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3D Game Engine Design for Mobile 
Phones with OpenGL ES 2.0

Abstract
This  master's  project  investigated  the  capabilities  of  mobile 
phones to support 3D graphics for games and how to develop 
for  these  devices  using  the  OpenGL ES  graphics  library.  A 
simple 3D game engine was developed that runs on a PC using a 
OpenGL ES 2.0 emulator library. Additionally, a game prototype 
was  developed  using  this  engine.  The  report  investigates  the 
differences between PC and mobile games, and how the mobile 
platform affects the design of a 3D game engine. Furthermore, 
the differences between OpenGL ES 1.1 and 2.0 are described, 
covering  the  implications  of  developing  game  graphics  with 
shader  programs.  In  conclusion,  mobile  phones  supporting 
OpenGL ES 2.0 will be available in 2008 and they will probably 
support  3D  graphics  approaching  the  quality  of  recent  PC 
games.  Developing  games  for  these  devices  would  be  very 
similar to developing PC games. The largest differences relating 
to graphics are the screen size and memory constraints.



Utformning av 3D-spelmotorer för 
mobiltelefoner med OpenGL ES 2.0

Sammanfattning
Det här examensarbetet hade som mål att utreda möjligheterna 
för  mobiltelefoner  att  stödja  3D-grafik  för  spel  och  hur 
utveckling  för  denna  plattform kan  ske  med  hjälp  av  grafik-
biblioteket  OpenGL ES.  En  enkel  3D-spelmotor  utvecklades 
genom att använda ett emulatorbibliotek för OpenGL ES 2.0 på 
PC.  Med  hjälp  av  denna  motor  utvecklades  en  spelprototyp. 
Denna rapport undersöker skillnaderna mellan mobil- och PC-
spel, samt hur den mobila plattformen påverkar utformningen av 
en  3D-spelmotor.  Dessutom  så  beskrivs  skillnaderna  mellan 
OpenGL ES 1.1  och  2.0,  och  hur  utvecklandet  av  spelgrafik 
påverkas  av  shader-program.  Slutsatsen  är  att  mobiltelefoner 
som stöder OpenGL ES 2.0 kommer att finnas tillgängliga under 
2008  och  att  de  troligtvis  kommer  att  stödja  3D-grafik  vars 
kvalitet närmar sig moderna PC-spel. Att utveckla spel för sådan 
hårdvara kommer i stora drag vara likvärdigt med att utveckla 
PC-spel.  De  största  skillnaderna  ur  ett  grafikperspektiv  är 
skärmstorlek och minnesbegränsningar.
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Chapter 1 - Introduction

1 Introduction
Mobile phones constitute an interesting hardware platform for game developers since so 
many people always carry a phone around with them. However, mobile phones are 
generally not specifically designed to support gaming, which poses problems for game 
developers. One of these problems has been that mobile phones traditionally have 
provided comparatively simple graphics. This thesis aims to evaluate the graphics 
capabilities of current and upcoming mobile phones, specifically focused on 3D 
graphics using the OpenGL ES graphics programming interface. OpenGL ES is an 
adaptation of the OpenGL industry standard aimed at embedded systems, and is 
available in two main versions: 1.1 and 2.0. This thesis is mainly focused on the later 
version which supports more advanced graphical effects through the use of shader 
programs.

The goals for the project were to examine how to develop mobile games with OpenGL 
ES 2.0 and how three-dimensional graphics and shader effects can successfully be used 
in mobile games. This was accomplished by developing a 3D game engine on top of a 
OpenGL ES 2.0 emulator library currently available and using this engine to create a 
game prototype. The differences between PCs and mobile phones, between 2D and 3D 
games, and between 3D graphics with and without shaders were evaluated.

1.1 Problem Statement
My main research question for the thesis was:

What are the specific technical considerations relating to graphics that apply when 
developing 3D games for mobile phones?
This thesis is specifically focused on graphics, and does not cover other areas such as 
game design, sound or input. Furthermore, since most games are built on top of a game 
engine and game engines handle the technical details of the platform, this thesis puts 
much focus on the design of game engines for mobile phones.

1.2 Delimitations
Since the project was a collaboration between two students, Erik Olsson and Mikael 
Gustavsson, the background information in chapters 2 – 4 are common to both reports. 
The remainder of the theses are individual. We made the following delimitations 
regarding the individual parts of the theses:

Mikael will focus on the construction of a 3D graphics engine based on the OpenGL ES 
2.0 graphics library.

Erik will focus on evaluating the limitations of the platform from the experiences gained 
while creating the game prototype.

1



Chapter 1 - Introduction

1.3 Thesis Outline
The thesis can be divided into two main parts; background and implementation/ 
evaluation.

Background provides some background information about graphics libraries, 3D game 
engines and 3D graphics hardware in general and is referred to from other parts of the 
thesis. The background part contains the following chapters:

3D Game Engine Overview
This chapter describes 3D game engines in general, as well as the different parts they 
are commonly constructed of.

Graphics Libraries
This chapter describes the OpenGL and OpenGL ES graphic libraries, including an 
overview of the version histories.

Graphics Hardware
A description of the development of graphics hardware, both for mobile phones and PC 
for comparison.

Implementation/evaluation describes the details of our implementation of the engine and 
game prototype, as well as an evaluation of the results. The chapters of this part is as 
follows:

Approach
Implementation details, focusing on the 3D graphics engine.

Evaluation
An evaluation of our results as well as some more general discussion about 3D graphics 
and games for mobile phones and how the limitations of the hardware affect the design 
of game engines for mobile platforms.

Conclusions and Further Work
Conclusions of our work and suggestions for further study.

2



Chapter 2 - 3D Game Engine Overview

2 3D Game Engine Overview
A 3D Game Engine is a software component which is intended to perform certain tasks, 
such as handling resources, scenegraphs and rendering.

2.1 Resource Handling
Resources are the content of the scene, i.e. what eventually is drawn on the screen. 
Resources may include models, textures, shaders, materials and animations. 

2.1.1 Models
Models are the geometries of the scene, which are bound to objects in the scenegraph. 
Models can be generated through code, but most often they are read from a file, which 
usually has been exported from a modelling application, such as Autodesk's Maya. The 
geometry consists of vertex data, as well as a surface description which describes how 
vertices are connected to create primitives such as polygons, triangle strips, lines or 
points. Figure  below shows an example model.

Vertices have different types of attributes, one of which is position. Other common 
attributes are normals, texture coordinates, colours, tangents, binormals, bone weights 
and bone indices. A vertex normal defines the surface normal at a specific position and 
is most often used for lighting calculations. Texture coordinates are used to map a 
texture image onto the surface. Tangents and binormals, together with normals, form the 
basis of tangent space, which is sometimes referred to as surface space. Tangent space 
is used for bump map lighting calculations. Bone weights and bone indices can be used 
to deform a geometry in a non-rigid way, such as bending an arm of a character. This is 
called skinning, and is most often used in animation.

3

Figure 1: A model of the famous Utah Teapot, shown here in wireframe mode



Chapter 2 - 3D Game Engine Overview
2.1.2 Textures
Originally, textures were two-dimensional images which were mapped onto surfaces. 
Nowadays they are better thought of as general containers of data to be used during 
rendering. Textures can be one-, two- or three-dimensional. When data is read from a 
texture it is usually filtered to make the output continuous and reduce aliasing.

Textures can be used for a number of different purposes, for example:

● Diffuse map – defines the colour of the surface, i.e. the original use of textures. 
By far the most common. See figure 2 above.

● Detail map – adds more fine-grained details than a diffuse texture and is usually 
repeated across the surface with a high frequency.

● Specular map – defines the reflectiveness of the surface. Usually monochrome.

● Emissive map – defines the light emittance of the surface, which enables the 
surface to glow regardless of external light sources.

● Ambient occlusion map – defines the accessibility of the surface and has to be 
calculated with regards to the surrounding geometry. Points surrounded by a 
large amount of geometry has low accessibility and becomes dark.

● Normal map – stores surface normals, which can be used in bump mapping to 
give the illusion of a much more detailed geometry than what is actually used.

● Light map – stores a pre-calculated lighting of the scene. This technique is on 
the decline due to the increasing dynamic nature of game worlds.

● Depth map – stores the depth of a scene as seen from some view. Often rendered 
from a light position to be used in shadow calculations.

4

Figure 2: A textured Utah Teapot



Chapter 2 - 3D Game Engine Overview
● Environment map – stores a view of the environment as seen from an object or 

the origin of the scene, either in the form of a sphere map (for instance a 
photograph taken with a fish-eye lens) or as a cube map (a set of 6 images, one 
for each direction along the coordinate axes). Environment maps are usually 
mapped on objects to make them appear reflective.

Generally, hardware limits how many textures that can be used simultaneously when 
rendering in real time. Textures can have a number of different channels, grey-scale 
textures, also known as luminance textures, only have one channel, while colour 
textures most often has four; red, green, blue and alpha (RGBA). 

2.1.3 Shaders
Shaders are short programs that are usually executed on a graphics processing unit 
(GPU). They combine the power of dedicated hardware with the versatility of a 
software renderer. Different shader units are arranged in a pipeline, a typical example 
can be seen in figure 3. Shaders receive data in the form of attributes and uniforms. 
Attributes vary with every element that is processed and are provided either from the 
previous shader in the pipeline or by the engine. Common attributes are described in 
chapter 2.1.1. Uniforms on the other hand vary at most once per draw call. Typical 
examples of uniforms are object properties such as position, texture bindings and 
material properties. On modern hardware there are up to three types of shader units 
available: vertex shaders, geometry shaders and fragment shaders.

Vertex shaders operate on individual vertices, and receive vertex attributes from the 
engine. The  vertex shader can generate or modify any vertex attributes, such as 
position, colour or texture coordinates. Common usages include making a tree's 
branches sway in the wind, moving raindrops and skinning a character model.

Geometry shaders operate on individual primitives, such as polygons, points or lines 
and receive input from a vertex shader. The geometry shader can emit zero or more 
primitives. Common usages include geometry tessellating, generating particle polygons 
from points or extruding shadow volumes.

Fragment shaders, sometimes referred to as pixel shaders, operate on individual 
fragments. The ouput of the fragment shader is the colour of a pixel written to the frame 
buffer. The fragment shader also has the ability to discard a fragment so that it is not 
written to the frame buffer. Common usages include per pixel lighting, bump mapping 
and reflections.

When shader hardware is not available, a fixed function pipeline must be used. This 
pipeline can usually be set up to perform basic calculations such as per vertex lighting, 
rigid transformations and blending of several textures. Many effects can be 
accomplished both with and without shaders, but shaders provide a much wider range of 
effects and better image quality.

5

Figure 3: A shader pipeline
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2.1.4 Materials
A material is basically a collection of textures, shaders and uniform values. Materials 
are often exported from modelling applications or from shader studio applications such 
as NVIDIA's FX Composer or AMD's RenderMonkey. These applications however 
create and modify what they refer to as effects. Effects are best thought of as material 
templates; for example, a fur effect might be used in several fur materials with different 
colours or textures.

2.1.5 Animations
Animations can be divided into three groups, node animations, blend shapes and bone 
animations, and span a certain number of frames. Animation data is specified either for 
each frame, or at a number of keyframes. When a keyframed animation is played back, 
data of two adjacent keyframes are interpolated to produce data for the frames in-
between in order to keep the animation fluent.

Node animations modifies the position, rotation or scale of nodes in the scenegraph. 
Less commonly used in games, where it is primarily adopted for cut scenes and camera 
movements.

Blend shapes are a sequence of models, which define the positions of the object's 
vertices. Require much memory but little processing power, and were often used to 
animate characters in older games.

Bone animations modifies the position, rotation or scale of certain nodes known as 
bones. Vertices in a model are linked to one or many of these bones in order to follow 
their movement. This technique is known as skinning. Bones are usually linked in a 
hierarchical manner to affect each other, mimicking the behaviour of, for example, a 
skeleton.

2.2 Scenegraphs
A scenegraph is a data structure that arranges the logical and often spatial representation 
of a graphical scene [1]. A scenegraph contains a number of linked nodes, usually in 
such a way that a node can have multiple child nodes, but only one parent, thus making 
it a directed graph, see figure 4 for a simple example scenegraph. In order to be useful, 
the graph should also be acyclic. Nodes can be divided into two categories, group 
nodes, which may have children, and leaf nodes, which may not. There can be 
numerous types of nodes, for instance transform nodes, object/model nodes, light nodes, 
camera nodes and emitter nodes for particle systems.

6
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A transform node is a group node which represents a transform relative to its parent 
node. This arranges the scene in a hierarchical structure, which is useful for numerous 
reasons, such as moving a complex object by only moving the parent node.

An object node, or a model node, is a leaf node that represents a graphical object that 
can be rendered. It has references to a mesh and a material resource.

All leaf nodes, such as those for objects, lights, cameras and emitters receive transforms 
from a parent transform node.

Scenegraphs are built and modified as the game world changes, but parts are often 
loaded from files that have been exported from a modelling application or a custom 
world editor.

2.3 Rendering
In 1986, Jim Kajiya introduced the rendering equation [3], which is a general integral 
equation for the lighting of any surface.

Lox , =Le x , ∫
f r x ,  ' ,  Li x ,  '  '⋅nd  '

The equation describes the outgoing light (Lo) in any direction from any position on a 
surface, which is the sum of the emitted light (Le) and the reflected light. The reflected 
light itself is the sum of the incoming light (Li) from all directions, multiplied by the 
surface reflection and cosine of the incident angle. All methods of calculating lighting in 
modern computer graphics can be seen as approximations of this equation.

There are several ways of rendering a scene, such as ray-tracing and radiosity. Such 
methods allow for advanced lighting effects and global illumination [4]. Global 
illumination takes the environment into consideration so that effects such as reflections, 
refractions and light bleeding are possible. However, global illumination is generally 

7
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Chapter 2 - 3D Game Engine Overview
considered too slow to be applied to games. This section will hence focus on using 
hardware accelerated rasterisation [4], which is the most common method employed by 
games. Although rasterisation only directly supports local lighting effects, which only 
considers the actual surface and light sources, modern games include many global 
effects such as shadows and reflections. This, however, makes the process of rendering 
a modern game a very complex task. 

2.3.1 Methods
Drawing relies on the use of a depth buffer, also called z-buffer, which is a buffer that 
associates a depth value with each pixel in the frame buffer [1],[4]. This allows the 
drawing of objects to be performed in any order, since a pixel is written to the frame 
buffer only if it is closer to the viewpoint than what is currently stored in the depth 
buffer. This is called hidden surface removal.
The basic way of rendering a scene is as follows:

1. Traverse the scene graph in a depth-first-order, concatenating node transforms 
with the resulting parent transform.

2. When an object node is reached, draw the object using its associated material 
and model.

This approach unfortunately has several problems, some of which being that it cannot 
render dynamic lights, dynamic shadows or transparent objects correctly. To handle 
dynamic lights, the light node transforms have to be known before any objects are 
drawn. Dynamic shadows are even more problematic since they require the use of 
several rendering passes. Due to the nature of the depth buffer on current graphics 
hardware, transparent objects has to be sorted back-to-front and drawn after the opaque 
objects. The following method is an example of how to address these problems:

1. Traverse the scene graph and concatenate the node transforms, put the lights and 
their transforms in a list, and put all objects and their transforms in another list.

2. For each light that casts shadows, render the scene as seen from the light source 
to one or several depth maps.

3. Sort the list of objects, so that transparent objects are sorted back-to-front and 
placed after opaque objects.

4. Draw the objects, using information from the list of lights and the light's depth 
maps for lighting and shadow calculations.

There are several alternatives to this method, mainly related to lighting and shadows. 
There are two common methods of drawing dynamic shadows in games, shadow 
mapping and shadow volumes [4]. Shadow mapping uses the depth maps generated in 
step 2, shadow volumes do not. 

While the method listed above calculates lighting per-object-per-light (POPL); the 
alternative, per-light-per-object (PLPO), is also common. If this method is used, the 
fourth step in the previous method is replaced with the following two steps:

4. Draw the objects lit by the ambient lighting in the scene.

5. For each light, draw the scene again lit by only this light, additively blending the 
result into the frame buffer.

8
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This method is compatible with both shadow mapping and shadow volumes, whereas 
the previous method only supports shadow mapping. However, it also requires the scene 
to be rendered once per light. A method that does not have this performance drawback is 
deferred shading, first suggested in a paper from 1988 by Michael Deering et al. [5], 
although the term “deferred” is never used in the paper. The method modifies PLPO as 
such:

4. Draw the objects lit by the ambient lighting in the scene. At the same time, also 
draw additional information of the fragments such as position, normal, and 
material information to extra frame buffers, these are collectively called the g-
buffer.

5. For each light, draw a light geometry (spheres for point lights, cones for spot 
lights) of a reasonable size (a reasonable size would be the distance at which the 
light's contribution becomes negligible) to determine what parts (if any) of the 
visible geometry in the current rendering that should be affected by this light. 
These light geometries are drawn with a fragment shader that reads scene 
information from the g-buffer, calculates the light contribution and additively 
blends the result into the frame buffer.

Even though this method has been known for quite some time, it is still sparsely used in 
games since hardware that can support it has only recently become generally available. 
All of these methods have advantages and disadvantages, POPL only draws the scene 
once but the shaders become very complex or numerous since both material 
characteristics and multiple lights have to be handled in a single pass. PLPO is the exact 
opposite, the shaders are simpler but the scene has to be drawn multiple times. Deferred 
shading seems to solve this problem since it has simple shaders and only draws the 
scene once. However, the g-buffer is only possible to implement on the latest hardware 
and has high memory requirements.

2.3.2 View Frustum Culling
Game worlds are often large, potentially containing tens of thousands of objects. Since 
only a part of the world is normally visible at any time, rendering can be optimised by 
discarding geometry outside of the view frustum, this is called frustum culling [1]. Such 
a frustum has the geometrical shape of a square pyramid delimited by a near and far 
viewing plane, as shown in figure 5. On older hardware, when the number of polygons 
in scenes were lower and rasterising was slower, culling was often done on a per 
polygon basis. On modern hardware, where geometry is often stored in dedicated 
graphics memory, culling is normally done per object. 

9Figure 5: No culling (left) and view frustum culling (right) [6]
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To speed up the culling of objects, the actual mesh geometry is usually not used but an 
enclosing bounding volume [7]. The most common object bounding volumes are 
spheres, boxes aligned to the coordinate system axes (Axis Aligned Bounding Box, or 
AABB) and boxes aligned to the object (Oriented Bounding Box, or OBB). Frustum 
culling is also used when rendering depth maps to be used in shadow mapping. A notion 
related to frustum culling is frustum clipping where polygons that straddle the frustum 
planes are split so that parts outside the frustum are discarded. This is done by modern 
hardware in the process of rasterisation and not something that engine programmers 
normally have to be concerned with.

2.3.3 Occlusion Culling
While view frustum culling potentially greatly reduces the number of non-visible 
objects that are drawn, it does not hinder the drawing of objects occluded by other 
objects. A further optimisation would therefore be to cull even such objects (see figure 
6). This is not to be confused with the hidden surface removal performed with the depth 
buffer (although this can be seen as occlusion culling on a per-pixel-basis), as occlusion 
culling only is an optimisation to discard objects that will not contribute to the resulting 
image.

There are a number of methods of accomplishing this, worthy of mention are potentially  
visible set, portal rendering and hardware occlusion queries.

Potentially visible set divides a scene into regions and pre-computes visibility between 
them. This allows for quick indexing to obtain high quality visibility sets at runtime. 
However, since it is a pre-computation, changes to the objects in the scene are not 
possible.

Portal rendering divides a scene into sectors (rooms) and portals (doors), and computes 
visibility of sectors at runtime by clipping them against portals [7]. This is naturally best 
suited for small, indoor scenes, and will have little impact on large, outdoor scenes 
where there are no clear portals.

Hardware occlusion queries are a way of asking the graphics hardware if any pixels 
were drawn during the rendering of a particular object [8]. That way, it is possible to 
simulate rendering of the bounding volume of an object to see if the object is currently 
occluded (i.e. no pixels would be drawn), and if so, that object can safely be skipped. 

10

Figure 6: View frustum culling and occlusion culling 
combined [6]
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This method works on dynamic scenes and without any pre-computation, but requires 
modern hardware and causes some overhead due to the additional draw calls.

2.3.4 Spatial Acceleration Structures
View frustum culling and occlusion culling minimises the number of objects  that are 
drawn by the graphics hardware. However, culling all the objects in a large world 
against the view frustum can put a significant burden on the CPU. This and other 
problems can be alleviated by using a spatial acceleration structure, such as a bounding 
volume hierarchy (BVH) which is easily integrated with a scenegraph. Two popular 
BVHs are sphere trees [9] and aabb-trees [10]. This is realised by having every node in 
the scenegraph store a bounding volume, which encloses all objects in the subtree 
rooted in the corresponding node. This makes many spatial queries, such as frustum 
culling, much faster since an entire subtree can be tested without having to test every 
individual object. However, this technique also has some computational overhead since 
a subtree of the volume hierarchy has to be updated every time a node in the subtree 
changes. 

Bounding volume hierarchies are simple and can handle dynamic updates fast, but the 
large amounts of static geometry common in games can be difficult to organise in a 
hierarchy. Spatial partitioning structures are often used to remedy this problem. Such 
structures are generally computationally expensive to construct and alter, but allow for 
very fast handling of spatial queries. Common examples are quadtrees, octrees
(see figure 7 above), kd-trees and BSP trees [4]. These structures can be kept separate 
from the scene graph, or be embedded in the scene graph. Some games use both 
bounding volume hierarchies and spatial partitioning trees, while others store all data in 
either. 

11

Figure 7: Octree spatial acceleration structure 
constructed around two spheres [11]
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2.3.5 Hardware Specific Optimisations
Achieving high rendering performance with hardware accelerated graphics can be 
difficult and require good knowledge of hardware and large amounts of testing. Some 
general principles that can be addressed by a 3D game engine can however be 
identified: minimise state changes, minimise draw calls and minimise stalls.

Minimising state changes can be done by carefully ordering how objects are drawn. 
This can be done by sorting objects with consideration to their materials, shaders, 
textures or geometry. State then only need to be changed when necessary as opposed to 
fully resetting and setting all state for every object that is to be drawn. In less dynamic 
games with a small number of objects running on simple hardware, this sorting can be 
done as a pre-computation. Otherwise, sorting can be done every frame on the objects 
currently in view (after any frustum and occlusion culling). One problem is transparent 
objects since they need to be drawn after opaque objects and preferably in strict back-to-
front order, this makes minimising state changes difficult and is one reason to cut back 
on the number of transparent objects. Other possible ways of minimising state changes 
are to use fewer (and perhaps more complex) shaders, fewer textures (possibly 
packaging several textures into texture atlases) or merging geometry data into fewer and 
larger buffers.

Minimising draw calls is related to minimising state changes. Since a state change can 
occur between draw calls only, fewer state changes need fewer draw calls. Minimising 
draw calls is then done by merging objects that use the same state. This sometimes adds 
considerable complexity, one example is particle systems. The simplest approach is to 
draw each particle individually since all particles move independently each frame. In 
practice, this is much too slow and particles should be batched so that even a particle 
system consisting of thousands of particles is drawn with at most a few draw calls.

Minimising stalls means that the time that the graphics hardware is idle should be 
minimised. Drawing commands issued from the CPU to the GPU are queued and 
executed in the graphics pipeline (see figures 9 and 10); for optimal utilisation of 
hardware resources, this queue should never be empty. To address this, care should be 
taken to schedule CPU computations to occur when the drawing queue is filled. For 
optimal performance in complex games, multi-threading will probably have to be used. 
However, even if the CPU to GPU queue is not left empty, internal hardware stalls can 
still occur due to the pipeline architecture of the hardware. This can happen for two 
reasons: if a command needs the results of a yet uncompleted command further down 
the pipeline or if a command requires state changes which are incompatible with 
commands currently being processed further down in the pipeline. The first scenario can 
happen if for instance the drawing of an object needs the content of a texture which is 
currently being written to. The second scenario happens when some state such as blend 
settings or the active shader need to be changed, this might not be possible to do without 
waiting for all previous drawing commands to finish. The problem of internal stalls can 
be addressed by reordering commands so that a command does not need the result of a 
recent command or tries to update state which is likely to be currently used, minimising 
state changes and draw calls also helps.
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3 Graphics Libraries
There has been many different programming libraries with the purpose of rasterising 
images. Naturally, many custom solutions have existed within companies and 
universities, but since hardware accelerated rasterisation became common graphics 
programmers generally use the libraries provided by the hardware vendors. The two 
most common libraries are called OpenGL and Microsoft's Direct3D. OpenGL is used 
in a wider range of applications and is supported on more platforms. Direct3D is mostly 
used for games, but is more popular than OpenGL in this area.

3.1 OpenGL 
OpenGL (Open Graphics Library) is a standard specification defining a cross-platform 
application programming interface (API) for rendering 2D and 3D computer graphics 
[12]. OpenGL was originally developed by Silicon Graphics Inc. (SGI) but has since 
1992 been governed by the Architecture Review Board (ARB) which consists of 
representatives from many independent companies. Since 2006, ARB is part of the 
Khronos group. OpenGL is widely used in Computer-Aided Design (CAD), scientific 
visualisation, flight simulators and games.

OpenGL has an extension mechanism, this allows implementers of the library to add 
extra functionality. Applications can query the availability of specific extensions at 
runtime, making it possible for programs to adapt to different hardware. Extensions 
allow programmers access to new hardware abilities without having to wait for the ARB 
to incorporate it into the OpenGL standard. Furthermore, additions to the standard are 
tested as extensions first to ensure their usability. This is important since all versions of 
OpenGL are backward compatible, meaning that once a feature is accepted into the 
standard it is never removed.

3.1.1 Versions 1.0 – 1.5
Version 1.0 of OpenGL was released in 1992 and it provides features such as per-vertex 
lighting, texturing, fog and blending. Geometry is specified using the begin/end-
paradigm (see code listing 1)  which is easy to use. OpenGL commands can be grouped 
together and stored in display lists, which can then be executed repeatedly. This 
improves rendering speed and allows calls to be organised in a hierarchical manner. 

OpenGL supports several drawing primitives: points, lines, line strips, line loops, 
triangles, triangle strips, triangle fans, quadrilaterals (quads), quad strips and polygons. 
Supported vertex attributes are positions, colours, normals and texture coordinates. 
Texture coordinates can also be automatically generated in order to save memory or 
efficiently animate coordinates. OpenGL is often considered to be a state machine, since 
it has a large number of global states which affect drawing. Examples of states are 
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Code listing 1: Drawing a triangle in OpenGL using begin/end-paradigm

 glBegin(GL_TRIANGLES);
glColor3f(1, 0, 0); glVertex3f( 0, 1, 0);
glColor3f(0, 1, 0); glVertex3f(-1, 0, 0);
glColor3f(0, 0, 1); glVertex3f( 1, 0, 0);

 glEnd();
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lighting settings, material settings, current texture, blending mode and matrix 
transforms. Figure 8 shows how vertex positions in local object space (object  
coordinates) are transformed into pixel positions in the framebuffer (window 
coordinates). To learn more about coordinate transforms, there are several books 
treating the subject, for example 3D Computer Graphics by Alan H. Watt [4]. 

The most important addition in OpenGL 1.1 was vertex arrays. Vertex arrays are an 
alternative to the begin/end-paradigm and makes it possible to store vertex attributes in 
arrays and draw directly from these. This greatly reduces the number of OpenGL 
commands needed to draw geometry. The large number of commands of the begin/end-
paradigm began to be problematic as rendering hardware became faster and geometric 
models became more detailed.

Version 1.2 of OpenGL was released in 1998 and added three-dimensional textures and 
more blending modes among other features. 

OpenGL 1.3 was released in 2001 and added several important features. Compressed 
textures allow textures to be used while stored in a compressed form, reducing memory 
consumption. Cube maps enable more detailed environment mapping effects. 
Multitexturing and texture environment settings allow geometry to be mapped with 
several textures simultaneously which can be combined in several different ways. This 
allows for much more advanced surface details and can be seen as a primitive form of 
shaders. For instance, a special combiner mode allows for bump mapping effects. Also, 
support for fullscreen antialiasing was added.

In 2002 OpenGL 1.4 was released. It added support for depth maps and shadow 
rendering with shadow mapping. Texture environment settings were made more 
powerful and additional blending modes were added.

In the following year, OpenGL 1.5 was released and added two important features: 
occlusion queries and vertex buffer objects (VBO). Vertex buffer objects allow vertex 
arrays to be stored in dedicated graphics memory. This allows for significantly faster 
rendering of complex geometry compared to normal vertex arrays. This problem had 
already been addressed by display lists, but VBOs are simpler for library implementers 
to optimise and they are better suited to handle dynamic geometry.
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Figure 8: Vertex transformation sequence in OpenGL
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3.1.2 Versions 2.0 – 2.1
OpenGL 2.0 was released in 2004. The reason for the change of major version number 
was the added support for high-level programmable shaders in the form of vertex and 
fragment shaders. Despite this, it is still backward compatible with older versions. This 
version also introduced the OpenGL Shading Language (GLSL) [14], a C-like language 
used exclusively to write shader programs. An interesting feature is that it is possible to 
use old OpenGL code with shader-based rendering, due to much of the old OpenGL 
state being automatically available to shaders through special variables. Another 
important feature added is Multiple Render Targets (MRT), which allows fragment 
shaders to write to multiple frame buffer objects. This is important for certain advanced 
effects such as deferred shading.

Version 2.1, released in 2006, introduced some additions to GLSL, as well as Pixel  
Buffer Objects which expand on the interface provided by the vertex buffer objects 
allowing buffer objects to be used with both vertex array and pixel data.

3.2 OpenGL ES
OpenGL ES (henceforth known as GLES) is an adaptation of OpenGL for embedded 
systems [15]. GLES is a subset of OpenGL, some functionality was removed in order to 
make the library smaller and simpler. However, fixed-point functionality was added 
since few embedded systems efficiently handle floating-point calculations. GLES was 
developed by the Khronos group and has two different profiles, Common and Common-
Lite. The Common-Lite profile differs from the Common profile primarily in being 
targeted at a simpler class of graphics systems not supporting high-performance 
floating-point calculations. The Common-Lite profile supports only commands taking 
fixed-point arguments, while the Common profile also includes many equivalent 
commands taking floating-point arguments.
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Figure 9: The fixed function pipeline of OpenGL 1.5 and OpenGL ES 1.1 [13]
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3.2.1 Versions 1.0 – 1.1
The first version of GLES, 1.0, was released in 2003 and is based on OpenGL 1.3, but 
with some functionality removed, such as

● Begin/end-paradigm. This was deemed obsolete with preference to vertex 
arrays.

● Quad, quad-strip and polygon drawing primitives. These were removed since 
these primitives can be assembled from triangles.

● Automatic texture coordinate generation. 

● One- and three-dimensional textures and cube maps, leaving only two-
dimensional textures.

● Some of the texture environment settings, leaving only the simpler ones such as 
replace, blend, add and modulate.

● Display lists, since they are complex to implement.

GLES 1.1 was released in 2004 and is based on OpenGL 1.5. The most important 
additions compared to GLES 1.0 are vertex buffer objects and the support of all 
advanced texture environment settings in OpenGL 1.5.

3.2.2 Version 2.0
GLES 2.0, the latest version, was finalised in 2007 [16]. It is based on OpenGL 2.0, and 
like it introduced high-level shaders. However, unlike OpenGL 2.0, GLES 2.0 
completely removes all support for the fixed function pipeline. As a result, GLES 2.0 is 
not backward compatible with previous versions of GLES. Shaders are specified in a 
version of GLSL called GLSL ES. GLES 2.0 only supports the Common profile, and 
the fixed point support has been limited to vertex arrays only. 

16

Figure 10: The programmable pipeline of OpenGL ES 2.0 [13]
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The most noteworthy functionality removed from OpenGL 2.0 is

● Begin/end-paradigm.

● Specific vertex arrays for attributes such as positions, normals and texture 
coordinates. These functions have been removed in favor of the general function 
glVertexAttribPointer.

● Quad, quad-strip and polygon drawing primitives.

● All functionality that modifies the current matrix transforms. The model-view 
and projection matrices are removed, programmers choose which transforms are 
needed and pass these as uniforms to shaders.

● Automatic texture coordinate generation. This can be done in vertex shaders.

● All functionality that handles lighting and material state. Programmers 
implement a custom lighting solution with shaders and feed data to the shaders 
with generic uniforms and vertex attributes.

● One- and three-dimensional textures, leaving two-dimensional textures and cube 
maps.

● Texture environment settings, these are not needed since shaders are a direct 
substitute and much more powerful.

● Fog settings, handled by shaders instead.

● Display lists.

GLES 2.0 directly supports framebuffer objects, something which is only available as 
an extension even to OpenGL 2.1. Framebuffer objects allow multiple off-screen 
framebuffers to be created and rendered to. This allows for fast rendering to textures and 
also supports rendering to textures larger than the on-screen framebuffer. This is 
important when rendering depth maps, environment maps or in other effects such as 
reflections, refractions or post processing effects.

GLSL ES is very similar to GLSL, there are two main differences: in GLSL ES, the 
special variables that are tied to the fixed function pipeline have been removed and 
keywords for specifying the precision of variables have been added (lowp, mediump and 
highp).
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4 Graphics Hardware
The beginning of computer graphics is often attributed to Ivan Sutherland and his 
program Sketchpad which ran on a vector graphics display monitor with a light pen 
input device in 1963. At Xerox Parc, the computer mouse was invented and Graphical  
User Interfaces (GUIs) were first developed. In the 70's, computer graphics hardware 
became cheaper and was used in the first Apple personal computers. Arcade game 
machines such as Pong or Pac-Man became popular. During the 80's, the IBM PC was 
introduced and workstations from SGI began supporting real-time hardware 
rasterisation of lines and polygons. During the 90's, SGI workstations that accelerated 
3D rasterisation appeared and then were replaced by cheaper IBM PCs fitted with 3D 
graphics cards. Game consoles with 3D graphics appear and photo-realistic computer 
graphics effects were introduced in Hollywood films. In the 00's PC 3D hardware 
continues to improve and hand-held devices with hardware accelerated graphics emerge 
[17].

4.1 PC Hardware
Hardware accelerated 3D graphics on the PC became popular with the introduction of 
the 3dfx Voodoo chipset in 1996. Graphics cards not only accelerating rasterisation, but 
also vertex transforms and lighting calculations were introduced with the GeForce 256 
in 1999. Simple vertex and fragment shaders were introduced in 2001, the first cards 
that supported advanced shaders were introduced in 2003. These cards have dedicated 
hardware for vertex and fragment shaders. The next important evolutionary step 
happened in 2006 when cards which supports geometry shaders appeared. These cards 
have a unified shader architecture which means that the cards have a number of more 
general processing elements which can process fragments, vertices or geometry. 
Different tasks are automatically assigned to these processing elements, so that 
processing power is dynamically allocated to fit the processing needs of the application.

Today, the main manufacturers of graphics cards focused on 3D games on the PC are 
NVIDIA and AMD (previously ATI). Their cards support both Direct3D and OpenGL. 
For later comparison reasons a NVIDIA GeForce 8600 GT, a modern medium/high 
range graphics card, supports OpenGL 2.1 plus geometry shaders and can draw more 
than 4000M pixels/s and 700M vertices/s [18].

4.2 Mobile Hardware
Mobile hardware is significantly less powerful than a PC because of cost, size and 
power constraints. While mobile phones capable of hardware accelerated 3D are still 
rare, Ed Plowman, Product Manager at ARM, predicts in an interview with 3D-Test [19] 
that mobile 3D graphics acceleration will become more and more common up to the 
point where a “mass market explosion” will occur somewhere between the middle of 
2008 and the middle of 2009. After this point, hardware accelerated 3D graphics will be 
expected on all new mobile phones. This might seem optimistic, after all – not everyone 
are interested in games. However, the same hardware that powers 3D graphics will also 
support better looking and faster 2D graphical interfaces and support decoding of 
movies, images and sounds. Dedicated graphics hardware generally also consumes less 
power than if a general purpose processor would handle the same task. 
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One example is the Nokia N93 which was introduced in 2006 and is one of the few 
mobile phones that support hardware accelerated OpenGL ES 1.1 [20]. The N93 
contains a PowerVR MBX GPU; which, according to the manufacturer Imagination 
Technologies, can draw 300M pixels/s and 2M polygons/s [21]. Benchmark tests by 
GLBenchmark [22] indicates a lower actual performance; 870 000 shaded and coloured 
triangles/s on the N93. The processor is a 32-bit ARM11 330MHz CPU with floating 
point support. The phone has a 2,4 inch screen with a resolution of 240 x 320 pixels 
(QVGA).

No OpenGL ES 2.0 capable mobile phones have yet been announced, however, some 
information is available from press releases and product specifications. Peter Lykke 
Nielsen, product manager at Nokia, states in a lecture at Game Developers Conference 
China 2007 [23] that OpenGL ES 2.0 capable phones probably will be available in the 
second quarter of 2008. A possible graphics chip to be included in those phones is the 
PowerVR SGX, the successor to the MBX chip. The SGX chip will support OpenGL 
ES 2.0, and Imagination Technologies states that it will also support geometry shaders, 
which are not included in ES 2.0 – most likely this feature will be accessible through 
OpenGL extensions. The SGX chip will be available in many variants and performance 
is said to lie in the range of 100M – 4000M pixels/s and 2M – 100M polygons/s [24]. 
The most powerful versions of the chip will most likely not be used in mobile phones, 
though it seems probable that the theoretical performance in phones will reach 20M 
polygons/s which would mean an order of magnitude increase compared to the previous 
generation. In any case, these numbers are very high as they even approach the PC 
hardware listed in the previous section. 

While the most common resolution for mobile screens are 240 x 320 pixels, there are a 
few exceptions, for instance the Toshiba G900 which has a resolution of 480 x 800 
pixels, called WVGA [25]. Such higher resolutions might become more common with 
the new graphics chips – assuming a resolution of 480 x 800, 60 frames per second and 
an overdraw factor of 2 a graphics chip would need to handle 480∗800∗60∗2=46M
pixels/s. Taking into account that actual performance will be lower than the theoretical 
numbers specified by the manufacturer, it still seems very possible that graphics chips 
such as the SGX will be able to handle a game running in such a resolution.

Besides Imagination Technologies, manufacturers of 3D graphics hardware for mobile 
phones include NVIDIA, AMD and ARM.

NVIDIA makes the GoForce chips targeted at hand-held devices. The 4800 and 5500 
versions of GoForce support OpenGL ES 1.1 and has been included in a number of 
devices. Nathan Kirsch at Legit Reviews states in a preview of the GoForce 5500 [26] 
that it is able to render the PC game Quake 3 Arena from 1999 at a 1024 x 768 
resolution at 28-35 frames/s. One of the devices the GoForce 5500 is included in is the 
O2 XDA Flame which, however, does not score very well on GLBenchmark where it 
only runs the OpenGL ES 1.0 and not the 1.1 tests. Furthermore, it gets much lower 
scores than the Nokia N93 (225 000 shaded and coloured triangles/s versus 870 000) 
[22]. There is little information about upcoming chips from NVIDIA except that there is 
OpenGL ES 2.0 compliant hardware in development.

AMD's hand-held graphics chips are named Imageon. The Imageon 2380 and 2388 
were released in 2006 and supports OpenGL ES 1.1 [27]. These chips are not known to 
be used in any consumer products. AMD is most likely developing OpenGL ES 2.0 
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hardware, some indications of this is that AMD has incorporated GLSL ES support into 
the AMD RenderMonkey shader development application and released an OpenGL ES 
2.0 PC emulator library.

ARM is a very successful producer of processors that are used in many mobile phones. 
ARM also offers two 3D graphics chips: the Mali 55 with OpenGL ES 1.1 support and 
the Mali 200 with OpenGL ES 2.0 support [28]. In the interview mentioned above, Ed 
Plowman also states that the Mali 55 can render up to 1M polygons/s [19]. Like the 
Imageon chips, the Mali chips are not known to be used in any consumer products.
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5 Approach
We started by studying OpenGL 2.1 and OpenGL ES 2.0 in order to get a better 
understanding of OpenGL and shaders. Our goals were to examine how to develop 
mobile games with OpenGL ES 2.0 and how three-dimensional graphics and shaders 
can be successfully used in mobile games. In order to do this we decided to develop a 
game prototype of a successful two-dimensional game named Kodo and adapt it to three 
dimensions with shader effects. Since there were no OpenGL ES 2.0 3D game engines 
available to us, we needed to develop one. We investigated if it would be possible to 
adapt an available PC OpenGL engine but were concerned that they were too complex 
and large to be easily adapted to a hand-held device. However, we also realised that we 
did not have enough time to develop a complete 3D game engine from scratch as part of 
the project. We decided to handle this problem by trying to keep the engine as small and 
simple as possible, only supporting the features that we needed to make the prototype. 
Also, the PowerVR OpenGL ES 2.0 SDK was of great help to us. 

5.1 3D Game Engine
Loading and handling resources is a complex part of a 3D engine. A number of 
decisions has to be made about which file formats to support, how the files should be 
created and manipulated, the organisation of data in these files and the organisation, use 
and manipulation of this data when it has been loaded into the application memory. The 
PowerVR SDK contains a number of file format definitions and tools which work with 
these formats. We decided to make use of the PowerVR file formats since they are 
simple and designed to support OpenGL ES and mobile hardware. This worked well, 
but caused some problems since some of these file formats aren't very general and we 
couldn't easily extend them.

The PowerVR file formats that we use are texture files (.pvr), effect files (.pfx) and 
model files (.pod). The texture files are created from standard image files with a 
PowerVR application which we found very useful. PowerVR effect files are similar to 
the effect files used in NVIDIA's FX Composer and AMD's RenderMonkey, but much 
simpler. An application called PowerVR Shaman can be used to view and modify pfx-
files. However, we decided not to use this application since it wasn't very versatile, we 
instead created and edited pfx-files with a text editor. The model files (.pod) are 
exported from the modelling program 3ds max with a custom exporter plug-in. The pod-
files contain scenegraphs, models, simple materials and animations. The code to load 
pvr-files, pfx-files and pod-files was incorporated into our application and provided the 
basis for the rest of the engine.

5.1.1 The Effect Files
The pfx effect files represent material effects. Each file contains a number of texture 
specifications, vertex shaders, texture shaders and effect definitions. The effect 
definition specifies which shaders the effect uses, which uniforms and attributes it uses 
and also maps actual textures to any texture uniforms. Other uniforms and attributes are 
mapped to specific names defined by the application. These names correspond to 
different state that the application holds, such as transformation matrices, lighting 
settings or material settings. A simple example can be seen in code listing 2.
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These effect files proved to be powerful enough for our purposes except for the 
handling of textures. As can be seen in the example in code listing 2, texture files are 
specified directly in the effect file and bound in the effect definitions. This is very 
limiting since it is often desirable to make general effects which can be used for many 
different objects and materials. For example, the effect in listing 2 would be a general 
shader which could draw any unlit and textured geometry if it wasn't bound to be used 
with the wall.pvr texture. To solve this problem, we introduced a number of image file 
names with special meanings: materialTexture (diffuse map of the current material),  
normalTexture (normal map of the current material), screenTexture (the current screen 
contents rendered to a texture), objScreenTexture (like screenTexture but centred around 
the current object) and shadowMapTexture (a depth map to be used in shadow 
mapping). This allows an effect to request textures specific to the current material or 
object, as well as dynamically generated textures not loaded from files. The primary 
reason for choosing this solution was that it did not require any changes to the file 
format or the pfx parsing and loading code.
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Code listing 2: An example pfx file

[TEXTURES]
FILE wall wall.pvr LINEAR-LINEAR-LINEAR

[/TEXTURES]

[VERTEXSHADER]
NAME SimpleVertShader
[GLSL_CODE]
attribute vec4 myVertex;
attribute vec2 myUVMain;
uniform  mat4 myMVPMatrix;
varying  vec2 texCoordinateMain;

void main(void)
{

texCoordinateMain = myUVMain;
gl_Position = myMVPMatrix * myVertex;

}
[/GLSL_CODE]

[/VERTEXSHADER]

[FRAGMENTSHADER]
NAME SimpleFragmentShader 
[GLSL_CODE]
uniform sampler2D tex;
varying vec2 texCoordinateMain;

void main (void)
{

gl_FragColor = texture2D(tex, texCoordinateMain);
}
[/GLSL_CODE]

[/FRAGMENTSHADER]

[EFFECT] 
NAME simpleTex
UNIFORM myMVPMatrix MODELVIEWPROJECTIONMATRIX
UNIFORM tex TEXTURE0
ATTRIBUTE myVertex VERTEX
ATTRIBUTE myUVMain TEXCOORD0

   VERTEXSHADER SimpleVertShader
   FRAGMENTSHADER SimpleFragmentShader

TEXTURE 0 wall
[/EFFECT]
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Other possible extensions to the effect files would be to support default, minimum and 
maximum values for uniforms. 

5.1.2 The Model Files
The pod model file definition, the 3ds max exporter and the pod loading code represent 
a significant amount of work and is the primary reason that we chose to use the 
PowerVR SDK code. Implementing this functionality by ourselves would have taken 
too much time and choosing some other model format was considered problematic since 
loading code might be hard to find or not suited to be used on mobile hardware due to 
portability problems or size and processing requirements. A pod file contains a 
scenegraph consisting of transform nodes arranged in a hierarchy. These nodes can be of 
any of these types: mesh nodes, light nodes, camera nodes or simple transform nodes.

The mesh nodes reference materials and mesh data. Materials support one diffuse 
texture; ambient, diffuse and specular colour; opacity and shininess values as well as a 
reference to an effect from an effect file. Mesh data is represented in one of these 
formats: triangles, indexed triangles, triangle strips or indexed triangle strips. Supported 
vertex attributes are positions, normals, tangents, binormals, multiple number of texture 
coordinate sets, colours, bone indices and bone weights. These attributes can be placed 
in separate arrays or in one interleaved array. Attributes can be stored as different data 
types such as one- two- or four-byte integers or two-byte floating point values to save 
memory. Light nodes are either point lights or directional lights, they have a colour and 
a target node (for directing the light). Camera nodes have a field-of-view value, far and 
near view frustum plane depth values as well as a target node. Simple transform nodes 
are used as target nodes or bones. All nodes can have animation data for position, 
rotation and scale. 

Almost all of this data can be exported from 3ds max. The material effect file and effect 
name can not be exported since there is no “effect file” and “effect name” settings in the 
material options in 3ds max. There is probably a way to make a custom material plug-in 
to 3ds max but we settled for a simpler solution: materials are named in a special way to 
specify the effect for the material. For example, naming a material 
“simple_simpleTex_sky” in 3ds max, creates a material named “sky” in the engine that 
uses the effect “simpleTex” defined in the file “simple.pfx”.

Several other limitations with the model files were encountered, for example, there is no 
support for spotlights and the corresponding cut-off angle. We didn't solve this problem 
since we never needed to use spotlights. Furthermore, there is no support for uniform 
values in the materials (except for the pre-defined material values). This was handled by 
specifying uniforms in text files, which will be explained in 5.1.6. These uniform files 
are also used to specify light attenuation factors which are not supported by the pod 
files. Also, there is no support for several textures per material like normal maps or 
multiple diffuse maps. We handled this for normal maps with the special texture file 
names for effect files described in the previous section. If an effect uses the textures 
materialTexture and normalMapTexture, all materials that use this effect will 
automatically use a normal map that is named like the material diffuse texture. For 
example, if a material uses “rock.pvr” as a diffuse map and uses such an effect, the file 
“rock_normal.pvr” will automatically be used as the normal map for that material.
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5.1.3 Scene Representation
The code that handles loading of textures, effects and models was provided by the 
PowerVR SDK. We started by combining these features so that after loading a model, 
all effects that the model uses are loaded, after which all textures that the materials or 
the effects use are loaded. All the data is simply stored by the loading code in a couple 
of arrays, one for each type of data: nodes, cameras, lights, meshes, materials and 
textures. This means that the scenegraph is not stored as an explicit tree, the tree 
structure is instead implicitly defined by storing parent node indices in the node data 
structures. This is the simplest solution possible, very memory efficient and accessing or 
modifying objects is simple and fast. However, adding and deleting objects becomes 
extremely costly. For example, when removing or adding a node, the node array will 
have to be rebuilt. This might cause node indices to be remapped, and to handle this, all 
node indices in the program will have to be checked and possibly modified. Since 
games are by nature quite dynamic (several objects might be added or deleted every 
frame) this is not an ideal scene representation. However, we decided to keep it because 
the SDK code relied on this and we wanted to use as much of it as possible. Also, if 
objects are not added or deleted during the actual gameplay, this representation is highly 
optimised. For example, since all nodes are stored in a single array, all this data is stored 
in one block of memory and this works very well with the processor's cache memory. In 
a more dynamic linked structure, each node normally has its own memory block and 
this might result in bad performance while traversing the scenegraph.

To use this scene representation in an actual game, the following procedure is followed: 
first, all resources that are needed are loaded and merged into one scene; secondly, a 
number of empty mesh nodes are added, these empty nodes are then dynamically bound 
to material and mesh resources depending on what game object they should represent. 
When a new level should be loaded, the scene is cleared and all resources are reloaded. 
This procedure avoids the expensive adding and removal of objects during gameplay. 
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Figure 11: Kodo character in 3ds max, the mesh, texturing and bones are visible
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This works well for simple level-based games, but adds some complexity for the game 
programmer that is required to know how many objects will be needed beforehand and 
handle the mapping between game objects and scene nodes.

To allow this usage, we implemented support for merging scenes and adding empty 
mesh nodes. The engine does not support removal of nodes. When merging scenes and 
adding nodes, remapping of node indices has to be performed which makes these 
operations fairly costly. Also, when loading a new scene to be merged with an existing 
scene, some resource management must be performed so that the new scene reuses the 
effects and textures of the old scene instead of loading duplicates.

5.1.4 Scene Management
Ideally, the game engine should represent a simple but powerful interface to the 
application code so that it can handle the game logic without having to be concerned 
with details such as resource management or rendering implementation. We keep the 
scene representation hidden from the application code, and provide helper functions for 
modifying the scene. The application code refers to different objects by integer handles 
and thus is insulated from the actual data structures used. These handles are simply 
indices into the arrays in the scene representation.

The scene management functions allow for example the reading and modification of 
node transforms; material, mesh and animation node bindings; animation triggering, 
setting node parents, setting custom uniform values, modifying light parameters such as 
colour or attenuation, adding effects to the scene or specific objects or assigning shadow 
maps to specific lights.

5.1.5 Animations
The engine supports node animations and bone animations but not blend shapes. 
Animation data is exported from 3ds max to pod files and the animation data for 
position, rotation and scale is stored in each node that is animated. Bone animations are 
handled by treating bones as ordinary nodes that are animated just like other nodes. The 
difference is that in a bone animation, there is a mesh that references these nodes and 
use them as bones, the mesh also contains the skinning information in the form of bone 
weights and indices for every vertex. A single mesh can be split up into a number of 
bone batches. This is automatically done by the 3ds max exporter (by setting a 
maximum number of bones per batch) and each bone batch will be drawn by an 
individual draw call. The actual skinning is performed by a vertex shader, so the models 
need to be bound to an effect that has such a shader to enable the bone animation to be 
played.

Each model file has a certain animation length, and can contain many node or bone 
animations. This allows entire film-like scene animations to be created in 3ds max, 
exported to one pod file, and played back in the engine. While useful, this does not suit 
our needs very well since we use this model format as the actual scene representation 
for the interactive game world. 
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A typical game places the following demands on the game engine regarding bone 
animations:

1. A certain set of bones, a skeleton, can be used by several animations and meshes.

2. If a mesh is compatible with a skeleton, it should be able to use all animations 
for that skeleton.

3. Meshes and animations can be loaded as individual resources and be used by 
multiple game objects simultaneously.

As described in section 5.1.3, when pod files containing game levels or meshes are 
loaded, they are merged into the same scene. Game objects are handled by adding 
empty model nodes and binding these to mesh and material resources. This allows 
meshes to be handled as individual resources. Animations can be created by exporting a 
set of nodes and animation data to an individual pod file, excluding any meshes or 
materials. However, when loading these animations, they are not added to the master 
scene but instead stored as individual scenes in a list of animations. This is done to 
allow animations to be handled as bindable resources, and to avoid the complexities of 
remapping bone indices and having multiple points in time active simultaneously in one 
scene.

Consequently, support for loading a pod file as an animation was added to the engine, 
along with support for binding animations to objects. When triggering the start of an 
animation, a time point is specified that specifies when the animation should start. This 
allows simple scheduling of animations and also makes it possible to jump to a specific 
point in the middle of an animation by specifying a triggering point preceding the 
current time. It is also possible to set a looping property for individual animations. 

The engine also supports automatic position interpolation for objects as this simplifies 
the application code and also results in smoother movement. Position interpolation is 
activated for an object by specifying start and end position, along with start and end 
time points. 

5.1.6 Built-in and Custom Uniforms
During the project we added many uniforms built into the engine. These uniforms are 
requested by shaders through uniform definitions in the effect files. All built-in 
uniforms represent general state that is known or can be computed by the engine. 
However, many shaders also need specific uniforms that have a more specialised 
meaning. These custom uniforms are not built into the engine code, but defined in text 
files. This allows users of the engine to add uniforms without recompiling the 
application.

The built-in uniforms are those that are general enough to be usable by a large number 
of shaders. We added these as we needed them to avoid adding features to the engine 
that we would never use. The 4x4 model, viewing and projection matrices are basic 
uniforms needed by the vertex shader. For optimisation purposes and ease of use, 
concatenations of these matrices are also available as the model-view, view-projection 
and model-view-projection matrices. Making all these matrices available gives the 
shader writer the freedom to design shaders in multiple ways. Also, a 3x3 normal matrix 
calculated from the model-view matrix is available to transform normals from object to 
eye space; a corresponding 3x3 world normal matrix provides a normal transform from 
world to eye space. 
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Material ambient, diffuse and specular colours are provided, as well as shininess and 
opacity values. Light positions are available in either eye or world space, they can also 
be requested as light directions in eye or world space. Lights have an associated colour 
and attenuation value. The number of active lights can be queried, and another integer 
uniform describes which light that has a shadow map enabled (we do not support 
multiple simultaneous shadow maps). A shadow map texture matrix is used for 
converting world positions to shadow map texture coordinates.

Bone animations are supported by a bone matrix uniform and an integer uniform 
naming the number of bone indices per vertex. Finally, a time uniform is available for 
making animated shaders, a colour mask for tinting or changing the contrast of objects 
and a screen texture matrix for mapping screen textures onto objects.

The pfx effect files support adding an integer value to the end of a uniform name. This 
integer value is used by the engine in a number of ways. Most uniforms just ignore it 
since these uniforms only have a single value, while the texture uniform uses the value 
for choosing a texture, so that TEXTURE0 refers to the first texture, TEXTURE1 to the 
next one and so on. Many of the built-in uniforms are actually uniform arrays though, 
and the integer value is then interpreted as one less than the length of the uniform array. 
For example, LIGHTPOSITION0 request one light position, LIGHTPOSITION1 
requests two and so on.

For the custom uniforms we identified three distinct uses; global uniforms, material 
uniforms and object uniforms. An example of a global uniform is the ambient colour of 
the scene, a material uniform might be a reflectiveness value, and an object uniform 
might be a glow colour. When the value of a custom uniform is requested by a shader, 
the current object is first searched, if the uniform is not set for this object, the current 
material is searched and then the global uniforms are searched. We found this system to 
be very powerful and simple to use. We added support to modify these uniform values 
from the code, so that it was possible to animate them or change them according to 
gameplay events. We actually started to use the uniform files for other kind of variables 
that were not shader uniforms such as setting visibility, disabling shadow casting or 
depth writes for specific objects.
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5.1.7 Scene Rendering
An outline of the rendering method looks like this:

1. Update object positions due to position interpolations.

2. Calculate view transformation and camera frustum.

3. Calculate light positions.

4. For each rendering pass:

4.1. Set up rendering pass.

4.2. For each object sorted in drawing order:

4.2.1. Calculate and set up uniforms.

4.2.2. Draw mesh

4.3. Finish rendering pass.

5. For each post processing effect:

5.1. Draw effect.

Updating object position interpolations is done together with rendering so that it is only 
done when needed, and can take advantage of the current time to place objects exactly 
where they should be. The view transformation and camera frustum are calculated from 
the camera node model matrix and the camera settings. Light positions are extracted 
from the scene, converted to eye space (by the inverse of the view matrix) and placed in 
an array for later use. 

Hierarchical transforms and node animations are handled automatically by the scene 
implementation; when a node is asked for its position or model matrix, it calculates its 
local matrix from its animation data (if it has any) and also recursively asks its parent (if 
it has one) for a model matrix to multiply with the local node matrix to get the resulting 
model matrix for the node. This is sped up by caching the last calculated model matrix 
in the node and returning this if the scene time hasn't changed since.

Additional rendering passes are needed for every light that use shadow mapping, for 
certain post processing effects such as glow, and for effects such as refraction and 
reflection. The set up of rendering passes might involve clearing frame buffers, setting 
OpenGL state and modifying viewing or perspective matrices. Finishing render passes 
might involve copying frame buffer contents to textures and resetting OpenGL state.

The objects are sorted in a certain drawing order. This sort is done once after loading 
and adding all objects. Since objects can't easily be moved around, the sort instead 
builds an array of object indices which indicates the drawing order. This sort is done to 
make sure that any transparent objects are drawn last and to minimise state changes. 
Transparent objects are handled by giving transparent materials a high priority. Sorting 
makes sure that objects that have materials with high priority are placed last in the 
drawing array. Objects that have materials with equal priority are sorted according to the 
material index, this makes sure that objects with equal materials are drawn directly after 
each other to enable minimising of state changes.

Bounding volume hierarchies or any spatial acceleration structures are not employed 
since we only used game worlds with a relatively small number of objects. Frustum 
culling was however implemented to speed up rendering to textures around refractive 
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objects. The frustum culling is done with bounding spheres per object every frame. The 
bounding spheres are constructed from the mesh geometry at load time. Spheres were 
chosen since they are fast to cull against a frustum and the object's rotation does not 
have to be taken into account.

Much of the core engine functionality is implemented in the code that sets up the 
uniforms. Uniforms are uploaded to OpenGL as they are requested by the effect used by 
the object. Many uniform values are only calculated if they are requested by the effect. 
For optimisation purposes, some caching is done to prevent the same uniform data to be 
calculated repeatedly. While the uniform set up is mostly trivial, the handling of 
uniforms regarding light sources is a bit more complex. The drawing is done per object 
per light (POPL), and shaders can realistically only support a small number of lights at 
once for performance reasons. For example, it's typical for fragment shaders to support 
four to eight lights simultaneously – but it's often unsatisfactory to be limited to this 
amount of lights in the whole scene. For this reason, the engine calculates which lights 
are the most important for the active object and uploads light uniforms according to this. 
So if, for example, a shader requests four light positions, the positions of the four most 
important lights for the current object are uploaded. In the calculation of importance, the 
distance between the object and the light positions, the light attenuation factors, and the 
light colours are taken into account. Since this calculation is done per object and not per 
fragment, it is only an approximation. When the set of lights that are used for an object 
changes, due to the movement of the object or lights for example, visually disturbing 
sudden changes in the shading of the object can occur. To minimise this, use fewer 
lights, smaller objects or more active lights in the shaders.

Vertex buffer objects are used to draw meshes that are exported as interleaved vertex 
data, other meshes are drawn with vertex arrays. This is a simplification but there are no 
fundamental difficulties with modifying the engine to use VBO:s for all meshes. 

5.2 The Demon Demo
When we realised that we wouldn't be able to get a hold of any mobile OpenGL ES 2.0 
capable hardware during the time frame of the project, it was decided that we should 
test the engine on an OpenGL ES 1.1 capable mobile phone. The hardware that we used 
was a Nokia N93 mobile phone which is described in section 4.2. We decided to do a 
simple graphical demo, which should look as good as possible while not taking too 
much time to implement. The demo features an animated model of a demon, provided to 
us by Jadestone. We put the model in front of a background image, and added a post-
processing glow effect  in order to make the demo more visually interesting.
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The glow effect is achieved by rendering the model with a special emissive map to a 
texture, this texture is then additively blended multiple times on top of the scene as a 
post processing effect. When this is done the texture is stretched by different amounts to 
create the illusion of glowing rays coming out of the demon. However, since this is a 
screen space effect, the rays are actually simply stretched away from the centre of the 
screen.

5.2.1 OpenGL ES 1.1 Adaptation
Most of the engine could be kept intact while adapting it to support GLES 1.1. The main 
differences are that effect files are not used, that OpenGL state variables are set instead 
of loading uniforms and that skinning is performed differently. The GLES 1.1 engine 
does not support any kind of advanced materials, only simply vertex lighting,  standard 
material settings and texturing with a single diffuse map. A new kind of effect file could 
be designed to be used with this engine, where more advanced materials could be 
specified, these materials would have to be implemented with texture environment 
settings. Transformation matrices, texture bindings, lighting and material settings are 
uploaded to the built in GLES 1.1 state variables as opposed to shader uniforms. Since 
the PowerVR chip in the N93 supports an extension to GLES 1.1 that is specifically 
designed to do hardware skinning, we used that. The extension is called matrix palette  
and allows several model matrices to be loaded, along with vertex arrays for bone 
indices and bone weights. One problem with this extension is that it isn't supported by 
modern PC hardware, this resulted in the demon demo running slowly with the PC 
emulation library (presumably the skinning is emulated on the CPU).
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5.2.2 Symbian OS Adaptation
Our applications that use the GLES PC emulation library are normal Microsoft 
Windows programs, however, care was taken to try to isolate the OS specific code. This 
is the code that handles window initialisation and destruction, window handling such as 
shutdown events and keyboard input. Naturally, we had to re-implement this part of our 
program and adapt it for the Symbian operating system. Since the input and window 
handling required by our application is very simple and example programs using 
OpenGL ES 1.1 were available in the Symbian SDK this was fairly unproblematic. The 
reasons that the adaptation was comparatively simple was that we did not use any 
external libraries or non-standard C++. Furthermore, if we had not used an 
OS-independent graphics library like OpenGL ES this would have been much more 
difficult to do.

To develop a Symbian application for the N93, the Nokia S60 SDK was used, S60 is a 
version of the Symbian OS used by several Nokia phones. Besides making sure that the 
code compiled for the S60 PC emulator and for the actual N93 hardware, the code 
project and Symbian installation files had to be created and configured.

5.3 3D Kodo Game Prototype
Making a 3D version of the game Kodo had several advantages. Kodo was designed for 
mobile phones so it suited us well, furthermore, since Kodo is such a simple game, it 
was possible for us to actually have time to implement a playable game prototype as 
opposed to just a technical demonstration. Kodo is a multiplayer game where each 
player controls a Kodo with one button on the keypad of a mobile phone. The kodos 
automatically rotate, and walk forward when the button is pressed. The goal of the game 
is to eat the other kodos. The basic goals were to adapt Kodo to 3D while keeping the 
gameplay intact and trying to make it look as good as possible while using some 
interesting graphical shaders.

Much of the engine capabilities described in section 5.1 were implemented as the need 
for them arose while making 3D Kodo. We started by implementing the basic gameplay, 
adding models, animations and shader effects. At first we didn't have any art direction 
and actually did the art ourselves. The result of that can be seen in figure 14.
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Figure 13: The original version 
of Kodo
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This early version featured effects such as refractive kodos, reflective water and 
animated torch flames. Our approach was basically to use as many advanced shading 
effects as possible. This approach was however not very successful in providing a good 
gameplay experience. Fortunately, we received help from artists at Jadestone. The artists 
produced a concept image, which can be seen in figure 15, models and textures for the 
game world and Kodos, as well as animations for the Kodos. 
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Figure 15: Concept art for 3D Kodo

Figure 14: Early version of 3D Kodo
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By working with the artists, implementing the effects they wanted and adjusting 
different parameter values with them, we managed to achieve a result we were all 
pleased with. The game is placed in a rocky environment with lizard-like Kodos. 
Crystals were placed in the middle of the level to allow for a refraction effect to be 
shown. The game also features a day cycle that seamlessly morphs the world between 
day, dusk, night and dawn.

During the day, the sun casts dynamic shadows that are realised with shadow mapping. 
During the night, lights in the fruits, kodos and crystals are activated to light the scene, a 
post processing glow effect is also used on the fruits and crystals. The sun light colour 
and the ambient colour of the scene are animated to give different lighting settings 
depending on the time of day. Fogging is used on the rocks in the background and 
textures are used for the sky and planet sea. There are different textures for the different 
times of day, and blending between these enables smooth transitions. The fog colour is 
also animated according to the time of day. We noticed that we needed to use what is 
sometimes referred to as “modulate 2x” mode for the lighting. This means that the result 
of the diffuse lighting is multiplied by two so that it can brighten or tint a surface 
beyond the colours contained in the surface's diffuse map.
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Figure 16: The Kodo day cycle: day, dusk, night and dawn
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6 Evaluation
This chapter aims to evaluate what we did, identify what was most interesting and 
discuss alternatives and improvements. Recalling the research question of the thesis, 
“What are the specific technical considerations relating to graphics that apply when 
developing 3D games for mobile phones?”, this chapter describes and evaluates the 
considerations made in the engine and prototype applications that were developed. 
Particularly, resource handling, scene management and rendering are described.

6.1 3D Game Engine
The 3D engine worked well since we were able to build working demonstrations with it 
in a short time. However, the engine in itself is not particularly interesting to discuss 
further so this section will mainly focus on some more general concepts.

6.1.1 Resource Handling
The resource handling in the engine is pretty basic as it requires all resources to be 
reloaded when changing levels in a game. Due to hardware constraints, mobile games is 
dependant on good resource handling. Ideally, a mobile game is small in order to 
facilitate distribution, also the game should start up quickly and load screens in-game 
should be minimised. The game can obviously be made smaller by compressing the data 
files; this can be done automatically using algorithms such as zip, as well as 
intelligently by using fewer resources, omitting unused data, choosing texture 
compression individually per texture, using smaller data types or generating data 
procedurally instead of loading it from file. However, these methods might increase 
load times, especially since mobile processors are relatively slow. 

The simplest approach to resource handling is to load all resources at start up, and keep 
them loaded. This makes resource handling trivial and shortens or eliminates load 
screens in-game but increases the start up time of the program. This approach might 
very well be the best one for simple games. However, the limited amount of RAM and 
the lack of demand paging of memory on mobile platforms might make this approach 
infeasible and require games to intelligently keep only the currently needed resources in 
memory. The approach our engine takes minimises RAM usage but might result in very 
long load times between levels. A variation of this approach is to use a couple of 
environments, so that multiple levels use the same environment. Reloading of resources 
should then only need to happen when switching between levels with different 
environments. A more advanced approach would be to generally reuse resources across 
level switching and only unload resources that are unused in the current level. This 
makes the engine more complex, but might be needed since long in-game load screens 
are frustrating for players. 

Multithreading can be used to load resources while drawing to the screen. This can 
possibly reduce apparent load times by, for example, loading resources while showing 
start up logos or while the player traverses the main menu. The most advanced form of 
resource handling is often called streaming and generally means that very large levels 
are supported and that resources are automatically loaded and unloaded during 
gameplay. This naturally relies on multithreading and can be very complex since, for 
instance, resources should ideally start to load just before they are needed and unloading 
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should be done for resources that will not be needed in the near future. If implemented 
well, this approach allows a game to consist of a large world, abandoning levels 
altogether. One problem with streaming that becomes extra problematic on mobile 
hardware is memory fragmentation, which can result from continuously allocating and 
freeing memory without ever starting over from scratch. This might result in memory 
depletion if the game is run for long periods of time. Freelists[29] is an example of a 
method that can help minimise memory fragmentation.

6.1.2 Data Files
In the project we used a number of data files: effect files, model files (also used for 
scenegraphs and animations), texture files and uniform value files. These were generally 
good, but not general enough to directly support everything that we wanted to do. The 
ideal data file format would be compact, fast to load and write, versatile, extendible, 
writeable and readable by many applications and easy to read and edit with a text editor. 
Of course, satisfying all these needs at once is impossible; however, two main classes of 
needs can be identified: the needs during development and the needs of the distributed 
application. Therefore, the best solution might very well be to have a versatile data 
format for use during development, and a compact one for the final application 
distributed to players.

As for effects, the main problem was that we couldn't easily modify uniform values 
interactively while observing the results. There are a number of ways of accomplishing 
this, it could be done in the modelling application, in a shader studio or in a custom 
application. Having the support in the modelling program is good because it is very 
quick and easy for the artists to edit the values. However, it might be hard or even 
impossible to integrate all functionality (such as rendering of general shaders, 
modification of general uniforms etc.) into the modelling application. Shader studio 
applications are designed to ease rapid development of shaders and provide easy 
modification of uniforms. However, it might be difficult to design shaders to be 
compatible both with the shader studio and with the game engine. A custom tool 
requires much work to implement, but has the potential of being the most powerful 
since it can be built on the actual game engine. This will enable actual game resources 
to be loaded and see the same results while modifying values as will be seen in the 
actual game. Also, other values which are specific to the game or game engine can be 
modified from the same tool.

The model files are quite powerful as they contain geometry, scenegraphs, material 
definitions and animations. Since they are binary and compact, they work well as 
distribution files. However, they weren't quite as powerful as we would have wanted, 
and modifying them was pretty much impossible since we did not have access to the 
source of the exporter tools. Having a custom and compact format is good, since this 
allows you to support everything you want while at the same time having small 
distributed files. However, implementing loaders and exporters for this format can be 
costly. Modifying such files can either be done by implementing exporters or importers 
for all applications that use the format. If many tools are used, this becomes infeasible, a 
better approach would then be to write a converter tool which can convert a more 
common format to the custom one. One example of a common format that many newer 
3D applications support is the Khronos group's Collada file format.

The texture file format worked really well, since the loading code is compact, many 
texture formats are supported and the tool that generates the files worked well. The 
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uniform text files also worked well, but support for modifying values interactively is 
needed and the tool that support this would probably need to be able to output files with 
similar content to the uniform files.

6.1.3 Scene Management
The scene representation used in the engine is too rigid to be easily used in an advanced 
game. If the scenegraph were represented as an explicit tree, insertion and deletion of 
nodes as well as traversal of the scenegraph would be simpler and faster. By using 
manual handling of memory, for example freelists[29], memory allocation speed and 
cache coherency can be improved. To support large game worlds with many objects, 
bounding volume hierarchies or spatial partitioning structures would need to be used, 
possibly simultaneously. Simple partitioning structures such as octrees[30],[31] and 
quadtrees can easily be built and modified while the game runs, more advanced 
structures such as bsp-trees or potential visibility sets would most probably have to be 
pre-calculated on a PC and stored as data files. These methods might however consume 
too much memory to be feasible.

 The simplest method for referencing scene nodes is to use ordinary pointers to the 
nodes, this however causes problems in C/C++ based games. The main problem is that 
game objects often need to refer to each other while objects are constantly being added 
and removed. For instance, a rocket might contain a reference to the shooter, and when 
the rocket hits someone, the game tries to add points for the kill to the shooter. But what 
happens if the shooter object has been removed? Maybe it was a networked game and 
he has left the server? If the rocket has a raw pointer, it might now point to a deleted 
object or to a totally different object. Following this pointer might cause a crash or 
cause some other unexpected result. Many similar problems might arise, and therefore 
there are many advantages of not exposing node references as raw pointers from a 
C/C++ based game engine to the application. 

For this reason, some game engines use some kind of integer handles[32],[33] to refer 
to scene nodes and resources. Reference counting together with raw pointers can also be 
used, reference counting allows an object to be owned by several entities at the same 
time since any entity that holds a reference to an object is able to keep the object alive. 
This might be desired for resources such as textures, but probably not for scene nodes 
since a scene node often has a clear owner (possibly itself, a rocket for example might 
destroy itself when it hits something or has travelled a maximum distance). If integer 
handles are used, the engine can use a binary search tree or hash map to map the handles 
to the actual objects instead of a simple array where handles are used as indices as it is 
in our engine. Using handles causes some overhead, but it should not be significant 
since it is often safe for the internal functions and structures in the engine to use simple 
pointers to speed up processing of nodes. Using integer handles can also simplify the 
game logic tremendously; for example, if using simple pointers, all pointers to an object 
have to be found and removed if some object is to be removed. Keeping track of this 
information can be a very difficult task in a complex game. By using integer handles 
this becomes trivial - simply don't take care of it, whenever something tries to use this 
handle later, it should be notified by the engine that this handle is no longer valid and 
appropriate action, such as clean-up, can be performed.
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6.1.4 Rendering
The rendering in the engine generally worked well, but could be done more general and 
be more optimised. For example, the code for handling several render passes is 
somewhat complicated and only a little effort has been done to minimise state changes 
between rendering of objects. If many objects are drawn, the uploading of uniforms 
would most probably be a performance problem. To achieve better performance, 
uploading of the same information redundantly for several objects would have to be 
avoided. 

6.2 Demon Demo
Implementing the demon demo was interesting for two main reasons, getting experience 
developing for Symbian OS, and evaluating the hardware capabilities of the N93 mobile 
phone. We found that the developer tools for Symbian OS are not as mature as the 
equivalent PC software, and the Symbian C++ API:s and code conventions are 
somewhat non-standard and takes some time to understand and get used to. However, 
we found that getting standard C or C++ code to run on Symbian hardware was a 
relatively straightforward process.

We did not have time to do a thorough evaluation of the performance of the N93's 
hardware; however, some things can be noted. The demon demo makes use of the CPU 
mainly for calculating the bone matrices and running the GLES driver which handles all 
GLES function calls. The graphics hardware's vertex processing was heavily used since 
the demo utilises hardware skinning and the demon is drawn twice every frame due to 
the glow pass. The graphics hardware's pixel fill rate was also heavily used since we 
allowed up to 9 glow passes to be used. The frame rate was not noticeably affected by 
the number of glow passes, which indicates that the bottleneck lies elsewhere. The 
conclusions that can be drawn is that the fill rate is impressive and that vertex 
processing and CPU performance seem to be satisfactory for producing good looking 
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3D games on the N93 or similar hardware. The main problem for 3D games on this 
hardware may very well be the amount of RAM, only about 20 MB are free for 
applications to use on the N93. This is limiting for a 3D game, since frame buffers, 
geometry, animations, textures and sound effects can easily take up hundreds of 
megabytes in a typical PC game. However, it should by no means be impossible to 
create good looking 3D games on such hardware since, for example, the Playstation 2 
game console has 32 MB ram and an additional 4 MB video memory and that is 
evidently enough to create large good looking games.

6.3 3D Kodo Game Prototype
The Kodo game prototype provided us with a number of insights about how well 3D 
graphics work for mobile games, how shaders can be used in games and how to work 
together with artists to realise a graphical concept. 

The key difference between mobile and stationary hardware regarding graphics is 
screen size. Smaller screens with lower resolutions directly affects the design of a game 
since much less information can be shown simultaneously on a smaller screen. Certain 
game types, such as real-time strategy games, might not be suitable for mobile hardware 
at all for this reason alone. Thoughtful design of user interfaces should be employed to 
minimise these problems. Small screen size also affects which kind of graphical effects 
that are meaningful to use. Kodo was successfully ported to three dimensions and there 
seems to be no fundamental problems with using 3D graphics in games on small 
screens. 3D graphics can actually be used successfully to incorporate more information 
on a small screen without making the presentation confusing. For example, the playing 
field in 3D Kodo was slightly spherical; this looks more interesting, allows more tiles to 
fit in the view and would be hard to accomplish in 2D (see figure 18).
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We did not have time to incorporate many shader effects into the prototype, the only 
advanced effect used was refraction, and honestly it did not add much to the game; the 
crystals could have been drawn with blending instead and the difference would not have 
been significant for the casual observer. However, the main advantage of shaders is 
perhaps not that they enable more advanced effects but instead the freedom and 
precision that they allow. Shaders give the freedom to implement virtually any kind of 
appearance that can be thought of and the precision to make it work exactly as 
envisioned. This might involve coming up with a totally new and odd surface effect, but 
might just as well simply be used to slightly adjust a well known effect to fit a certain 
situation. For example, in 3D Kodo we used the “modulate 2x” lighting calculation and 
we blended between different background textures depending on the time of day. Such 
effects are not necessarily advanced, but might be difficult or even impossible to 
achieve without shaders. As a result, shaders allow games to look more interesting and 
stay closer to the artist's vision.
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Figure 18: Night in 3D Kodo
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7 Conclusions and Further Work
In most aspects, a 3D game engine for mobile hardware is very similar to a PC game 
engine. The biggest difference is that a mobile game engine must be small and able to 
minimise memory consumption. Although the actual engine must be smaller and 
simpler than contemporary PC game engines, the accompanying tools can be just as 
advanced since they are used on a PC. Even though enabling advanced effects and 
providing optimised rendering are important aspects of a 3D game engine, perhaps it is 
even more important for it to allow game development to be as simple and fast as 
possible. This is something that became even more clear to us while we worked on 3D 
Kodo. The engine should provide a simple interface to the application programmer so 
that is easy to implement game features, this enables rapid prototyping of ideas and 
speeds the whole process of game development up. It should also be simple for artists to 
import art assets into the engine, and preferably it should be possible for artists and 
programmers to modify and test different art assets and settings in real-time in the 
engine. These features must be addressed by both the engine and accompanying tools.

Some current mobile hardware, such as the Nokia N93, seems perfectly capable of 
handling advanced 3D graphics without shaders. If phones with equal or better 
performance soon become more common, 3D games on mobile phones might very well 
become commonplace.

Since we didn't get a hold of any mobile OpenGL ES 2.0 hardware, many questions 
regarding the capabilities of future phones are left unanswered. Based on what is 
currently known, phones with OpenGL ES 2.0 support will probably be capable of fairly 
advanced graphics, almost rivalling the image quality of recent PC games (albeit at a 
lower resolution). Such phones will most probably be made available sometime during 
2008, although if and when they become commonplace is hard to say. Other interesting 
questions that remain unanswered on mobile OpenGL ES 2.0 hardware are how the 
performance of shadow volumes would be relative to shadow mapping and if deferred 
shading would be a viable option.

40



Conclusions and Further Work

Bibliography
[1] JAMES M. VAN VERTH, LARS M. BISHOP. 2004. Essential Mathematics for Games and 
Interactive Applications: A Programmer's Guide. Morgan Kaufmann. ISBN 
155860863X.

[2] Scenegraph Image: http://opensg.vrsource.org/trac/wiki/Tutorial/OpenSG1/ 
FirstApplication. Last accessed Nov. 2007.

[3] JAMES T. KAJIYA. 1986. The Rendering Equation. Proceedings of the 13th annual  
conference on Computer graphics and interactive techniques, pg. 143–150.

[4] ALAN H. WATT. 1999. 3D Computer Graphics. Addison Wesley. ISBN 0201398559.

[5] MICHAEL F. DEERING, STEPHANIE WINNER, BIC SCHEDIWY, CHRIS DUFFY, NEIL HUNT. 1988. 
The Triangle Processor and Normal Vector Shader: a VLSI System for High 
Performance Graphics. ACM SIGGRAPH Computer Graphics, 22(4), pg. 21–30.

[6] Culling Images: http://techpubs.sgi.com/library/tpl/cgi-
bin/getdoc.cgi/0650/bks/SGI_Developer/books/Optimizer_PG/sgi_html/ch05.html. Last 
accessed Nov. 2007.

[7] DAVID H. EBERLY. 2004. 3D Game Engine Architecture: Engineering Real-Time 
Applications with Wild Magic. Morgan Kaufmann. ISBN 012229064X.

[8] MICHAEL WIMMER, JIŘI BITTNER. 2005. Hardware Occlusion Queries Made Useful. 
GPU Gems 2, pg. 91–108. Addison Wesley. ISBN 031335597.

[9] JOHN W. RATCLIFF. 2001. Sphere Trees for Fast Visibility Culling, Ray Tracing,and 
Range Searching. Game Programming gems 2, pg. 384–387. Charles River Media. 
ISBN 1584500549.

[10] MIGUEL GOMEZ. 2001. Compressed Axis-Aligned Bounding Box Trees. Game 
Programming gems 2, pg. 388–393. Charles River Media. ISBN 1584500549.

[11] Octree Image: http://dev.gameres.com/Program/Visual/3D/OCTREETutorial6.jpg. 
Last accessed Nov. 2007.

[12] MARK SEGAL, KURT AKELEY. 2006. The OpenGL Graphics System: A Specification.

[13] OpenGL Pipeline Images: http://www.khronos.org/opengles/2_X/. Last accessed 
Nov. 2007.

[14] RANDI J. ROST. 2006. OpenGL Shading Language. Addison-Wesley. ISBN 
0321334892.

[15] KHRONOS GROUP. 2007. OpenGL ES Common/Common-Lite Profile Specification 
Version 1.1.10 (Full specification).

41



Conclusions and Further Work
[16] KHRONOS GROUP. 2007. OpenGL ES Common Profile Specification 2.0.

[17] WILLIAM SHOAFF. 2000. A Short History of Computer Graphics. 
http://cs.fit.edu/~wds/classes/graphics/History/history/history.html, Last accessed Nov. 
2007.

[18] WIKIPEDIA. 2007. Comparison of NVIDIA Graphics Processing Units. 
http://en.wikipedia.org/wiki/Comparison_of_NVIDIA_Graphics_Processing_Units, 
Last accessed Nov. 2007.

[19] 3D-TEST. 2007. Q&A Ed Plowman, ARM Mali Product Manager. http://www.3d-
test.com/interviews/arm_2.htm, Last accessed Nov. 2007.

[20] WIKIPEDIA. 2007. Nokia N93. http://en.wikipedia.org/wiki/Nokia_N93, Last 
accessed Nov. 2007.

[21] IMAGINATION TECHNOLOGIES. 2007. PowerVR MBX - Overview. 
http://www.imgtec.com/PowerVR/Products/Graphics/MBX/index.asp, Last accessed 
Nov. 2007.

[22] LASZLO KISHONTI. 2007. GLBenchmark. http://www.glbenchmark.com, Last 
accessed Nov. 2007.

[23] MATHEW KUMAR. 2007. GDC China: Developing For The N-Gage And 3D Graphics 
In A 3G World. http://www.gamesondeck.com/feature/1677, Last accessed Nov. 2007.

[24] IMAGINATION TECHNOLOGIES. 2007. PowerVR SGX - Overview. 
http://www.imgtec.com/PowerVR/products/Graphics/SGX/index.asp, Last accessed 
Nov. 2007.

[25] RYAN BLOCK. 2007. Toshiba's G900 and E01 with Windows Mobile 6. 
http://www.engadget.com/2007/02/12/toshibas-g900-and-e01-with-windows-mobile-6/, 
Last accessed Nov. 2007.

[26] NATHAN KIRSCH. 2006. The Future Of Handheld Gaming: GoForce 5500. 
http://www.legitreviews.com/article/327/1/, Last accessed Nov. 2007.

[27] AMD. 2007. Imageon 2380/2388 Overview. 
http://ati.amd.com/products/imageon238x/index.html, Last accessed Nov. 2007.

[28] ARM. 2007. Mali Graphics Solution - Products Overview. 
http://www.arm.com/products/esd/multimediagraphics_malioverview.html, Last 
accessed Nov. 2007.

[29] PAUL GLINKER. 2004. Fight Memory Fragmentation with Templated Freelists. Game 
Programming Gems 4, pg. 43-50. Charles River Media. ISBN 1584502959.

[30] DAN GINSBURG. 2000. Octree Construction. Game Programming Gems, pg. 439-443. 
Charles River Media. ISBN 1584500492.

42



Conclusions and Further Work
[31] THATCHER ULRICH. 2000. Loose Octrees. Game Programming Gems, pg. 444-453. 
Charles River Media. ISBN 1584500492.

[32] SCOTT BILAS. 2000. A generic Handle-Based Resource Manager. Game 
Programming Gems, pg. 68-79. Charles River Media. ISBN 1584500492.

[33] BRIAN HAWKINS. 2002. Handle-Based Smart Pointers. Game Programming Gems 3, 
pg. 44-48. Charles River Media. ISBN 1584502339.

43



TRITA-CSC-E 2008:024 
ISRN-KTH/CSC/E--08/024--SE 

ISSN-1653-5715 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
www.kth.se 


	1 Introduction
	1.1 Problem Statement
	1.2 Delimitations
	1.3 Thesis Outline

	2 3D Game Engine Overview
	2.1 Resource Handling
	2.1.1 Models
	2.1.2 Textures
	2.1.3 Shaders
	2.1.4 Materials
	2.1.5 Animations

	2.2 Scenegraphs
	2.3 Rendering
	2.3.1 Methods
	2.3.2 View Frustum Culling
	2.3.3 Occlusion Culling
	2.3.4 Spatial Acceleration Structures
	2.3.5 Hardware Specific Optimisations


	3 Graphics Libraries
	3.1 OpenGL 
	3.1.1 Versions 1.0 – 1.5
	3.1.2 Versions 2.0 – 2.1

	3.2 OpenGL ES
	3.2.1 Versions 1.0 – 1.1
	3.2.2 Version 2.0


	4 Graphics Hardware
	4.1 PC Hardware
	4.2 Mobile Hardware

	5 Approach
	5.1 3D Game Engine
	5.1.1 The Effect Files
	5.1.2 The Model Files
	5.1.3 Scene Representation
	5.1.4 Scene Management
	5.1.5 Animations
	5.1.6 Built-in and Custom Uniforms
	5.1.7 Scene Rendering

	5.2 The Demon Demo
	5.2.1 OpenGL ES 1.1 Adaptation
	5.2.2 Symbian OS Adaptation

	5.3 3D Kodo Game Prototype

	6 Evaluation
	6.1 3D Game Engine
	6.1.1 Resource Handling
	6.1.2 Data Files
	6.1.3 Scene Management
	6.1.4 Rendering

	6.2 Demon Demo
	6.3 3D Kodo Game Prototype

	7 Conclusions and Further Work



