : :
'Z:I Qmillil am1 am2 Amy

Li= L J L a L .

In general, for 1 < j < n, we have

- - L - -
Z QU5 anl 12 a1p
=
= Qg1 Q22 Qar

Cj= : =Ly + ug; : + AUy
r : :
zzl Qmilij | Qm1 | | @¥m2 | | Qmr |
Therefore, Cy,Cs, ..., C, are linear combination of the r vectors
t ¢ ¢
(0411,0421, e ,Oéml) s (0112, a9, ... ,Oémg) EEEE) (ozlr,ozgr, e 704mr) .

Thus, by Corollary 3.3.20.2, Column rank(A) = dim(C(A4)) < r = Row rank(A). A similar
argument gives Row rank(A4) < Column rank(A). Hence, we have the required result. [



3.3. BASES 85

Let M and N be two subspaces a vector space V(IF). Then recall that (see Exer-
cise 3.1.22.5d) M+ N ={u+v:u € M, v € N} is the smallest subspace of V' containing
both M and N. We now state a very important result that relates the dimensions of the
three subspaces M, N and M + N (for a proof, see Appendix 7.3.1).

Theorem 3.3.22. Let M and N be two subspaces of a finite dimensional vector space
V(F). Then

dim(M) + dim(N) = dim(M + N) + dim(M N N). (3.3.4)

Let S be a subset of R and let V' = L(.S). Then Theorem 3.3.6 and Corollary 3.3.20.1
to obtain a basis of V. The algorithm proceeds as follows:

1. Construct a matrix A whose rows are the vectors in S.
2. Apply row operations on A to get B, a matrix in row echelon form.
3. Let B be the set of non-zero rows of B. Then B is a basis of L(S) = V.

Example 3.3.23. 1. Let S = {(1,1,1,1),(1,1,—-1,1),(1,1,0,1),(1,~1,1,1)} c R%
Find a basis of L(S).

1 1 1 1 1 1 11

Solution: Here A = IR . Then B = 0 100 is the row echelon
1 1 0 1 0010
1 -1 1 1 00 0O

form of A and hence B = {(1,1,1,1),(0,1,0,0),(0,0,1,0)} is a basis of L(S). Ob-
serve that the non-zero rows of B can be obtained, using the first, second and fourth or

the first, third and fourth rows of A. Hence the subsets {(1,1,1,1), (1,1,0,1), (1,—1,1,1)}
and {(1,1,1,1), (1,1,-1,1), (1,=1,1,1)} of S are also bases of L(S).

~—

2. Let V. = {(v,w,2,9,2) € R> :v+ax+2=3y} and W = {(v,w,2,y,2) € R
w—x=2z0v=y} be two subspaces of R®. Find bases of V and W containing a basis
of VN W.

Solution: Let us find a basis of VN W. The solution set of the linear equations

v+x—-3y+z2=0, w—x—2=0 and v=y

18
(v,w,,y,2)" = (y,2y,2,y,2y —2)" = y(1,2,0,1,2)" +(0,0,1,0,—1)".

Thus, a basis of VNW is B = {(1,2,0,1,2),(0,0,1,0,—1)}. Similarly, a basis of
Vs By = {(-1,0,1,0,0),(0,1,0,0,0),(3,0,0,1,0),(—1,0,0,0,1)} and that of W is
By ={(1,0,0,1,0),(0,1,1,0,0),(0,1,0,0,1)}. To find a basis of V' containing a basis
of VW, form a matrix whose rows are the vectors in B and By (see the first matriz
in Equation(3.3.5)) and apply row operations without disturbing the first two rows
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that have come from B. Then after a few row operations, we get

1 201 2 1201 2
0 010 -1 0010 —1
1010 0f 0100 0 (3.3.5)
0 100 O 0001 3
3001 0 0000 0
-1 000 1| 0000 O]

Thus, a required basis of V is {(1,2,0,1,2),(0,0,1,0,—1),(0,1,0,0,0),(0,0,0,1,3)}.
Similarly, a required basis of W is {(1,2,0,1,2),(0,0,1,0,—1),(0,0,—1,0,1)}.
Exercise 3.3.24. 1. If M and N are 4-dimensional subspaces of a vector space V of

dimension 7 then show that M and N have at least one vector in common other than
the zero vector.

2. Let V ={(z,y,z,w) ER*: 2 +y—z4+w=0,2+y+2z+w=0,2+2y = 0} and
W ={(z,y,z,w) ER* 12—y —2+w=0,2+2y —w =0} be two subspaces of R*.
Find bases and dimensions of V, W, VW and V + W.

3. Let W1 and Wy be two subspaces of a vector space V. If dim(W7) + dim(Ws) >
dim(V), then prove that Wy N Wy contains a non-zero vector.

4. Give examples to show that the Column Space of two row-equivalent matrices need
not be same.

5. Let A € Myyxn(C) with m < n. Prove that the columns of A are linearly dependent.

6. Suppose a sequence of matrices A = By — By — -+ — Bp,_1 — By = B
satisfies R(B;) C R(Bj—1) for 1 <1< k. Then prove that R(B) C R(A).

Before going to the next section, we prove the rank-nullity theorem and the main
theorem of system of linear equations (see Theorem 2.4.1).

Theorem 3.3.25 (Rank-Nullity Theorem). For any matric A € My, x,(C),
dim(C(A)) + dim(N(A)) = n.

Proof. Let dim(N(A)) = r < nandlet {uy,uy,...,u,} beabasis of N(A). Since {uy,...,u,}
is a linearly independent subset in R", there exist vectors u,41,...,u, € R (see Corol-
lary 3.2.5.2) such that {uy,...,u,} is a basis of R”. Then by definition,

C(A) = L(Auy,Auy,..., Au,)
= L(0,...,0,Au,11, Au, 4o, ..., Auy,) = L(Au,y1, ..., Auy).
We need to prove that {Au, 1, ..., Au,} is a linearly independent set. Consider the linear

system
a1 Au, 1 + agAugyo + - + ay_Au, = 0. (3.3.6)
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in the unknowns aq, ..., a,_,. This linear system is equivalent to
Al 41 + a2lpi2 + -+ ap_puy,) = 0.

Hence, by definition of N'(A), aqur41 + -+ + ap—ru, € N(A) = L(uy,. .., u,). Therefore,
there exists scalars 3;, 1 <14 < r such that

QU1 + QoUpgo + - - + oy, = frug + Soun + - -+ + SBru,.

Or equivalently,
fiug + -+ Bray, —aqpgq — -0 — ap_puy, = 0. (3.3.7)

As {uy,...,u,} is a linearly independent set, the only solution of Equation (3.3.7) is
aj=0for 1<i<n-—7r and Bj=0for 1 <j <7

In other words, we have shown that the only solution of Equation (3.3.6) is the trivial
solution (a; = 0 for all 4, 1 <4 < mn —r). Hence, the set {Au,41,...,Au,} is a linearly
independent and is a basis of C(A). Thus

dim(C(A)) + dim(N(A)) =(n—r)+r=n
and the proof of the theorem is complete. O

Theorem 3.3.25 is part of what is known as the fundamental theorem of linear algebra
(see Theorem 5.2.15). As the final result in this direction, We now prove the main theorem
on linear systems stated on page 48 (see Theorem 2.4.1) whose proof was omitted.

Theorem 3.3.26. Consider a linear system Ax = b, where A is an m X n matriz, and
x, b are vectors of orders n x 1, and m x 1, respectively. Suppose rank (A) = r and
rank([A b)) = rq. Then exactly one of the following statement holds:

1. If r <rg, the linear system has no solution.
2. if ro =, then the linear system is consistent. Furthermore,

(a) if r=mn, then the solution set of the linear system has a unique n x 1 vector xq
satisfying Axg = b.

(b) if r < n, then the set of solutions of the linear system is an infinite set and has
the form

{x0+kiug + koug + -+ kp_pup—r ¢ k €R 1 <i<n-—r}

where Xg,U1,...,U,_,. are n X 1 vectors satisfying Axg = b and Au; = 0 for
1<i1<n—r.
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Proof. Proof of Part 1. As r < rg, the (r + 1)-th row of the row-reduced echelon form of
[A b] has the form [0, 1]. Thus, by Theorem 1, the system Ax = b is inconsistent.
Proof of Part 2a and Part 2b. As r = r,, using Corollary 3.3.20, C(A) = C([A, b]).

Hence, the vector b € C(A) and therefore there exist scalars ¢, ca,. .., ¢, such that b =
ciaj +coas + - - - cpa,, where ag, as, ..., a, are the columns of A. That is, we have a vector
xh = [c1,c9,. .., cy) that satisfies Ax = b.

If in addition r = n, then the system Ax = b has no free variables in its solution set
and thus we have a unique solution (see Theorem 2.1.22.2a).

Whereas the condition r» < n implies that the system Ax = b has n —r free variables in
its solution set and thus we have an infinite number of solutions (see Theorem 2.1.22.2b).
To complete the proof of the theorem, we just need to show that the solution set in this
case has the form {x¢ + kyuy + koug + - + kp—pup—r : k; € R, 1 <i <n—r}, where
Axg=band Au; =0for 1 <i<n-—r.

To get this, note that using the rank-nullity theorem (see Theorem 3.3.25) rank(A) = r
implies that dim(N(A)) = n —r. Let {uj,us,...,u,_,} be a basis of N'(A4). Then by
definition Au; = 0 for 1 <4 <n — r and hence

A(xo + kiug + kpug + - + kyppup—y) = Axg + k104 -+ - + k0 = b.
Thus, the required result follows. O

110 -1
2 3 0 —2| andV ={x' € R": Ax = 0}. Find
0 01

1 1
Example 3.3.27. Let A= [0 0
0 0 1

oS = O

a basis and dimension of V.
Solution: Observe that x1,x3 and x¢ are the basic variables and the rest are the free
variables. Writing the basic variables in terms of free variables, we get

T1=x7 — Ty — Ty — x5, T3 = 207 — 224 — 3x5 and xg = —x7.
Hence,
_a:l_ _a:7 — T9 — Xq4 — 335_ [—1] [—1] [—1] [ 1]
T2 T2 1 0 0 0
T3 2x7 — 2x4 — 375 0 —2 -3 2
T4l = T4 =29 | 0| +a4| 1| 4+25| 0| +27|0 (3.3.8)
I5 xIs 0 0 1 0
T —x7 0 0 0 -1
_337_ L X7 ] _O_ _0_ _O_ _1_

Therefore, if we let u’ = [—1,1,0,0,0,0,0], ub = [—1,0,—2,1,0,0,0}, ul = [_1,0,—3,0,1,0,0

and ufy = 1,0,2,0,0,—1,1] then S = {uy,ug,us,us} is the basis of V. The reasons are
as follows:
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1. For Linear independence, we consider the homogeneous system
ciuy + cousg +c3uz +cquy =0 (339)

in the unknowns ci,cs,c3 and cq. Then relating the unknowns with the free variables
X9, 4,25 and x7 and then comparing Equations (3.3.8) and (3.3.9), we get

(a) c¢1 =0 as the 2-nd coordinate consists only of ci.

(b) ca =0 as the 4-th coordinate consists only of co.

(c) c3 =0 as the 5-th coordinate consists only of cs.

(d) ¢4y =0 as the T-th coordinate consists only of cy.
Hence, the set S is linearly independent.

2. L(S) =V is obvious as any vector of V' has the form mentioned as the first equality
in Equation (3.3.8).

The understanding built in Example 3.3.27 gives us the following remark.

Remark 3.3.28. The vectors ui,Uo,...,U,_, in Theorem 3.3.26.2b correspond to express-
ing the solution set with the help of the free variables. This is done by writing the basic
variables in terms of the free variables and then writing the solution set in such a way that
each w; corresponds to a specific free variable.

The following are some of the consequences of the rank-nullity theorem. The proof is
left as an exercise for the reader.

Exercise 3.3.29. 1. Let A be an m X n real matriz. Then

(a) if n > m, then the system Ax = 0 has infinitely many solutions,
(b) if n < m, then there exists a non-zero vector b = (by,ba,...,by)t such that the

system Ax = b does not have any solution.

2. The following statements are equivalent for an m X n matriz A.
(a) Rank (A) = k.
(b) There exist a set of k rows of A that are linearly independent.
(c) There ezist a set of k columns of A that are linearly independent.
(d) dim(C(A)) = k.

(e) There exists a kx k submatriz B of A with det(B) # 0 and determinant of every
(k+1) x (k+ 1) submatriz of A is zero.
(f) There exists a linearly independent subset {b1,ba,...,br} of R™ such that the

system Ax = b; for 1 <i < k is consistent.

(9) Aim(N(A)) =n — k.
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3.4 Ordered Bases

Let B = {uj,uy,...,u,} be a basis of a vector space V. As B is a set, there is no ordering
of its elements. In this section, we want to associate an order among the vectors in any
basis of V' as this helps in getting a better understanding about finite dimensional vector
spaces and its relationship with matrices.

Definition 3.4.1 (Ordered Basis). Let V' be a vector space of dimension n. Then an
ordered basis for V is a basis {uy,ug,...,u,} together with a one-to-one correspondence
between the sets {uj,ug,...,u,} and {1,2,3,...,n}.

If the ordered basis has u; as the first vector, us as the second vector and so on, then
we denote this by writing the ordered basis as (uj,us,...,uy,).

Example 3.4.2. 1. Consider the vector space P2(R) with basis {1 —x,1+xz,22}. Then
one can take either By = (1 —z,1 +a;,a:2) or By = (1 +x,1— x,x2) as ordered bases.
Also for any element ag + a1z + asx? € Po(R), one has

2 ap — ay

ag + a
ag + a1 + asxr” = 5 _

(1-=x)+ (14 2) + agz?.

Thus, ag + a1z + asz? in the ordered basis

(a) Bi, has ®5% as the coefficient of the first element, % as the coefficient of
the second element and as as the coefficient the third element of By.

(b) Ba, has “03“1 as the coefficient of the first element, *05™ as the coefficient of
the second element and as as the coefficient the third element of Bs.

2. Let V ={(z,y,2) :x+y =z} and let B={(-1,1,0),(1,0,1)} be a basis of V. Then
check that (3,4,7) =4(—1,1,0) + 7(1,0,1) € V.

That is, as ordered bases (ug, ug, ..., uy,), (g, us,...,u,,uy) and (u,, Up_1,...,us, u;)
are different even though they have the same set of vectors as elements. To proceed further,
we now define the notion of coordinates of a vector depending on the chosen ordered basis.

Definition 3.4.3 (Coordinates of a Vector). Let B = (vi,Vva,...,Vy) be an ordered basis
of a vector space V and let v € V. Suppose

v = f1v1 + Bava + -+ + Buvy, for some scalars By, B2, ..., Bn.

Then the tuple (B1, B2, ..., Bn)t is called the coordinate of the vector v with respect to the
ordered basis B and is denoted by [v]g = (B1,...,8n)!, A COLUMN VECTOR.

Example 3.4.4. 1. In Example 3.4.2.1, let p(z) = ag + ayx + asx?. Then

ap—ai aptai

a2
[p(x)]lfl = aoé—cu ’[p(;p)]& = % and [p($)]83 _ aoz;al
a2 as ao—gal
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2. In Ezample 3.4.2.2, [(3,4,7)] 5 = H and [(z,y,2)] 3= [(z = 4,4.2)] s = H :

3. Let the ordered bases of R® be By = ((1,0,0),(0,1,0),(0,0,1)), B = ((1,0,0), (1,1,0), (1,1,1))
and By = ((1,1,1),(1,1,0), (1,0,0)). Then

(1,-1,1) = 1-(1,0,0) + (—=1)-(0,1,0) +1-(0,0,1).
2.(1,0,0) + (—=2) - (1,1,0) +1- (1,1,1).
1-

- (17171)+(_2)'(17170) +2- (17070)
Therefore, if we write u = (1,—1,1), then
[u]Bl = (1’ -1, 1)t’ [u]32 = (27 -2, 1)t7 [u]Bs = (17 _272)t'

In general, let V be an n-dimensional vector space with B; = (uj,us,...,u,) and
By = (v1,V2,...,Vy). Since By is a basis of V, there exist unique scalars a;;, 1 <,j <mn,
such that

n
v, = Zaliul, or equivalently, [v;]g, = (a1i,a9i,...,an;)" for 1 <i<n.
=1

Suppose v € V with [v]p, = (a1, a2, ...,ay)" Then

n n n n n
vV = E ;v = E (673 E ajiuj = E E ajiozi llj.
=1 i=1 j=1 1 \i=1

Jj=

Since Bj is a basis this representation of v in terms of w;’s is unique. So,

, app cc A o
n n n
agy -+ dgp| |2
[v]s, = (Z aliai,zazioéi, e 7Zaniai> =1 . . . .| = AlVs..
i=1 i=1 i=1 : I :
Gpl1 -+ Qpp (79
where A = |:[V1] Bis [V2lBys -y [Vl 31} . Hence, we have proved the following theorem.
Theorem 3.4.5. Let V' be an n-dimensional vector space with bases By = (uy, ug, ..., uy)
and By = (v1,Va,...,Vy). Define an n x n matriz A by A = |[vi]g,, [V2]By,-- -, [Vn]31:|.

Then, A is an invertible matriz (see Exercise 3.3.14.7) and
V], = A[v]g, for all veV.

Theorem 3.4.5 states that the coordinates of a vector with respect to different bases
are related via an invertible matrix A.

Example 3.4.6. Let B; = ((1,0,0),(1,1,0),(1,1,1)) and By = ((1,1,1),(1,-1,1),(1,1,0))
be two bases of R3.
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1. Then [(:anaz)]lﬁ = (33‘ - Y9 zvz)t and [(ﬂj‘,y, Z)]32 = (% + 2, %#B - Z)t‘

0 2
2. Check that A = [(17 1, 1)]817 [(17 -1, 1)]317 [(17 1, 0)]81 =10 =2 1] as
1 1

[(1L,1,1)]z = 0-(1,0,0)+0-(1,1,0)+1-(1,1,1) = (0,0,1)",
[(L-1,D]g = 2-(1,0,0)+(-2)-(1,1,0) +1-(1,1,1) = (2,—2,1)" and
[(1,1,0)]5, = 0-(1,0,0)+1-(1,1,0)+0-(1,1,1) = (0,1,0)".

3. Thus, for any (x,y,z) € R3,

-1y 0 2 0 y;Qx+z
(2,9, 2)l8, = |y—2| = |0 =2 1 | =4 (@9, 2)]B,-
z 1 1 O T —z

4. Observe that the matriz A is invertible and hence [(x,y, 2)]g, = A~ [(x, 9, 2)]s, -

In the next chapter, we try to understand Theorem 3.4.5 again using the ideas of ‘linear
transformations/functions’.

Exercise 3.4.7. 1. Consider the vector space P3(R).
(a) Prove that By = (1—z,14+2% 1—23,34+22—23) and Bo = (1,1 —x,1+22,1—23)
are bases of P3(R).
(b) Find the coordinates of u =1+ z + x? + 23 with respect to By and Ba.
(c) Find the matriz A such that [u]p, = Alulg, .
(d) Let v = ag + a1z + asx?® + azx®. Then verify that

—aq 0O 1 0 O ag+ a1 —az +as
—ag — a1 + 2a2 — as -1 0 1 0 —aq
[V]B1 = = = [V]Bz
—ag — a1 + as — 2a3 -1 0 0 1 as
ag+ai —az +as 1 0 0 0 —as

2. Let B = ((2, 1,0),(2,1,1),(2,2, 1)) be an ordered basis of R3. Determine the coordi-
nates of (1,2,1) and (4,—2,2) with respect B.

3.5 Summary

In this chapter, we started with the definition of vector spaces over [F, the set of scalars.
The set F was either R, the set of real numbers or C, the set of complex numbers.

It was important to note that given a non-empty set V of vectors with a set [ of scalars,
we need to do the following:

1. first define vector addition and scalar multiplication and
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2. then verify the axioms in Definition 3.1.1.

If all the axioms are satisfied then V is a vector space over F. To check whether a non-
empty subset W of a vector space V over F is a subspace of V', we only need to check
whether u+v € W for all u,v € W and au € W for all « € F and u € W.

We then came across the definition of linear combination of vectors and the linear span
of vectors. It was also shown that the linear span of a subset .S of a vector space V is the
smallest subspace of V' containing S. Also, to check whether a given vector v is a linear
combination of the vectors uy, uo,...,u,, we need to solve the linear system

ciu; +coug + -+ cpuy =V

in the unknowns cy, ..., c,. This corresponds to solving the linear system Ax = b. It was
also shown that the geometrical representation of the linear span of S = {uj,ug,...,u,}
is equivalent to finding conditions on the coordinates of the vector b such that the linear
system Ax = b is consistent, where the matrix A is formed with the coordinates of the
vector u; as the i-th column of the matrix A.

By definition, S = {uj,ug,...,u,} is linearly independent subset in V' (F) if the ho-
mogeneous system Ax = 0 has only the trivial solution in F, else S is linearly dependent,
where the matrix A is formed with the coordinates of the vector u; as the i¢-th column of
the matrix A.

We then had the notion of the basis of a finite dimensional vector space V and the
following results were proved.

1. A linearly independent set can be extended to form a basis of V.
2. Any two bases of V' have the same number of elements.

This number was defined as the dimension of V' and we denoted it by dim(V').
The following conditions are equivalent for an n x n matrix A.

1. A is invertible.

2. The homogeneous system Ax = 0 has only the trivial solution.
3. The row reduced echelon form of A is I.

4. A is a product of elementary matrices.

5. The system Ax = b has a unique solution for every b.

6. The system Ax = b has a solution for every b.

7. rank(A) = n.

8. det(A) # 0.

9. The row space of A is R"™.

10. The column space of A is R™.
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11. The rows of A form a basis of R™.
12. The columns of A form a basis of R"™.
13. The null space of A is {0}.

Let A be an m x n matrix. Then we proved the rank-nullity theorem which states that
rank(A) + nullity(A) = n, the number of columns. This implied that if rank(A) = r then
the solution set of the linear system Ax = b is of the form xg + ciuy + -+ 4+ chrp_p,
where Axg = b and Au; = 0 for 1 < ¢ < n —r. Also, the vectors uj,uo,...,u,_, are
linearly independent.

Let V' be a vector space of R" for some positive integer n with dim(V) = k. Then V
may not have a standard basis. Even if V may have a basis that looks like an standard
basis, our problem may force us to look for some other basis. In such a case, it is always
helpful to fix an ordered basis B and then express each vector in V as a linear combination
of elements from B. This idea helps us in writing each element of V' as a column vector
of size k. We will also see its use in the study of linear transformations and the study of
eigenvalues and eigenvectors.



Chapter 4

Linear Transformations

4.1 Definitions and Basic Properties

In this chapter, it will be shown that if V' is a real vector space with dim(V') = n then V'
looks like R™. On similar lines a complex vector space of dimension n has all the properties
that are satisfied by C". To do so, we start with the definition of functions over vector
spaces that commute with the operations of vector addition and scalar multiplication.

Definition 4.1.1 (Linear Transformation, Linear Operator). Let V' and W be vector spaces
over the same scalar set F. A function (map) T : V—W is called a linear transformation
if for all a« € F and u,v € V the function T satisfies

T(a-u)=a0T(u) and T(u+v)=T(u) & T(v),

where +, - are binary operations in V and @&, ® are the binary operations in W. In partic-
ular, if W =V then the linear transformation T is called a linear operator.

We now give a few examples of linear transformations.

Example 4.1.2. 1. Define T : R—R? by T(x) = (z,3z) for allz € R. Then T is a
linear transformation as

T(ax) = (ax,3az) = o(z,3z) = oT(z) and
T(z+y) = (z+y,3(x+y) = (2,32) + (y,3y) = T(z) + T(y).

2. Let VW and Z be vector spaces over F. Also, let T : V—W and S : W—Z be
linear transformations. Then, for each v € V', the composition of T and S is defined
by SoT(v) = S(T(v)). It is easy to verify that S oT is a linear transformation. In
particular, if V.= W, one writes T? in place of T o T.

3. Let xt* = (x1,22,...,2,) € R™ Then for a fived vector al = (ay,as,...,a,) € R",

n
define T : R" — R by T(x!) = > ajz; for all x* € R". Then T is a linear

=1
transformation. In particular,

95
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(a) T(x!)=>"z; for allx' € R" if a; =1, for 1 <i < n.
i=1

(b) if a=e; for a fized i, 1 <i<mn, one can define T;(x') = z; for all x' € R".

4. Define T : R2—R3 by T(x,y) = (v +y,2x — y,x + 3y). Then T is a linear trans-
formation with T(1,0) = (1,2,1) and T(0,1) = (1,—1, 3).

5. Let A € Mywn(C). Define a map Ty : C*"—C™ by Ta(x!) = Ax for every x! =
(x1,22,...,2n) € C". Then T4 is a linear transformation. That is, every m X n
complex matriz defines a linear transformation from C" to C™.

6. Define T : R —P,(R) by T(ay,az,...,an11) = a1 + asx + - + app 12" for
(ai,as,...,ans1) € R"L. Then T is a linear transformation.

7. Fix A € M,(C). Then Ty : M,(C)— M, (C) and S4 : M,(C)—C are both linear
transformations, where

T4(B) = BA® and Sa(B) = tr(BA") for every B € M,(C).

Before proceeding further with some more definitions and results associated with linear
transformations, we prove that any linear transformation sends the zero vector to a zero
vector.

Proposition 4.1.3. Let T : V—W be a linear transformation. Suppose that Oy is the
zero vector in V' and Oy is the zero vector of W. Then T'(0y) = Oy .

Proof. Since 0y = 0y + 0y, we have
T(0y) =T(0y + 0y) = T(0v) + T(0v).
So T'(0y) = Oy as T'(0Oy) € W. O
From now on, we write 0 for both the zero vector of the domain and codomain.

Definition 4.1.4 (Zero Transformation). Let V' and W be two vector spaces over F and
define T : V—W by T'(v) = 0 for every v € V. Then T is a linear transformation and is
usually called the zero transformation, denoted O.

Definition 4.1.5 (Identity Operator). Let V' be a vector space over F and define T :
V—V by T(v) = v for every v € V. Then T is a linear transformation and is usually
called the Identity transformation, denoted I.

Definition 4.1.6 (Equality of two Linear Operators). Let V be a vector space and let
T,S : V—V be a linear operators. The operators T and S are said to be equal if T(x) =
S(x) forallx € V.

We now prove a result that relates a linear transformation T with its value on a basis
of the domain space.
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Theorem 4.1.7. Let V and W be two vector spaces over F and let T : V—W be a

linear transformation. If B = (ul, . ,un) 18 an ordered basis of V' then for each v € V,
the vector T(v) is a linear combination of T'(uy),...,T(u,) € W. That is, we have full
information of T if we know T'(uy),...,T(uy,) € W, the image of basis vectors in W.

Proof. As B is a basis of V, for every v € V, we can find ¢1,...,¢, € F such that v =
ciuy + - -+ + cpuy, or equivalently [v]g = (aq,...,a,)!. Hence, by definition

T(V) = T(Clul + .+ Cnun) o CIT(ul) 4+ 4 CnT(un)

That is, we just need to know the vectors T(u;),T(uz2),...,T(u,) in W to get T(v) as
[vlg = (a1, ...,a,)" is known in V. Hence, the required result follows. O

Exercise 4.1.8. 1. Are the maps T : V—W given below, linear transformations?

(a) Let V =R? and W = R3 with T(z,y) = (x +y + 1,22 — y,z + 3y).
(b) Let V. =W = R? with T(z,y) = (z — y,2? — 3?).

(c) Let V. =W = R? with T(z,y) = (z — y,|z]).

(d) Let V =R? and W = R* with T(z,y) = (z + y,x — y, 2z + y, 3z — 4y).
(e) Let V. =W =R* with T(z,y, z,w) = (z,7,w,y).

2. Which of the following maps T : Ms(R)—Ma(R) are linear operators?
(a) T(A) = At b)) TA)=I+A (c) T(A) = A2
(d) T(A) = BAB™!, where B is a fized 2 x 2 matriz.

3. Prove that a map T : R — R is a linear transformation if and only if there exists a
unique ¢ € R such that T(x) = cx for every x € R.

4. Let A € M,(C) and define Ta : C"—C" by Ta(x!) = Ax for every x* € C". Prove
that for any positive integer k, Tj(xt) = AFx.

5. Use matrices to give examples of linear operators T, S : R3—R3 that satisfy:

(a) T#0, T2#0, T3 =0.

(b)) T#0, S#0, SoT#0, ToS=0.
(c) S*=T2% S#T.

(d) T>=1, T #1.

6. Let T : R* — R™ be a linear operator with T # 0 and T? = 0. Prove that there
exists a vector x € R™ such that the set {x,T(x)} is linearly independent.

7. Fiz a positive integer p and let T : R" — R™ be a linear operator with T* # 0 for
1 <k <p and TP = 0. Then prove that there exists a vector x € R™ such that the
set {x,T(x),...,TP(x)} is linearly independent.
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10.

11.

12.

15.

1.

15.

16.

17.

18.

19.
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Let T : R™ — R™ be a linear transformation with T(xg) = yo for some xo € R"
and yo € R™. Define T~ (yo) = {x € R* : T(x) = yo}. Then prove that for every
x € T Y(yo) there exists z € T~1(0) such that x = xq + z. Also, prove that T~'(yo)
is a subspace of R™ if and only if 0 € T~ (yo).

Define a map T : C — C by T(z) = Zz, the complex conjugate of z. Is T a linear
transformation over C(R)?

Prove that there exists infinitely many linear transformations T : R® — R? such
that T(1,—1,1) = (1,2) and T(-1,1,2) = (1,0)?

Does there exist a linear transformation T : R3 — R? such that T(1,0,1) = (1,2),
T(0,1,1) = (1,0) and T(1,1,1) = (2,3)?

Does there exist a linear transformation T : R3 — R? such that T(1,0,1) = (1,2),
7(0,1,1) = (1,0) and T(1,1,2) = (2,3)?

Let T : R3 — R3 be defined by T(z,y,2) = (22 +3y +4z, 2 +y+ 2,0 +y+3z2). Find
the value of k for which there exists a vector x' € R? such that T'(x) = (9,3, k).

Let T : R? — R3 be defined by T(x,y, 2) = (20— 2y + 22, —2 + 5y + 22,8z +y +42).
Find a vector x* € R3 such that T(x') = (1,1, —1).

Let T : R3 — R3 be defined by T(z,y, 2) = (2x +y + 32,42 — y + 32,3z — 2y + 5z).
Determine non-zero vectors xt,y',z! € R® such that T(x!) = 6x, T(y') = 2y and
T(z') = —2z. Is the set {x,y,z} linearly independent?

Let T : R3 — R3 be defined by T(x,y,z) = (2x + 3y + 4z, —y, —3y + 4z2). Determine

non-zero vectors xt,yt,zt € R3 such that T(x') = 2x, T(y') = 4y and T(z!) = —z.
Is the set {x,y,z} linearly independent?

Let n be any positive integer. Prove that there does not exist a linear transformation
T :R3 — R" such that T(1,1,-2) =x*, T(—1,2,3) =y and T(1,10,1) = 2z where
z =x +y. Does there exist real numbers c,d such that z = cx + dy and T is indeed
a linear transformation?

Find all functions f : R? — R? that fizes the line y = x and sends (x1,y1) for
x1 # y1 to its mirror image along the line y = x. Or equivalently, f satisfies

(a) f(z,x) = (z,2) and
(b) f(z,y) = (y,x) for all (z,y) € R*.
Consider the complex vector space C* and let f : C3—C3 be a linear transformation.

Suppose there exist non-zero vectors x,y,z € C3 such that f(x) = x, f(y) = (1 +14)y
and f(z) = (24 3i)z. Then prove that

(a) the vectors {x,y,z} are linearly independent subset of C3.
(b) the set {x,y,z} form a basis of C3.
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4.2 Matrix of a linear transformation

In the previous section, we learnt the definition of a linear transformation. We also saw
in Example 4.1.2.5 that for each A € M,,x,(C), there exists a linear transformation T4 :
C"—C™ given by Ta(x') = Ax for each x! € C". In this section, we prove that every
linear transformation over finite dimensional vector spaces corresponds to a matrix. Before
proceeding further, we advise the reader to recall the results on ordered basis, studied in
Section 3.4.

Let V and W be finite dimensional vector spaces over F with dimensions n and m,
respectively. Also, let By = (vi,...,v,) and By = (wq,...,w,,) be ordered bases of V'
and W, respectively. If T': V—W is a linear transformation then Theorem 4.1.7 implies
that T'(v) € W is a linear combination of the vectors T'(vy),...,T(v,). So, let us find the
coordinate vectors [T'(v;)]s, for each j =1,2,...,n. Let us assume that

[T(Vl)]32 = (all, . ,aml)t, [T(Vg)]82 = (alg, N ,amg)t, vy [T(Vn)]32 = (aln, N ,amn)t.

Or equivalently,

m
T(vj) = a1jwi1 + agjWa + -+ + Qpj Wy, = Z ajjw; for j=1,2,... n. (4.2.1)
i=1
Therefore, for a fixed x € V, if [x|p, = (21, 22,...,2,)" then
n n n m m n
T(X) =T Zl‘jvj = Z:EjT(Vj) = Zl‘j (Z aijwi> = Z Zaijxj Ww;.
j=1 j=1 j=1 i=1 i=1 \j=1
(4.2.2)
Hence, using Equation (4.2.2), the coordinates of T'(x) with respect to the basis By equals
. -
' 1a1j9€j aix a2z - Qip | |21
]:
a1 Az - Q2p | | T2
[T(X)]Bz = = . . .. . | T A [X]Bl7
_ygl AmjTj Gml Am2 *° Qmp T
where
ail a2 ain
a1 Gz - Q2p
a= | )y Mgy [TVl . (42.3)
Gml Om2 " OGmn

The above observations lead to the following theorem and the subsequent definition.

Theorem 4.2.1. Let V and W be finite dimensional vector spaces over F with dimensions
n and m, respectively. Let T : V—W be a linear transformation. Also, let By and Bs be
ordered bases of V- and W, respectively. Then there exists a matriz A € My, «n(F), denoted
A =T[By, By, with A = [[T(v1)]g,, [T(v2)lg,,- - [T (Va)lg,] such that

[T(x)]s, = A [2]5,-
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Definition 4.2.2 (Matrix of a Linear Transformation). Let V' and W be finite dimensional
vector spaces over F with dimensions n and m, respectively. Let T : V—W be a linear
transformation. Then the matriz T[By, Ba| is called the matrix of the linear transformation
with respect to the ordered bases B1 and Bs.

Remark 4.2.3. Let By = (v1,...,Vy,) and By = (W1,...,Wy,) be ordered bases of V' and
W, respectively. Also, let T : V. — W be a linear transformation. Then writing T'[B1, Bs]
in place of the matriz A, Equation (4.2.1) can be rewritten as
m
T(Vj) = ZT[Bl,BQ]Z’jWi, fO’/“ 1 S j S n. (424)
i=1

We now give a few examples to understand the above discussion and Theorem 4.2.1.

o
Q' = (—sin6, cosb) 4@ =01

P’ = (cosf,sinf)

P =(1,0)

Figure 4.1: Counter-clockwise Rotation by an angle 6

Example 4.2.4. 1. Let T : R2—R? be a function that counterclockwise rotates every
point in R? by an angle 0,0 < 0 < 2r. Then using Figure 4.1 it can be checked that
2’ = OP' cos(a + 0) = OP(cosavcos — sinasinf) = xcos — ysind and similarly
y' = xsinf + ycosh. Or equivalently, if B = (e1,e3) is the standard ordered basis of
R?, then using T(1,0) = (cos@,sinf) and T(0,1) = (—sin6, cos ), we get

4.2.5
sinf cosf ( )

T(B,B] = |[7(1,0)]s, [T(0, ]| = [9 ‘SM] .

2. Let By = ((1,0),(0,1)) and By = ((1,1),(1,—1)) be two ordered bases of R*>. Then
Compute T[B1,B1] and T[Ba, Ba] for the linear transformation T : R2—R? defined
by T(x,y) = (x +y,2 - 2y).

Tty
Solution: Observe that for (z,y) € R2, [(x,y)]s, = ; and [(z,y)|B, = xzy].

2
Also, T(1,0) = (1,1), T(0,1) = (1,-2), T(1,1) = (2,-1) and T(1,—-1) = (0, 3).
Thus, we have

1 -2

i

T1B1, B = [[T(1,0)) s, [7(0, )]s ] = [[(1 Vs, [(1—2)]s, ] = [1 1] and
3

T[B27 82] = “T(17 1))]327 [T(L _1))]32] = [[(27 _1)]327 [(07 3)]32]

I
| E—

N[O N[ =
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|1 T d
=1 ol |y an
[T(x7 y)]Bz = [(m +y,r— 2y)] Bs = lzf’,T;y] = [ _%§] [izj]

2 2

3. Let By = ((1,0,0),(0,1,0),(0,0,1)) and B, = ((1,0),(0,1)) be ordered bases of R?
and R?, respectively. Define T : R3—R2 by T(x,y,2) = (x +y — 2,2 + 2). Then

Hence, we see that

[T(z,y))5, = [(@+y,2—2)] 5, =

[SJ[SSINE

T[Bly 82] = [(17 0, 0)]32’ [(07 L, 0)]327 [(0’ 0, 1)]32:| = [1 (1) _11] :
Check that [T(z,y,2)|, = (x +y — z,z + 2)' = T[B1,Ba] [(z,9,2)]5,-

4. Let By = ((1,0,0),(0,1,0),(0,0,1)), B> = ((1,0,0),(1,1,0),(1,1,1)) be two ordered
bases of R3. Define T : R3—R3 by T(x') = x for all x' € R3. Then

[T(1,0,0)]z, = 1-(1,0,0)+0-(1,1,0)+0-(1,1,1) = (1,0,0)",
[T(0,1,0)]z, = —1-(1,0,0)+1-(1,1,0)+0-(1,1,1) = (=1,1,0)", and
[7(0,0,1)]z, = 0-(1,0,0) +(=1)-(1,1,0) + 1-(1,1,1) = (0,—1,1)".

Thus, check that

T[BlyB2] = [[T(17070)]Bz7 [T(07170)]Bz7 [T(0707 1)]32]

1 -1 0
= [(1,0,0)", (—1,1,0)%, (0,—1,1)"] = [o 1 -1y,
0

1
1
T[B%Bl] = [[T(l,O,O)]Bl, [T(l’lvo)]lﬁ’ [T(l,l,l)]gl]: 0
0

T[Bl,Bl] =13 = T[BQ,BQ] and T[Bg,Bl]_l = T[Bl,BQ].

Remark 4.2.5. 1. Let V and W be finite dimensional vector spaces over F with order
bases By = (v1,...,Vy) and By of V- and W, respectively. If T : V—W is a linear
transformation then

(a) T(By,Bo] = [[T(v1)]5,, [T(V2)lB,s - -, [T(Va)]s, -

(b) [T(x)|p, = T[B1,B2] [x]p, for all x € V. That is, the coordinate vector of
T(x) € W is obtained by multiplying the matriz of the linear transformation
with the coordinate vector of x € V.

2. Let A € Mpxn(R). Then A induces a linear transformation Ty : R"—R™ defined
by Ta(x!) = Ax for all x* € R™. Let By and Bs be the standard ordered bases of R"
and R™, respectively. Then it can be easily verified that Tx[B1,Bs] = A.
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Exercise 4.2.6. 1. Let T : R2—R? be a linear transformation that reflects every point
in R? about the line y = mx. Find its matriz with respect to the standard ordered
basis of R?.

2. Let T : R3——R3 be a linear transformation that reflects every point in R® about the
X-azis. Find its matriz with respect to the standard ordered basis of R>.

3. Let T : R3—R3 be a linear transformation that counterclockwise rotates every point
in R® around the positive Z-axis by an angle 0,0 < 0 < 27. Prove that T is a linear
operator and find its matriz with respect to the standard ordered basis of R3.[Hint: Is

cosf —sinf 0
sinf cos@ 0| the required matriz?]
0 0 1
4. Define a function D : Pp(R)—Pp(R) by
D(ag + a1x + aax® + - + anz™) = a1 + 2asx + - - - + na,z" "t

Prove that D is a linear operator and find the matriz of D with respect to the standard
ordered basis of P, (R). Observe that the image of D is contained in Pp_1(R).

5. Let T be a linear operator in R? satisfying T(3,4) = (0,1) and T(—1,1) = (2,3). Let
B= ((1,0), (1, 1)) be an ordered basis of R?. Compute T|B, B].

6. For each linear transformation given in Example 4.1.2, find its matrix of the linear
transform with respect to standard ordered bases.

4.3 Rank-Nullity Theorem

We are now ready to related the rank-nullity theorem (see Theorem 3.3.25 on 86) with the
rank-nullity theorem for linear transformation. To do so, we first define the range space
and the null space of any linear transformation.

Definition 4.3.1 (Range Space and Null Space). Let V' be finite dimensional vector space
over F and let W be any vector space over F. Then for a linear transformation T : V—W,
we define

1. C(T) ={T(x) : x € V'} as the range space of T and
2. N(T)={x eV :T(x) =0} as the null space of T
We now prove some results associated with the above definitions.

Proposition 4.3.2. Let V be a vector space over F with basis {v1,...,vp}. Also, let W
be a vector spaces over F. Then for any linear transformation T : V—W,

1. C(T) = L(T(v1),...,T(vy)) is a subspace of W and dim(C(T) < dim(W).

2. N(T) is a subspace of V and dim(N(T) < dim(V).
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3. The following statements are equivalent.

(a) T is one-one.

(b) N(T) ={0}.
(c) {T(u;) :1<i<n}isabasis of C(T).

4. dim(C(T) = dim(V) if and only if N(T') = {0}.
Proof. Parts 1 and 2 The results about C(T") and N (T) can be easily proved. We thus

leave the proof for the readers.

We now assume that 7' is one-one. We need to show that N'(T') = {0}.

Let u € N(T). Then by definition, 7'(u) = 0. Also for any linear transformation (see
Proposition 4.1.3), T(0) = 0. Thus T'(u) = 7'(0). So, T is one-one implies u = 0. That is,
N(T) ={0}.

Let N(T) = {0}. We need to show that T is one-one. So, let us assume that for
some u,v € V, T(u) = T(v). Then, by linearity of T, T(u — v) = 0. This implies,
u—v € N(T) = {0}. This in turn implies u = v. Hence, T is one-one.

The other parts can be similarly proved. O
Remark 4.3.3. 1. C(T) is called the RANGE SPACE and N (T') the NULL SPACE of T.

2. dim(C(T) is denoted by p(T) and is called the rank of T

3. dim(N(T) is denoted by v(T) and is called the nullity of T.

Example 4.3.4. Determine the range and null space of the linear transformation

T:R*—R* with T(z,y,2) = (x —y+ 2,y — 2 x,2x — 5y + 52).

Solution: By Definition

R(T) = L((1,0,1,2),(-1,1,0,-5),(1,-1,0,5))
L((1,0,1,2),(1,-1,0,5))
{a(1,0,1,2) + B(1,-1,0,5) : , 3 € R}
{(a+B,—B,a,2a 4+ 55) : a, € R}
= {(z,y,z,w) ER* 12 +y—2=0,5y — 2z +w =0}

and

N(T) = {(z,y,2) €R® :T(z,y,2) = 0}
= {(z,y,2) €R® : (x —y+ 2,y — z,2,2z — 5y + 52) = 0}
= {(z,y,2) €eR® :x—y+2=0,y —2=0,
x=0,2z — 5y + 5z =0}
= {(2,4,2) €ER® :y— 2 =0,z =0}
— {(0,5,9) €R :y € R} = L((0,1,1))
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Exercise 4.3.5. 1. Define a linear operator D : P,(R)—P,(R) by

D(ag + a1 + aax® + - + anz™) = a1 + 2asx + - - - + napz" "t

Describe N (D) and C(D). Note that C(D) C P,—1(R).

2. Let T : V—W be a linear transformation. If {T(v1),...,T(vy)} is linearly inde-
pendent subset in C(T) then prove that {vi,...,v,} CV is linearly independent.

3. Define a linear operator T : R? — R3 by T/(1,0,0) = (0,0,1), T(1,1,0) = (1,1,1)
and T'(1,1,1) = (1,1,0). Then

(a) determine T(x,y,z) for x,y,z € R.
(b) determine C(T) and N (T'). Also calculate p(T') and v(T).
(c) prove that T® = T and find the matriz of T with respect to the standard basis.

4. Find a linear operator T : R — R3 for which C(T) = L((1,2,0),(0,1,1),(1,3,1))?

5. Let {vi,va,..., vy} be a basis of a vector space V(F). If W(F) is a vector space
and Wi, Wa, ..., W, € W then prove that there exists a unique linear transformation
T :V—W such that T(v;) =w; for alli=1,2,...,n.

We now state the rank-nullity theorem for linear transformation. The proof of this
result is similar to the proof of Theorem 3.3.25 and it also follows from Proposition 4.3.2.
Hence, we omit the proof.

Theorem 4.3.6 (Rank Nullity Theorem). Let V' be a finite dimensional vector space and
let T : V—W be a linear transformation. Then p(T) + v(T) = dim(V'). That is,

dim(R(T)) + dim(N(T')) = dim(V).

Theorem 4.3.7. Let V and W be finite dimensional vector spaces over F and let T :
V—W be a linear transformation. Also assume that T is one-one and onto. Then

1. for each w € W, the set T~1(w) is a set consisting of a single element.

2. the map T~ : W——=V defined by T~ (w) = v whenever T(v) = w is a linear
transformation.

Proof. Since T is onto, for each w € W there exists v € V such that T'(v) = w. So, the
set T~1(w) is non-empty.

Suppose there exist vectors vy, vy € V such that T'(vy) = T'(v2). Then the assumption,
T is one-one implies vi = vy. This completes the proof of Part 1.

We are now ready to prove that 7!, as defined in Part 2, is a linear transformation. Let
w1, wg € W. Then by Part 1, there exist unique vectors vq, vy € V such that T_l(wl) =V
and T~1(wy) = vo. Or equivalently, T'(v;) = w; and T(va) = wa. So, for any aj,as € F,
T(a1vy + aova) = aywy + aswa. Hence, by definition, for any a1, ay € F, T~ (agwy +
QaWo) = a1vy + agvy = a; TV (wy) + asT~(ws). Thus the proof of Part 2 is over. O
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Definition 4.3.8 (Inverse Linear Transformation). Let V and W be finite dimensional
vector spaces over F and let T : V—W be a linear transformation. If the map T 1is
one-one and onto, then the map T~': W—=V defined by

T Yw)=v whenever T(v) =w
is called the inverse of the linear transformation T.

Example 4.3.9. 1. Let T : R>~——R? be defined by T(x,y) = (v + y,x — y). Then

T—1:R2—R? is defined by T~ (z,y) = (2, Z54). One can see that

ToT ay) = T (wy) =1L )
oty Ty x—l—y_x—y _ _

where I is the identity operator. Hence, T oT~' = I. Verify that T~ oT = I. Thus,
the map T~ is indeed the inverse of T.

2. For (a1,...,an11) € R"L define the linear transformation T : R"™1—P, (R) by
T(a1,a2,...,0n41) = a1 + a2 + -+ + app12".

Then it can be checked that T~ : P,(R)—R" ! is defined by T~ (a1 + agw + -+ +
an+12") = (a1,a2,...,an41) for all ay + asx + -+ + apr12™ € Pr(R).

Using the Rank-nullity theorem, we give a short proof of the following result.

Corollary 4.3.10. Let V be a finite dimensional vector space and let T : V—V be a
linear operator. Then the following statements are equivalent.

1. T is one-one.
2. T is onto.
3. T is invertible.

Proof. By Proposition 4.3.2, T is one-one if and only if N(T') = {0}. By Theorem 4.3.6
N(T) = {0} implies dim(C(T")) = dim(V'). Or equivalently, T" is onto.

Now, we know that T is invertible if T" is one-one and onto. But we have just shown
that T is one-one if and only if T is onto. Thus, we have the required result. O

Remark 4.3.11. Let V be a finite dimensional vector space and let T : V—V be a linear
operator. If either T is one-one or T is onto then T is invertible.

Exercise 4.3.12. 1. Let V be a finite dimensional vector space and let T : V—W be
a linear transformation. Then prove that

(a) N(T) and C(T) are also finite dimensional.
(b) i if dim(V) < dim(W) then T' cannot be onto.
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it. if dim(V') > dim(W) then T' cannot be one-one.

2. Let V be a vector space of dimension n and let B = (vy,...,vy) be an ordered basis of
V. Fori=1,...,n, let w; €V with [w;]g = [a1i, ai,...,an; |'. Also, let A = [a;].
Then prove that w,...,wy is a basis of V if and only if A is invertible.

3. Let T,S : V—V be linear transformations with dim(V') = n.

(a) Show that C(T +S) C C(T') + C(S). Deduce that p(T + S) < p(T') + p(S).
(b) Now, use Theorem 4.3.6 to prove v(T + S) > v(T) + v(S) — n.

4. Let z1,z2, ...,z be k distinct complex numbers and define a linear transformation T :
Pn(C) — CF by T(P(2)) = (P(21), P(22), ..., P(2)). For each k > 1, determine
dim(C(T)).

5. Fiz A € M,(R) satisfying A?> = A and define Ty : R — R™ by Ta(v!) = Av, for
all vt € R™. Then prove that

(a) TyoTy = Ty. Equivalently, Ty o (I —Ty) = 0, where I : R" — R" is the
identity map and 0 : R — R"™ is the zero map.

(b) N(Ta)NC(Ta) = {0}

(¢c) R" =C(Ta) + N(Ta). [Hint: x =Ta(x) + (I —Ta)(x)]

4.4 Similarity of Matrices

Let V be a finite dimensional vector space with ordered basis B. Then we saw that any
linear operator T': V—V corresponds to a square matrix of order dim(V") and this matrix
was denoted by T'[B, B]. In this section, we will try to understand the relationship between
T[By,B1] and T[Bs, By], where By and By are distinct ordered bases of V. This will enable
us to understand the reason for defining THE MATRIX PRODUCT SOMEWHAT DIFFERENTLY.

Theorem 4.4.1 (Composition of Linear Transformations). Let V, W and Z be finite
dimensional vector spaces with ordered bases Bi,By and Bs, respectively. Also, let T :
V—W and S : W—Z be linear transformations. Then the composition map S oT :
V—Z (see Figure 4.2) is a linear transformation and

T'[B1, Ba)mxn S[B2, B3| pxm

(V:Blan) (VVaBQam) (Z>B3>p)
//

(S oT)[B1,Bs]pxn = S[Ba2, B3] - T'B1, Ba]

Figure 4.2: Composition of Linear Transformations

(SoT) [B1,Bs] = S[B2,B3] - T[By,Bs).
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Proof. Let By = (uy,...,uy), By = (vi,...,vy) and B3 = (wy,...,w,) be ordered bases
of V,W and Z, respectively. Then using Equation (4.2.4), we have

(SoT) (w) = S(T(w)) = 5(2( By, Bal); tVJ) =D (TB1,Ba]);eS(v))

J=1 j—l

I
Ms

p m
TBy, Bo] jtz [Ba, B3] k]Wk—Z Z (B2, B3])1j (T'[B1, Ba)) jt) Wi
k=1 B

<.
Il
,_.

[
NE

(S[Ba, B3] T'[B1,Ba])kiW-

e
I
—_

Thus, using matrix multiplication, the ¢-th column of (S o T') [By, Bs] is given by

(S[B2, B3] T'[B1,Bs]) T(B1, Ba]u

(507) gl — | 1T Bl gy g | T Bl

(S[B2, Bs] f[Bl, Bg])pt T[Bl,'Bg]pt
Hence, (S o T)[B1,Bs] = [[(S oT)(u1)]Bsy---,[(So T)(un)]gg] = S[B2, B3] - T'By, B2] and
the proof of the theorem is over. O

Proposition 4.4.2. Let V be a finite dimensional vector space and let T, S : V—V be
two linear operators. Then v(T) + v(S) > v(T oS) > max{v(T),v(5)}.

Proof. We first prove the second inequality.
Suppose v € N(S). Then (T o S)(v) = T(S(v) = T(0) = 0 gives N(S) € N(T o S).
Therefore, v(S) < v(T o S).

We now use Theorem 4.3.6 to see that the inequality v(T) < v(T o S) is equivalent to
showing C(T o S) C C(T'). But this holds true as C(S) C V and hence T(C(S)) c T(V).
Thus, the proof of the second inequality is over.

For the proof of the first inequality, assume that &k = v(S) and {vy,...,vg} is a basis
of N(S). Then {vy,...,vg} C N(T' o S) as T(0) = 0. So, let us extend it to get a basis
{vi,...,vg,uy,...,up} of N(T o S).

Claim: {S(uy), S(uz),...,S(ug)} is a linearly independent subset of N(T').

It is easily seen that {S(uy),...,S(uy)} is a subset of N(T). So, let us solve the linear

system c15(uy) + c2S(ug) + - -+ + ¢S(ug) = 0 in the unknowns ¢y, ca, ..., cp. This system
is equivalent to S(cju; 4+ coug + - -+ + cpuy) = 0. That is, i ciw; € N(S). Hence, i i,
is a unique linear combination of the vectors vq,...,v. 12}:111187 =
ciuy + coug + -+ cpuy = vy + agvg + -+ -+ vy (4.4.1)
for some scalars aq,aq,...,ar. But by assumption, {vy,..., v, ui,...,us} is a basis of

N (T o S) and hence linearly independent. Therefore, the only solution of Equation (4.4.1)
is given by ¢; =0 for 1 <¢</fand oj =0 for 1 < j < k.

Thus, {S(u1), S(ug),...,S(uy)} is a linearly independent subset of N'(T') and so v(T) >
0. Hence, v(T'o S) =k + ¢ <v(S)+v(T). O
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Remark 4.4.3. Using Theorem 4.3.6 and Proposition 4.4.2, we see that if A and B are
two n X n matrices then

min{p(A), p(B)} = p(AB) = n — p(A) — p(B).

Let V be a finite dimensional vector space and let T : V—V be an invertible linear
operator. Then using Theorem 4.3.7, the map T~ ' : V—V is a linear operator defined
by T~!(u) = v whenever T(v) = u. The next result relates the matrix of 7 and T~!. The
reader is required to supply the proof (use Theorem 4.4.1).

Theorem 4.4.4 (Inverse of a Linear Transformation). Let V' be a finite dimensional vector
space with ordered bases By and By. Also let T : V—V be an invertible linear operator.
Then the matriz of T and T~ are related by T[By, B2)™t = T~1[Ba, B1].

Exercise 4.4.5. Find the matriz of the linear transformations given below.

1. DefineT : R*—R3 by T(1,1,1) = (1,-1,1), T(1,-1,1) = (1,1,-1) and T(1,1,—1)
(1,1,1). Find T[B, B], where B = ((1,1,1),(1,-1,1),(1,1,-1)). Is T an invertible
linear operator?

2. Let B = (1,z,2% 2%) be an ordered basis of P3(R). Define T : P3(R)—P3(R) by
T(1)=1,T(z) =1+2z,T(z?) = (1 +2)? and T(23) = (1 + z)>.
Prove that T is an invertible linear operator. Also, find T[B,B] and T~[B, B.

We end this section with definition, results and examples related with the notion of
isomorphism. The result states that for each fixed positive integer n, every real vector
space of dimension n is isomorphic to R™ and every complex vector space of dimension n
is isomorphic to C".

Definition 4.4.6 (Isomorphism). Let V and W be two vector spaces over F. Then V
is said to be isomorphic to W if there exists a linear transformation T : V—W that is
one-one, onto and invertible. We also denote it by V = W.

Theorem 4.4.7. Let V be a vector space over R. If dim(V') = n then V = R"™.

Proof. Let B be the standard ordered basis of R™ and let By = (Vl, .. ,Vn) be an ordered
basis of V. Define a map T : V—R" by T'(v;) = e; for 1 < i < n. Then it can be easily
verified that T is a linear transformation that is one-one, onto and invertible (the image of
a basis vector is a basis vector). Hence, the result follows. O

A similar idea leads to the following result and hence we omit the proof.
Theorem 4.4.8. Let V' be a vector space over C. If dim(V') =n then V = C™.

Example 4.4.9. 1. The standard ordered basis of Py (C) is given by (1,x,x2, .. ,x").
Hence, define T : Pp(C)—C™! by T(x') = e;41 for 0 < i < n. In general, verify
that T'(ag + a1z + - - -+ apx™) = (ag, a1, ..., ay) and T is linear transformation which
is one-one, onto and invertible. Thus, the vector space P, (C) = C"+1,
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2. Let V = {(z,y,z,w) € R* : 2 —y + 2z —w = 0}. Suppose that B is the standard
ordered basis of R® and By = ((1,1,0,0), (—=1,0,1,0), (1,0,0,1)) is the ordered basis
of V. Then T : V—R3 defined by T(v) = T(y—z+w,y, z,w) = (y, z,w) is a linear
transformation and T[By1,B] = I3. Thus, T is one-one, onto and invertible.

4.5 Change of Basis

Let V be a vector space with ordered bases By = (uy,...,u,) and By = (vq,...,v,}. Also,
recall that the identity linear operator I : V—V is defined by I(x) = x for every x € V.
If

aix aiz -+ Qin

a1 a2 -+ Qa2p
1[827 Bl] = [[I(Vl)]817 [I(V2)]Bl7 cee [I(VTL)]BJ =

anl Aap2 - Aapp

n

then by definition of I[Bs, Bi], we see that v; = I(v;) = > aj;u; for all i,1 <4 < n. Thus,
i=1

we have proved the following result which also appeared in another form in Theorem 3.4.5.

Theorem 4.5.1 (Change of Basis Theorem). Let V' be a finite dimensional vector space

with ordered bases By = (uy,ug,...,u,} and By = (vq,Va,..., vy} Suppose x € V with
x|, = (a1,9,...,0,)t and [x]g, = (B1,B2,---,0n)t. Then [x|g, = I[Bs,B1] [x]|p,. Or
equivalently,

aq ain aiz o a| |B

ag | lax axp - a| |fo

an, anl An2  ** Gun| |DBn

Remark 4.5.2. Observe that the identity linear operator I : V—V is invertible and
hence by Theorem 4.4.4 I[Bo,Bi]™' = I71[By,Bs] = I[By,Bs]. Therefore, we also have
(x|, = I[B1, Bs] [x]s,.

Let V be a finite dimensional vector space with ordered bases By and By. Then for any
linear operator 7' : V—V the next result relates T'[By, B1] and T'[Ba, Ba].

Theorem 4.5.3. Let By = (uy,...,u,) and By = (v1,...,Vy) be two ordered bases of a
vector space V. Also, let A = [a;;] = I[Ba, B1] be the matriz of the identity linear operator.
Then for any linear operator T : V—V

T[By,By) = A~ - T[By,B1] - A= I[By,Bs] - T[By, By] - I[B2, By]. (4.5.2)

Proof. The proof uses Theorem 4.4.1 by representing T'[B1, Bz as (I o T)[By, Bz] and (T o
I)[By, Bz], where I is the identity operator on V (see Figure 4.3). By Theorem 4.4.1, we
have

T[Bl,Bg] = ([OT)[Bl,BQ] = I[Bl,BQ] ’T[Bl,Bl]
= (T ol)[By,Bs] =T[Ba,Bs] - I[B1, Ba.
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T(B1, B]
(Vvv Bl) (V7 Bl)
oT
I[B1, B;] I[B1, B;]
(V,By) (V,B2)
TB2, Bs]

Figure 4.3: Commutative Diagram for Similarity of Matrices

Thus, using I[BQ,Bl] = 1[81,82]_1, we get 1[81,82] T[Bl,Bl] 1[82,81] = T[BQ,BQ] and
the result follows. O

Let T : V—V be a linear operator on V. If dim(V') = n then each ordered basis B of
V gives rise to an n x n matrix T'[B, B]. Also, we know that for any vector space we have
infinite number of choices for an ordered basis. So, as we change an ordered basis, the
matrix of the linear transformation changes. Theorem 4.5.3 tells us that all these matrices
are related by an invertible matrix (see Remark 4.5.2). Thus we are led to the following
remark and the definition.

Remark 4.5.4. The Equation (4.5.2) shows that T By, Ba| = I[B1, Bs|-T[B1, B1]-1[B2, B1].
Hence, the matriz 1[By1,Bs] is called the By : By change of basis matriz.

Definition 4.5.5 (Similar Matrices). Two square matrices B and C of the same order
are said to be similar if there exists a non-singular matriz P such that P~'BP = C or
equivalently BP = PC.

Example 4.5.6. 1. Let By = (1+z,1+ 22+ 2*2+2) and Bo = (1,1 + 2,1+ z + 2?)
be ordered bases of Po(R). Then I(a + bx + cx?) = a + bx + cx?. Thus,

-1

[[82781] = [[1]317[1+x]317[1+x+x2]31] = 0
1

1[81’82] = [[1 + $]327 [1 + 2z + $2]327 [2 + ':U]BQ] =

o= O O O
[

Also, verify that 1[By,B] ™! = I[Bs, By].

2. Let B1 = ((1,0,0),(1,1,0),(1,1,1)) and B = (1,1,-1),(1,2,1),(2,1,1)) be two

ordered bases of R®. Define T : R3—R3 by T(z,y,2) = (x +y,z +y + 22,9y — 2).
00 -2 —4/5 1 8/5

Then TB1,Bi]= |1 1 4 | and T|B2,B2] = |—2/5 2 9/5 |. Also, check that
01 0 8/5 0 —1/5
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0o -1 1
IBy,Bi]=12 1 0f and
-1 1 1
2 -2 =2
T|By,B1] I|B2, B1]| = I|B2, B1| T[B2,Ba) = |—2 4 5
2 1 0

Exercise 4.5.7. 1. Let V be an n-dimensional vector space and let T : V—V be a
linear operator. Suppose T has the property that T"1 # 0 but T" = 0.

(a) Prove that there exists u € V with {u,T(u),...,T" *(u)}, a basis of V.

00 0 - 0
10 0 --- 0
(b) For B= (u,T(u),...,T" (u)) prove that T[B,B]= (0 1 0 - 0
00 - 1 0

(c) Let A be an n x n matriz satisfying A"~! # 0 but A™ = 0. Then prove that A
1s similar to the matriz given in Part 1b.

2. Define T : R3—R3 by T(z,y,2) = (x +y+2z,2 —y — 32,22+ 3y + 2). Let B be the
standard basis and By = ((1, 1,1),(1,—-1,1),(1, 1,2)) be another ordered basis of R3.
Then find the

(a) matrices T'[B,B] and T[B1,B].
(b) matriz P such that P~YT[B,B] P = T[B, B1].

3. Define T : R3—R3 by T(z,y,2) = (v, +y,x +y + 2). Let B be the standard basis
and By = ((1,0,0), (1,1,0), (1,1, 1)) be another ordered basis of R3. Then find the

(a) matrices T[B,B] and T[By, Bi].
(b) matriz P such that P~YT[B,B] P = T[By, B1].

4. Let By = ((1,2,0),(1,3,2),(0,1,3)) and Bz = ((1,2,1),(0,1,2),(1,4,6)) be two or-
dered bases of R3. Find the change of basis matriz

(a) P from By to Ba.
(b) Q from By to By.
(c) from the standard basis of R to Bi. What do you notice?

Is it true that PQ = I = QP? Give reasons for your answer.

4.6 Summary
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Chapter 5

Inner Product Spaces

5.1 Introduction

In the previous chapters, we learnt about vector spaces and linear transformations that are
maps (functions) between vector spaces. In this chapter, we will start with the definition
of inner product that helps us to view vector spaces geometrically.

5.2 Definition and Basic Properties

In R? and R?, we had a notion of dot product between two vectors. In particular, if

xt = (z1,22,23), y' = (y1,y2,y3) are two vectors in R? then their dot product was defined

by

Xy = T1Yy1 + T2Y2 + T3Y3.
Note that for any x',y*,z' € R?® and o € R, the dot product satisfied the following
conditions:

x-(y+az)=x-y+ax-z, x-y=y-x, and x-x > 0.

Also, x-x = 0 if and only if x = 0. So, in this chapter, we generalize the idea of dot product
for arbitrary vector spaces. This generalization is commonly known as inner product which
is our starting point for this chapter.

Definition 5.2.1 (Inner Product). Let V' be a vector space over F. An inner product over
V., denoted by ( , ), is a map from V x V to F satisfying

1. {au+bv,w) = a(u,w) + b(v,w), for allu,v,w €V and a,b € F,

2. (u,v) = (v,u), the complex conjugate of (u,v), for allu,v € V and
3. (u,u) >0 for allu € V and equality holds if and only if u = 0.

Definition 5.2.2 (Inner Product Space). Let V' be a vector space with an inner product
(, ). Then (V,(,)) is called an inner product space (in short, 1PS).

113
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Example 5.2.3. The first two examples given below are called the STANDARD INNER PROD-
UCT or the DOT PRODUCT on R"™ and C", respectively. From mow on, whenever an inner
product is not mentioned, it will be assumed to be the standard inner product.

1. Let V. =R". Define (u,v) = ujvy + -+ + upv, = utv for all ut = (uy,...,u,),vt =
(v1,...,vy) € V. Then it can be easily verified that ( , ) satisfies all the three
conditions of Definition 5.2.1. Hence, (R”, (, >) 1 an inner product space.

2. Let ut = (u1,...,un), vt = (v1,...,v,) be two vectors in C*(C). Define (u,v) =
U7 + U3 + - - - + u, U, = u*v. Then it can be easily verified that ((C",( , >) 5 an
inner product space.

4 -1
-1 2
prove that {, ) is an inner product. Hint: (X,y) = 4x1y1 — x1y2 — T2y1 + 2x2y2 and
(x,x) = (v1 — 29)% + 323 + 3.

3. Let V=R and let A = . Define (x,y) = x*Ay for x',y' € R%. Then

4. Prove that (x,y) = 10z1y1 + 3z1y2 + 322y1 + 222Y2 + T2y3 + x3y2 + x3ys3 defines an
inner product in R3, where x* = (x1,x2,23) and y* = (y1,v2,y3) € R3.

5. For xt = (w1,22),y" = (y1,2) € R?, we define three maps that satisfy at least one
condition out of the three conditions for an inner product. Determine the condition
which is not satisfied. Give reasons for your answer.

(Cl) <X7 Y> = Z1Y1-

(b) (x,y) =a% +yi + 23 + v3.

(¢) (x,y) = 21y} + z213.

6. For A,B € M,(R), define (A, B) = tr(AB?"). Then
(A4 B,C) =tr((A+ B)C") = tr(AC") + tr(BC") = (A,C) + (B, C).
(A, B) = tr(AB") = tr( (AB")" ) = tr(BA") = (B, A).
If A = (ai;), then (A, A) = tr(AA") = a(AAt)ii = .Zlaija’j = 'Zla?j and
1= 1,j= 1,j=

therefore, (A, A) > 0 for all non-zero matriz A.

Exercise 5.2.4. 1. Verify that inner products defined in Examples 3 and 4, are indeed
inner products.

2. Let (x,y) =0 for every vector'y of an inner product space V. prove that x = 0.

Definition 5.2.5 (Length/Norm of a Vector). Let V' be a vector space. Then for any
vector u € V, we define the length (norm) of u, denoted ||u||, by |ul| = /(u,u), the
positive square root. A vector of norm 1 is called a unit vector.

Example 5.2.6. 1. Let V be an inner product space and w € V. Then for any scalar
o, it is easy to verify that |lou|| = |a - [Jul.
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2. Letu' = (1,-1,2,-3) € R Then ||Jul| = VT +1+4+9 = 15. Thus, \/Ll_su and
1

—Eu are vectors of norm 1 in the vector subspace L(u) of R, Or equivalently,

1 . . . . .
——u s a unit vector in the direction of u.
VTS f

Exercise 5.2.7. 1. Letu’ = (-1,1,2,3,7) € R. Find all « € R such that |jou| = 1.
2. Letu! = (—1,1,2,3,7) € C°. Find all o € C such that ||aul| = 1.

8. Prove that |x +y|* + |x — y|* = 2(||Ix||* + [ly||*), for all x,y € R™. This equality
is commonly known as the PARALLELOGRAM LAW as in a parallelogram the sum of

square of the lengths of the diagonals equals twice the sum of squares of the lengths
of the sides.

4. Prove that for any two continuous functions f(z), g(x) € C([-1, 1]), the map {f(x), g(z))

f_ll f(z) - g(x)dz defines an inner product in C([—1, 1]).

5. Fix an ordered basis B = (uy,...,u,) of a complex vector space V. Prove that ( , )
n

defined by (u,v) = Y a;b;, whenever [ulg = (ay,...,a,)" and [v]g = (b1,...,b,)" is
i=1
indeed an inner product in V.

A very useful and a fundamental inequality concerning the inner product is due to
Cauchy and Schwarz. The next theorem gives the statement and a proof of this inequality.

Theorem 5.2.8 (Cauchy-Bunyakovskii-Schwartz inequality). Let V(F) be an inner product
space. Then for any u,v € V

[{w, v) < [l [}v]. (5.2.1)

Equality holds in Equation (5.2.1) if and only if the vectors u and v are linearly dependent.
u., u

Furthermore, if u # 0, then in this case v = (v, m>m

Proof. If u = 0, then the inequality (5.2.1) holds trivially. Hence, let u # 0. Also, by

the third property of inner product, (Au+ v, Au + v) > 0 for all A € F. In particular, for
(v,u)

A==y
[uf

0 < Qu+v, u+v)=Nul®+ Au,v) + Xv,u) + ||v]?
_ <V,U_> <V,U_> HU—”2 _ <V7u>< , > _ <V,U_>

u,Vv
[[ulf? [uf?

(v, u) + [v]®

Or, in other words |(v,u)|? < [Jul|?||v||* and the proof of the inequality is over.
If u # 0 then (Au+ v, Au + v) = 0 if and only of Au+ v = 0. Hence, equality holds
in (5.2.1) if and only if A = — <Hvl’lﬁ;>.

_ u u
case v = <V, —”u”> Tl O

That is, u and v are linearly dependent and in this
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Let V be a real vector space. Then for every u,v € V, the Cauchy-Schwarz inequality
(see (5.2.1)) implies that —1 < m < 1. Also, we know that cos : [0,7] — [—1, 1]
is an one-one and onto function. We use this idea, to relate inner product with the angle

between two vectors in an inner product space V.

Definition 5.2.9 (Angle between two vectors). Let V' be a real vector space and let u,v €

V. Suppose 6 is the angle between u,v. We define

[[al[ vl
1. The real number 0, with 0 < 6 < 7, and satisfying cos§ = m is called the angle

between the two vectors u and v in V.
Definition 5.2.10 (Orthogonal Vectors). Let V' be a vector space.

1. The vectors u and v in V are said to be orthogonal if (u,v) = 0. Orthogonality

corresponds to perpendicularity.

2. A set of vectors {uj,uy,...,uy} in V is called mutually orthogonal if (u;,u;) =0
foralll <i#j<n.

¢

A ¢ * B

c
Figure 2: Triangle with vertices A, B and C

Before proceeding further with one more definition, recall that if ABC are vertices of
_ b+cP—a

a triangle (see Figure 5.2) then cos(A) = TQ. We prove this as our next result.
Lemma 5.2.11. Let A, B and C be the sides of a triangle in a real inner product space V

then
VP —a?

2bc
Proof. Let the coordinates of the vertices A, B and C be 0, u and v, respectively. Then
AB = u, AC =vand BC =v —u. Thus, we need to prove that

cos(A)

V12 + a2 = v — u]?
A) =
cos(4) 2Tl

Now, using the properties of an inner product and Definition 5.2.9, it follows that
IVIZ + [l = Iv = ul* = 2 (u,v) = 2 |[v]|[[u]| cos(A).

Thus, the required result follows. O
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Definition 5.2.12 (Orthogonal Complement). Let W be a subset of a vector space V' with
inner product { , ). Then the orthogonal complement of W in V, denoted W+, is defined
by

Wh={veV: (v,w)=0, foral weW}

Exercise 5.2.13. Let W be a subset of a vector space V.. Then prove that W is a subspace
of V.

Example 5.2.14. 1. Let R* be endowed with the standard inner product. Fix two vec-
tors u' = (1,1,1,1),vt = (1,1,-1,0) € R* Determine two vectors z and w such
that u =z + w, z is parallel to v and w is orthogonal to v.
Solution: Let z' = kvt = (k, k,—k,0), for some k € R and let w! = (a,b,c,d). As
w is orthogonal to v, (w,v) =0 and hence a+b—c=0. Thus, c=a+b and

(1,1,1,1) = v = z' + w' = (k, k, —k,0) + (a,b,a + b,d).
Comparing the corresponding coordinates, we get
d=1,a+k=10+k=1 and a+b—k=1.

Solving for a,b and k gives a = b = % and k = % Thus, z! = %(1,1,—1,0) and
wl = 1(2,2,4,3).

2. Let R? be endowed with the standard inner product and let P = (1,1,1), Q = (2,1,3)
and R = (—1,1,2) be three vertices of a triangle in R3. Compute the angle between
the sides PQ and PR.

Solution: Method 1: The sides are represented by the vectors

PQ=(2,1,3)—(1,1,1) = (1,0,2), PR = (=2,0,1) and RQ = (—3,0,—1).
As (PZ),P?%) =0, the angle between the sides PQ and PR is g
Method 2: ||PQ| = V5, ||PR| = V5 and |QR| = v10. As

IQRI? = |1PQI* + |[PRI?,
by Pythagoras theorem, the angle between the sides PQ and PR is g

We end this section by stating and proving the fundamental theorem of linear algebra.
To do this, recall that for a matrix A € M, (C), A* denotes the conjugate transpose of
A, N(A) = {v € C" : Av = 0} denotes the null space of A and R(A) = {Av : v € C"}
denotes the range space of A. The readers are also advised to go through Theorem 3.3.25
(the rank-nullity theorem for matrices) before proceeding further as the first part is stated
and proved there.

Theorem 5.2.15 (Fundamental Theorem of Linear Algebra). Let A be an n X n matriz
with complex entries and let N(A) and R(A) be defined as above. Then
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1. dim(WN(A)) + dim(R(A)) = n.
2. N(A) = (R(A")) " and N(A*) = (R(A))".
3. dim(R(A)) = dim(R(A")).

Proof. PART 1: Proved in Theorem 3.3.25.
PART 2: We first prove that N'(4) C R(A*)*. Let x € N(A). Then Ax = 0 and

0= (Ax,u) = u"Ax = (A"u)*x = (x, A*u)

for all u € C". Thus, x € R(A*)* and hence N'(A) C R(A*)*.
We now prove that R(A*)* € N(A). Let x € R(A*)*. Then for every y € C",

0=(x,A"y) = (A"y)'x = y"(A")'x = y"Ax = (Ax,y).

In particular, for y = Ax, we get |Ax||> = 0 and hence Ax = 0. That is, x € N(A). Thus,
the proof of the first equality in Part 2 is over. We omit the second equality as it proceeds
on the same lines as above.

PART 3: Use the first two parts to get the result.

Hence the proof of the fundamental theorem is complete. O

For more information related with the fundamental theorem of linear algebra the inter-
ested readers are advised to see the article “The Fundamental Theorem of Linear Algebra,
Gilbert Strang, The American Mathematical Monthly, Vol. 100, No. 9, Nov., 1993, pp.
848 - 855.”

Exercise 5.2.16. 1. Answer the following questions when R? is endowed with the stan-
dard inner product.

(a) Letut = (1,1,1). Find vectors v,w € R3 that are orthogonal to u and to each
other.

(b) Find the equation of the line that passes through the point (1,1,—1) and is
parallel to the vector (a,b,c) # (0,0,0).

(¢) Find the equation of the plane that contains the point (1,1 — 1) and the vector
(a,b,c) # (0,0,0) is a normal vector to the plane.

(d) Find area of the parallelogram with wvertices (0,0,0), (1,2,—2), (2,3,0) and
(3,5,—2).

(e) Find the equation of the plane that contains the point (2,—2,1) and is perpen-
dicular to the line with parametric equations x =t — 1,y =3t + 2,z =1t + 1.

(f) Let P = (3,0,2),Q = (1,2,—1) and R = (2,—1,1) be three points in R3.

i. Find the area of the triangle with vertices P,Q and R.

1. Find the area of the parallelogram built on vectors PZ) and Q_R.
i1i. Find a nonzero vector orthogonal to the triangle with vertices P,@Q and R.
iv. Find all vectors x orthogonal to PQ and QR with ||x|| = v/2.
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v. Choose one of the vectors x found in part 1(f)iv. Find the volume of the
parallelepiped built on vectors PZ) and Q?% and x. Do you think the volume
would be different if you choose the other vector x?

(9) Find the equation of the plane that contains the lines (x,y,z) = (1,2,—-2) +
t(1,1,0) and (z,y,z) = (1,2,—-2) +¢(0,1,2).

(h) Letut = (1,—1,1) and vt = (1,k,1). Find k such that the angle between u and
v is w/3.

(i) Let p1 be a plane that passes through the point A = (1,2,3) and hasn = (2,—1,1)
as its normal vector. Then

1. find the equation of the plane py which is parallel to p1 and passes through
the point (—1,2,—3).
1. calculate the distance between the planes p1 and po.

(j) In the parallelogram ABCD, AB|DC and AD|BC and A = (-2,1,3),B =
(-1,2,2),C = (-3,1,5). Find
i. the coordinates of the point D,
1. the cosine of the angle BC'D.
15i. the area of the triangle ABC

w. the volume of the parallelepiped determined by the vectors AB, AD and the
vector (0,0, —7).

(k) Find the equation of a plane that contains the point (1,1,2) and is orthogonal
to the line with parametric equation xt =2 +t,y =3 and z =1 —1t.

(1) Find a parametric equation of a line that passes through the point (1,—2,1) and
1s orthogonal to the plane x + 3y + 2z = 1.

2. Let {el, €, ... el } be the standard basis of R™. Then prove that with respect to the
standard inner product on R™, the vectors e; satisfy the following:

(a) |leil| =1 for 1 <i<n.
(b) (ej,ej) =0 for1 <i#j<n.

3. Let x' = (z1,22), y' = (y1,42) € R%. Then (x,y) = 4x1y1 — T1Y2 — Tay1 + 222
defines an inner product. Use this inner product to find

(a) the angle between €} = (1,0) and e} = (0,1).
(b) v € R? such that (v, (1,0)t) = 0.
(c) vectors xt,yt € R? such that ||x|| = |lyl| = 1 and (x,y) = 0.

4. Does there exist an inner product in R? such that

1L =12, -D =1 and ((1,2), (2,-1)) =07
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10.

11.

12.

15.
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Z b . Define (x,y) = y'Ax. Use the
c

given conditions to get a linear system of 3 equations in the unknowns a,b,c. Solve

[Hint: Consider a symmetric matriz A =

this system.]
Let W = {(z,y,2) €R3: 2 +y + 2z =0}. Find a basis of W+.

Let W be a subspace of a finite dimensional inner product space V. Prove that
(WYt = w.

Let xt = (w1, 22,23), y' = (y1,v2,y3) € R3. Show that
(x,y) = 1021y1 + 3z1y2 + 3w2y1 + 422Y2 + T2Yy3 + T3Yy2 + 3T3Y3

is an inner product in R3(R). With respect to this inner product, find the angle between
the vectors (1,1,1) and (2,—5,2).

Recall the inner product space My, (R) (see Example 5.2.3.6). Determine W+ for
the subspace W = {A € M, xn(R): A' = A}.

Prove that (f(x) f f(z x)dz defines an inner product in C[—m, =].
Define 1(x) =1 for all x € [ ] Prove that
S ={1}U{cos(mx) : m > 1} U {sin(nx) : n > 1}
is a linearly independent subset of C[—m, ].
Let V' be an inner product space. Prove the TRIANGLE INEQUALITY

la+v| < |lu|+||v] for every u,v V.

Let z1,29,...,2z, € C. Use the Cauchy-Schwarz inequality to prove that

|21+ 22+ 4 20| < V(212 + 22+ 4 [2]?).
When does the equality hold?
Let x,y € R™. Prove the following:

(a) (x,y) =0 <= |x—y|? = ||x]|* + |ly||*> (PYTHAGORAS THEOREM ).

() x| = |lyll = x+y,x—y) =0 (x and y form adjacent sides of a rhombus
as the diagonals x +y and x —y are orthogonal).

(c) 4(x,y) =[x +y|> = [Ix = y||* (POLARIZATION IDENTITY ).
Are the above results true if x,y € C"(C)?

Let x,y € C"(C). Prove that

(a) Ax,y) = [Ix +y|? = [Ix = y[I* + illx + iy > —ifx — iy]|*.
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(b) If x # 0 then |x+ix||? = ||x||? + ||ix||?, even though (x,ix) # 0.
(¢) (x,y) =0 whenever |[x +y|* = [x[* + lyl|* and |x +iy||* = |Ix||* + [liy]*.

14. Let {, ) denote the standard inner product on C"(C) and let A € M,(C). That is,
(x,y) = x*y for all x',y' € C". Prove that (Ax,y) = (x, A*y) for all x,y € C".

15. Let (V,(, )) be an n-dimensional inner product space and let u € V' be a fized vector
with ||ul| = 1. Then give reasons for the following statements.

(a) Let S* ={v eV : (v,u) =0}. Then dim(S+) =n — 1.
(b) Let 0 £#a €F. Then S={v eV : (v,u) = «a} is not a subspace of V.

(¢c) Let v € V. Then v = vo + au for a vector vo € S+ and a scalar o. That is,
V = L(u,S4).

5.2.1 Basic Results on Orthogonal Vectors

We start this subsection with the definition of an orthonormal set. Then a theorem is
proved that implies that the coordinates of a vector with respect to an orthonormal basis
are just the inner products with the basis vectors.

Definition 5.2.17 (Orthonormal Set). Let S = {vi,va,...,v,} be a set of non-zero,
mutually orthogonal vectors in an inner product space V.. Then S is called an orthonormal
set if ||vill =1 for 1 <i < n. If S is also a basis of V then S is called an orthonormal
basis of V.

Example 5.2.18. 1. Consider R? with the standard inner product. Then a few or-
thonormal sets in R? are {(1,0),(0,1)}, {%(1, 1), %(1, —1)} and {%(2, 1), 2(1,-2)}.

NG
2. Let R™ be endowed with the standard inner product. Then by Fxercise 5.2.16.2, the
standard ordered basis (€', €}, ... €') is an orthonormal set.
Theorem 5.2.19. Let V' be an inner product space and let {uj,ug,...,u,} be a set of

non-zero, mutually orthogonal vectors of V.

1. Then the set {uy,ug,...,u,} is linearly independent.

n n n
2. Letv=> ayu; € V. Then Hv||2 =1> oziui||2 =5 |ozi|2||u2-||2;
- ; i=1

i=1 i=1

n
3. Letv=> aju;. If |u;]| =1 for 1 <i<mn then o; = (v,u;) for 1 <i<mn. That is,
i=1

n

v=> (vyuhu and |[v[]> =) (v, ;)
i=1

1=1

4. Let dim(V') =n. Then (v,u;) =0 for alli=1,2,...,n if and only if v=0.
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Proof. Consider the linear system
ciuy +coug +---+c,u, =0 (5.2.2)

in the unknowns ¢y, ¢z, ..., ¢,. As (0,u) =0 for each u € V and (u;,u;) = 0 for all j # ¢,
we have

n
0=(0,u;) = (cquy + coug + - - - + cpuy,, w;) = ch(uj,ui> = ¢;(u;, u;).
j=1
As u; # 0, (u;,u;) # 0 and therefore ¢; = 0 for 1 <4 < n. Thus, the linear system (5.2.2)

has only the trivial solution. Hence, the proof of Part 1 is complete.
For Part 2, we use a similar argument to get

n n n n n
| Z@iuz‘Hz = <Z Oéiui,zoéiui> = Zai <ui,Zo¢juj'>
i=1 = = i=1 j=1
n n
= Zal Za] u;, u;) Z%’Oé_i (uj,u;) = Z |ovi |2 ).
i=1 i=1

=1 =

Note that (v,u;) = <Z?:1 ajuj, ul-> = > i_1 a;j(u;,u;) = a;. Thus, the proof of Part 3
is complete.

Part 4 directly follows using Part 3 as the set {uj,ua,...,u,} is a basis of V. Therefore,
we have obtained the required result. O

In view of Theorem 5.2.19, we inquire into the question of extracting an orthonormal
basis from a given basis. In the next section, we describe a process (called the Gram-
Schmidt Orthogonalization process) that generates an orthonormal set from a given set
containing finitely many vectors.

Remark 5.2.20. The last two parts of Theorem 5.2.19 can be rephrased as follows:

Let B = (vl, e ,vn) be an ordered orthonormal basis of an inner product space V. and let
ueV. Then

[ulg = ((u,v1), (W, va), ..., (u,v,))".

Exercise 5.2.21. 1. Let B = (7( 1), L(1,—1)) be an ordered basis of R?. Deter-
mine [(2,3)|p. Also, compute [(x,y)|s

N

2. Let B = (%(1,1,1), %(1,— ) T(l 1,-2),) be an ordered basis of R3. Determine

[(2,3,1)]g. Also, compute [(x,y,z)]|5-

3. Let ut = (uy,ug,u3), v\ = (v1,v2,v3) be two vectors in R3. Then recall that their
cross product, denoted u X v, equals

t t
u Xv = (UQ’Ug — U3vV2, U301 — UIV3, U1V2 — UQ?)l).

Use this to find an orthonormal basis of R3 containing the vector \/—(1 2,1).
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4. Let ut = (1,—1,—2). Find vectors v!,w' € R3 such that v and w are orthogonal to
u and to each other as well.

5. Let A be an n x n orthogonal matriz. Prove that the rows/columns of A form an
orthonormal basis of R™.

6. Let A be an n x n unitary matriz. Prove that the rows/columns of A form an or-
thonormal basis of C™.

7. Let {u},u,...,ul} be an orthonormal basis of R™. Prove that the n x n matriz
A =[uj,uy,...,u,] is an orthogonal matriz.

5.3 Gram-Schmidt Orthogonalization Process

Suppose we are given two non-zero vectors u and v in a plane. Then in many instances, we
need to decompose the vector v into two components, say y and z, such that y is a vector
parallel to u and z is a vector perpendicular (orthogonal) to u. We do this as follows (see
Figure 5.3):

Let u = ﬁ Then 1 is a unit vector in the direction of u. Also, using trigonometry, we
u
know that cos(0) = ”872” and hence [|OQ|| = |OP|| cos(#). Or using Definition 5.2.9,
Y, (Vv 11> <V7 u>
O pr— pr— B
101 =M o Tl = Tl

where we need to take the absolute value of the right hand side expression as the length
of a vector is always a positive quantity. Thus, we get

)

[l

0Q = 0Q| o = (v, -

[[ull

Thus, we see that y = OQ = (v, ﬁ) ﬁ and z = v — (v, ”—3”> =, It is easy to verify that

(S
v =y + 1z, y is parallel to u and z is orthogonal to u. In literature, the vector y = OQ
is often called the orthogonal projection of the vector v on u and is denoted by Proj,(v).
Thus,

. u u . V% <V7u>
Proja(v) = (v, 7o) 7o and [Proia() = 100 = | )
" [[a” ffu " [[u
Moreover, the distance of the vector u from the point P equals |OR| = |PQ]| =
v = v, mar) Tt !l
R v Al

O_R:v—%u

Figure 3: Decomposition of vector v
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Also, note that @ is a unit vector in the direction of u and z = ”Z—” is a unit vector
orthogonal to . This idea is generalized to study the Gram-Schmidt Orthogonalization
process which is given as the next result. Before stating this result, we look at the following

example to understand the process.

Example 5.3.1. 1. In Ezample 5.2.14.1, we note that Proj,(u) = (u-v) # is par-
v

allel to v and u — Proj,(u) is orthogonal to v. Thus,

Z = Proj,(u) = %(1, 1,-1,0)" and W= (1,1,1,1)) —Z = %(2,2,4, 3)".
2. Let ut = (1,1,1,1),v* = (1,1,-1,0) and w* = (1,1,0,—1) be three vectors in R*.
Write v.= vi + vo where v1 is parallel to u and vy is orthogonal to u. Also, write
w = Wi + Wo + w3 such that wy s parallel to u, wo is parallel to vo and ws is
orthogonal to both u and vs.
Solution : Note that

(a) vi = Proj,(v) = (v,u) “”2 =1u=1(1,1,1,1)! is parallel to u and
u

(b) vo =v—tu=1(3,3,-5-1)" is orthogonal to u.
Note that Proj,(w) is parallel to w and Proj,,(w) is parallel to vo. Hence, we have

(a) w1 = Proj,(w) = <W,U>W =1tu=1(1,1,1,1)! is parallel to u,

Vo 7
t

(b) wo = Proj,,(w) = <W,V2>W§ = 1(3,3,—5,—1)" is parallel to vy and

1
(c) Wy =w—wy —ws = 2(1,1,2,—4)! is orthogonal to both u and vs.

That is, from the given vector subtract all the orthogonal components that are obtained
as orthogonal projections. If this new vector is non-zero then this vector is orthogonal

to the previous ones.

Theorem 5.3.2 (Gram-Schmidt Orthogonalization Process). Let V' be an inner product
space. Suppose {ui,uy,...,u,} is a set of linearly independent vectors in V. Then there
exists a set {vy,va,..., vy} of vectors in V satisfying the following:

1. |vi]| =1 for1 <i<n,

2. (vi,v;) =0 for 1 <i#j<n and

3. L(v1,va,...,v;) = L(uj,ug,...,u;) for 1 <i<n.
Proof. We successively define the vectors vi,vs,...,v, as follows.
u
Step 1: v; = B
[ |
Wo

Step 2: Calculate wo = uy — (ug2,vy)vy, and let vo = m
W2

Step 3: Obtain w3 = u3 — (us, vi)vy — (us, va)vy, and let vz = m
w3
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Step i: In general, if vi,vo,...,v;_1 are already obtained, we compute
WwW; = u; — (ui,V1>V1 - (ui,v2>v2 — <u2‘,VZ'_1>VZ'_1. (532)
As the set {uj,uy,...,u,} is linearly independent, it can be verified that ||w;|| # 0
and hence we define v; = —lllel .

We prove this by induction on n, the number of linearly independent vectors. For n = 1,

V] = ”E—;” As u is an element of a linearly independent set, u; # 0 and thus v; # 0 and
ug ug (ur,uy)
[vi]? = (vi,v1) = ( ) = =1.
’ [ || [Jua | [ |2

Hence, the result holds for n = 1.

Let the result hold for all & < n—1. That is, suppose we are given any set of k, 1 < k <
n—1 linearly independent vectors {uj, ug, ..., u;} of V. Then by the inductive assumption,
there exists a set {vi,va,..., v} of vectors satisfying the following:

1. Jjvi]|=1for 1 <i <k,
2. (vi,vj)=0for 1 <i#j <k, and
3. L(vi,va,...,v;) = L(ug,ug,...,u;) for 1 <i <k.

Now, let us assume that {uj,us,...,u,} is a linearly independent subset of V. Then
by the inductive assumption, we already have vectors vi,va,...,v,_1 satisfying

L ||vi]=1for1 <i<n-1,
2. (vi,vj)=0for 1 <i#j<n-1,and
3. L(vy,va,...,v;) = L(uj,ug,...,u;) for 1 <i<n-—1.
Using (5.3.2), we define
W, = U, — (U, V1)V — (Uy, Vo) vy — -+ — (Up, V1) V1. (5.3.3)

We first show that w,, & L(vi,va,...,v,_1). This will imply that w,, # 0 and hence
Vi = IIX—ZH is well defined. Also, ||v,|| = 1.
On the contrary, assume that w,, € L(vy,va,...,Vv,_1). Then, by definition, there exist

scalars aq,ao,...,an_1, not all zero, such that
W, = q1V]y +aoVy+ -+ ap_1Vp—_1.
So, substituting vy + agve + -+ + ap_1v,—1 for wy, in (5.3.3), we get
u, = (a1 + <un,V1>)V1 + (Oég + (un,V2>)V2 + 4 ((an_l + <un,vn_1>)vn_1.

That is, u, € L(v1,va,...,Vp—1). But L(vy,...,v,—1) = L(uy,...,u,—1) using the third
induction assumption. Hence u,, € L(uy,...,u,_1). A contradiction to the given assump-
tion that the set of vectors {uy,...,u,} is linearly independent.

Also, it can be easily verified that (v,,,v;) =0 for 1 < i < n—1. Hence, by the principle
of mathematical induction, the proof of the theorem is complete. O
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We illustrate the Gram-Schmidt process by the following example.

Example 5.3.3. 1. Let{(1,-1,1,1),(1,0,1,0),(0,1,0,1)} C R Find a set {vi,va,v3}
that is orthonormal and L( (1,-1,1,1),(1,0,1,0),(0,1,0,1) ) = L(v},v5,v}).
Solution: Let u} = (1,0,1,0),u} = (0,1,0,1) and v} = (1,-1,1,1). Then v} =

%(1,0, 1,0). Also, (uz,vi) =0 and hence wo = ug. Thus, vh = %(0, 1,0,1) and

w3 = ug — (u3, vi)vi — (uz, va)va = (0,—1,0,1)".
Therefore, v§ = %(O, -1,0,1).

2. Find an orthonormal set in R® containing (1,2,1).
Solution: Let (z,y,z) € R with <(1,2, 1),(az,y,z)> =0. Thenx+2y+2 =0 or
equivalently, * = —2y — z. Thus,

(x,y,2) = (—2y — z,y,2) = y(—2,1,0) + 2(—1,0,1).
Observe that the vectors (—2,1,0) and (—1,0,1) are both orthogonal to (1,2,1) but

are not orthogonal to each other.

METHOD 1: Consider {%(1,2, 1),(-2,1,0),(=1,0,1)} € R and apply the Gram-
Schmidt process to get the result.

METHOD 2: This method can be used only if the vectors are from R3. Recall that
in R3, the cross product of two vectors u and v, denoted u x v, is a vector that is
orthogonal to both the vectors u and v. Hence, the vector

(1,2,1) x (-2,1,0) = (0—-1,-2—-0,1+4) = (—1,-2,5)
is orthogonal to the vectors (1,2,1) and (—2,1,0) and hence the required orthonormal
set is {%(17 27 1)7 \7_%(27 _17 0)7 \;—3%(17 27 _5)}
Remark 5.3.4. 1. Let V' be a vector space. Then the following holds.

(a) Let {uy,ug,...,ur}t be a linearly independent subset of V. Then Gram-Schmidt
orthogonalization process gives an orthonormal set {vi,va,...,vi} of V with

L(vy,va,...,v;) = L(ug,ug,...,u;) for 1 <i<k.

(b) Let W be a subspace of V' with a basis {uj,ug,...,ux}. Then {vi,va,...,vi}
is also a basis of W.

(¢) Suppose {uj,ug,...,u,} is a linearly dependent subset of V.. Then there exists
a smallest k, 2 < k <n such that wy, = 0.
Idea of the proof: Linear dependence (see Corollary 3.2.5) implies that there
exists a smallest k, 2 < k <n such that

L(u17u27 s ,Uk-) = L(u17u27 s 7uk‘—l)'
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Also, by Gram-Schmidt orthogonalization process
L(uj,ug,...,ux_1) = L(vi,va,...,Vi_1).
Thus, uy, € L(vi,Va,...,Vp_1) and hence by Remark 5.2.20
uy, = (Ug, vi)vi + (U, v2) Vo + - o0+ (Ug, V1) VE—1-
So, by definition wy = 0.

2. Let S be a countably infinite set of linearly independent vectors. Then one can apply
the Gram-Schmidt process to get a countably infinite orthonormal set.

3. Consider R™ with the standard inner product and let {vi,va,...,v,} be an orthonor-

mal set. Then, we see that

(a) ||vi|| =1 is equivalent to viv, =1, for 1 <i <n,

(b) (vi,vj) =0 is equivalent to viv; =0, for 1 <i#j <n.

Hence, we see that

t t t t
Vil [vi,Va,...,Vp] ViVl ViVy - VIV 10 --- 0
¢ ¢ ¢ ¢
V5 V3V]  VVy st VoV, o1 -0
A'A = | =1 . . e P
t t t t
vh vivy vive) o vhv, 0 0 1

Since A'A = I,, it follows that AA! = I,,. But,
vl
vh

AAY = [vi,ve,...,vi] | | =vivi Fvavh 4+ v v

\%

Shoe

Now, for each i,1 < i < n, the matriz v;v! has the following properties:

(a) it is symmetric;
(b) it is idempotent; and
(c) it has rank one.
4. The first two properties imply that the matrix vivf, foreachi,1 < i < n isa projection

operator. That is, the identity matrixz is the sum of projection operators, each of rank
1.

5. Now define a linear transformation T : R"—R™ by T'(x) = (v;vi)x = (vix)v; is a

projection operator on the subspace L(v;).



128 CHAPTER 5. INNER PRODUCT SPACES

6. Now, let us fir k,1 < k <n. Then, it can be observed that the linear transformation
T : R"—R" defined by T'(x) = (Zle vivh)x = Zle(vﬁx)vi is a projection operator

on the subspace L(vy,...,vE). We will use this idea in Subsection 5.4.1 .

Definition 5.2.12 started with a subspace of an inner product space V and looked at its
complement. We now look at the orthogonal complement of a subset of an inner product
space V and the results associated with it.

Definition 5.3.5 (Orthogonal Subspace of a Set). Let V' be an inner product space. Let
S be a non-empty subset of V. We define

St={veV :(v,s)=0 forallse S}
Example 5.3.6. Let V =R.
1. S ={0}. Then S+ =R.
2. S =R, Then S+ = {0}.
3. Let S be any subset of R containing a non-zero real number. Then S+ = {0}.
4. Let S = {(1,2,1)} C R3. Then using Example 5.3.3.2, S+ = L({(-2,1,0),(—1,0,1)}).

We now state the result which gives the existence of an orthogonal subspace of a finite
dimensional inner product space.

Theorem 5.3.7. Let S be a subset of a finite dimensional inner product space V, with
inner product { , ). Then

1. St is a subspace of V.

2. Let W = L(S). Then the subspaces W and S+ = W+ are complementary. That is,
V=W+St=w+ W=

3. Moreover, (u,w) =0 for allw € W and u € S*.

Proof. We leave the prove of the first part to the reader. The prove of the second part is

as follows:

Let dim(V') = n and dim(W') = k. Let {wy, wa, ..., wg} be a basis of W. By Gram-Schmidt
orthogonalization process, we get an orthonormal basis, say {vi,vs,...,vi} of W. Then,
for any v € V,

k
v — Z(V,vi>vi €S+
i=1
So, V.C W + S*. Hence, V = W + S+. We now need to show that W N S+ = {0}.
To do this, let v € WNS+. Then v € W and v € S*. Hence, be definition, (v,v) = 0.
That is, ||v||> = (v,v) = 0 implying v = 0 and hence W N S+ = {0}.
The third part is a direct consequence of the definition of S-+. O
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Exercise 5.3.8. 1. Let A be an n x n orthogonal matriz. Then prove that

(a) the rows of A form an orthonormal basis of R™.

(b) the columns of A form an orthonormal basis of R".
(¢) for any two vectors x,y € R™1  (Ax, Ay) = (x,y).
(d) for any vector x € R || Ax|| = ||x]|.

2. Let A be an n x n unitary matriz. Then prove that

(a) the rows/columns of A form an orthonormal basis of the complex vector space
Ccn.
(b) for any two vectors x,y € C™1 (Ax, Ay) = (x,y).

(c) for any vector x € C™1 || Ax| = ||x]|-.

3. Let A and B be two n X n orthogonal matrices. Then prove that AB and BA are
both orthogonal matrices. Prove a similar result for unitary matrices.

4. Prove the statements made in Remark 5.3.4.3 about orthogonal matrices. State and
prove a similar result for unitary matrices.

5. Let A be an n x n upper triangular matriz. If A is also an orthogonal matriz then A
1$ a diagonal matrix with diagonal entries £1.

6. Determine an orthonormal basis of R* containing the vectors (1,—2,1,3) and (2,1, -3, 1).

1
7. Consider the real inner product space C[—1,1] with (f,g) = [ f(t)g(t)dt. Prove that
~1

2 3

the polynomials 1, x, %az — %, %m — %az form an orthogonal set in C[—1,1]. Find the

corresponding functions f(x) with || f(x)|| = 1.

8. Consider the real inner product space C|—m, x| with (f,g) = [ f(t)g(t)dt. Find an
orthonormal basis for L (z,sinz,sin(z + 1)).

9. Let M be a subspace of R™ and dim M = m. A vector x € R™ is said to be orthogonal
to M if (z,y) =0 for every y € M.

(a) How many linearly independent vectors can be orthogonal to M?
(b) If M = {(z1,72,23) € R® : 21 + 29 + 23 = 0}, determine a mazwimal set of
linearly independent vectors orthogonal to M in R3.
10. Determine an orthogonal basis of L ({(1,1,0,1),(-1,1,1,-1),(0,2,1,0),(1,0,0,0)})
in R*.
t_

11. Let R™ be endowed with the standard inner product. Suppose we have a vector X' =
(r1,22,...,2y) € R™ with ||x]| = 1.
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(a) Then prove that the set {x} can always be extended to form an orthonormal
basis of R™.

(b) Let this basis be {x,Xa,...,X,}. Suppose B = (ej1,eq,...,e,) is the standard
basis of R™ and let A = |[x|g, [x2]g, ..., [Xn]B|. Then prove that A is an

orthogonal matriz.

12. Let viw € R" n > 1 with |ju|]| = ||w|| = 1. Prove that there ezists an orthogonal
matriz A such that Av =w. Prove also that A can be chosen such that det(A) = 1.

5.4 Orthogonal Projections and Applications

Recall that given a k-dimensional vector subspace of a vector space V' of dimension n, one
can always find an (n — k)-dimensional vector subspace Wy of V' (see Exercise 3.3.13.5)
satisfying

W4+ Wy=V and WQWQZ{O}.

The subspace Wy is called the complementary subspace of W in V. We first use Theo-
rem 5.3.7 to get the complementary subspace in such a way that the vectors in different
subspaces are orthogonal. That is, (w,v) =0 for all w € W and v € W;. We then use this
to define an important class of linear transformations on an inner product space, called
orthogonal projections.

Definition 5.4.1 (Orthogonal Complement and Orthogonal Projection). Let W be a sub-
space of a finite dimensional inner product space V.

1. Then W+ is called the orthogonal complement of W in V. We represent it by writing
V=WaWH in place of V=W + W+,

2. Also, for each v € V there exist unique vectors w € W and u € W+ such that
v =w+u. We use this to define

Py :V—V by Py(v)=w.
Then Py is called the orthogonal projection of V' onto W.

Exercise 5.4.2. Let W be a subspace of a finite dimensional inner product space V. Use
V = W @ W+ to define the orthogonal projection operator Py,. of V. onto W+. Prove
that the maps Py and Py, are indeed linear transformations. What can you say about
Py + Py ?

Example 5.4.3. 1. Let V =R>? and W = {(z,y,2) € R} : 2 +y — 2 = 0}. Then it can
be easily verified that {(1,1,—1)} is a basis of W= as for each (z,y,2) € W, we have
x+y—2z=0 and hence

(z,y,2),(1,1,=-1)) =x+y—2=0 foreach (r,y,z) € W.
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Also, using Equation (5.8.1), for everyx! = (x,y,z) € R, we have u = x+g_z(1, 1,-1),

S— (2:(:—3y+z’ —:(:+32y+z’ :c—i—y3+2z> and x =w +u. Let
2 e T
Azg -1 2 1 andB:§ 11 -1
1 1 2 -1 -1 1

Then by definition, Py (x) = w = Ax and Py 1(x) = u = Bx. Observe that
A=A B>=B,A'=A, B'=B, A-B=03, B-A =03 and A+ B = I3, where
03 is the zero matriz of size 3 X 3 and I3 is the identity matrixz of size 3. Also, verify
that rank(A) = 2 and rank(B) = 1.

2. Let W = L( (1,2,1) ) C R3. Then using Ezample 5.5.3.2, and Equation (5.5.1), we
get
WJ_ = L({(_27 17 0)7 (_17 07 1)}) = L({(_27 17 0)7 (17 27 _5)})7

u= (593_23’_2, _2$+629_2Z, —w—26y+5z) and w = %(1,2, 1) with (z,y,z) = w + u.
Hence, for

1 1 5 -2 -1

2| and B = 6 -2 2 =2/,

1 -1 -2 5

1

1
A= 2
0 1

N =~ DN

we have Py (x) = w = Ax and Py, (x) = u = Bx. Observe that A> = A, B? = B,
At = Aand Bt = B, A-B =03, B-A =03 and A + B = I3, where 03 is the
zero matriz of size 3 X 3 and I3 is the identity matriz of size 3. Also, verify that
rank(A) = 1 and rank(B) = 2.

We now prove some basic properties related to orthogonal projections. We also need
the following definition.

Definition 5.4.4 (Self-Adjoint Transformation/Operator). Let V' be an inner product
space with inner product ( , ). A linear transformation T : V — V is called a self-adjoint
operator if (T'(v),u) = (v,T(u)) for every u,v € V.

The example below gives an indication that the self-adjoint operators and Hermitian
matrices are related. It also shows that the vector spaces C™ and R"™ can be decomposed in
terms of the null space and range space of Hermitian matrices. These examples also follow
directly from the fundamental theorem of linear algebra.

Example 5.4.5. 1. Let A be an n xn real symmetric matriz and define Ty : R — R™
by Ta(x) = Ax for every x' € R™.

(a) T4 is a self adjoint operator.
As A= At, for every xt,y! € R",

(Ta(x),y) = (y")Ax = (y")A'x = (Ay)'x = (x, Ay) = (x, Ta(y)).
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(b) N(Ta) = R(Ta)* follows from Theorem 5.2.15 as A = A'. But we do give a
proof for completeness.
Let x € N(Ta). Then Ta(x) = 0 and (x,Ta(u)) = (Ta(x),u) = 0. Thus,
x € R(Ta)*t and hence N (Ta) C R(Ta)™ .
Let x € R(TA)* . Then 0 = (x,Ta(y)) = (Ta(x),y) for every y € R". Hence,
by Ezercise 2 Ta(x) = 0. That is, x € N(A) and hence R(Ta)* C N (T4).

(c) R" = N(Ta) ® R(Ta) as N(Ta) = R(Ta)*t.

(d) Thus N'(A) = Im(A)*, or equivalently, R" = N'(A) @ Im(A).

2. Let A be an n x n Hermitian matriz. Define Ty : C" — C™ defined by T'a(z) = Az
for all zt € C". Then using arguments similar to the arguments in Example 5.4.5.1,
prove the following:

(a) Ta is a self-adjoint operator.
(b) N(Ta) = R(TA)J‘ and C" = N (Ty) & R(T4).
(c) N(A) = Im(A)* and C* = N(A) @ Im(A).

We now state and prove the main result related with orthogonal projection operators.

Theorem 5.4.6. Let W be a vector subspace of a finite dimensional inner product space
V and let Py : V — V be the orthogonal projection operator of V' onto W.

1. Then N(Py)={veV:Pyv)=0}=W,=R(Py.).
2. Then R(Pw) ={Pw(v):veV} =W =N(Py).
3. Then PW o PW = Pw, PWJ_ o PwJ_ = PwJ_.

4. Let Oy denote the zero operator on V defined by Oy (v) = 0 for all v.€ V. Then
Pwl o PW = OV and PW OPwL = Ov.

5. Let Iy denote the identity operator on V defined by Iy (v) = v for all v € V. Then
Iy = Pyw @ Py, 1, where we have written @ instead of + to indicate the relationship
PwJ_ o PW = OV and PW OPwJ_ = Ov.

6. The operators Py and Py, are self-adjoint.

Proof. PART 1: Let u € W+. As V = W@ W, we have u =0+ u for 0 € W and
u € W+. Hence by definition, Py (u) = 0 and Py,1(u) = u. Thus, W+ C N(Py) and
Wt C R(Py ).

Also, suppose that v € N (Py) for some v € V. As v has a unique expression as
v = w + u for some w € W and some u € W+, by definition of Py, we have Py (v) = w.
As v € N(Py), by definition, Py (v) = 0 and hence w = 0. That is, v = u € W+. Thus,
N(Pw) c Wt

One can similarly show that R(P,,.) C W+. Thus, the proof of the first part is
complete.
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PART 2: Similar argument as in the proof of Part 1.
PART 3, PART 4 AND PART 5: Let v € V and let v = w + u for some w € W and
u € W. Then by definition,

(Pw o Pyw)(v) = Pw(Pw(v))=Pw(w)=w& Py(v)=w, (5.4.1)
(PwL o) Pw)(v) = Pwl (Pw(V)) = Pwl (W) =0 and (5.4.2)
(Pw @ Pyo)(v) = Py(v)+Pyr(v) =wH+u=v=Iy(v). (5.4.3)

Hence, applying Exercise 2 to Equations (5.4.1), (5.4.2) and (5.4.3), respectively, we get
Py o Py = Py, Py 1o Py =0y and Iy = Py & Py ..

PART 6: Let u = wi + x; and v = Wy + X, where wi,wo € W and x;,xy € W+,
Then, by definition (w;,x;) =0 for 1 <4,j < 2. Thus,

(Pw(u),v) = (w1, v) = (w1, W) = (u,w2) = (u, Pw(v))
and the proof of the theorem is complete. O

The next theorem is a generalization of Theorem 5.4.6 when a finite dimensional inner
product space V' can be written as V = W1 @Wo@®- - -@ Wy, where W;’s are vector subspaces
of V. That is, for each v € V there exist unique vectors vy, va,...,vg such that

1. vie W, for 1 <i <k,
2. (v;,v;) =0 for each v; € Wj,v; € W;,1 <i# j <k and
3. v=vi+vo+---+ Vg

We omit the proof as it basically uses arguments that are similar to the arguments used in
the proof of Theorem 5.4.6.

Theorem 5.4.7. Let V' be a finite dimensional inner product space and let W1, Wy, ..., Wy
be vector subspaces of V' such that V. =W, @& Wo @ --- & Wi. Then for each i,j, 1 <1 #
Jj < k, there exist orthogonal projection operators Py, : V. — V of V onto W; satisfying
the following:

1. NPw))=Wt=WieWe- - dW,_1 ®Wip1 & & W.
2. R(Pw,) = W;.
PWi OPWZ- = PWi-

PWi o} PWj = Ov.

AT S

Py, is a self-adjoint operator, and
6. Iy = Py, @PWQ@“‘@PWk-
Remark 5.4.8. 1. By Ezxercise 5.4.2, Py s a linear transformation.

2. By Theorem 5.4.6, we observe the following:
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a) The orthogonal projection operators Py and Py,1 are idempotent operators.
b) The orthogonal projection operators Py and Py, are also self-adjoint operators.

c) LetveV. Thenv — Py(v) = (Iy — Py)(v) = Pyo(v) € WE. Thus,
W
(v—Pw(v),w)=0 forevery veV andw e W.

(d) Using Remark 5.4.8.2¢, Py (v) —w € W for each v € V and w € W. Thus,

lv—w[® = |v-Pw(v)+ Py(v) - w|?
= v=Pw)I* + | Pw(v) — w|
+2(v = Pw(v), Pw(v) — w)
= |v—=Pw)I* + |1Pw(v) — w|.

Therefore,

v —w|>lv— Py

and equality holds if and only if w = Py (v). Since Py (v) € W, we see that
dv, W) = inf {[v = wl| :w € W} = [[v— Pu(¥)]|

That is, Py (v) is the vector nearest to v.e W. This can also be stated as: the
vector Py (v) solves the following minimization problem:

inf — =|v—-~ .
inf v —wl = v - P

Exercise 5.4.9. 1. Let A € M,(R) be an idempotent matriz and define Ty : R — R"
by Ta(v) = Av for all vt € R™. Recall the following results from Exercise 4.5.12.5.
((1) TA e} TA = TA
(b) N(Ta) N'R(Ta) = {0}.
(¢) R" =R(Ta) + N(Ta).
The linear map Ta need not be an orthogonal projection operator as R(Ta)*"

need not be equal to N'(T4). Here Ty is called a projection operator of R™ onto
R(T4) along N (Ty).

(d) If A is also symmetric then prove that T4 is an orthogonal projection operator.
(e) Which of the above results can be generalized to an n X n complex idempotent

matriz A? Give reasons for your answer.

2. Find all 2 x 2 real matrices A such that A2 = A. Hence or otherwise, determine all
projection operators of R2.
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5.4.1 Matrix of the Orthogonal Projection

The minimization problem stated above arises in lot of applications. So, it is very helpful
if the matrix of the orthogonal projection can be obtained under a given basis.

To this end, let W be a k-dimensional subspace of R® with W+ as its orthogonal
complement. Let Py : R” — R™ be the orthogonal projection of R™ onto W. Then
Remark 5.3.4.6 implies that we just need to know an orthonormal basis of W. So, let B =
(V1,Va,...,Vk) be an orthonormal basis of . Thus, the matrix of Py equals Zle vivl.

Hence, we have proved the following theorem.

Theorem 5.4.10. Let W be a k-dimensional subspace of R™ and let Py be the corre-

sponding orthogonal projection of R™ onto W. Also assume that B = (vi,va,...,Vg) is
an orthonormal ordered basis of W. Define A = [vq,va,...,Vk|, an n X k matriz. Then
the matriz of Py in the standard ordered basis of R™ is AA! = Zle vivl (a symmetric
matriz).

We illustrate the above theorem with the help of an example. One can also see Exam-
ple 5.4.3.

Example 5.4.11. Let W = {(z,y,z,w) € R* : © = y,z = w} be a subspace of W.

Then an orthonormal ordered basis of W and W is (%(1,1,0,0),%(0,0,1,1)) and
(%(1, —1,0,0), %(0,0, 1, —1)), respectively. Let Py : RY* — R* be an orthogonal projec-
tion of R* onto W. Then
1
s 0 1100
L 0 L 1 g9 9
A= V2 || and Py[B,B]=A44A'=|2 2 | |
0 L 00 % 1
7 .
0 I 00 35 3

)
N

where B = (%(1,1,0,0), 1(0,0,1,1), 15(1,-1,0,0), %(0,0,1,—1)) . Verify that
1. Pw (B, B] is symmetric,
. (Pw|B,B))* = Pw[B, B] and

2
3. (Is — Pw[B, B)) Pw|B,B) = 0 = Py B, B)(I, — Pw|B, B]).

Also, [(z,y, z,w)|p = (x—\;%y, Z\% =y \/_ ) and hence

T+ z+w
PW((QZ‘,Z/,Z,U))) = 2 y(1717070) +

(07 07 17 1)
is the closest vector to the subspace W for any vector (z,y,z,w) € R4
Exercise 5.4.12. 1. Show that for any non-zero vector vt € R™, rank(vv') = 1.

2. Let W be a subspace of an inner product space V and let P : V. — V be the
orthogonal projection of V. onto W. Let B be an orthonormal ordered basis of V.
Then prove that (P[B,B))" = P[B, B].
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3. Let Wy = {(2,0) : x € R} and Wy = {(z,2) : © € R} be two subspaces of R?. Let
Py, and Py, be the corresponding orthogonal projection operators of R? onto Wi
and Wa, respectively. Compute Py, o Py, and conclude that the composition of two
orthogonal projections need not be an orthogonal projection?

4. Let W be an (n—1)-dimensional subspace of R™. Suppose B is an orthogonal ordered
basis of R™ obtained by extending an orthogonal ordered basis of W. Define

T:R" —R" byT(v)=wp—Ww
whenever v.=w + wq for some w € W and wog € W+. Then

(a) prove that T is a linear transformation,
(b) find T[B,B] and
(¢) prove that T[B,B] is an orthogonal matrix.

T is called the reflection operator along W.

5.5 QR Decomposition*

The next result gives the proof of the QR decomposition for real matrices. A similar
result holds for matrices with complex entries. The readers are advised to prove that
for themselves. This decomposition and its generalizations are helpful in the numerical
calculations related with eigenvalue problems (see Chapter 6).

Theorem 5.5.1 (QR Decomposition). Let A be a square matriz of order n with real
entries. Then there exist matrices Q and R such that Q is orthogonal and R is upper
triangular with A = QR.

In case, A is non-singular, the diagonal entries of R can be chosen to be positive. Also,
in this case, the decomposition is unique.

Proof. We prove the theorem when A is non-singular. The proof for the singular case is
left as an exercise.

Let the columns of A be x1,X3,...,X,. Then {x;,X2,...,X,} is a basis of R” and hence
the Gram-Schmidt orthogonalization process gives an ordered basis (see Remark 5.3.4), say
B = (v1,va,...,v,) of R satisfying

L(vi,vo,...,v;) = L(x1,X2,...,X;), for1<i+j<n. (5.5.4)
||VZH = 17 <Vi7vj> = 07 o o
As x; € R" and x; € L(v1,va,...,V;), we can find o, 1 < j < such that

X; = 1;V1 + Qig; Vo + - -+ + @ V; = [(alia ey, 00 ,O)t]B. (555)
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11 Q@12 - Qip
0 ag - agy )
Now define @ = [vy,va,...,vy]and R = | | o _ | - Then by Exercise 5.3.8.4,
0 0 -

@ is an orthogonal matrix and using (5.5.5), we get

Q] @12 o Olp
0 ax - ao
QR = [vi,va,...,Vy]
0 0 -
n
= |11V1, 12V] + Q22Va, ..., E Oész}
i=1
= [x1,X2,...,%X,] = A.

Thus, we see that A = QR, where @ is an orthogonal matrix (see Remark 5.3.4.1) and R
is an upper triangular matrix.

The proof doesn’t guarantee that for 1 < 7 < n, «y; is positive. But this can be achieved
by replacing the vector v; by —v; whenever «y; is negative.

Uniqueness: suppose Q1R = Q2Ry then Q5 10, = RgRl_l. Observe the following
properties of upper triangular matrices.

1. The inverse of an upper triangular matrix is also an upper triangular matrix, and
2. product of upper triangular matrices is also upper triangular.

Thus the matrix R2R1_1 is an upper triangular matrix. Also, by Exercise 5.3.8.3, the matrix
Qz_lQl is an orthogonal matrix. Hence, by Exercise 5.3.8.5, RgRl_l = 1I,. So, Ry = R; and
therefore Q9 = Q1. O

Let A = [x1,X2,...,Xg] be an n X k matrix with rank (A) = r. Then by Remark
5.3.4.1c , the Gram-Schmidt orthogonalization process applied to {x1,x2,...,Xy} yields a
set {v1,va,...,v,.} of orthonormal vectors of R™ and for each i, 1 <i <, we have

L(vi,va,...,vi) = L(x1,X2,...,%;), forsome j, i <j<k.
Hence, proceeding on the lines of the above theorem, we have the following result.

Theorem 5.5.2 (Generalized QR Decomposition). Let A be an n X k matriz of rank r.
Then A = QR, where

1. Q =[v1,va,...,Vv,] is an n X r matriz with QtQ =1,
2. L(vy,ve,...,v,) = L(x1,X2,...,Xg), and

3. R is an r x k matriz with rank (R) = r.
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1 0 1 2
01 -1 1 . .

Example 5.5.3. 1. Let A = 10 1 1l Find an orthogonal matriz (Q and an
01 1 1

upper triangular matriz R such that A = QR.
Solution: From Example 5.5.3, we know that

1 1
Vi = _(1707 170)7 V2 = _(O, 170, 1) and V3 =

1
—(0,-1,0,1). 5.5.6
7 7 \/5( ) (5.5.6)
We now compute wy. If we denote uy = (2,1,1,1)¢ then
1
wi =uy — (ug,v1)vy — (U, v2)ve — (uyg, v3) vy = 5(1,0, —1,0)". (5.5.7)
Thus, using Equations (5.5.6), (5.5.7) and Q = [Vl,Vg,Vg,V4], we get
1 17
0 % =% 0 2 2
Q=1, ‘65 \65 1| and R = 8 \{; \35 \{)7 . The readers are advised
Toa Y o 0 o0 =%
0 % v Y V2
to check that A = QR is indeed correct.
1 1 1 0]
-1 0 -2 1| , o
2. Let A= 11 1 ol Find a 4 x 3 matriz Q satisfying Q'Q = I3 and an upper
1 0 2 1

triangular matriz R such that A = QR.

Solution: Let us apply the Gram Schmidt orthogonalization process to the columns of
A. That is, apply the process to the subset {(1,—1,1,1),(1,0,1,0),(1,-2,1,2),(0,1,0,1)}
of R%.

Let u; = (1,—1,1,1). Define vi = %ul. Let ug = (1,0,1,0). Then
wo = (1,0,1,0) — (ug,vq)vy = (1,0,1,0) — vy = %(1, 1,1,-1).
Hence, vo = %(1, 1,1,-1). Let uz = (1,—2,1,2). Then
w3 = ug — (uz, vi)vy — (us, vy)ve = uz — 3vy + vo = 0.
So, we again take ug = (0,1,0,1). Then
w3 = ug — (us, vi)vy — (ug, vo)ve = ug — Ovy — Ovy = us.

So, vy = —-(0,1,0,1). Hence,

V2
11
1ol
KT 21 3 0
Q = [v1,va,v3] = i i \65 ,and R=10 1 -1 0
iAo 00 0 V2
2 2 S

The readers are advised to check the following:
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(a) rank (A) =3,
(b) A= QR with Q'Q = I3, and
(¢) R a3 x4 upper triangular matriz with rank (R) = 3.

5.6 Summary
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Chapter 6

Eigenvalues, Eigenvectors and
Diagonalization

6.1 Introduction and Definitions

In this chapter, the linear transformations are from the complex vector space C" to itself.
Observe that in this case, the matrix of the linear transformation is an n X n matrix. So, in
this chapter, all the matrices are square matrices and a vector x means x = (z1, 2, ..., 2,)"
for some positive integer n.

Example 6.1.1. Let A be a real symmetric matriz. Consider the following problem:
Mazimize (Minimize) x'Ax such that x € R™ and x'x = 1.

To solve this, consider the Lagrangian

n

L(x,\) = x'Ax - Mx'x = 1) = Y > ayziz; =AY o] —1).

i=1 j=1 i=1

Partially differentiating L(x,\) with respect to x; for 1 < i <n, we get

OL
— = 2a1121 + 2a12T9 + - - - + 201,Ty — 227,
81’1
OL
— = 2a91%1 + 20909 + - - - + 2a2,T, — 2AX2,
8352
and so on, till
oL
—— = 20,121 + 2ap2%2 + - + 2a00Tn — 2DXy,-
oxy,

Therefore, to get the points of extremum, we solve for

0L 0L oL = oL
C \Qxy Oxe’ 7 Oy Ox
We therefore need to find a A € R and 0 # x € R" such that Ax = Ax for the extremal

problem.

(0,0,...,0) = 2(Ax — A\x).

141
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Let A be a matrix of order n. In general, we ask the question:
For what values of A € I, there exist a non-zero vector x € F" such that

Ax = \x? (6.1.1)

Here, F" stands for either the vector space R™ over R or C" over C. Equation (6.1.1) is
equivalent to the equation

(A—=X)x=0.
By Theorem 2.4.1, this system of linear equations has a non-zero solution, if
rank (A — AI) <n, or equivalently det(A— AI)=0.

So, to solve (6.1.1), we are forced to choose those values of A € IF for which det(A—AI) = 0.
Observe that det(A — AI) is a polynomial in A of degree n. We are therefore lead to the
following definition.

Definition 6.1.2 (Characteristic Polynomial, Characteristic Equation). Let A be a square
matriz of order n. The polynomial det(A — AI) is called the characteristic polynomial of A
and is denoted by pa(\) (in short, p(\), if the matriz A is clear from the context). The
equation p(A) = 0 is called the characteristic equation of A. If X € F is a solution of the
characteristic equation p(\) = 0, then X is called a characteristic value of A.

Some books use the term EIGENVALUE in place of characteristic value.

Theorem 6.1.3. Let A € M, (F). Suppose A = Ao € F is a root of the characteristic
equation. Then there exists a non-zero v € F" such that Av = A\gv.

Proof. Since Ay is a root of the characteristic equation, det(A — AoI) = 0. This shows that
the matrix A — Mg/ is singular and therefore by Theorem 2.4.1 the linear system

(A — )\()In)x =0
has a non-zero solution. O

Remark 6.1.4. Observe that the linear system Ax = Ax has a solution x = 0 for every
A € F. So, we consider only those x € F™ that are non-zero and are also solutions of the
linear system Ax = AX.

Definition 6.1.5 (Eigenvalue and Eigenvector). Let A € M, (F) and let the linear system
Ax = Ax has a non-zero solution x € F" for some A € F. Then

1. X € F is called an eigenvalue of A,
2. x € F" is called an eigenvector corresponding to the eigenvalue A of A, and

3. the tuple (\,x) is called an eigen-pair.
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Remark 6.1.6. To understand the difference between a characteristic value and an eigen-
value, we give the following example.
0

Let A= . Then pa(\) = A2 + 1. Also, define the linear operator Ty : F2—TF?

by Ta(x) = Ax for every x € F2.

1. Suppose F = C, i.e., A € My(C). Then the roots of p(\) =0 in C are +i. So, A has
(i, (1,9)") and (=i, (i,1)!) as eigen-pairs.

2. If A € My(R), then p(\) = 0 has no solution in R. Therefore, if F = R, then A has
no eigenvalue but it has +i as characteristic values.

Remark 6.1.7. 1. Let A € M, (F). Suppose (\,x) is an eigen-pair of A. Then for
any ¢ € F, ¢ # 0, (A, cx) is also an eigen-pair for A. Similarly, if X1,Xa,...,X, are

T
linearly independent eigenvectors of A corresponding to the eigenvalue \, then > ¢;x;

=1
is also an eigenvector of A corresponding to X if at least one ¢; # 0. Hence, if S

s a collection of eigenvectors, it is implicitly understood that the set S is LINEARLY
INDEPENDENT.

2. Suppose pa(Nog) = 0 for some A\g € F. Then A— oI is singular. If rank (A—Xol) =r
then r < n. Hence, by Theorem 2.4.1 on page 48, the system (A—XoI)x =0 hasn—r
linearly independent solutions. That is, A has n—r linearly independent eigenvectors
corresponding to Ao whenever rank (A — X\ol) = r.

Example 6.1.8. 1. Let A = diag(dy,da,...,d,) with d; € R for 1 < i < n. Then
p(A) = [T (A —d;) and the eigen-pairs are (di,ey), (d2,e2),...,(dn,en).
i=1

1

2. Let A= . Then p(A\) = (1 — \)2. Hence, the characteristic equation has roots

1,1. That is, 1 is a repeated eigenvalue. But the system (A—Iy)x = 0 for x = (z1,2)
implies that xo = 0. Thus, x = (z1,0)’
Remark 6.1.7.1, (1,0)* is an eigenvector. Therefore, note that 1 1S A REPEATED

EIGENVALUE WHEREAS THERE IS ONLY ONE EIGENVECTOR.

10
0 1
But in this case, the system (A — I)x = 0 has a solution for every xt € R2. Hence,
we can CHOOSE ANY TWO LINEARLY INDEPENDENT VECTORS x!,y! from R? to get
(1,x) and (1,y) as the two eigen-pairs. In general, if x1,Xa,...,X, € R" are linearly

is a solution of (A — Is)x = 0. Hence using

3. Let A = . Then p(\) = (1 — \)2. Again, 1 is a repeated root of p(A\) = 0.

independent vectors then (1,x1), (1,%2), ...,(1,x,) are eigen-pairs of the identity
matriz, I,.
1 2 . .
4. Let A = 5 1| Then p(A) = (A —3)(A + 1) and its roots are 3,—1. Verify that
the eigen-pairs are (3,(1,1)Y) and (=1, (1, —1)*). The readers are advised to prove the
linear independence of the two eigenvectors.
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1 -1
5. Let A= ERE Then p(\) = A2 —2X\+ 2 and its roots are 1 +1i,1 —1i. Hence, over

R, the matrix A has no eigenvalue. Over C, the reader is required to show that the
eigen-pairs are (1 +1,(i,1)%) and (1 —1i,(1,1)").

Exercise 6.1.9. 1. Find the eigenvalues of a triangular matriz.

2. Find eigen-pairs over C, for each of the following matrices:

1 1+ 3 141 cosf —sinf and cosf sinf
’ sinf cos# sinf —cosf|’

1—21 1 -1+ {

3. Let A and B be similar matrices.

(a) Then prove that A and B have the same set of eigenvalues.

(b) If B = PAP~! for some invertible matriz P then prove that Px is an eigenvector
of B if and only if x is an eigenvector of A.

n
4. Let A = (a;;) be an n x n matriz. Suppose that for all i, 1 < i < n, Y a;; = a.
j=1

Then prove that a is an eigenvalue of A. What is the corresponding eigenvector?

5. Prove that the matrices A and At have the same set of eigenvalues. Construct a 2 x 2
matriz A such that the eigenvectors of A and At are different.

6. Let A be a matriz such that A2 = A (A is called an idempotent matriz). Then prove
that its eigenvalues are either O or 1 or both.

7. Let A be a matriz such that A¥ = 0 (A is called a nilpotent matriz) for some positive
integer k > 1. Then prove that its eigenvalues are all 0.

2 1 2 i
8. Compute the eigen-pairs of the matrices [ ] and [ Z] .

-1 0 t 0
Theorem 6.1.10. Let A = [a;;] be an n x n matriz with eigenvalues i, A2, ..., Ay, not
n n n
necessarily distinct. Then det(A) = [ A\i and tr(A) = > a;i = > A\
i=1 i=1 i=1

Proof. Since A1, Ag, ..., A, are the n eigenvalues of A, by definition,
det(A — M) =p(A) = (=1)"(A=A)(A = X2) - (A = Ap). (6.1.2)

(6.1.2) is an identity in A as polynomials. Therefore, by substituting A = 0 in (6.1.2), we
get

det(4) = (—=1)"(=1)" [} =[] »
=1 i=1
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Also,
aip —A a2 - aip
asy  agx— A -+ ap
det(A — AI,) = _ _ _ . (6.1.3)
anl an2 S G — A
= ao—)\a1+/\2a2+---
(=)Ao F (—1)A" (6.1.4)
for some ag, a1, ...,a,_1 € F. Note that a,_1, the coefficient of (—1)"~'X\"~1, comes from

the product
(a11 — /\)(&22 — )\) cee (arm — )\)
So, ap—1 = Y a;; = tr(A) by definition of trace.

i=1
But , from (6.1.2) and (6.1.4), we get

ap — Aag + Nag + -+ (=) N a, g+ (=1)"A"
= (=D)"A =)A= A2) (A=) (6.1.5)

Therefore, comparing the coefficient of (—1)""!'A\"~1, we have
tr(A) = ap_1 = (=D{(-1) D_ N} =D\
i=1 i=1

Hence, we get the required result. O

Exercise 6.1.11. 1. Let A be a skew symmetric matrix of order 2n + 1. Then prove
that 0 is an eigenvalue of A.

2. Let A be a 3 x 3 orthogonal matriz (AA* = I). If det(A) = 1, then prove that there
exists a non-zero vector v € R® such that Av =v.

Let A be an n x n matrix. Then in the proof of the above theorem, we observed that
the characteristic equation det(A— AI) = 0 is a polynomial equation of degree n in A. Also,
for some numbers ag, a1,...,a,_1 € F, it has the form

A 4y A a2+ a4 ag = 0.

Note that, in the expression det(A — AI) = 0, A is an element of F. Thus, we can only
substitute A by elements of IF.
It turns out that the expression

A" +ap 1 A" b a0 A’ 4+ a1 A+ agl =0

holds true as a matrix identity. This is a celebrated theorem called the Cayley Hamilton
Theorem. We state this theorem without proof and give some implications.
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Theorem 6.1.12 (Cayley Hamilton Theorem). Let A be a square matriz of order n. Then
A satisfies its characteristic equation. That is,

A" 4 ap 1 A" b an 0 A%+ A+ agl =0
holds true as a matriz identity.

Some of the implications of Cayley Hamilton Theorem are as follows.

1
Remark 6.1.13. 1. Let A = 8 e Then its characteristic polynomial is p(A) =

A2, Also, for the function, f(z) =z, f(0)=0, and f(A) = A # 0. This shows that
the condition f(A\) =0 for each eigenvalue A of A does not imply that f(A) = 0.

2. let A be a square matriz of order n with characteristic polynomial p(\) = A" +
an_lx\"_l + an_g)\2 +---a1 A+ ag.

(a) Then for any positive integer £, we can use the division algorithm to find numbers
a0, 1, ..., Qn—1 and a polynomial f(\) such that

A= N+ a1t N oA+ A+ ag)
+ag+Aap+ -+ Ny,

Hence, by the Cayley Hamilton Theorem,
AZ =apl +oA+---+ an_lAn_l.

That is, we just need to compute the powers of A till n — 1.

In the language of graph theory, it says the following:

“Let G be a graph on n vertices. Suppose there is no path of length n — 1 or less from
a vertex v to a vertex u of G. Then there is no path from v to u of any length. That is,

the graph G is disconnected and v and u are in different components.”

(b) If A is non-singular then a, = det(A) # 0 and hence

-1
A= a—[An_l a1 AV P4t agd)

This matriz identity can be used to calculate the inverse.
Note that the vector A=% (as an element of the vector space of all n x n matrices) is a

linear combination of the vectors I, A, ..., AL

Exercise 6.1.14. Find inverse of the following matrices by using the Cayley Hamilton

Theorem
2 3 4 -1 -1 1 1 -2 -1
i) |5 6 7 i) 1 -1 1 i) -2 1 -1
1 1 2 0 1 1 0o -1 2
Theorem 6.1.15. If A\, Ao, ..., A\; are distinct eigenvalues of a matriz A with correspond-

ing eigenvectors Xi,Xa, ..., Xy, then the set {x1,Xo,..., Xk} is linearly independent.
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Proof. The proof is by induction on the number m of eigenvalues. The result is obviously
true if m = 1 as the corresponding eigenvector is non-zero and we know that any set
containing exactly one non-zero vector is linearly independent.

Let the result be true for m, 1 < m < k. We prove the result for m 4+ 1. We consider
the equation

C1T1 + coTo + -+ + Cma1Tma1 = 0 (6.1.6)
for the unknowns ¢y, co, ..., cpy1. We have
0=A40 = A(Clﬂfl + coxg + -+ + Cm+1$m+1)

= c1Ax1+ cArs + -+ cpr1 ATt

= aMT1+ X re+ -+ Cnr1 Ama1Tmet - (6.1.7)
From Equations (6.1.6) and (6.1.7), we get
ca(A2 — A1)x2 + c3(A3 — A1)x3 + - + 1 (A1 — A1)Xme1 = 0.
This is an equation in m eigenvectors. So, by the induction hypothesis, we have
ciAi—MA)=0 for 2<i<m+1

But the eigenvalues are distinct implies \; — Ay # 0 for 2 < i < m + 1. We therefore get
¢i =0 for 2 <i<m+ 1. Also, x; # 0 and therefore (6.1.6) gives ¢; = 0.
Thus, we have the required result. O

We are thus lead to the following important corollary.

Corollary 6.1.16. The eigenvectors corresponding to distinct eigenvalues are linearly in-
dependent.

Exercise 6.1.17. 1. Let A, B € M,,(R). Prove that

(a) if X is an eigenvalue of A then \F is an eigenvalue of A* for all k € Z,
1
(b) if A is invertible and X is an eigenvalue of A then X is an eigenvalue of A71.

(c) if A is nonsingular then BA™' and A~'B have the same set of eigenvalues.

(d) AB and BA have the same non-zero eigenvalues.

In each case, what can you say about the eigenvectors?

2. Let A € M,,(R) be an invertible matriz and let x',y* € R™ with x # 0 and y' A™'x #
0. Define B = xy'A~'. Then prove that
(a) Xo = y'A~'x is an eigenvalue of B of multiplicity 1.
(b) 0 is an eigenvalue of B of multiplicity n — 1 [Hint: Use Ezercise 6.1.17.1d].
(c) 14+ a)g is an eigenvalue of I + aB of multiplicity 1, for any o € R, o # 0.
(d) 1 is an eigenvalue of I + aB of multiplicity n — 1, for any o € R.
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(e) det(A + axy’) equals (1 + a)g)det(A) for any a € R. This result is known as
the Shermon-Morrison formula for determinant.

3. Let A, B € M(R) such that det(A) = det(B) and tr(A) = tr(B).

(a) Do A and B have the same set of eigenvalues?

(b) Give examples to show that the matrices A and B need not be similar.

4. Let A, B € M,(R). Also, let (A1,u) be an eigen-pair for A and (A2, V) be an eigen-
pair for B.

(a) If u = av for some o € R then (A + A2, u) is an eigen-pair for A+ B.

(b) Give an example to show that if u and v are linearly independent then A\j + Ag
need not be an eigenvalue of A+ B.

5. Let A € M,,(R) be an invertible matriz with eigen-pairs (A1, uy), (A2, u2), ..., (A, up).
Then prove that B = {uy, ua, ..., u,} forms a basis of R"(R). If [b]g = (c1,c,...,¢p)t
then the system Ax = b has the unique solution

C1 Cn

_a 2 g
X = A1u1+ )\2u2+ + )\nun.

6.2 Diagonalization

Let A € M,,(F) and let T4 : F*—TF"™ be the corresponding linear operator. In this section,
we ask the question “does there exist a basis B of F” such that T'4[B, B], the matrix of the
linear operator Ty with respect to the ordered basis B, is a diagonal matrix.” it will be
shown that for a certain class of matrices, the answer to the above question is in affirmative.
To start with, we have the following definition.

Definition 6.2.1 (Matrix Digitalization). A matriz A is said to be diagonalizable if there
exists a non-singular matriz P such that P~YAP is a diagonal matriz.

Remark 6.2.2. Let A € M,,(F) be a diagonalizable matriz with eigenvalues A1, A, ..., \p.
By definition, A is similar to a diagonal matriz D = diag(A1, A2, ..., \n) as similar matrices
have the same set of eigenvalues and the eigenvalues of a diagonal matrixz are its diagonal
entries.

0 1

Example 6.2.3. Let A = . Then we have the following:

1. Let V. =RZ% Then A has no real eigenvalue (see Example 6.1.7 and hence A doesn’t
have eigenvectors that are vectors in R%. Hence, there does not exist any non-singular
2 x 2 real matriz P such that P~YAP is a diagonal matriz.
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2. In case, V.= C?(C), the two complex eigenvalues of A are —i,i and the corresponding
eigenvectors are (i,1)t and (—i,1)!, respectively. Also, (i,1)" and (—i,1)" can be taken

as a basis of C2(C). Define U = - T Then

V2 11 1
—i 0
0 4|’

Theorem 6.2.4. Let A € M,(R). Then A is diagonalizable if and only if A has n linearly
independent eigenvectors.

U AU =

Proof. Let A be diagonalizable. Then there exist matrices P and D such that
P71AP = D = diag(\1, A2, ..., \n).
Or equivalently, AP = PD. Let P = [uj,uy,...,u,]. Then AP = PD implies that
Au; = dju; for 1<i<n.

Since u;’s are the columns of a non-singular matrix P, using Corollary 4.3.10, they form
a linearly independent set. Thus, we have shown that if A is diagonalizable then A has n
linearly independent eigenvectors.

Conversely, suppose A has n linearly independent eigenvectors u;, 1 < ¢ < n with
eigenvalues A;. Then Au; = \ju;. Let P = [u,uy,...,u,]. Since u, ug, ..., u, are linearly
independent, by Corollary 4.3.10, P is non-singular. Also,

AP = [Aul, AUQ, e ,Aun] = [)\1111, )\2112, e ,)\nun]
A0 0
0 A O
= [u,ug,...,u,) | . | =PD.
0 0 X\
Therefore, the matrix A is diagonalizable. U

Corollary 6.2.5. If the eigenvalues of a A € M,,(R) are distinct then A is diagonalizable.

Proof. As A € M,,(R), it has n eigenvalues. Since all the eigenvalues of A are distinct, by
Corollary 6.1.16, the n eigenvectors are linearly independent. Hence, by Theorem 6.2.4, A
is diagonalizable. O

Corollary 6.2.6. Let A1, g, ..., A\, be distinct eigenvalues of A € M, (R) and let p(\) be
its characteristic polynomial. Suppose that for each i, 1 < i < k, (x — X\;)™ divides p(\)
but (z — \)™t! does not divides p(\) for some positive integers m;. Then prove that A is
diagonalizable if and only if dim(ker(A — /\Z-I)) =m,; for each i,1 < i < k. Or equivalently
A is diagonalizable if and only if rank(A — \;I) = n —m; for each i,1 <i <k.
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Proof. As A is diagonalizable, by Theorem 6.2.4, A has n linearly independent eigenvalues.

k

Also, by assumption, »  m; = n as deg(p(A)) = n. Hence, for each eigenvalue \;, 1 < i <k,
i=1

A has exactly m; linearly independent eigenvectors. Thus, for each i, 1 < i < k, the

homogeneous linear system (A — \;I)x = 0 has exactly m; linearly independent vectors in
its solution set. Therefore, dim (ker(A — A;I)) > m;. Indeed dim(ker(4 — ;1)) = m; for
1 <4 < k follows from a simple counting argument.

Now suppose that for each i, 1 <1i <k, dim(ker(A — )\iI)) = m,;. Then for each i, 1 <
1 < k, we can choose m; linearly independent eigenvectors. Also by Corollary 6.1.16, the

eigenvectors corresponding to distinct eigenvalues are linearly independent. Hence A has
k

n = Y m; linearly independent eigenvectors. Hence by Theorem 6.2.4, A is diagonalizable.
=1
Z O
2 1 1
Example 6.2.7. 1. Let A= |1 2 1 |. Then pa(A) = (2 — \)?(1 — \). Hence,
0 -1 1

the eigenvalues of A are 1,2,2. Verify that (1, (1,0, —1)t) and ((2, (1,1, —1)t) are the
only eigen-pairs. That is, the matriz A has exactly one eigenvector corresponding to
the repeated eigenvalue 2. Hence, by Theorem 6.2.4, A is not diagonalizable.

2 11
2. Let A= |1 2 1 |.Thenpa(\) = (4—X)(1—-N\)2. Hence, A has eigenvalues 1,1, 4.
1 1 2

Verify that u; = (1,—1,0)! and us = (1,0, —1)* are eigenvectors corresponding to 1
and uz = (1,1,1)! is an eigenvector corresponding to the eigenvalue 4. Asuj,us,us
are linearly independent, by Theorem 6.2.4, A is diagonalizable.

Note that the vectors uy and uy (corresponding to the eigenvalue 1) are not orthogo-
nal. So, in place of ui,us, we will take the orthogonal vectors uy and w = 2u; — ug

1 1 1
1 1 1 ? ve 7?
as eigenvectors. Now define U = [—=ug, —=Ug, —=W| = | —= 0 —= | . ThenU
O A
V3 V2 V6

is an orthogonal matriz and U*AU = diag(4,1,1).

Observe that A is a symmetric matriz. In this case, we chose our eigenvectors to be
mutually orthogonal. This result is true for any real symmetric matriz A. This result
will be proved later.

0 in 6
Exercise 6.2.8. 1. Are the matrices A = cos St

]andB:

cosf sinf ]

—sinf cos@ sinf —cosf

for some 0,0 < 0 < 27, diagonalizable?
2. Find the eigen-pairs of A = [aijlnxn, where aj; = a if i = j and b, otherwise.

A0
0 B
diagonalizable if and only if both A and B are diagonalizable.

3. Let A € M,(R) and B € M,,(R). Suppose C = . Then prove that C is
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4. Let T : R> — R be a linear operator with rank (T —I) = 3 and
N(T) = {(z1, 22, 23,24, 75) €R® | 21 + 24 + 25 = 0, 22 + 3 = 0}.

(a) Determine the eigenvalues of T?

(b) Find the number of linearly independent eigenvectors corresponding to each
eigenvalue?

(c) Is T diagonalizable? Justify your answer.

5. Let A be a non-zero square matriz such that A?> = 0. Prove that A cannot be diago-
nalized. [Hint: Use Remark 6.2.2.]

6. Are the following matrices diagonalizable?

N P

i) Cd) (000 1|, @) |0 =5 6| and i) | .
00 -1 1 0o o 0 s 4 i 0
00 0 4

6.3 Diagonalizable Matrices

In this section, we will look at some special classes of square matrices that are diagonal-
izable. Recall that for a matrix A = [a;;], A* = [a;;] = Al = A, is called the conjugate
transpose of A. We also recall the following definitions.

Definition 6.3.1 (Special Matrices). 1. A matriz A € M,,(C) is called

(a) a Hermitian matriz if A* = A.

(b) a unitary matriz if A A* = A¥A =1,
(¢) a skew-Hermitian matriz if A* = —A.
(d) a normal matriz if A*A = AA*.

2. A matriz A € M,(R) is called

(a) a symmetric matriz if A = A.
(b) an orthogonal matriz if A Al = A'A = I,.

(c) a skew-symmetric matriz if A = —A.

Note that a symmetric matrix is always Hermitian, a skew-symmetric matrix is always
skew-Hermitian and an orthogonal matrix is always unitary. Each of these matrices are
normal. If A is a unitary matrix then A* = A1

1

Example 6.3.2. 1. Let B = . Then B is skew-Hermitian.

-1 1

1 1

1
2. Let A = L [ ’ . Then A is a unitary matrix and B is a
7

V2 1

normal matriz. Note that /2A is also a normal matriz.

]andB:
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Definition 6.3.3 (Unitary Equivalence). Let A, B € M, (C). They are called unitarily
equivalent if there exists a unitary matrix U such that A = U*BU. As U is a unitary
matriz, U* = U™, Hence, A is also unitarily similar to B.

Exercise 6.3.4. 1. Let A be a square matriz such that UAU”* is a diagonal matriz for
some unitary matriz U. Prove that A is a normal matriz.

2. Let A € M,(C). Then A= 1(A+A*)+%(A— A*), where $(A+ A*) is the Hermitian
part of A and %(A — A*) is the skew-Hermitian part of A. Recall that a similar result
was given in Exercise 1.3.5.1.

3. Let A € M,,(C). Prove that A — A* is always skew-Hermitian.

4. Every square matrix can be uniquely expressed as A = S + iT, where both S and T
are Hermitian matrices.

5. Does there exist a unitary matriz U such that U='AU = B where

11 4 2 —1 3vV2
A=10 2 2| and B=1|0 1 2
0 0 3 0 0 3

Theorem 6.3.5. Let A € M,,(C) be a Hermitian matriz. Then
1. the eigenvalues, \j;1 <1i <n, of A are real.

2. A is unitarily diagonalizable. That is, there exists a unitary matrix U such that
U*AU = D; where D = diag(A\1,..., \n). In other words, the eigenvectors of A
form an orthonormal basis of C™.

Proof. For the proof of Part 1, let (A, x) be an eigen-pair. Then Ax = Ax and A* = A
implies that x*A = x*A* = (Ax)* = (Ax)* = Ax*. Hence,

Ax*x = x*(Ax) = x*(4x) = (x*A)x = (Ax*)x = Ax*x.

As x is an eigenvector, x # 0 and therefore ||x||? = x*x # 0. Thus A = X. That is, A is a
real number.

For the proof of Part 2, we use induction on n, the size of the matrix. The result is
clearly true for n = 1. Let the result be true for n = k — 1. we need to prove the result for
n=k.

Let (A1,x) be an eigen-pair of a k x k matrix A with [[x|| = 1. Then by Part 1,
A1 € R. As {x} is a linearly independent set, by Theorem 3.3.11 and the Gram-Schmidt
Orthogonalization process, we get an orthonormal basis {x,us,...,u;} of Ck. Let U; =
[x,ug,...,ux] (the vectors x,ug,...,u; are columns of the matrix U;). Then U; is a
unitary matrix. In particular, ufx = 0, for 2 < ¢ < k. Therefore, for 2 <i <k,

x*(Auw;) = (Au;)'x = (U A")x = uj (A'x) = uj (Ax) = u; (A\1x) = A\ (u;x) =0 and
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x
u;
UfAU, = U{[Ax, Auy, -+, Aug] = | 7| [Aix, Aug, -+, Aug]
uy,
Ax*x oo x*Auy Al O

ub(Mx) - uj(Auy) |0

up(Mx) o up(Auy) 0

where B is a (k—1) x (k—1) matrix. As (U;AU;)* = U AU; and \; € R, the matrix B is
also Hermitian. Therefore, by induction hypothesis there exists a (k — 1) x (k — 1) unitary
matrix Uy such that Uy BUy = Dy = diag(\a, ..., Ax), where \; € R, for 2 <i <k are the

eigenvalues of B. Define U = U; L (5*) . Then U is a unitary matrix and
2
1 o) 1 0
U'AU = (U AU
( ! 0 U, ) < ! 0 U, )
1 0 1 0 1 0 1 0
= U AU = Ul AU
<0Ug 1)<10U2) 0U5(11)0U2
|1 0 (A& Of[1 O] [N\ 0 A0
|0 Us| |0 B|l|0 Ul |0 UsBU| |0 Do’
Observe that Ag,..., A, are also the eigenvalues of A. Thus, U*AU is a diagonal matrix
with diagonal entries A1, Ao, ..., Ag, the eigenvalues of A. Hence, the result follows. O

Corollary 6.3.6. Let A € M,,(R) be a symmetric matriz. Then
1. the eigenvalues of A are all real,
2. the eigenvectors can be chosen to have real entries and
3. the eigenvectors also form an orthonormal basis of R™.

Proof. As A is symmetric, A is also a Hermitian matrix. Hence, by Theorem 6.3.5, the
eigenvalues of A are all real. Let (A, x) be an eigen-pair of A. Suppose x! € C". Then
there exist y!,z' € R” such that x =y + iz. So,

Ax = Mx = A(y +iz) = Ny +iz).

Comparing the real and imaginary parts, we get Ay = Ay and Az = Az. Thus, we can
choose the eigenvectors to have real entries.

The readers are advised to prove the orthonormality of the eigenvectors (see the proof
of Theorem 6.3.5). O
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Exercise 6.3.7. 1. Let A be a skew-Hermitian matriz. Then the eigenvalues of A are
either zero or purely imaginary. Also, the eigenvectors corresponding to distinct
eigenvalues are mutually orthogonal. [Hint: Carefully see the proof of Theorem 6.3.5.]

2. Let A be a normal matriz with (\,x) as an eigen-pair. Then

(a) (A*)Ex for k € Z7F is also an eigenvector corresponding to \.

(b) (\,x) is an eigen-pair for A*. [Hint: Verify ||[A*x — Xx||? = || Ax — Xx||%.]
3. Let A be an n x n unitary matriz. Then

(a) the rows of A form an orthonormal basis of C".

(b) the columns of A form an orthonormal basis of C".
(c) for any two vectors x,y € C™!, (Ax, Ay) = (x,y).
(d) for any vector x € C™1 || Ax|| = ||x].

(e) |A\| =1 for any eigenvalue A of A.

(f) the eigenvectors x,y corresponding to distinct eigenvalues A and p satisfy (x,y) =
0. That is, if (A\,x) and (u,y) are eigen-pairs with X\ # u, then x and 'y are mu-
tually orthogonal.

4. Show that the matrices A = [3 i] and B = 1(1 92] are similar. Is it possible to

find a unitary matriz U such that A = U*BU?

5. Let A be a 2 x 2 orthogonal matrixz. Then prove the following:

(a) if det(A) = 1, then A = cosf —sinf for some 0, 0 <6 < 2w. That is, A

sinf cosf

counterclockwise rotates 6’1-167”@/ point in R? by an angle 6.

(b) if det A = —1, then A = cosf sinf for some 0, 0 <6 < 2xw. That is, A

sinf —cosf

reflects every point in R? “about a line passing through origin. Determine this
line. Or equivalently, there ezists a non-singular matriz P such that P~'AP =

b

6. Let A be a 3 x 3 orthogonal matriz. Then prove the following:

(a) if det(A) = 1, then A is a rotation about a fized axis, in the sense that A
has an eigen-pair (1,x) such that the restriction of A to the plane x* is a two

dimensional rotation in x+.

(b) if det A = —1, then A corresponds to a reflection through a plane P, followed by
a rotation about the line through origin that is orthogonal to P.
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2 11
7. Let A= |1 2 1| . Find a non-singular matriz P such that P"*AP = diag (4,1,1).
11 2

Use this to compute A3,

8. Let A be a Hermitian matriz. Then prove that rank(A) equals the number of non-zero
eigenvalues of A.

Remark 6.3.8. Let A and B be the 2 x 2 matrices in Exercise 6.3.7.4. Then A and B
were similar matrices but they were not unitarily equivalent. In nmumerical calculations,
unitary transformations are preferred as compared to similarity transformations due to the
following main reasons:

1. Ezxercise 6.3.7.3d implies that an orthonormal change of basis does not alter the sum
of squares of the absolute values of the entries. This need not be true under a non-
singularity change of basis.

2. For a unitary matriz U, U~' = U* and hence unitary equivalence is computationally
simpler.

3. Also there is no round-off error in the operation of “conjugate transpose”.

We next prove the Schur’s Lemma and use it to show that normal matrices are unitarily
diagonalizable. The proof is similar to the proof of Theorem 6.3.5. We give it again so
that the readers have a better understanding of unitary transformations.

Lemma 6.3.9. (Schur’s Lemma) Let A € M,,(C). Then A is unitarily similar to an upper
triangular matriz.

Proof. We will prove the result by induction on n. The result is clearly true for n = 1. Let
the result be true for n = k — 1. we need to prove the result for n = k.

Let (A1,x) be an eigen-pair of a k X k matrix A with ||x|| = 1. Let us extend the set
{x}, a linearly independent set, to form an orthonormal basis {x,us,us,...,u;} (using
Gram-Schmidt Orthogonalization) of CF. Then Uy = [x uy ---1y] is a unitary matrix and

c
Ve

Ul AU, = U{[Ax Auy - Aug] =

s ...
T *
(=)

where B is a (k—1) x (k—1) matrix. By induction hypothesis there exists a (k—1) x (k—1)
unitary matrix Us such that U5 BUs; is an upper triangular matrix with diagonal entries

1
Ao, ..., A\, the eigenvalues of B. Define U = Uy [O ;] . Then check that U is a unitary

2
matrix and U*AU is an upper triangular matrix with diagonal entries A1, A2, ..., A, the
eigenvalues of the matrix A. Hence, the result follows. O
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In Lemma 6.3.9, it can be observed that whenever A is a normal matrix then the matrix
B is also a normal matrix. It is also known that if T is an upper triangular matrix that
satisfies TT* = T*T then T is a diagonal matrix (see Exercise 16). Thus, it follows that
normal matrices are diagonalizable. We state it as a remark.

Remark 6.3.10 (The Spectral Theorem for Normal Matrices). Let A be an n X n normal
matriz. Then there exists an orthonormal basis {x1,Xa,...,x,} of C"(C) such that Ax; =
Aix; for 1 <i < n. In particular, if U — [x1,X2,...,X,] then U*AU is a diagonal matriz.

Exercise 6.3.11. 1. Let A € M,,(R) be an invertible matriz. Prove that AA' = PDP?,
where P is an orthogonal and D is a diagonal matriz with positive diagonal entries.

11 1 2 —1 V2 1 1 0
2. Let A=10 2 1|,B=1|0 1 0 andU:% 1 —1 0 |. Prove that A
0 0 3 0 0 3 0 0 V2

and B are unitarily equivalent via the unitary matriz U. Hence, conclude that the
upper triangular matriz obtained in the ”Schur’s Lemma” need not be unique.

3. Prove Remark 6.3.10.

4. Let A be a normal matriz. If all the eigenvalues of A are O then prove that A = 0.
What happens if all the eigenvalues of A are 17

5. Let A be an n x n matriz. Prove that if A is

(a) Hermitian and xAx* =0 for all x € C" then A= 0.

(b) a real, symmetric matriz and xAx! = 0 for all x € R™ then A = 0.

Do these results hold for arbitrary matrices?

We end this chapter with an application of the theory of diagonalization to the study
of conic sections in analytic geometry and the study of maxima and minima in analysis.

6.4 Sylvester’s Law of Inertia and Applications

Definition 6.4.1 (Bilinear Form). Let A be an n x n real symmetric matriz. A bilinear
form in x = (z1,22,...,20)' ¥ = (Y1,Y2,- .-, yn)! is an expression of the type

n
Qx,y) =y'Ax = Z AijTiYs-
ij=1

Definition 6.4.2 (Sesquilinear Form). Let A be an n xn Hermitian matriz. A sesquilinear

form in x = (x1,29,...,2,)", ¥ = (Y1,Y2, - -, Yn)" is given by

n
H(x,y) =y "Ax = Z ;i T7j.
ij=1
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Observe that if A = I,, then the bilinear (sesquilinear) form reduces to the standard
real (complex) inner product. Also, it can be easily seen that H(x,y) is ‘linear’ in x, the
first component and ‘conjugate linear’ in y, the second component. The expression Q(x,x)
is called the quadratic form and H (x,x) the Hermitian form. We generally write Q(x) and
H(x) in place of Q(x,x) and H(x,x), respectively. It can be easily shown that for any
choice of x, the Hermitian form H(x) is a real number. Hence, for any real number «, the
equation H(x) = «, represents a conic in C™.

1 2—q

Example 6.4.3. Let A = .
2+ 2

. Then A* = A and for x = (x1,z2)%,

1 2—1 T
241 2 X9
= T2 + 2T222 + (2 —i)T1x2 + (2 +1)Toxy
= |:E1|2 + 2|l‘2|2 + 2R6[(2 — i)fll‘Q]

H(x) = x"Ax = (T1,T2)

where ‘Re’ denotes the real part of a complex number. This shows that for every choice of
x the Hermitian form is always real. Why?

The main idea of this section is to express H(x) as sum of squares and hence determine
the possible values that it can take. Note that if we replace x by ¢x, where ¢ is any complex
number, then H(x) simply gets multiplied by |¢|?> and hence one needs to study only those
x for which ||x|| =1, i.e., x is a normalized vector.

Let A* = A € M,,(C). Then by Theorem 6.3.5, the eigenvalues \;,1 < i < n, of A
are real and there exists a unitary matrix U such that U*AU = D = diag(A1, A2,. .., \p).

Now define, z = (21, 22, ..., 2,)* = U*x. Then ||z|]| =1, x = Uz and
n P 2 r 9
H(x) =2 U AUz = 2Dz = > Nz = Y ‘\/|/\Z~| al = > ‘\/|>\Z-| 2 (6.4.1)
i=1 i=1 i=p+1

Thus, the possible values of H(x) depend only on the eigenvalues of A. Since U is an invert-
ible matrix, the components z;’s of z = U*x are commonly known as linearly independent
linear forms. Also, note that in Equation (6.4.1), the number p (respectively r — p) seems
to be related to the number of eigenvalues of A that are positive (respectively negative).
This is indeed true. That is, in any expression of H(x) as a sum of n absolute squares of
linearly independent linear forms, the number p (respectively r — p) gives the number of
positive (respectively negative) eigenvalues of A. This is stated as the next lemma and it
popularly known as the ‘Sylvester’s law of inertia’.

Lemma 6.4.4. Let A € M,,(C) be a Hermitian matriz and let x = (x1,x2,...,2n)*. Then
every Hermitian form H(x) = x*Ax, in n variables can be written as

Hx) =y + [y2l> + -+ [gp* — lypsa* =+ — [y ]?

where Y1, Yo, . . ., yr are linearly independent linear forms in x1,x9,...,Ty,, and the integers
p and r satisfying 0 < p < r < n, depend only on A.
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Proof. From Equation (6.4.1) it is easily seen that H(x) has the required form. We only
need to show that p and r are uniquely determined by A. Hence, let us assume on the
contrary that there exist positive integers p, g, r, s with p > ¢ such that

Hx) = |+l +- + |yl = lypsr P = = |y
= |al? el + o+ 2l = 2 = = [zl
where y = (y1,%2,...,yn)" = Mx and z = (21,22,...,2,)" = Nx for some invertible
matrices M and N. Hence, z = By for some invertible matrix B. Let us write Y7 =
By B
Wis-- s yp)* Z1=(21,...,24)" and B = Bl 32 , where Bj is a ¢ X p matrix. As p > q,
3 Dy
the homogeneous linear system B1Y; = 0 has a non-zero solution. Let Y; = (Y15, Up)*

be a non-zero solution and let y* = (Y;",0%). Then
H(§) = [ + [ + -+ Gpl* = = (lzgtal” + - + |2,

Now, this can hold only if 41 = y2 = --- = ¥, = 0, which gives a contradiction. Hence
p = q. Similarly, the case r > s can be resolved. Thus, the proof of the lemma is over. [J

Remark 6.4.5. The integer r is the rank of the matrix A and the number r — 2p is
sometimes called the inertial degree of A.

We complete this chapter by understanding the graph of
ax® + 2hxy + by? + 2fx + 29y +c =0
for a,b,c, f,g,h € R. We first look at the following example.
Example 6.4.6. Sketch the graph of 3z% + 4xy + 3y? = 5.

3 2

Solution: Note that 3x2 + dxy + 3y2 = [z, v [2 3

| E—

[x] and the eigen-pairs of the
Y

matrix [2 g] are (5,(1,1)%), (1,(1,—1)"). Thus,

Now, let u = x—\g’ and v = x—\;iy Then
322 +dxy + 3y° = [z, y] [g :23] [;c]
1 1 5 0 1 1
) L _1ilo 1] L L Y
V2 V2 V2 V2
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Thus, the given graph reduces to 5u’ +v? =5 or equivalently to u® + % = 1. Therefore, the
given graph represents an ellipse with the principal axes u =0 and v = 0 (correspinding to
the line x +y =0 and x —y = 0, respectively). See Figure 6.4.6.

Figure 1: The ellipse 3z% + 4xy + 3y% = 5.

We now consider the general conic. We obtain conditions on the eigenvalues of the
associated quadratic form, defined below, to characterize conic sections in R? (endowed
with the standard inner product).

Definition 6.4.7 (Quadratic Form). Let az? + 2hxy + by? + 292 + 2fy +c¢ = 0 be the
equation of a general conic. The quadratic expression

x

Yy

Proposition 6.4.8. For fized real numbers a,b,c, g, f and h, consider the general conic

az’® + 2hay + by® = [z, y] [Z :]

1s called the quadratic form associated with the given conic.

ax® + 2hxy + by? + 292 + 2fy +c = 0.

Then prove that this conic represents

1. an ellipse if ab— h? > 0,

2. a parabola if ab — h* =0, and

3. a hyperbola if ab — h? < 0.
a h
h b
form. As A is a symmetric matrix, by Corollary 6.3.6, the eigenvalues A1, Ao of A are both

Proof. Let A = . Then ax? + 2hay + by? = [m y]A [az] is the associated quadratic
Y

real, the corresponding eigenvectors uj, us are orthonormal and A is unitarily diagonaliz-

¢ t
able with A = [ul ug] A0 ug CLet || = u;
0 Ao u; v us

Au? + A2v? and the equation of the conic section in the (u,v)-plane, reduces to

“|. Then az? + 2hay + by? =

Mu? + Xv? + 2g1u+ 2f1v+ ¢ = 0. (6.4.2)

Now, depending on the eigenvalues A1, Ao, we consider different cases:
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1. A1 = 0 = Ag. Substituting A\; = A2 = 0 in Equation (6.4.2) gives the straight line
2g1u + 2f1v + ¢ = 0 in the (u,v)-plane.
2. A1 =0,X2 > 0. As A\; = 0, det(A) = 0. That is, ab — h? = det(A) = 0. Also, in this
case, Equation (6.4.2) reduces to
Ao(v+dy)? = dyu+ds for some dy,do,d3 €R.
To understand this case, we need to consider the following subcases:

(a) Let do = d3 =0. Then v 4 d; = 0 is a pair of coincident lines.
(b) Let dy =0, ds # 0.
i. If dg > 0, then we get a pair of parallel lines given by v = —d; + ‘;\—32’.
ii. If d3 < 0, the solution set of the corresponding conic is an empty set.
(c) If do # 0. Then the given equation is of the form Y? = 4aX for some translates
X =x+4+aand Y =y + [ and thus represents a parabola.

3. A1 > 0 and Ay < 0. In this case, ab — h? = det(A) = A\ X2 < 0. Let Ay = —ap with
ag > 0. Then Equation (6.4.2) can be rewritten as

M(u+dy)? — az(v+dp)? =ds for some dy,do,d3 €R (6.4.3)
whose understanding requires the following subcases:

(a) Let d3 = 0. Then Equation (6.4.3) reduces to

(\/A_l(qudl) + \/a_g(v+d2)> : <\/)\_1(u+d1) — V(v +d2)> =0

or equivalently, a pair of intersecting straight lines in the (u,v)-plane.

(b) Let ds # 0. In particular, let d3 > 0. Then Equation (6.4.3) reduces to

)\1(u+ d1)2 _ ag(?} + d2)2 -1
ds ds B

or equivalently, a hyperbola in the (u,v)-plane, with principal axes v+ d; =0
and v +dy = 0.

4. A1, A2 > 0. In this case, ab — h? = det(A) = A\; A2 > 0 and Equation (6.4.2) can be
rewritten as

A1 (u + d1)2 + )\2(?} + d2)2 =dsg for some di,ds,ds € R. (6.4.4)
We consider the following three subcases to understand this.

(a) Let d3 = 0. Then Equation (6.4.4) reduces to a pair of perpendicular lines
u+d; =0 and v+ d2 = 0 in the (u,v)-plane.

(b) Let d3 < 0. Then the solution set of Equation (6.4.4) is an empty set.
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(¢) Let d3 > 0. Then Equation (6.4.4) reduces to the ellipse

A (u+dyp)? n (v + dy)?

=1
d3 d3
whose principal axes are u + dy =0 and v + do = 0.

O

Remark 6.4.9. Observe that the condition || = [ul uz] [u] implies that the principal
Yy v

axes of the conic are functions of the eigenvectors u; and us.
Exercise 6.4.10. Sketch the graph of the following surfaces:
1. 2?4 2xy + y? — 62 — 10y = 3.
2. 222 + 6y + 3y® — 122 — 6y = 5.
3. 4a? — dxy + 2y% + 122 — 8y = 10.
4. 222 —6xy + 5y — 10z +4y = 7.

As a last application, we consider the following problem that helps us in understanding
the quadrics. Let

az® + by? 4 c2? + 2day + 2exz + 2fyz + 2z + 2my + 2nz 4+ ¢ =0 (6.4.5)

be a general quadric. Then to get the geometrical idea of this quadric, do the following:

a d e 21 x
1. Define A= |d b f|,b= [2m]| and x = |y|. Note that Equation (6.4.5) can
e [ ¢ 2n z

be rewritten as x!Ax + bfx + ¢ = 0.
2. As A is symmetric, find an orthogonal matrix P such that P'AP = diag(A1, A2, A3).

3. Let y = P'x = (y1,y2,93)!. Then Equation (6.4.5) reduces to
MY; + Aoy + A3y + 2ly1 + 2oy + 2l3ys + ¢ = 0. (6.4.6)
4. Depending on which \; # 0, rewrite Equation (6.4.6). That is, if \; # 0 then rewrite
2 2
Aly% + 21111 as Ap (yl + i—ll) — (%) .

5. Use the condition x = Py to determine the center and the planes of symmetry of the
quadric in terms of the original system.

Example 6.4.11. Determine the following quadrics

1. 222 + 2% + 222 + 22y 4 222 + 2yz + 4o + 2y + 42+ 2 = 0.
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2. 322 —y?4+22410=0.

2 11 4
Solution: For Part 1, observe that A = |1 2 1|, b = [2| and ¢ = 2. Also, the
11 2 4
1 1 1
VIV 400
orthonormal matriz P = % \_/—% % and P'AP = [0 1 0. Hence, the quadric
- 0 =2 00 1
V3 NG
reduces to 4y3 + y3 + y§ + %yl + %yz — %yg + 2 = 0. Or equivalently to
5 .9 1 15 9
A+ ——= P+ e+ =)+ (s — —=) = —.

So, the standard form of the quadric is 423 + 23 + zg = %, where the center is given by
(2.9,2) = P35, A, L) = (32,1, 2.
3 0

For Part 2, observe that A = |0 —1 0|, b =0 and q = 10. In this case, we can
0 0 1

rewrite the quadric as

which is the equation of a hyperboloid consisting of two sheets.
The calculation of the planes of symmetry is left as an exercise to the reader.



Chapter 7

Appendix

7.1 Permutation/Symmetric Groups
In this section, S denotes the set {1,2,...,n}.

Definition 7.1.1. 1. A function o : S—S is called a permutation on n elements if o
1s both one to one and onto.

2. The set of all functions o : S— S that are both one to one and onto will be denoted
by Sn. That is, Sy, is the set of all permutations of the set {1,2,...,n}.

2
o(1) o(2)
This representation of a permutation is called a TWO ROW NOTATION for o.

Example 7.1.2. 1. In general, we represent a permutation o by o =

2. For each positive integer n, S, has a special permutation called the identity per-
mutation, denoted Id,, such that Id,(i) = i for 1 < i < n. That is, Id, =

1 2 --- n
1 2 ... n |’

3. Letn=3. Then
o _ do_ (123 __ (123} (123
5oyt V123 )% \132)3 1213/
(123 (123 _12311)
"=lao 31 /"7 \312) ™ {321 '

Remark 7.1.3. 1. Leto € S,,. Then o is determined if (i) is known fori =1,2,...,n.
As o is both one to one and onto, {o(1),0(2),...,0(n)} =S. So, there are n choices
for o(1) (any element of S), n — 1 choices for o(2) (any element of S different from
o(1)), and so on. Hence, there are n(n—1)(n—2)---3-2-1 = n! possible permutations.
Thus, the number of elements in S, is n!. That is, |S,| = n!.

163
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2. Suppose that o,7 € S,,. Then both ¢ and T are one to one and onto. So, their
composition map o o 7, defined by (o o7)(i) = o(7(i)), is also both one to one and
onto. Hence, o o1 is also a permutation. That is, coT € S,.

3. Suppose 0 € S,,. Then o is both one to one and onto. Hence, the function o' :
S—=S defined by o='(m) = £ if and only if c(£) = m for 1 < m < n, is well
defined and indeed o~ is also both one to one and onto. Hence, for every element

o €S, o7l €8, and is the inverse of o.

4. Observe that for any o € S,,, the compositions c oo~ ! = o oo = Id,.
Proposition 7.1.4. Consider the set of all permutations S,,. Then the following holds:

1. Fiz an element 7 € S,,. Then the sets {oc ot :0 € S} and {ro0 : 0 € S,} have
exactly n! elements. Or equivalently,

Sp={ro00:0€8,}={ooT:0€8,}.

2. S, ={o"t:0€8,}.

Proof. For the first part, we need to show that given any element o € §,,, there exists
elements (3,7 € S, such that & = 70 3 = yo 7. It can easily be verified that 8 = 7' o «
and vy = o7 L.

For the second part, note that for any o € S,,, (¢~ ')~! = . Hence the result holds. [
Definition 7.1.5. Let 0 € S,,. Then the number of inversions of o, denoted n(o), equals
{(i,5) « i < g, o(i) > o(4) }-

Note that, for any o € S,,, n(o) also equals
> Ho() <oli), for j=i+1i+2,...,n}

Definition 7.1.6. A permutation o € S is called a transposition if there exists two positive
integers m,r € {1,2,...,n} such that o(m) =r, o(r) =m and o(i) =i for 1 <i#m,r <
n.

For the sake of convenience, a transposition o for which o(m) = r, o(r) = m and
o(i) =i for 1 <i # m,r < n will be denoted simply by o = (m r) or (r m). Also, note

that for any transposition o € S,,, 0~! = o. That is, 0 0 0 = Id,,.

Example 7.1.7. 1. The permutation T = ( ; ; Zj i is a transposition as T(1) =
3,7(3) =1, 7(2) = 2 and 7(4) = 4. Here note that 7 = (1 3) = (3 1). Also, check

that
’I’L(T) = |{(1’2)’ (1’3)’ (2’3)}| =3.
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2. Let = 123456789 . Then check that
4 2 3519 876

n(r)=3+1+1+1+0+3+2+1=12.

3. Let £,;m and r be distinct element from {1,2,...,n}. Suppose T = (m r) and o =
(m £). Then

Therefore,

rer=mretmo= (30 LT et

Simila?’ly(:heckthatao7-2<1 2 ... ¢ - om - e n)

1 2 ... m ... 7" ... e ... n
With the above definitions, we state and prove two important results.

Theorem 7.1.8. For any o € S, o can be written as composition (product) of transposi-
tions.

Proof. We will prove the result by induction on n(o), the number of inversions of o. If
n(o) = 0, then 0 = Id, = (1 2) o (1 2). So, let the result be true for all o € S,, with
n(o) < k.

For the next step of the induction, suppose that 7 € S,, with n(7) = k+ 1. Choose the
smallest positive number, say £, such that

T7(i) =14, fori=1,2,...,0—1 and 7(¢) # £.

As 7 is a permutation, there exists a positive number, say m, such that 7(¢) = m. Also,
note that m > ¢. Define a transposition o by ¢ = (¢ m). Then note that

(coT)(i)=1, fori=1,2,... ¢
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So, the definition of “number of inversions” and m > ¢ implies that

n(cor) = Z|{(007)(j)<(0’07')(z'), for j=i+1,i+2,...,n}
i=1
)4

= > Kloom)(j) <(oo7)(i), for j=i+1,i+2,...,n}
i=1

+ > Hloom)(j) < (oor)(i), for j=i+1,i+2,...,n}
i=f+1

= Y Heor)(j) <(com)(i), for j=i+1i+2,...,n}
i=0+1

n
S Hr() <7(@), for j=i+1i+2,...,n} as m>{,
i=0+1

IN

< (m—4¥)+ Z H{r(j) <7(i), for j=i+1,i+2,...,n}
i=+1
= n(7).

Thus, n(o o 7) < k+ 1. Hence, by the induction hypothesis, the permutation o o 7 is a
composition of transpositions. That is, there exist transpositions, say «;, 1 < i < ¢ such
that

OOT=@Q10Q20 -0 qQy.

Hence, T=0oajoago---o0qs as 0 oo = Id, for any transposition ¢ € S,,. Therefore, by
mathematical induction, the proof of the theorem is complete. O

Before coming to our next important result, we state and prove the following lemma.

Lemma 7.1.9. Suppose there exist transpositions «;, 1 < i <t such that
Id, =ajoago---0ay,
then t is even.

Proof. Observe that t # 1 as the identity permutation is not a transposition. Hence, ¢t > 2.
If t = 2, we are done. So, let us assume that ¢ > 3. We will prove the result by the method
of mathematical induction. The result clearly holds for ¢ = 2. Let the result be true for all
expressions in which the number of transpositions ¢ < k. Now, let t = k£ + 1.

Suppose a3 = (m r). Note that the possible choices for the composition a; o g are
(mr)yo(mr)=1Id,, (mr)o(ml)=(rf)o(rm), (mr)o(ré)=Ur)o(lm)and (mr)o
(¢ s) = (£s)o(mr), where £ and s are distinct elements of {1,2,...,n} and are different
from m, r. In the first case, we can remove a7 o as and obtain Id,, = g o g0 --- 0 ay.
In this expression for identity, the number of transpositions is t —2 = k — 1 < k. So, by
mathematical induction, ¢ — 2 is even and hence ¢ is also even.

In the other three cases, we replace the original expression for aq o as by their coun-
terparts on the right to obtain another expression for identity in terms of ¢t = k + 1
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transpositions. But note that in the new expression for identity, the positive integer m
doesn’t appear in the first transposition, but appears in the second transposition. We can
continue the above process with the second and third transpositions. At this step, either
the number of transpositions will reduce by 2 (giving us the result by mathematical induc-
tion) or the positive number m will get shifted to the third transposition. The continuation
of this process will at some stage lead to an expression for identity in which the number
of transpositions is t — 2 = k — 1 (which will give us the desired result by mathematical
induction), or else we will have an expression in which the positive number m will get
shifted to the right most transposition. In the later case, the positive integer m appears
exactly once in the expression for identity and hence this expression does not fix m whereas
for the identity permutation Id,,(m) = m. So the later case leads us to a contradiction.
Hence, the process will surely lead to an expression in which the number of transposi-
tions at some stage is t — 2 = k — 1. Therefore, by mathematical induction, the proof of
the lemma is complete.
O

Theorem 7.1.10. Let o € S,,. Suppose there exist transpositions T, T, ..., Tk and 01,02, ...

such that

Q=T10T90+++0T =010020---00y
then either k and ¢ are both even or both odd.

Proof. Observe that the condition 71 01007, =010090---00y and 0 o0 = Id,, for
any transposition o € §,,, implies that

Id, =T oMo ---0T,00p00y_10--007.

Hence by Lemma 7.1.9, k 4 £ is even. Hence, either £ and ¢ are both even or both odd.
Thus the result follows. O

Definition 7.1.11. A permutation o € S, is called an even permutation if o can be written
as a composition (product) of an even number of transpositions. A permutation o € S, is
called an odd permutation if o can be written as a composition (product) of an odd number
of transpositions.

Remark 7.1.12. Observe that if o and T are both even or both odd permutations, then the
permutations o o T and T o o are both even. Whereas if one of them is odd and the other
even then the permutations o o T and 7o o are both odd. We use this to define a function
on Sy, called the sign of a permutation, as follows:

Definition 7.1.13. Let sgn: S,—{1,—1} be a function defined by

sgn(or) = 1 if o is an even permutation
g | =1 ifo is an odd permutation

Example 7.1.14. 1. The identity permutation, Id, is an even permutation whereas
every transposition is an odd permutation. Thus, sgn(Id,) =1 and for any transpo-
sition o € Sy, sgn(o) = —1.
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2. Using Remark 7.1.12, sgn(ooT) = sgn(o)-sgn(t) for any two permutations o,7 € Sy,.
We are now ready to define determinant of a square matrix A.

Definition 7.1.15. Let A = [a;;] be an n xn matriz with entries from F. The determinant
of A, denoted det(A), is defined as

n

det(A) = > sgn(0)a1,(1)020() - - Anomy = > s97(0) [ [ aios)-

CTGSn O'GSTL i=1

Remark 7.1.16. 1. Observe that det(A) is a scalar quantity. The expression for det(A)
seems complicated at the first glance. But this expression is very helpful in proving
the results related with “properties of determinant”.

2. If A = [ai;] is a 3 x 3 matriz, then using (7.1.1),

3
det(4) = > sgn(o) [ aioqi
i=1

UGSTL
3 3 3
= sgn(T) H iz, (i) + Sgn(T2) H Airy (i) + Sg7UT3) H Qg (i) T
i=1 i=1 i=1
3 3 3
sgn(T4) H Qiry (i) + 597(T5) H Qirs () + 597(T6) H Qirg (3)
i=1 i=1 i=1

= 011022033 — 11023032 — 012021033 + @12023431 + 413421032 — 413022031.

Observe that this expression for det(A) for a 3 x 3 matriz A is same as that given in
(2.5.1).

7.2 Properties of Determinant

Theorem 7.2.1 (Properties of Determinant). Let A = [a;;] be an n x n matriz. Then

1. if B is obtained from A by interchanging two rows, then
det(B) = —det(A).

2. if B is obtained from A by multiplying a row by c then
det(B) = cdet(A).

3. if all the elements of one row is 0 then det(A) = 0.
4. if A is a square matriz having two rows equal then det(A) = 0.

5. Let B = [bj;] and C = [c;;] be two matrices which differ from the matriz A = [a;]
only in the mt row for some m. If c;j = amj + by for 1 < j < n then det(C) =
det(A) + det(B).

6. if B is obtained from A by replacing the £th row by itself plus k times the mth row,
for £ # m then det(B) = det(A).
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7. if A is a triangular matriz then det(A) = a11a22 - + - Gy, the product of the diagonal
elements.

8. If E is an elementary matriz of order n then det(EA) = det(E) det(A).
9. A is invertible if and only if det(A) # 0.

10. If B is an n x n matriz then det(AB) = det(A) det(B).

11. det(A) = det(A?), where recall that Al is the transpose of the matriz A.

Proof. Proof of Part 1. Suppose B = [b;;] is obtained from A = [a;;] by the interchange
of the ¢t and m™ row. Then bej = Qmj, bm; = ag; for 1 < j < n and b;; = a;; for
1<i#ém<n,1<j<n.

Let 7 = (¢ m) be a transposition. Then by Proposition 7.1.4, S, = {oco7: 0 € S,}.
Hence by the definition of determinant and Example 7.1.14.2, we have

n

det(B) = Z sgn(o) wa(i) = Z sgn(ooT) Hbi(UOT)(i)

geSy i=1 ooTES, i=1

= Z sgn(7) - sgn(a) bi(gor)(1)b2(0or)(2) ** * De(oor)(t) * * * brn(oor)(m) * * * On(oor)(n)
ooTES,

= sgn(r) Y sgn(0) big()  b2o@) * buom) o) Bro(n)
UGSTL

= - (Z SEN(0) Ag(1) * A20(2) " Cmo(m) " * Wa(f) " ano(n)) as sgn(r) = —1
UGSTL
= —det(A).
Proof of Part 2. Suppose that B = [b;;] is obtained by multiplying the mth row of A
by ¢ # 0. Then b,,; = c a;p; and bj; = a;5 for 1 <i#m <n, 1 <j <n. Then

det(B) = Z Sgn(a)bla(l)b2a(2) T bma(m) T bna(n)
geSy
= ) $80(0)a15(1)820(2) * * Crnr(m) *** Gno(n)
cESn
= ¢ > sgn(0)a10(1)020(2) " Uuno(m) *** Cna(n)
cE€Sn
= cdet(A).

Proof of Part 3. Note that det(A) = }_ sgn(0)ai,(1)020(2) - - - Gno(n)- S0, each term
O'ESn
in the expression for determinant, contains one entry from each row. Hence, from the

condition that A has a row consisting of all zeros, the value of each term is 0. Thus,

det(A) = 0.
Proof of Part 4. Suppose that the 0 and mth row of A are equal. Let B be the
matrix obtained from A by interchanging the M and mth rows. Then by the first part,
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det(B) = — det(A). But the assumption implies that B = A. Hence, det(B) = det(A). So,
we have det(B) = — det(A) = det(A). Hence, det(A) = 0.
Proof of Part 5. By definition and the given assumption, we have

det(C) = Z Sgn(a)cla(l)c2a(2) " Cmo(m) """ Cno(n)
0ESK
= ) sg0(0)e151) 202 Bmo(m) + Gmo(m)) ** * Cno(n)
ceSy
= ) sgn(0)bio1yb2o(2) ** bno(m) * * bron)
oSy

+ Z Sgn(a)ala(l)a2a(2) © Amo(m) 7 Qno(n)
UES'!L
= det(B) + det(A).

Proof of Part 6. Suppose that B = [b;;] is obtained from A by replacing the fth row
by itself plus & times the mth row, for £ # m. Then by; = ay; + k a,,; and b;; = a;; for
1<i#m<n, 1<j<n. Then

det(B) = > s8n(0)bio(1)bao(2) - beo(e) * * Dmam) -+ bro(n)
UES'!L
= Z Sgn(a)ala(l)a2a(2) T (CLZJ(Z) + kama(m)) © Amo(m) * " Gno(n)
UES'!L
= Z Sgn(a)alo(l)a2a(2) o Qua(0) T Amo(m) T Qno(n)
O'ESn

k> 8gn(0)a10(1)020(2) ** Gno(m) *** Gmo(m) ** * Ano(n)

O'ESn
= ) se(0)a15(1)020(2) - Uo(e) * Gmo(m) *** Gno(n) s Part 4
UES'!L
= det(A).

Proof of Part 7. First let us assume that A is an upper triangular matrix. Observe
that if o € S, is different from the identity permutation then n(c) > 1. So, for every
o # Id, € S,, there exists a positive integer m, 1 < m < n — 1 (depending on o) such
that m > o(m). As A is an upper triangular matrix, @,,q(,) = 0 for each o(# Idy) € S.
Hence the result follows.

A similar reasoning holds true, in case A is a lower triangular matrix.
Proof of Part 8. Let I,, be the identity matrix of order n. Then using Part 7, det(I,,) = 1.
Also, recalling the notations for the elementary matrices given in Remark 2.2.2, we have
det(E;;) = —1, (using Part 1) det(E;(c)) = ¢ (using Part 2) and det(E;j(k) = 1 (using
Part 6). Again using Parts 1, 2 and 6, we get det(EA) = det(E) det(A).
Proof of Part 9. Suppose A is invertible. Then by Theorem 2.2.5, A is a product
of elementary matrices. That is, there exist elementary matrices Fi, Es,..., E} such
that A = F1Fy---E;. Now a repeated application of Part 8 implies that det(A) =
det(E7) det(Es) - - - det(Ey). But det(E;) # 0 for 1 < i < k. Hence, det(A) # 0.
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Now assume that det(A) # 0. We show that A is invertible. On the contrary, assume
that A is not invertible. Then by Theorem 2.2.5, the matrix A is not of full rank. That
is there exists a positive integer 7 < n such that rank(A) = r. So, there exist elementary

matrices Fq, Es, ..., E, such that F1FEsy--- ELA = Therefore, by Part 3 and a

repeated application of Part 8,
det(Ey) det(Ey) - - - det(Ey) det(A) = det(Ey By - - - By A) = det ([ ﬁ ]) ~0.

But det(E;) # 0 for 1 < ¢ < k. Hence, det(A) = 0. This contradicts our assumption that
det(A) # 0. Hence our assumption is false and therefore A is invertible.
Proof of Part 10. Suppose A is not invertible. Then by Part 9, det(A4) = 0. Also,
the product matrix AB is also not invertible. So, again by Part 9, det(AB) = 0. Thus,
det(AB) = det(A) det(B).

Now suppose that A is invertible. Then by Theorem 2.2.5, A is a product of el-
ementary matrices. That is, there exist elementary matrices Ei, Eo,..., Fr such that
A= F1FEs--- E,. Now a repeated application of Part 8 implies that

det(AB) = det(ElEg e EkB) = det(El) det(Eg) cee det(Ek) det(B)
= det(E1Ey--- E)det(B) = det(A) det(B).

Proof of Part 11. Let B = [b;j] = A". Then b;; = aj; for 1 < i,j < n. By Proposi-
tion 7.1.4, we know that S,, = {o~!: 0 € S,}. Also sgn(c) = sgn(oc~!). Hence,

det(B) = > s80(0)bio(1)b20(2)  * ro(n)
0ESK

= > sen(e 101y 1 D122 Do1(n)
UES'!L

= > sen(oare-11)ba-1(2) o1 (n)
O'ESn
= det(A).

O

Remark 7.2.2. 1. The result that det(A) = det(A!) implies that in the statements
made in Theorem 7.2.1, where ever the word “row” appears it can be replaced by
“column”.

2. Let A = [a;j] be a matriz satisfying a11 =1 and a1; =0 for 2 < j < n. Let B be the
submatriz of A obtained by removing the first row and the first column. Then it can
be easily shown that det(A) = det(B). The reason being is as follows:
for every o € S, with o(1) = 1 is equivalent to saying that o is a permutation of the



172 CHAPTER 7. APPENDIX

elements {2,3,...,n}. That is, 0 € S,—1. Hence,

det(A) = Z Sgn(a)alo(l)a2a(2) ©Qpo(n) = Z Sgn(o-)a2cr(2) © Opg(n)
oES, 0E€Sn,0(1)=1
= Z Sgn(a)bla(l) T bna(n) = det(B)
Uesnfl

We are now ready to relate this definition of determinant with the one given in Defini-
tion 2.5.2.

Theorem 7.2.3. Let A be an n X n matriz. Then det(A) = Zl(—1)1+ja1j det(A(1]5)),
‘7:
where recall that A(1|j) is the submatriz of A obtained by removing the 15¢ row and the

7 th column.

Proof. For 1 < j < n, define two matrices

0 0 -+ ay - 0 ai; 0 0O --- 0
B — 0?1 a.22 a'2j a?n and C; — azj a1 G2 - G2p
Upi Gnp ot Apj o Gnal nj 1 Gpa e G
Then by Theorem 7.2.1.5,
det(A) = zn:det(Bj). (7.2.2)
j=1

We now compute det(B;) for 1 < j <n. Note that the matrix B; can be transformed into
C; by j — 1 interchanges of columns done in the following manner:
1St 2nd 2nd

3'd ¢olumn and

column, then interchange the
so on (the last process consists of interchanging the (j — 1)th column with the jth col-
umn. Then by Remark 7.2.2 and Parts 1 and 2 of Theorem 7.2.1, we have det(B;) =

a1j(—1)7"1det(C;). Therefore by (7.2.2),

first interchange the and and

n n

det(4) =Y (=1)ayjdet (A(1]f)) = > (~1)7"ay; det (A(1]5)).

j=1 j=1

7.3 Dimension of M + N

Theorem 7.3.1. Let V(IF) be a finite dimensional vector space and let M and N be two
subspaces of V. Then

dim(M) + dim(N) = dim(M + N) + dim(M N N). (7.3.3)
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Proof. Since M N N is a vector subspace of V| consider a basis By = {uj,ug,...,u;}
of M N N. As, M N N is a subspace of the vector spaces M and N, we extend the ba-
sis By to form a basis By = {uj,ug,...,ux,vi,..., v} of M and also a basis By =
{ui,ug,...,ug, wiy,...,ws} of N.

We now proceed to prove that the set By = {uj,ug,...,ug, Wi,..., Ws, Vi, Vo, ..., V. }

is a basis of M + N.
To do this, we show that

1. the set By is linearly independent subset of V, and
2. L(Bg) =M + N.

The second part can be easily verified. To prove the first part, we consider the linear
system of equations

ajuy + -+ agug + fiwr + -+ Bsws + v+ -+ v = 0. (7.3.4)
This system can be rewritten as
arug + - Fagug + Siwr + o+ Bews = —(mvi e vy).

The vector v = —(y1vi+---+7v,) € M, as vy,...,v, € By. But we also have v = ayu; +

<ot ogug + Piwy + -+ Bsw € N as the vectors uq,us, ..., ug, wi,...,ws € By. Hence,

v € MNN and therefore, there exists scalars d1, .. ., 0 such that v = §;uy+doug+- - -+, uy.
Substituting this representation of v in Equation (7.3.4), we get

(a1—(51)u1+---+(ak—6k)uk+ﬁlwl+---+ﬁsws:0.

But then, the vectors uj,uo,...,ux, wy,...,w, are linearly independent as they form a
basis. Therefore, by the definition of linear independence, we get

a;j—0;=0, for 1<i<k and 8; =0 for 1 <j<s.
Thus the linear system of Equations (7.3.4) reduces to
au; + -+ aogug +y1vy 4+ -+ v =0.
The only solution for this linear system is
a; =0, for 1<i<k and ;=0 for 1 <j <7

Thus we see that the linear system of Equations (7.3.4) has no non-zero solution. And
therefore, the vectors are linearly independent.

Hence, the set Bs is a basis of M + N. We now count the vectors in the sets By, Bo, Bys
and By to get the required result. O
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