

3D Game Engine Design
for Mobile Phones

with OpenGL ES 2.0

 M I K A E L G U S T A V S S O N

 Master of Science Thesis
 Stockholm, Sweden 2008

3D Game Engine Design
for Mobile Phones

with OpenGL ES 2.0

 M I K A E L G U S T A V S S O N

 Master’s Thesis in Computer Science (30 ECTS credits)
 at the School of Computer Science and Engineering
 Royal Institute of Technology year 2008
 Supervisor at CSC was Henrik Eriksson
 Examiner was Lars Kjelldahl

 TRITA-CSC-E 2008:024
 ISRN-KTH/CSC/E--08/024--SE
 ISSN-1653-5715

 Royal Institute of Technology
 School of Computer Science and Communication

 KTH CSC
 SE-100 44 Stockholm, Sweden

 URL: www.csc.kth.se

3D Game Engine Design for Mobile
Phones with OpenGL ES 2.0

Abstract
This master's project investigated the capabilities of mobile
phones to support 3D graphics for games and how to develop
for these devices using the OpenGL ES graphics library. A
simple 3D game engine was developed that runs on a PC using a
OpenGL ES 2.0 emulator library. Additionally, a game prototype
was developed using this engine. The report investigates the
differences between PC and mobile games, and how the mobile
platform affects the design of a 3D game engine. Furthermore,
the differences between OpenGL ES 1.1 and 2.0 are described,
covering the implications of developing game graphics with
shader programs. In conclusion, mobile phones supporting
OpenGL ES 2.0 will be available in 2008 and they will probably
support 3D graphics approaching the quality of recent PC
games. Developing games for these devices would be very
similar to developing PC games. The largest differences relating
to graphics are the screen size and memory constraints.

Utformning av 3D-spelmotorer för
mobiltelefoner med OpenGL ES 2.0

Sammanfattning
Det här examensarbetet hade som mål att utreda möjligheterna
för mobiltelefoner att stödja 3D-grafik för spel och hur
utveckling för denna plattform kan ske med hjälp av grafik-
biblioteket OpenGL ES. En enkel 3D-spelmotor utvecklades
genom att använda ett emulatorbibliotek för OpenGL ES 2.0 på
PC. Med hjälp av denna motor utvecklades en spelprototyp.
Denna rapport undersöker skillnaderna mellan mobil- och PC-
spel, samt hur den mobila plattformen påverkar utformningen av
en 3D-spelmotor. Dessutom så beskrivs skillnaderna mellan
OpenGL ES 1.1 och 2.0, och hur utvecklandet av spelgrafik
påverkas av shader-program. Slutsatsen är att mobiltelefoner
som stöder OpenGL ES 2.0 kommer att finnas tillgängliga under
2008 och att de troligtvis kommer att stödja 3D-grafik vars
kvalitet närmar sig moderna PC-spel. Att utveckla spel för sådan
hårdvara kommer i stora drag vara likvärdigt med att utveckla
PC-spel. De största skillnaderna ur ett grafikperspektiv är
skärmstorlek och minnesbegränsningar.

Table of Contents
1 Introduction 1

 1.1 Problem Statement..1
 1.2 Delimitations...1
 1.3 Thesis Outline...2

2 3D Game Engine Overview 3
 2.1 Resource Handling..3

 2.1.1 Models...3
 2.1.2 Textures...4
 2.1.3 Shaders..5
 2.1.4 Materials..6
 2.1.5 Animations..6

 2.2 Scenegraphs..6
 2.3 Rendering..7

 2.3.1 Methods...8
 2.3.2 View Frustum Culling...9
 2.3.3 Occlusion Culling..10
 2.3.4 Spatial Acceleration Structures...11
 2.3.5 Hardware Specific Optimisations...12

3 Graphics Libraries 13
 3.1 OpenGL ..13

 3.1.1 Versions 1.0 – 1.5..13
 3.1.2 Versions 2.0 – 2.1..15

 3.2 OpenGL ES...15
 3.2.1 Versions 1.0 – 1.1..16
 3.2.2 Version 2.0...16

4 Graphics Hardware 18
 4.1 PC Hardware...18
 4.2 Mobile Hardware..18

5 Approach 21
 5.1 3D Game Engine...21

 5.1.1 The Effect Files...21
 5.1.2 The Model Files..23
 5.1.3 Scene Representation..24
 5.1.4 Scene Management...25
 5.1.5 Animations..25
 5.1.6 Built-in and Custom Uniforms..26
 5.1.7 Scene Rendering..28

 5.2 The Demon Demo...29
 5.2.1 OpenGL ES 1.1 Adaptation...30
 5.2.2 Symbian OS Adaptation..31

 5.3 3D Kodo Game Prototype...31

6 Evaluation 34
 6.1 3D Game Engine...34

 6.1.1 Resource Handling..34
 6.1.2 Data Files..35
 6.1.3 Scene Management...36
 6.1.4 Rendering..37

 6.2 Demon Demo..37
 6.3 3D Kodo Game Prototype...38

7 Conclusions and Further Work 40

Chapter 1 - Introduction

1 Introduction
Mobile phones constitute an interesting hardware platform for game developers since so
many people always carry a phone around with them. However, mobile phones are
generally not specifically designed to support gaming, which poses problems for game
developers. One of these problems has been that mobile phones traditionally have
provided comparatively simple graphics. This thesis aims to evaluate the graphics
capabilities of current and upcoming mobile phones, specifically focused on 3D
graphics using the OpenGL ES graphics programming interface. OpenGL ES is an
adaptation of the OpenGL industry standard aimed at embedded systems, and is
available in two main versions: 1.1 and 2.0. This thesis is mainly focused on the later
version which supports more advanced graphical effects through the use of shader
programs.

The goals for the project were to examine how to develop mobile games with OpenGL
ES 2.0 and how three-dimensional graphics and shader effects can successfully be used
in mobile games. This was accomplished by developing a 3D game engine on top of a
OpenGL ES 2.0 emulator library currently available and using this engine to create a
game prototype. The differences between PCs and mobile phones, between 2D and 3D
games, and between 3D graphics with and without shaders were evaluated.

1.1 Problem Statement
My main research question for the thesis was:

What are the specific technical considerations relating to graphics that apply when
developing 3D games for mobile phones?
This thesis is specifically focused on graphics, and does not cover other areas such as
game design, sound or input. Furthermore, since most games are built on top of a game
engine and game engines handle the technical details of the platform, this thesis puts
much focus on the design of game engines for mobile phones.

1.2 Delimitations
Since the project was a collaboration between two students, Erik Olsson and Mikael
Gustavsson, the background information in chapters 2 – 4 are common to both reports.
The remainder of the theses are individual. We made the following delimitations
regarding the individual parts of the theses:

Mikael will focus on the construction of a 3D graphics engine based on the OpenGL ES
2.0 graphics library.

Erik will focus on evaluating the limitations of the platform from the experiences gained
while creating the game prototype.

1

Chapter 1 - Introduction

1.3 Thesis Outline
The thesis can be divided into two main parts; background and implementation/
evaluation.

Background provides some background information about graphics libraries, 3D game
engines and 3D graphics hardware in general and is referred to from other parts of the
thesis. The background part contains the following chapters:

3D Game Engine Overview
This chapter describes 3D game engines in general, as well as the different parts they
are commonly constructed of.

Graphics Libraries
This chapter describes the OpenGL and OpenGL ES graphic libraries, including an
overview of the version histories.

Graphics Hardware
A description of the development of graphics hardware, both for mobile phones and PC
for comparison.

Implementation/evaluation describes the details of our implementation of the engine and
game prototype, as well as an evaluation of the results. The chapters of this part is as
follows:

Approach
Implementation details, focusing on the 3D graphics engine.

Evaluation
An evaluation of our results as well as some more general discussion about 3D graphics
and games for mobile phones and how the limitations of the hardware affect the design
of game engines for mobile platforms.

Conclusions and Further Work
Conclusions of our work and suggestions for further study.

2

Chapter 2 - 3D Game Engine Overview

2 3D Game Engine Overview
A 3D Game Engine is a software component which is intended to perform certain tasks,
such as handling resources, scenegraphs and rendering.

2.1 Resource Handling
Resources are the content of the scene, i.e. what eventually is drawn on the screen.
Resources may include models, textures, shaders, materials and animations.

2.1.1 Models
Models are the geometries of the scene, which are bound to objects in the scenegraph.
Models can be generated through code, but most often they are read from a file, which
usually has been exported from a modelling application, such as Autodesk's Maya. The
geometry consists of vertex data, as well as a surface description which describes how
vertices are connected to create primitives such as polygons, triangle strips, lines or
points. Figure below shows an example model.

Vertices have different types of attributes, one of which is position. Other common
attributes are normals, texture coordinates, colours, tangents, binormals, bone weights
and bone indices. A vertex normal defines the surface normal at a specific position and
is most often used for lighting calculations. Texture coordinates are used to map a
texture image onto the surface. Tangents and binormals, together with normals, form the
basis of tangent space, which is sometimes referred to as surface space. Tangent space
is used for bump map lighting calculations. Bone weights and bone indices can be used
to deform a geometry in a non-rigid way, such as bending an arm of a character. This is
called skinning, and is most often used in animation.

3

Figure 1: A model of the famous Utah Teapot, shown here in wireframe mode

Chapter 2 - 3D Game Engine Overview
2.1.2 Textures
Originally, textures were two-dimensional images which were mapped onto surfaces.
Nowadays they are better thought of as general containers of data to be used during
rendering. Textures can be one-, two- or three-dimensional. When data is read from a
texture it is usually filtered to make the output continuous and reduce aliasing.

Textures can be used for a number of different purposes, for example:

● Diffuse map – defines the colour of the surface, i.e. the original use of textures.
By far the most common. See figure 2 above.

● Detail map – adds more fine-grained details than a diffuse texture and is usually
repeated across the surface with a high frequency.

● Specular map – defines the reflectiveness of the surface. Usually monochrome.

● Emissive map – defines the light emittance of the surface, which enables the
surface to glow regardless of external light sources.

● Ambient occlusion map – defines the accessibility of the surface and has to be
calculated with regards to the surrounding geometry. Points surrounded by a
large amount of geometry has low accessibility and becomes dark.

● Normal map – stores surface normals, which can be used in bump mapping to
give the illusion of a much more detailed geometry than what is actually used.

● Light map – stores a pre-calculated lighting of the scene. This technique is on
the decline due to the increasing dynamic nature of game worlds.

● Depth map – stores the depth of a scene as seen from some view. Often rendered
from a light position to be used in shadow calculations.

4

Figure 2: A textured Utah Teapot

Chapter 2 - 3D Game Engine Overview
● Environment map – stores a view of the environment as seen from an object or

the origin of the scene, either in the form of a sphere map (for instance a
photograph taken with a fish-eye lens) or as a cube map (a set of 6 images, one
for each direction along the coordinate axes). Environment maps are usually
mapped on objects to make them appear reflective.

Generally, hardware limits how many textures that can be used simultaneously when
rendering in real time. Textures can have a number of different channels, grey-scale
textures, also known as luminance textures, only have one channel, while colour
textures most often has four; red, green, blue and alpha (RGBA).

2.1.3 Shaders
Shaders are short programs that are usually executed on a graphics processing unit
(GPU). They combine the power of dedicated hardware with the versatility of a
software renderer. Different shader units are arranged in a pipeline, a typical example
can be seen in figure 3. Shaders receive data in the form of attributes and uniforms.
Attributes vary with every element that is processed and are provided either from the
previous shader in the pipeline or by the engine. Common attributes are described in
chapter 2.1.1. Uniforms on the other hand vary at most once per draw call. Typical
examples of uniforms are object properties such as position, texture bindings and
material properties. On modern hardware there are up to three types of shader units
available: vertex shaders, geometry shaders and fragment shaders.

Vertex shaders operate on individual vertices, and receive vertex attributes from the
engine. The vertex shader can generate or modify any vertex attributes, such as
position, colour or texture coordinates. Common usages include making a tree's
branches sway in the wind, moving raindrops and skinning a character model.

Geometry shaders operate on individual primitives, such as polygons, points or lines
and receive input from a vertex shader. The geometry shader can emit zero or more
primitives. Common usages include geometry tessellating, generating particle polygons
from points or extruding shadow volumes.

Fragment shaders, sometimes referred to as pixel shaders, operate on individual
fragments. The ouput of the fragment shader is the colour of a pixel written to the frame
buffer. The fragment shader also has the ability to discard a fragment so that it is not
written to the frame buffer. Common usages include per pixel lighting, bump mapping
and reflections.

When shader hardware is not available, a fixed function pipeline must be used. This
pipeline can usually be set up to perform basic calculations such as per vertex lighting,
rigid transformations and blending of several textures. Many effects can be
accomplished both with and without shaders, but shaders provide a much wider range of
effects and better image quality.

5

Figure 3: A shader pipeline

Chapter 2 - 3D Game Engine Overview
2.1.4 Materials
A material is basically a collection of textures, shaders and uniform values. Materials
are often exported from modelling applications or from shader studio applications such
as NVIDIA's FX Composer or AMD's RenderMonkey. These applications however
create and modify what they refer to as effects. Effects are best thought of as material
templates; for example, a fur effect might be used in several fur materials with different
colours or textures.

2.1.5 Animations
Animations can be divided into three groups, node animations, blend shapes and bone
animations, and span a certain number of frames. Animation data is specified either for
each frame, or at a number of keyframes. When a keyframed animation is played back,
data of two adjacent keyframes are interpolated to produce data for the frames in-
between in order to keep the animation fluent.

Node animations modifies the position, rotation or scale of nodes in the scenegraph.
Less commonly used in games, where it is primarily adopted for cut scenes and camera
movements.

Blend shapes are a sequence of models, which define the positions of the object's
vertices. Require much memory but little processing power, and were often used to
animate characters in older games.

Bone animations modifies the position, rotation or scale of certain nodes known as
bones. Vertices in a model are linked to one or many of these bones in order to follow
their movement. This technique is known as skinning. Bones are usually linked in a
hierarchical manner to affect each other, mimicking the behaviour of, for example, a
skeleton.

2.2 Scenegraphs
A scenegraph is a data structure that arranges the logical and often spatial representation
of a graphical scene [1]. A scenegraph contains a number of linked nodes, usually in
such a way that a node can have multiple child nodes, but only one parent, thus making
it a directed graph, see figure 4 for a simple example scenegraph. In order to be useful,
the graph should also be acyclic. Nodes can be divided into two categories, group
nodes, which may have children, and leaf nodes, which may not. There can be
numerous types of nodes, for instance transform nodes, object/model nodes, light nodes,
camera nodes and emitter nodes for particle systems.

6

Chapter 2 - 3D Game Engine Overview

A transform node is a group node which represents a transform relative to its parent
node. This arranges the scene in a hierarchical structure, which is useful for numerous
reasons, such as moving a complex object by only moving the parent node.

An object node, or a model node, is a leaf node that represents a graphical object that
can be rendered. It has references to a mesh and a material resource.

All leaf nodes, such as those for objects, lights, cameras and emitters receive transforms
from a parent transform node.

Scenegraphs are built and modified as the game world changes, but parts are often
loaded from files that have been exported from a modelling application or a custom
world editor.

2.3 Rendering
In 1986, Jim Kajiya introduced the rendering equation [3], which is a general integral
equation for the lighting of any surface.

Lox , =Le x , ∫
f r x ,  ' ,  Li x ,  '  '⋅nd  '

The equation describes the outgoing light (Lo) in any direction from any position on a
surface, which is the sum of the emitted light (Le) and the reflected light. The reflected
light itself is the sum of the incoming light (Li) from all directions, multiplied by the
surface reflection and cosine of the incident angle. All methods of calculating lighting in
modern computer graphics can be seen as approximations of this equation.

There are several ways of rendering a scene, such as ray-tracing and radiosity. Such
methods allow for advanced lighting effects and global illumination [4]. Global
illumination takes the environment into consideration so that effects such as reflections,
refractions and light bleeding are possible. However, global illumination is generally

7

Figure 4: A simple scenegraph of a car [2]

Chapter 2 - 3D Game Engine Overview
considered too slow to be applied to games. This section will hence focus on using
hardware accelerated rasterisation [4], which is the most common method employed by
games. Although rasterisation only directly supports local lighting effects, which only
considers the actual surface and light sources, modern games include many global
effects such as shadows and reflections. This, however, makes the process of rendering
a modern game a very complex task.

2.3.1 Methods
Drawing relies on the use of a depth buffer, also called z-buffer, which is a buffer that
associates a depth value with each pixel in the frame buffer [1],[4]. This allows the
drawing of objects to be performed in any order, since a pixel is written to the frame
buffer only if it is closer to the viewpoint than what is currently stored in the depth
buffer. This is called hidden surface removal.
The basic way of rendering a scene is as follows:

1. Traverse the scene graph in a depth-first-order, concatenating node transforms
with the resulting parent transform.

2. When an object node is reached, draw the object using its associated material
and model.

This approach unfortunately has several problems, some of which being that it cannot
render dynamic lights, dynamic shadows or transparent objects correctly. To handle
dynamic lights, the light node transforms have to be known before any objects are
drawn. Dynamic shadows are even more problematic since they require the use of
several rendering passes. Due to the nature of the depth buffer on current graphics
hardware, transparent objects has to be sorted back-to-front and drawn after the opaque
objects. The following method is an example of how to address these problems:

1. Traverse the scene graph and concatenate the node transforms, put the lights and
their transforms in a list, and put all objects and their transforms in another list.

2. For each light that casts shadows, render the scene as seen from the light source
to one or several depth maps.

3. Sort the list of objects, so that transparent objects are sorted back-to-front and
placed after opaque objects.

4. Draw the objects, using information from the list of lights and the light's depth
maps for lighting and shadow calculations.

There are several alternatives to this method, mainly related to lighting and shadows.
There are two common methods of drawing dynamic shadows in games, shadow
mapping and shadow volumes [4]. Shadow mapping uses the depth maps generated in
step 2, shadow volumes do not.

While the method listed above calculates lighting per-object-per-light (POPL); the
alternative, per-light-per-object (PLPO), is also common. If this method is used, the
fourth step in the previous method is replaced with the following two steps:

4. Draw the objects lit by the ambient lighting in the scene.

5. For each light, draw the scene again lit by only this light, additively blending the
result into the frame buffer.

8

Chapter 2 - 3D Game Engine Overview
This method is compatible with both shadow mapping and shadow volumes, whereas
the previous method only supports shadow mapping. However, it also requires the scene
to be rendered once per light. A method that does not have this performance drawback is
deferred shading, first suggested in a paper from 1988 by Michael Deering et al. [5],
although the term “deferred” is never used in the paper. The method modifies PLPO as
such:

4. Draw the objects lit by the ambient lighting in the scene. At the same time, also
draw additional information of the fragments such as position, normal, and
material information to extra frame buffers, these are collectively called the g-
buffer.

5. For each light, draw a light geometry (spheres for point lights, cones for spot
lights) of a reasonable size (a reasonable size would be the distance at which the
light's contribution becomes negligible) to determine what parts (if any) of the
visible geometry in the current rendering that should be affected by this light.
These light geometries are drawn with a fragment shader that reads scene
information from the g-buffer, calculates the light contribution and additively
blends the result into the frame buffer.

Even though this method has been known for quite some time, it is still sparsely used in
games since hardware that can support it has only recently become generally available.
All of these methods have advantages and disadvantages, POPL only draws the scene
once but the shaders become very complex or numerous since both material
characteristics and multiple lights have to be handled in a single pass. PLPO is the exact
opposite, the shaders are simpler but the scene has to be drawn multiple times. Deferred
shading seems to solve this problem since it has simple shaders and only draws the
scene once. However, the g-buffer is only possible to implement on the latest hardware
and has high memory requirements.

2.3.2 View Frustum Culling
Game worlds are often large, potentially containing tens of thousands of objects. Since
only a part of the world is normally visible at any time, rendering can be optimised by
discarding geometry outside of the view frustum, this is called frustum culling [1]. Such
a frustum has the geometrical shape of a square pyramid delimited by a near and far
viewing plane, as shown in figure 5. On older hardware, when the number of polygons
in scenes were lower and rasterising was slower, culling was often done on a per
polygon basis. On modern hardware, where geometry is often stored in dedicated
graphics memory, culling is normally done per object.

9Figure 5: No culling (left) and view frustum culling (right) [6]

Chapter 2 - 3D Game Engine Overview
To speed up the culling of objects, the actual mesh geometry is usually not used but an
enclosing bounding volume [7]. The most common object bounding volumes are
spheres, boxes aligned to the coordinate system axes (Axis Aligned Bounding Box, or
AABB) and boxes aligned to the object (Oriented Bounding Box, or OBB). Frustum
culling is also used when rendering depth maps to be used in shadow mapping. A notion
related to frustum culling is frustum clipping where polygons that straddle the frustum
planes are split so that parts outside the frustum are discarded. This is done by modern
hardware in the process of rasterisation and not something that engine programmers
normally have to be concerned with.

2.3.3 Occlusion Culling
While view frustum culling potentially greatly reduces the number of non-visible
objects that are drawn, it does not hinder the drawing of objects occluded by other
objects. A further optimisation would therefore be to cull even such objects (see figure
6). This is not to be confused with the hidden surface removal performed with the depth
buffer (although this can be seen as occlusion culling on a per-pixel-basis), as occlusion
culling only is an optimisation to discard objects that will not contribute to the resulting
image.

There are a number of methods of accomplishing this, worthy of mention are potentially
visible set, portal rendering and hardware occlusion queries.

Potentially visible set divides a scene into regions and pre-computes visibility between
them. This allows for quick indexing to obtain high quality visibility sets at runtime.
However, since it is a pre-computation, changes to the objects in the scene are not
possible.

Portal rendering divides a scene into sectors (rooms) and portals (doors), and computes
visibility of sectors at runtime by clipping them against portals [7]. This is naturally best
suited for small, indoor scenes, and will have little impact on large, outdoor scenes
where there are no clear portals.

Hardware occlusion queries are a way of asking the graphics hardware if any pixels
were drawn during the rendering of a particular object [8]. That way, it is possible to
simulate rendering of the bounding volume of an object to see if the object is currently
occluded (i.e. no pixels would be drawn), and if so, that object can safely be skipped.

10

Figure 6: View frustum culling and occlusion culling
combined [6]

Chapter 2 - 3D Game Engine Overview
This method works on dynamic scenes and without any pre-computation, but requires
modern hardware and causes some overhead due to the additional draw calls.

2.3.4 Spatial Acceleration Structures
View frustum culling and occlusion culling minimises the number of objects that are
drawn by the graphics hardware. However, culling all the objects in a large world
against the view frustum can put a significant burden on the CPU. This and other
problems can be alleviated by using a spatial acceleration structure, such as a bounding
volume hierarchy (BVH) which is easily integrated with a scenegraph. Two popular
BVHs are sphere trees [9] and aabb-trees [10]. This is realised by having every node in
the scenegraph store a bounding volume, which encloses all objects in the subtree
rooted in the corresponding node. This makes many spatial queries, such as frustum
culling, much faster since an entire subtree can be tested without having to test every
individual object. However, this technique also has some computational overhead since
a subtree of the volume hierarchy has to be updated every time a node in the subtree
changes.

Bounding volume hierarchies are simple and can handle dynamic updates fast, but the
large amounts of static geometry common in games can be difficult to organise in a
hierarchy. Spatial partitioning structures are often used to remedy this problem. Such
structures are generally computationally expensive to construct and alter, but allow for
very fast handling of spatial queries. Common examples are quadtrees, octrees
(see figure 7 above), kd-trees and BSP trees [4]. These structures can be kept separate
from the scene graph, or be embedded in the scene graph. Some games use both
bounding volume hierarchies and spatial partitioning trees, while others store all data in
either.

11

Figure 7: Octree spatial acceleration structure
constructed around two spheres [11]

Chapter 2 - 3D Game Engine Overview
2.3.5 Hardware Specific Optimisations
Achieving high rendering performance with hardware accelerated graphics can be
difficult and require good knowledge of hardware and large amounts of testing. Some
general principles that can be addressed by a 3D game engine can however be
identified: minimise state changes, minimise draw calls and minimise stalls.

Minimising state changes can be done by carefully ordering how objects are drawn.
This can be done by sorting objects with consideration to their materials, shaders,
textures or geometry. State then only need to be changed when necessary as opposed to
fully resetting and setting all state for every object that is to be drawn. In less dynamic
games with a small number of objects running on simple hardware, this sorting can be
done as a pre-computation. Otherwise, sorting can be done every frame on the objects
currently in view (after any frustum and occlusion culling). One problem is transparent
objects since they need to be drawn after opaque objects and preferably in strict back-to-
front order, this makes minimising state changes difficult and is one reason to cut back
on the number of transparent objects. Other possible ways of minimising state changes
are to use fewer (and perhaps more complex) shaders, fewer textures (possibly
packaging several textures into texture atlases) or merging geometry data into fewer and
larger buffers.

Minimising draw calls is related to minimising state changes. Since a state change can
occur between draw calls only, fewer state changes need fewer draw calls. Minimising
draw calls is then done by merging objects that use the same state. This sometimes adds
considerable complexity, one example is particle systems. The simplest approach is to
draw each particle individually since all particles move independently each frame. In
practice, this is much too slow and particles should be batched so that even a particle
system consisting of thousands of particles is drawn with at most a few draw calls.

Minimising stalls means that the time that the graphics hardware is idle should be
minimised. Drawing commands issued from the CPU to the GPU are queued and
executed in the graphics pipeline (see figures 9 and 10); for optimal utilisation of
hardware resources, this queue should never be empty. To address this, care should be
taken to schedule CPU computations to occur when the drawing queue is filled. For
optimal performance in complex games, multi-threading will probably have to be used.
However, even if the CPU to GPU queue is not left empty, internal hardware stalls can
still occur due to the pipeline architecture of the hardware. This can happen for two
reasons: if a command needs the results of a yet uncompleted command further down
the pipeline or if a command requires state changes which are incompatible with
commands currently being processed further down in the pipeline. The first scenario can
happen if for instance the drawing of an object needs the content of a texture which is
currently being written to. The second scenario happens when some state such as blend
settings or the active shader need to be changed, this might not be possible to do without
waiting for all previous drawing commands to finish. The problem of internal stalls can
be addressed by reordering commands so that a command does not need the result of a
recent command or tries to update state which is likely to be currently used, minimising
state changes and draw calls also helps.

12

Chapter 3 - Graphics Libraries

3 Graphics Libraries
There has been many different programming libraries with the purpose of rasterising
images. Naturally, many custom solutions have existed within companies and
universities, but since hardware accelerated rasterisation became common graphics
programmers generally use the libraries provided by the hardware vendors. The two
most common libraries are called OpenGL and Microsoft's Direct3D. OpenGL is used
in a wider range of applications and is supported on more platforms. Direct3D is mostly
used for games, but is more popular than OpenGL in this area.

3.1 OpenGL
OpenGL (Open Graphics Library) is a standard specification defining a cross-platform
application programming interface (API) for rendering 2D and 3D computer graphics
[12]. OpenGL was originally developed by Silicon Graphics Inc. (SGI) but has since
1992 been governed by the Architecture Review Board (ARB) which consists of
representatives from many independent companies. Since 2006, ARB is part of the
Khronos group. OpenGL is widely used in Computer-Aided Design (CAD), scientific
visualisation, flight simulators and games.

OpenGL has an extension mechanism, this allows implementers of the library to add
extra functionality. Applications can query the availability of specific extensions at
runtime, making it possible for programs to adapt to different hardware. Extensions
allow programmers access to new hardware abilities without having to wait for the ARB
to incorporate it into the OpenGL standard. Furthermore, additions to the standard are
tested as extensions first to ensure their usability. This is important since all versions of
OpenGL are backward compatible, meaning that once a feature is accepted into the
standard it is never removed.

3.1.1 Versions 1.0 – 1.5
Version 1.0 of OpenGL was released in 1992 and it provides features such as per-vertex
lighting, texturing, fog and blending. Geometry is specified using the begin/end-
paradigm (see code listing 1) which is easy to use. OpenGL commands can be grouped
together and stored in display lists, which can then be executed repeatedly. This
improves rendering speed and allows calls to be organised in a hierarchical manner.

OpenGL supports several drawing primitives: points, lines, line strips, line loops,
triangles, triangle strips, triangle fans, quadrilaterals (quads), quad strips and polygons.
Supported vertex attributes are positions, colours, normals and texture coordinates.
Texture coordinates can also be automatically generated in order to save memory or
efficiently animate coordinates. OpenGL is often considered to be a state machine, since
it has a large number of global states which affect drawing. Examples of states are

13

Code listing 1: Drawing a triangle in OpenGL using begin/end-paradigm

 glBegin(GL_TRIANGLES);
glColor3f(1, 0, 0); glVertex3f(0, 1, 0);
glColor3f(0, 1, 0); glVertex3f(-1, 0, 0);
glColor3f(0, 0, 1); glVertex3f(1, 0, 0);

 glEnd();

Chapter 3 - Graphics Libraries
lighting settings, material settings, current texture, blending mode and matrix
transforms. Figure 8 shows how vertex positions in local object space (object
coordinates) are transformed into pixel positions in the framebuffer (window
coordinates). To learn more about coordinate transforms, there are several books
treating the subject, for example 3D Computer Graphics by Alan H. Watt [4].

The most important addition in OpenGL 1.1 was vertex arrays. Vertex arrays are an
alternative to the begin/end-paradigm and makes it possible to store vertex attributes in
arrays and draw directly from these. This greatly reduces the number of OpenGL
commands needed to draw geometry. The large number of commands of the begin/end-
paradigm began to be problematic as rendering hardware became faster and geometric
models became more detailed.

Version 1.2 of OpenGL was released in 1998 and added three-dimensional textures and
more blending modes among other features.

OpenGL 1.3 was released in 2001 and added several important features. Compressed
textures allow textures to be used while stored in a compressed form, reducing memory
consumption. Cube maps enable more detailed environment mapping effects.
Multitexturing and texture environment settings allow geometry to be mapped with
several textures simultaneously which can be combined in several different ways. This
allows for much more advanced surface details and can be seen as a primitive form of
shaders. For instance, a special combiner mode allows for bump mapping effects. Also,
support for fullscreen antialiasing was added.

In 2002 OpenGL 1.4 was released. It added support for depth maps and shadow
rendering with shadow mapping. Texture environment settings were made more
powerful and additional blending modes were added.

In the following year, OpenGL 1.5 was released and added two important features:
occlusion queries and vertex buffer objects (VBO). Vertex buffer objects allow vertex
arrays to be stored in dedicated graphics memory. This allows for significantly faster
rendering of complex geometry compared to normal vertex arrays. This problem had
already been addressed by display lists, but VBOs are simpler for library implementers
to optimise and they are better suited to handle dynamic geometry.

14

Figure 8: Vertex transformation sequence in OpenGL

Chapter 3 - Graphics Libraries

3.1.2 Versions 2.0 – 2.1
OpenGL 2.0 was released in 2004. The reason for the change of major version number
was the added support for high-level programmable shaders in the form of vertex and
fragment shaders. Despite this, it is still backward compatible with older versions. This
version also introduced the OpenGL Shading Language (GLSL) [14], a C-like language
used exclusively to write shader programs. An interesting feature is that it is possible to
use old OpenGL code with shader-based rendering, due to much of the old OpenGL
state being automatically available to shaders through special variables. Another
important feature added is Multiple Render Targets (MRT), which allows fragment
shaders to write to multiple frame buffer objects. This is important for certain advanced
effects such as deferred shading.

Version 2.1, released in 2006, introduced some additions to GLSL, as well as Pixel
Buffer Objects which expand on the interface provided by the vertex buffer objects
allowing buffer objects to be used with both vertex array and pixel data.

3.2 OpenGL ES
OpenGL ES (henceforth known as GLES) is an adaptation of OpenGL for embedded
systems [15]. GLES is a subset of OpenGL, some functionality was removed in order to
make the library smaller and simpler. However, fixed-point functionality was added
since few embedded systems efficiently handle floating-point calculations. GLES was
developed by the Khronos group and has two different profiles, Common and Common-
Lite. The Common-Lite profile differs from the Common profile primarily in being
targeted at a simpler class of graphics systems not supporting high-performance
floating-point calculations. The Common-Lite profile supports only commands taking
fixed-point arguments, while the Common profile also includes many equivalent
commands taking floating-point arguments.

15

Figure 9: The fixed function pipeline of OpenGL 1.5 and OpenGL ES 1.1 [13]

Chapter 3 - Graphics Libraries
3.2.1 Versions 1.0 – 1.1
The first version of GLES, 1.0, was released in 2003 and is based on OpenGL 1.3, but
with some functionality removed, such as

● Begin/end-paradigm. This was deemed obsolete with preference to vertex
arrays.

● Quad, quad-strip and polygon drawing primitives. These were removed since
these primitives can be assembled from triangles.

● Automatic texture coordinate generation.

● One- and three-dimensional textures and cube maps, leaving only two-
dimensional textures.

● Some of the texture environment settings, leaving only the simpler ones such as
replace, blend, add and modulate.

● Display lists, since they are complex to implement.

GLES 1.1 was released in 2004 and is based on OpenGL 1.5. The most important
additions compared to GLES 1.0 are vertex buffer objects and the support of all
advanced texture environment settings in OpenGL 1.5.

3.2.2 Version 2.0
GLES 2.0, the latest version, was finalised in 2007 [16]. It is based on OpenGL 2.0, and
like it introduced high-level shaders. However, unlike OpenGL 2.0, GLES 2.0
completely removes all support for the fixed function pipeline. As a result, GLES 2.0 is
not backward compatible with previous versions of GLES. Shaders are specified in a
version of GLSL called GLSL ES. GLES 2.0 only supports the Common profile, and
the fixed point support has been limited to vertex arrays only.

16

Figure 10: The programmable pipeline of OpenGL ES 2.0 [13]

Chapter 3 - Graphics Libraries
The most noteworthy functionality removed from OpenGL 2.0 is

● Begin/end-paradigm.

● Specific vertex arrays for attributes such as positions, normals and texture
coordinates. These functions have been removed in favor of the general function
glVertexAttribPointer.

● Quad, quad-strip and polygon drawing primitives.

● All functionality that modifies the current matrix transforms. The model-view
and projection matrices are removed, programmers choose which transforms are
needed and pass these as uniforms to shaders.

● Automatic texture coordinate generation. This can be done in vertex shaders.

● All functionality that handles lighting and material state. Programmers
implement a custom lighting solution with shaders and feed data to the shaders
with generic uniforms and vertex attributes.

● One- and three-dimensional textures, leaving two-dimensional textures and cube
maps.

● Texture environment settings, these are not needed since shaders are a direct
substitute and much more powerful.

● Fog settings, handled by shaders instead.

● Display lists.

GLES 2.0 directly supports framebuffer objects, something which is only available as
an extension even to OpenGL 2.1. Framebuffer objects allow multiple off-screen
framebuffers to be created and rendered to. This allows for fast rendering to textures and
also supports rendering to textures larger than the on-screen framebuffer. This is
important when rendering depth maps, environment maps or in other effects such as
reflections, refractions or post processing effects.

GLSL ES is very similar to GLSL, there are two main differences: in GLSL ES, the
special variables that are tied to the fixed function pipeline have been removed and
keywords for specifying the precision of variables have been added (lowp, mediump and
highp).

17

Chapter 4 - Graphics Hardware

4 Graphics Hardware
The beginning of computer graphics is often attributed to Ivan Sutherland and his
program Sketchpad which ran on a vector graphics display monitor with a light pen
input device in 1963. At Xerox Parc, the computer mouse was invented and Graphical
User Interfaces (GUIs) were first developed. In the 70's, computer graphics hardware
became cheaper and was used in the first Apple personal computers. Arcade game
machines such as Pong or Pac-Man became popular. During the 80's, the IBM PC was
introduced and workstations from SGI began supporting real-time hardware
rasterisation of lines and polygons. During the 90's, SGI workstations that accelerated
3D rasterisation appeared and then were replaced by cheaper IBM PCs fitted with 3D
graphics cards. Game consoles with 3D graphics appear and photo-realistic computer
graphics effects were introduced in Hollywood films. In the 00's PC 3D hardware
continues to improve and hand-held devices with hardware accelerated graphics emerge
[17].

4.1 PC Hardware
Hardware accelerated 3D graphics on the PC became popular with the introduction of
the 3dfx Voodoo chipset in 1996. Graphics cards not only accelerating rasterisation, but
also vertex transforms and lighting calculations were introduced with the GeForce 256
in 1999. Simple vertex and fragment shaders were introduced in 2001, the first cards
that supported advanced shaders were introduced in 2003. These cards have dedicated
hardware for vertex and fragment shaders. The next important evolutionary step
happened in 2006 when cards which supports geometry shaders appeared. These cards
have a unified shader architecture which means that the cards have a number of more
general processing elements which can process fragments, vertices or geometry.
Different tasks are automatically assigned to these processing elements, so that
processing power is dynamically allocated to fit the processing needs of the application.

Today, the main manufacturers of graphics cards focused on 3D games on the PC are
NVIDIA and AMD (previously ATI). Their cards support both Direct3D and OpenGL.
For later comparison reasons a NVIDIA GeForce 8600 GT, a modern medium/high
range graphics card, supports OpenGL 2.1 plus geometry shaders and can draw more
than 4000M pixels/s and 700M vertices/s [18].

4.2 Mobile Hardware
Mobile hardware is significantly less powerful than a PC because of cost, size and
power constraints. While mobile phones capable of hardware accelerated 3D are still
rare, Ed Plowman, Product Manager at ARM, predicts in an interview with 3D-Test [19]
that mobile 3D graphics acceleration will become more and more common up to the
point where a “mass market explosion” will occur somewhere between the middle of
2008 and the middle of 2009. After this point, hardware accelerated 3D graphics will be
expected on all new mobile phones. This might seem optimistic, after all – not everyone
are interested in games. However, the same hardware that powers 3D graphics will also
support better looking and faster 2D graphical interfaces and support decoding of
movies, images and sounds. Dedicated graphics hardware generally also consumes less
power than if a general purpose processor would handle the same task.

18

Chapter 4 - Graphics Hardware

One example is the Nokia N93 which was introduced in 2006 and is one of the few
mobile phones that support hardware accelerated OpenGL ES 1.1 [20]. The N93
contains a PowerVR MBX GPU; which, according to the manufacturer Imagination
Technologies, can draw 300M pixels/s and 2M polygons/s [21]. Benchmark tests by
GLBenchmark [22] indicates a lower actual performance; 870 000 shaded and coloured
triangles/s on the N93. The processor is a 32-bit ARM11 330MHz CPU with floating
point support. The phone has a 2,4 inch screen with a resolution of 240 x 320 pixels
(QVGA).

No OpenGL ES 2.0 capable mobile phones have yet been announced, however, some
information is available from press releases and product specifications. Peter Lykke
Nielsen, product manager at Nokia, states in a lecture at Game Developers Conference
China 2007 [23] that OpenGL ES 2.0 capable phones probably will be available in the
second quarter of 2008. A possible graphics chip to be included in those phones is the
PowerVR SGX, the successor to the MBX chip. The SGX chip will support OpenGL
ES 2.0, and Imagination Technologies states that it will also support geometry shaders,
which are not included in ES 2.0 – most likely this feature will be accessible through
OpenGL extensions. The SGX chip will be available in many variants and performance
is said to lie in the range of 100M – 4000M pixels/s and 2M – 100M polygons/s [24].
The most powerful versions of the chip will most likely not be used in mobile phones,
though it seems probable that the theoretical performance in phones will reach 20M
polygons/s which would mean an order of magnitude increase compared to the previous
generation. In any case, these numbers are very high as they even approach the PC
hardware listed in the previous section.

While the most common resolution for mobile screens are 240 x 320 pixels, there are a
few exceptions, for instance the Toshiba G900 which has a resolution of 480 x 800
pixels, called WVGA [25]. Such higher resolutions might become more common with
the new graphics chips – assuming a resolution of 480 x 800, 60 frames per second and
an overdraw factor of 2 a graphics chip would need to handle 480∗800∗60∗2=46M
pixels/s. Taking into account that actual performance will be lower than the theoretical
numbers specified by the manufacturer, it still seems very possible that graphics chips
such as the SGX will be able to handle a game running in such a resolution.

Besides Imagination Technologies, manufacturers of 3D graphics hardware for mobile
phones include NVIDIA, AMD and ARM.

NVIDIA makes the GoForce chips targeted at hand-held devices. The 4800 and 5500
versions of GoForce support OpenGL ES 1.1 and has been included in a number of
devices. Nathan Kirsch at Legit Reviews states in a preview of the GoForce 5500 [26]
that it is able to render the PC game Quake 3 Arena from 1999 at a 1024 x 768
resolution at 28-35 frames/s. One of the devices the GoForce 5500 is included in is the
O2 XDA Flame which, however, does not score very well on GLBenchmark where it
only runs the OpenGL ES 1.0 and not the 1.1 tests. Furthermore, it gets much lower
scores than the Nokia N93 (225 000 shaded and coloured triangles/s versus 870 000)
[22]. There is little information about upcoming chips from NVIDIA except that there is
OpenGL ES 2.0 compliant hardware in development.

AMD's hand-held graphics chips are named Imageon. The Imageon 2380 and 2388
were released in 2006 and supports OpenGL ES 1.1 [27]. These chips are not known to
be used in any consumer products. AMD is most likely developing OpenGL ES 2.0

19

Chapter 4 - Graphics Hardware
hardware, some indications of this is that AMD has incorporated GLSL ES support into
the AMD RenderMonkey shader development application and released an OpenGL ES
2.0 PC emulator library.

ARM is a very successful producer of processors that are used in many mobile phones.
ARM also offers two 3D graphics chips: the Mali 55 with OpenGL ES 1.1 support and
the Mali 200 with OpenGL ES 2.0 support [28]. In the interview mentioned above, Ed
Plowman also states that the Mali 55 can render up to 1M polygons/s [19]. Like the
Imageon chips, the Mali chips are not known to be used in any consumer products.

20

Chapter 5 - Approach

5 Approach
We started by studying OpenGL 2.1 and OpenGL ES 2.0 in order to get a better
understanding of OpenGL and shaders. Our goals were to examine how to develop
mobile games with OpenGL ES 2.0 and how three-dimensional graphics and shaders
can be successfully used in mobile games. In order to do this we decided to develop a
game prototype of a successful two-dimensional game named Kodo and adapt it to three
dimensions with shader effects. Since there were no OpenGL ES 2.0 3D game engines
available to us, we needed to develop one. We investigated if it would be possible to
adapt an available PC OpenGL engine but were concerned that they were too complex
and large to be easily adapted to a hand-held device. However, we also realised that we
did not have enough time to develop a complete 3D game engine from scratch as part of
the project. We decided to handle this problem by trying to keep the engine as small and
simple as possible, only supporting the features that we needed to make the prototype.
Also, the PowerVR OpenGL ES 2.0 SDK was of great help to us.

5.1 3D Game Engine
Loading and handling resources is a complex part of a 3D engine. A number of
decisions has to be made about which file formats to support, how the files should be
created and manipulated, the organisation of data in these files and the organisation, use
and manipulation of this data when it has been loaded into the application memory. The
PowerVR SDK contains a number of file format definitions and tools which work with
these formats. We decided to make use of the PowerVR file formats since they are
simple and designed to support OpenGL ES and mobile hardware. This worked well,
but caused some problems since some of these file formats aren't very general and we
couldn't easily extend them.

The PowerVR file formats that we use are texture files (.pvr), effect files (.pfx) and
model files (.pod). The texture files are created from standard image files with a
PowerVR application which we found very useful. PowerVR effect files are similar to
the effect files used in NVIDIA's FX Composer and AMD's RenderMonkey, but much
simpler. An application called PowerVR Shaman can be used to view and modify pfx-
files. However, we decided not to use this application since it wasn't very versatile, we
instead created and edited pfx-files with a text editor. The model files (.pod) are
exported from the modelling program 3ds max with a custom exporter plug-in. The pod-
files contain scenegraphs, models, simple materials and animations. The code to load
pvr-files, pfx-files and pod-files was incorporated into our application and provided the
basis for the rest of the engine.

5.1.1 The Effect Files
The pfx effect files represent material effects. Each file contains a number of texture
specifications, vertex shaders, texture shaders and effect definitions. The effect
definition specifies which shaders the effect uses, which uniforms and attributes it uses
and also maps actual textures to any texture uniforms. Other uniforms and attributes are
mapped to specific names defined by the application. These names correspond to
different state that the application holds, such as transformation matrices, lighting
settings or material settings. A simple example can be seen in code listing 2.

21

Chapter 5 - Approach

These effect files proved to be powerful enough for our purposes except for the
handling of textures. As can be seen in the example in code listing 2, texture files are
specified directly in the effect file and bound in the effect definitions. This is very
limiting since it is often desirable to make general effects which can be used for many
different objects and materials. For example, the effect in listing 2 would be a general
shader which could draw any unlit and textured geometry if it wasn't bound to be used
with the wall.pvr texture. To solve this problem, we introduced a number of image file
names with special meanings: materialTexture (diffuse map of the current material),
normalTexture (normal map of the current material), screenTexture (the current screen
contents rendered to a texture), objScreenTexture (like screenTexture but centred around
the current object) and shadowMapTexture (a depth map to be used in shadow
mapping). This allows an effect to request textures specific to the current material or
object, as well as dynamically generated textures not loaded from files. The primary
reason for choosing this solution was that it did not require any changes to the file
format or the pfx parsing and loading code.

22

Code listing 2: An example pfx file

[TEXTURES]
FILE wall wall.pvr LINEAR-LINEAR-LINEAR

[/TEXTURES]

[VERTEXSHADER]
NAME SimpleVertShader
[GLSL_CODE]
attribute vec4 myVertex;
attribute vec2 myUVMain;
uniform mat4 myMVPMatrix;
varying vec2 texCoordinateMain;

void main(void)
{

texCoordinateMain = myUVMain;
gl_Position = myMVPMatrix * myVertex;

}
[/GLSL_CODE]

[/VERTEXSHADER]

[FRAGMENTSHADER]
NAME SimpleFragmentShader
[GLSL_CODE]
uniform sampler2D tex;
varying vec2 texCoordinateMain;

void main (void)
{

gl_FragColor = texture2D(tex, texCoordinateMain);
}
[/GLSL_CODE]

[/FRAGMENTSHADER]

[EFFECT]
NAME simpleTex
UNIFORM myMVPMatrix MODELVIEWPROJECTIONMATRIX
UNIFORM tex TEXTURE0
ATTRIBUTE myVertex VERTEX
ATTRIBUTE myUVMain TEXCOORD0

 VERTEXSHADER SimpleVertShader
 FRAGMENTSHADER SimpleFragmentShader

TEXTURE 0 wall
[/EFFECT]

Chapter 5 - Approach
Other possible extensions to the effect files would be to support default, minimum and
maximum values for uniforms.

5.1.2 The Model Files
The pod model file definition, the 3ds max exporter and the pod loading code represent
a significant amount of work and is the primary reason that we chose to use the
PowerVR SDK code. Implementing this functionality by ourselves would have taken
too much time and choosing some other model format was considered problematic since
loading code might be hard to find or not suited to be used on mobile hardware due to
portability problems or size and processing requirements. A pod file contains a
scenegraph consisting of transform nodes arranged in a hierarchy. These nodes can be of
any of these types: mesh nodes, light nodes, camera nodes or simple transform nodes.

The mesh nodes reference materials and mesh data. Materials support one diffuse
texture; ambient, diffuse and specular colour; opacity and shininess values as well as a
reference to an effect from an effect file. Mesh data is represented in one of these
formats: triangles, indexed triangles, triangle strips or indexed triangle strips. Supported
vertex attributes are positions, normals, tangents, binormals, multiple number of texture
coordinate sets, colours, bone indices and bone weights. These attributes can be placed
in separate arrays or in one interleaved array. Attributes can be stored as different data
types such as one- two- or four-byte integers or two-byte floating point values to save
memory. Light nodes are either point lights or directional lights, they have a colour and
a target node (for directing the light). Camera nodes have a field-of-view value, far and
near view frustum plane depth values as well as a target node. Simple transform nodes
are used as target nodes or bones. All nodes can have animation data for position,
rotation and scale.

Almost all of this data can be exported from 3ds max. The material effect file and effect
name can not be exported since there is no “effect file” and “effect name” settings in the
material options in 3ds max. There is probably a way to make a custom material plug-in
to 3ds max but we settled for a simpler solution: materials are named in a special way to
specify the effect for the material. For example, naming a material
“simple_simpleTex_sky” in 3ds max, creates a material named “sky” in the engine that
uses the effect “simpleTex” defined in the file “simple.pfx”.

Several other limitations with the model files were encountered, for example, there is no
support for spotlights and the corresponding cut-off angle. We didn't solve this problem
since we never needed to use spotlights. Furthermore, there is no support for uniform
values in the materials (except for the pre-defined material values). This was handled by
specifying uniforms in text files, which will be explained in 5.1.6. These uniform files
are also used to specify light attenuation factors which are not supported by the pod
files. Also, there is no support for several textures per material like normal maps or
multiple diffuse maps. We handled this for normal maps with the special texture file
names for effect files described in the previous section. If an effect uses the textures
materialTexture and normalMapTexture, all materials that use this effect will
automatically use a normal map that is named like the material diffuse texture. For
example, if a material uses “rock.pvr” as a diffuse map and uses such an effect, the file
“rock_normal.pvr” will automatically be used as the normal map for that material.

23

Chapter 5 - Approach
5.1.3 Scene Representation
The code that handles loading of textures, effects and models was provided by the
PowerVR SDK. We started by combining these features so that after loading a model,
all effects that the model uses are loaded, after which all textures that the materials or
the effects use are loaded. All the data is simply stored by the loading code in a couple
of arrays, one for each type of data: nodes, cameras, lights, meshes, materials and
textures. This means that the scenegraph is not stored as an explicit tree, the tree
structure is instead implicitly defined by storing parent node indices in the node data
structures. This is the simplest solution possible, very memory efficient and accessing or
modifying objects is simple and fast. However, adding and deleting objects becomes
extremely costly. For example, when removing or adding a node, the node array will
have to be rebuilt. This might cause node indices to be remapped, and to handle this, all
node indices in the program will have to be checked and possibly modified. Since
games are by nature quite dynamic (several objects might be added or deleted every
frame) this is not an ideal scene representation. However, we decided to keep it because
the SDK code relied on this and we wanted to use as much of it as possible. Also, if
objects are not added or deleted during the actual gameplay, this representation is highly
optimised. For example, since all nodes are stored in a single array, all this data is stored
in one block of memory and this works very well with the processor's cache memory. In
a more dynamic linked structure, each node normally has its own memory block and
this might result in bad performance while traversing the scenegraph.

To use this scene representation in an actual game, the following procedure is followed:
first, all resources that are needed are loaded and merged into one scene; secondly, a
number of empty mesh nodes are added, these empty nodes are then dynamically bound
to material and mesh resources depending on what game object they should represent.
When a new level should be loaded, the scene is cleared and all resources are reloaded.
This procedure avoids the expensive adding and removal of objects during gameplay.

24

Figure 11: Kodo character in 3ds max, the mesh, texturing and bones are visible

Chapter 5 - Approach
This works well for simple level-based games, but adds some complexity for the game
programmer that is required to know how many objects will be needed beforehand and
handle the mapping between game objects and scene nodes.

To allow this usage, we implemented support for merging scenes and adding empty
mesh nodes. The engine does not support removal of nodes. When merging scenes and
adding nodes, remapping of node indices has to be performed which makes these
operations fairly costly. Also, when loading a new scene to be merged with an existing
scene, some resource management must be performed so that the new scene reuses the
effects and textures of the old scene instead of loading duplicates.

5.1.4 Scene Management
Ideally, the game engine should represent a simple but powerful interface to the
application code so that it can handle the game logic without having to be concerned
with details such as resource management or rendering implementation. We keep the
scene representation hidden from the application code, and provide helper functions for
modifying the scene. The application code refers to different objects by integer handles
and thus is insulated from the actual data structures used. These handles are simply
indices into the arrays in the scene representation.

The scene management functions allow for example the reading and modification of
node transforms; material, mesh and animation node bindings; animation triggering,
setting node parents, setting custom uniform values, modifying light parameters such as
colour or attenuation, adding effects to the scene or specific objects or assigning shadow
maps to specific lights.

5.1.5 Animations
The engine supports node animations and bone animations but not blend shapes.
Animation data is exported from 3ds max to pod files and the animation data for
position, rotation and scale is stored in each node that is animated. Bone animations are
handled by treating bones as ordinary nodes that are animated just like other nodes. The
difference is that in a bone animation, there is a mesh that references these nodes and
use them as bones, the mesh also contains the skinning information in the form of bone
weights and indices for every vertex. A single mesh can be split up into a number of
bone batches. This is automatically done by the 3ds max exporter (by setting a
maximum number of bones per batch) and each bone batch will be drawn by an
individual draw call. The actual skinning is performed by a vertex shader, so the models
need to be bound to an effect that has such a shader to enable the bone animation to be
played.

Each model file has a certain animation length, and can contain many node or bone
animations. This allows entire film-like scene animations to be created in 3ds max,
exported to one pod file, and played back in the engine. While useful, this does not suit
our needs very well since we use this model format as the actual scene representation
for the interactive game world.

25

Chapter 5 - Approach
A typical game places the following demands on the game engine regarding bone
animations:

1. A certain set of bones, a skeleton, can be used by several animations and meshes.

2. If a mesh is compatible with a skeleton, it should be able to use all animations
for that skeleton.

3. Meshes and animations can be loaded as individual resources and be used by
multiple game objects simultaneously.

As described in section 5.1.3, when pod files containing game levels or meshes are
loaded, they are merged into the same scene. Game objects are handled by adding
empty model nodes and binding these to mesh and material resources. This allows
meshes to be handled as individual resources. Animations can be created by exporting a
set of nodes and animation data to an individual pod file, excluding any meshes or
materials. However, when loading these animations, they are not added to the master
scene but instead stored as individual scenes in a list of animations. This is done to
allow animations to be handled as bindable resources, and to avoid the complexities of
remapping bone indices and having multiple points in time active simultaneously in one
scene.

Consequently, support for loading a pod file as an animation was added to the engine,
along with support for binding animations to objects. When triggering the start of an
animation, a time point is specified that specifies when the animation should start. This
allows simple scheduling of animations and also makes it possible to jump to a specific
point in the middle of an animation by specifying a triggering point preceding the
current time. It is also possible to set a looping property for individual animations.

The engine also supports automatic position interpolation for objects as this simplifies
the application code and also results in smoother movement. Position interpolation is
activated for an object by specifying start and end position, along with start and end
time points.

5.1.6 Built-in and Custom Uniforms
During the project we added many uniforms built into the engine. These uniforms are
requested by shaders through uniform definitions in the effect files. All built-in
uniforms represent general state that is known or can be computed by the engine.
However, many shaders also need specific uniforms that have a more specialised
meaning. These custom uniforms are not built into the engine code, but defined in text
files. This allows users of the engine to add uniforms without recompiling the
application.

The built-in uniforms are those that are general enough to be usable by a large number
of shaders. We added these as we needed them to avoid adding features to the engine
that we would never use. The 4x4 model, viewing and projection matrices are basic
uniforms needed by the vertex shader. For optimisation purposes and ease of use,
concatenations of these matrices are also available as the model-view, view-projection
and model-view-projection matrices. Making all these matrices available gives the
shader writer the freedom to design shaders in multiple ways. Also, a 3x3 normal matrix
calculated from the model-view matrix is available to transform normals from object to
eye space; a corresponding 3x3 world normal matrix provides a normal transform from
world to eye space.

26

Chapter 5 - Approach
Material ambient, diffuse and specular colours are provided, as well as shininess and
opacity values. Light positions are available in either eye or world space, they can also
be requested as light directions in eye or world space. Lights have an associated colour
and attenuation value. The number of active lights can be queried, and another integer
uniform describes which light that has a shadow map enabled (we do not support
multiple simultaneous shadow maps). A shadow map texture matrix is used for
converting world positions to shadow map texture coordinates.

Bone animations are supported by a bone matrix uniform and an integer uniform
naming the number of bone indices per vertex. Finally, a time uniform is available for
making animated shaders, a colour mask for tinting or changing the contrast of objects
and a screen texture matrix for mapping screen textures onto objects.

The pfx effect files support adding an integer value to the end of a uniform name. This
integer value is used by the engine in a number of ways. Most uniforms just ignore it
since these uniforms only have a single value, while the texture uniform uses the value
for choosing a texture, so that TEXTURE0 refers to the first texture, TEXTURE1 to the
next one and so on. Many of the built-in uniforms are actually uniform arrays though,
and the integer value is then interpreted as one less than the length of the uniform array.
For example, LIGHTPOSITION0 request one light position, LIGHTPOSITION1
requests two and so on.

For the custom uniforms we identified three distinct uses; global uniforms, material
uniforms and object uniforms. An example of a global uniform is the ambient colour of
the scene, a material uniform might be a reflectiveness value, and an object uniform
might be a glow colour. When the value of a custom uniform is requested by a shader,
the current object is first searched, if the uniform is not set for this object, the current
material is searched and then the global uniforms are searched. We found this system to
be very powerful and simple to use. We added support to modify these uniform values
from the code, so that it was possible to animate them or change them according to
gameplay events. We actually started to use the uniform files for other kind of variables
that were not shader uniforms such as setting visibility, disabling shadow casting or
depth writes for specific objects.

27

Chapter 5 - Approach

5.1.7 Scene Rendering
An outline of the rendering method looks like this:

1. Update object positions due to position interpolations.

2. Calculate view transformation and camera frustum.

3. Calculate light positions.

4. For each rendering pass:

4.1. Set up rendering pass.

4.2. For each object sorted in drawing order:

4.2.1. Calculate and set up uniforms.

4.2.2. Draw mesh

4.3. Finish rendering pass.

5. For each post processing effect:

5.1. Draw effect.

Updating object position interpolations is done together with rendering so that it is only
done when needed, and can take advantage of the current time to place objects exactly
where they should be. The view transformation and camera frustum are calculated from
the camera node model matrix and the camera settings. Light positions are extracted
from the scene, converted to eye space (by the inverse of the view matrix) and placed in
an array for later use.

Hierarchical transforms and node animations are handled automatically by the scene
implementation; when a node is asked for its position or model matrix, it calculates its
local matrix from its animation data (if it has any) and also recursively asks its parent (if
it has one) for a model matrix to multiply with the local node matrix to get the resulting
model matrix for the node. This is sped up by caching the last calculated model matrix
in the node and returning this if the scene time hasn't changed since.

Additional rendering passes are needed for every light that use shadow mapping, for
certain post processing effects such as glow, and for effects such as refraction and
reflection. The set up of rendering passes might involve clearing frame buffers, setting
OpenGL state and modifying viewing or perspective matrices. Finishing render passes
might involve copying frame buffer contents to textures and resetting OpenGL state.

The objects are sorted in a certain drawing order. This sort is done once after loading
and adding all objects. Since objects can't easily be moved around, the sort instead
builds an array of object indices which indicates the drawing order. This sort is done to
make sure that any transparent objects are drawn last and to minimise state changes.
Transparent objects are handled by giving transparent materials a high priority. Sorting
makes sure that objects that have materials with high priority are placed last in the
drawing array. Objects that have materials with equal priority are sorted according to the
material index, this makes sure that objects with equal materials are drawn directly after
each other to enable minimising of state changes.

Bounding volume hierarchies or any spatial acceleration structures are not employed
since we only used game worlds with a relatively small number of objects. Frustum
culling was however implemented to speed up rendering to textures around refractive

28

Chapter 5 - Approach
objects. The frustum culling is done with bounding spheres per object every frame. The
bounding spheres are constructed from the mesh geometry at load time. Spheres were
chosen since they are fast to cull against a frustum and the object's rotation does not
have to be taken into account.

Much of the core engine functionality is implemented in the code that sets up the
uniforms. Uniforms are uploaded to OpenGL as they are requested by the effect used by
the object. Many uniform values are only calculated if they are requested by the effect.
For optimisation purposes, some caching is done to prevent the same uniform data to be
calculated repeatedly. While the uniform set up is mostly trivial, the handling of
uniforms regarding light sources is a bit more complex. The drawing is done per object
per light (POPL), and shaders can realistically only support a small number of lights at
once for performance reasons. For example, it's typical for fragment shaders to support
four to eight lights simultaneously – but it's often unsatisfactory to be limited to this
amount of lights in the whole scene. For this reason, the engine calculates which lights
are the most important for the active object and uploads light uniforms according to this.
So if, for example, a shader requests four light positions, the positions of the four most
important lights for the current object are uploaded. In the calculation of importance, the
distance between the object and the light positions, the light attenuation factors, and the
light colours are taken into account. Since this calculation is done per object and not per
fragment, it is only an approximation. When the set of lights that are used for an object
changes, due to the movement of the object or lights for example, visually disturbing
sudden changes in the shading of the object can occur. To minimise this, use fewer
lights, smaller objects or more active lights in the shaders.

Vertex buffer objects are used to draw meshes that are exported as interleaved vertex
data, other meshes are drawn with vertex arrays. This is a simplification but there are no
fundamental difficulties with modifying the engine to use VBO:s for all meshes.

5.2 The Demon Demo
When we realised that we wouldn't be able to get a hold of any mobile OpenGL ES 2.0
capable hardware during the time frame of the project, it was decided that we should
test the engine on an OpenGL ES 1.1 capable mobile phone. The hardware that we used
was a Nokia N93 mobile phone which is described in section 4.2. We decided to do a
simple graphical demo, which should look as good as possible while not taking too
much time to implement. The demo features an animated model of a demon, provided to
us by Jadestone. We put the model in front of a background image, and added a post-
processing glow effect in order to make the demo more visually interesting.

29

Chapter 5 - Approach

The glow effect is achieved by rendering the model with a special emissive map to a
texture, this texture is then additively blended multiple times on top of the scene as a
post processing effect. When this is done the texture is stretched by different amounts to
create the illusion of glowing rays coming out of the demon. However, since this is a
screen space effect, the rays are actually simply stretched away from the centre of the
screen.

5.2.1 OpenGL ES 1.1 Adaptation
Most of the engine could be kept intact while adapting it to support GLES 1.1. The main
differences are that effect files are not used, that OpenGL state variables are set instead
of loading uniforms and that skinning is performed differently. The GLES 1.1 engine
does not support any kind of advanced materials, only simply vertex lighting, standard
material settings and texturing with a single diffuse map. A new kind of effect file could
be designed to be used with this engine, where more advanced materials could be
specified, these materials would have to be implemented with texture environment
settings. Transformation matrices, texture bindings, lighting and material settings are
uploaded to the built in GLES 1.1 state variables as opposed to shader uniforms. Since
the PowerVR chip in the N93 supports an extension to GLES 1.1 that is specifically
designed to do hardware skinning, we used that. The extension is called matrix palette
and allows several model matrices to be loaded, along with vertex arrays for bone
indices and bone weights. One problem with this extension is that it isn't supported by
modern PC hardware, this resulted in the demon demo running slowly with the PC
emulation library (presumably the skinning is emulated on the CPU).

30

Figure 12: The demon demo with zero, five and nine glow passes

Chapter 5 - Approach

5.2.2 Symbian OS Adaptation
Our applications that use the GLES PC emulation library are normal Microsoft
Windows programs, however, care was taken to try to isolate the OS specific code. This
is the code that handles window initialisation and destruction, window handling such as
shutdown events and keyboard input. Naturally, we had to re-implement this part of our
program and adapt it for the Symbian operating system. Since the input and window
handling required by our application is very simple and example programs using
OpenGL ES 1.1 were available in the Symbian SDK this was fairly unproblematic. The
reasons that the adaptation was comparatively simple was that we did not use any
external libraries or non-standard C++. Furthermore, if we had not used an
OS-independent graphics library like OpenGL ES this would have been much more
difficult to do.

To develop a Symbian application for the N93, the Nokia S60 SDK was used, S60 is a
version of the Symbian OS used by several Nokia phones. Besides making sure that the
code compiled for the S60 PC emulator and for the actual N93 hardware, the code
project and Symbian installation files had to be created and configured.

5.3 3D Kodo Game Prototype
Making a 3D version of the game Kodo had several advantages. Kodo was designed for
mobile phones so it suited us well, furthermore, since Kodo is such a simple game, it
was possible for us to actually have time to implement a playable game prototype as
opposed to just a technical demonstration. Kodo is a multiplayer game where each
player controls a Kodo with one button on the keypad of a mobile phone. The kodos
automatically rotate, and walk forward when the button is pressed. The goal of the game
is to eat the other kodos. The basic goals were to adapt Kodo to 3D while keeping the
gameplay intact and trying to make it look as good as possible while using some
interesting graphical shaders.

Much of the engine capabilities described in section 5.1 were implemented as the need
for them arose while making 3D Kodo. We started by implementing the basic gameplay,
adding models, animations and shader effects. At first we didn't have any art direction
and actually did the art ourselves. The result of that can be seen in figure 14.

31

Figure 13: The original version
of Kodo

Chapter 5 - Approach

This early version featured effects such as refractive kodos, reflective water and
animated torch flames. Our approach was basically to use as many advanced shading
effects as possible. This approach was however not very successful in providing a good
gameplay experience. Fortunately, we received help from artists at Jadestone. The artists
produced a concept image, which can be seen in figure 15, models and textures for the
game world and Kodos, as well as animations for the Kodos.

32

Figure 15: Concept art for 3D Kodo

Figure 14: Early version of 3D Kodo

Chapter 5 - Approach
By working with the artists, implementing the effects they wanted and adjusting
different parameter values with them, we managed to achieve a result we were all
pleased with. The game is placed in a rocky environment with lizard-like Kodos.
Crystals were placed in the middle of the level to allow for a refraction effect to be
shown. The game also features a day cycle that seamlessly morphs the world between
day, dusk, night and dawn.

During the day, the sun casts dynamic shadows that are realised with shadow mapping.
During the night, lights in the fruits, kodos and crystals are activated to light the scene, a
post processing glow effect is also used on the fruits and crystals. The sun light colour
and the ambient colour of the scene are animated to give different lighting settings
depending on the time of day. Fogging is used on the rocks in the background and
textures are used for the sky and planet sea. There are different textures for the different
times of day, and blending between these enables smooth transitions. The fog colour is
also animated according to the time of day. We noticed that we needed to use what is
sometimes referred to as “modulate 2x” mode for the lighting. This means that the result
of the diffuse lighting is multiplied by two so that it can brighten or tint a surface
beyond the colours contained in the surface's diffuse map.

33

Figure 16: The Kodo day cycle: day, dusk, night and dawn

Chapter 6 - Evaluation

6 Evaluation
This chapter aims to evaluate what we did, identify what was most interesting and
discuss alternatives and improvements. Recalling the research question of the thesis,
“What are the specific technical considerations relating to graphics that apply when
developing 3D games for mobile phones?”, this chapter describes and evaluates the
considerations made in the engine and prototype applications that were developed.
Particularly, resource handling, scene management and rendering are described.

6.1 3D Game Engine
The 3D engine worked well since we were able to build working demonstrations with it
in a short time. However, the engine in itself is not particularly interesting to discuss
further so this section will mainly focus on some more general concepts.

6.1.1 Resource Handling
The resource handling in the engine is pretty basic as it requires all resources to be
reloaded when changing levels in a game. Due to hardware constraints, mobile games is
dependant on good resource handling. Ideally, a mobile game is small in order to
facilitate distribution, also the game should start up quickly and load screens in-game
should be minimised. The game can obviously be made smaller by compressing the data
files; this can be done automatically using algorithms such as zip, as well as
intelligently by using fewer resources, omitting unused data, choosing texture
compression individually per texture, using smaller data types or generating data
procedurally instead of loading it from file. However, these methods might increase
load times, especially since mobile processors are relatively slow.

The simplest approach to resource handling is to load all resources at start up, and keep
them loaded. This makes resource handling trivial and shortens or eliminates load
screens in-game but increases the start up time of the program. This approach might
very well be the best one for simple games. However, the limited amount of RAM and
the lack of demand paging of memory on mobile platforms might make this approach
infeasible and require games to intelligently keep only the currently needed resources in
memory. The approach our engine takes minimises RAM usage but might result in very
long load times between levels. A variation of this approach is to use a couple of
environments, so that multiple levels use the same environment. Reloading of resources
should then only need to happen when switching between levels with different
environments. A more advanced approach would be to generally reuse resources across
level switching and only unload resources that are unused in the current level. This
makes the engine more complex, but might be needed since long in-game load screens
are frustrating for players.

Multithreading can be used to load resources while drawing to the screen. This can
possibly reduce apparent load times by, for example, loading resources while showing
start up logos or while the player traverses the main menu. The most advanced form of
resource handling is often called streaming and generally means that very large levels
are supported and that resources are automatically loaded and unloaded during
gameplay. This naturally relies on multithreading and can be very complex since, for
instance, resources should ideally start to load just before they are needed and unloading

34

Chapter 6 - Evaluation
should be done for resources that will not be needed in the near future. If implemented
well, this approach allows a game to consist of a large world, abandoning levels
altogether. One problem with streaming that becomes extra problematic on mobile
hardware is memory fragmentation, which can result from continuously allocating and
freeing memory without ever starting over from scratch. This might result in memory
depletion if the game is run for long periods of time. Freelists[29] is an example of a
method that can help minimise memory fragmentation.

6.1.2 Data Files
In the project we used a number of data files: effect files, model files (also used for
scenegraphs and animations), texture files and uniform value files. These were generally
good, but not general enough to directly support everything that we wanted to do. The
ideal data file format would be compact, fast to load and write, versatile, extendible,
writeable and readable by many applications and easy to read and edit with a text editor.
Of course, satisfying all these needs at once is impossible; however, two main classes of
needs can be identified: the needs during development and the needs of the distributed
application. Therefore, the best solution might very well be to have a versatile data
format for use during development, and a compact one for the final application
distributed to players.

As for effects, the main problem was that we couldn't easily modify uniform values
interactively while observing the results. There are a number of ways of accomplishing
this, it could be done in the modelling application, in a shader studio or in a custom
application. Having the support in the modelling program is good because it is very
quick and easy for the artists to edit the values. However, it might be hard or even
impossible to integrate all functionality (such as rendering of general shaders,
modification of general uniforms etc.) into the modelling application. Shader studio
applications are designed to ease rapid development of shaders and provide easy
modification of uniforms. However, it might be difficult to design shaders to be
compatible both with the shader studio and with the game engine. A custom tool
requires much work to implement, but has the potential of being the most powerful
since it can be built on the actual game engine. This will enable actual game resources
to be loaded and see the same results while modifying values as will be seen in the
actual game. Also, other values which are specific to the game or game engine can be
modified from the same tool.

The model files are quite powerful as they contain geometry, scenegraphs, material
definitions and animations. Since they are binary and compact, they work well as
distribution files. However, they weren't quite as powerful as we would have wanted,
and modifying them was pretty much impossible since we did not have access to the
source of the exporter tools. Having a custom and compact format is good, since this
allows you to support everything you want while at the same time having small
distributed files. However, implementing loaders and exporters for this format can be
costly. Modifying such files can either be done by implementing exporters or importers
for all applications that use the format. If many tools are used, this becomes infeasible, a
better approach would then be to write a converter tool which can convert a more
common format to the custom one. One example of a common format that many newer
3D applications support is the Khronos group's Collada file format.

The texture file format worked really well, since the loading code is compact, many
texture formats are supported and the tool that generates the files worked well. The

35

Chapter 6 - Evaluation
uniform text files also worked well, but support for modifying values interactively is
needed and the tool that support this would probably need to be able to output files with
similar content to the uniform files.

6.1.3 Scene Management
The scene representation used in the engine is too rigid to be easily used in an advanced
game. If the scenegraph were represented as an explicit tree, insertion and deletion of
nodes as well as traversal of the scenegraph would be simpler and faster. By using
manual handling of memory, for example freelists[29], memory allocation speed and
cache coherency can be improved. To support large game worlds with many objects,
bounding volume hierarchies or spatial partitioning structures would need to be used,
possibly simultaneously. Simple partitioning structures such as octrees[30],[31] and
quadtrees can easily be built and modified while the game runs, more advanced
structures such as bsp-trees or potential visibility sets would most probably have to be
pre-calculated on a PC and stored as data files. These methods might however consume
too much memory to be feasible.

 The simplest method for referencing scene nodes is to use ordinary pointers to the
nodes, this however causes problems in C/C++ based games. The main problem is that
game objects often need to refer to each other while objects are constantly being added
and removed. For instance, a rocket might contain a reference to the shooter, and when
the rocket hits someone, the game tries to add points for the kill to the shooter. But what
happens if the shooter object has been removed? Maybe it was a networked game and
he has left the server? If the rocket has a raw pointer, it might now point to a deleted
object or to a totally different object. Following this pointer might cause a crash or
cause some other unexpected result. Many similar problems might arise, and therefore
there are many advantages of not exposing node references as raw pointers from a
C/C++ based game engine to the application.

For this reason, some game engines use some kind of integer handles[32],[33] to refer
to scene nodes and resources. Reference counting together with raw pointers can also be
used, reference counting allows an object to be owned by several entities at the same
time since any entity that holds a reference to an object is able to keep the object alive.
This might be desired for resources such as textures, but probably not for scene nodes
since a scene node often has a clear owner (possibly itself, a rocket for example might
destroy itself when it hits something or has travelled a maximum distance). If integer
handles are used, the engine can use a binary search tree or hash map to map the handles
to the actual objects instead of a simple array where handles are used as indices as it is
in our engine. Using handles causes some overhead, but it should not be significant
since it is often safe for the internal functions and structures in the engine to use simple
pointers to speed up processing of nodes. Using integer handles can also simplify the
game logic tremendously; for example, if using simple pointers, all pointers to an object
have to be found and removed if some object is to be removed. Keeping track of this
information can be a very difficult task in a complex game. By using integer handles
this becomes trivial - simply don't take care of it, whenever something tries to use this
handle later, it should be notified by the engine that this handle is no longer valid and
appropriate action, such as clean-up, can be performed.

36

Chapter 6 - Evaluation

6.1.4 Rendering
The rendering in the engine generally worked well, but could be done more general and
be more optimised. For example, the code for handling several render passes is
somewhat complicated and only a little effort has been done to minimise state changes
between rendering of objects. If many objects are drawn, the uploading of uniforms
would most probably be a performance problem. To achieve better performance,
uploading of the same information redundantly for several objects would have to be
avoided.

6.2 Demon Demo
Implementing the demon demo was interesting for two main reasons, getting experience
developing for Symbian OS, and evaluating the hardware capabilities of the N93 mobile
phone. We found that the developer tools for Symbian OS are not as mature as the
equivalent PC software, and the Symbian C++ API:s and code conventions are
somewhat non-standard and takes some time to understand and get used to. However,
we found that getting standard C or C++ code to run on Symbian hardware was a
relatively straightforward process.

We did not have time to do a thorough evaluation of the performance of the N93's
hardware; however, some things can be noted. The demon demo makes use of the CPU
mainly for calculating the bone matrices and running the GLES driver which handles all
GLES function calls. The graphics hardware's vertex processing was heavily used since
the demo utilises hardware skinning and the demon is drawn twice every frame due to
the glow pass. The graphics hardware's pixel fill rate was also heavily used since we
allowed up to 9 glow passes to be used. The frame rate was not noticeably affected by
the number of glow passes, which indicates that the bottleneck lies elsewhere. The
conclusions that can be drawn is that the fill rate is impressive and that vertex
processing and CPU performance seem to be satisfactory for producing good looking

37

Figure 17: The demon demo running on
a Nokia N93 phone

Chapter 6 - Evaluation
3D games on the N93 or similar hardware. The main problem for 3D games on this
hardware may very well be the amount of RAM, only about 20 MB are free for
applications to use on the N93. This is limiting for a 3D game, since frame buffers,
geometry, animations, textures and sound effects can easily take up hundreds of
megabytes in a typical PC game. However, it should by no means be impossible to
create good looking 3D games on such hardware since, for example, the Playstation 2
game console has 32 MB ram and an additional 4 MB video memory and that is
evidently enough to create large good looking games.

6.3 3D Kodo Game Prototype
The Kodo game prototype provided us with a number of insights about how well 3D
graphics work for mobile games, how shaders can be used in games and how to work
together with artists to realise a graphical concept.

The key difference between mobile and stationary hardware regarding graphics is
screen size. Smaller screens with lower resolutions directly affects the design of a game
since much less information can be shown simultaneously on a smaller screen. Certain
game types, such as real-time strategy games, might not be suitable for mobile hardware
at all for this reason alone. Thoughtful design of user interfaces should be employed to
minimise these problems. Small screen size also affects which kind of graphical effects
that are meaningful to use. Kodo was successfully ported to three dimensions and there
seems to be no fundamental problems with using 3D graphics in games on small
screens. 3D graphics can actually be used successfully to incorporate more information
on a small screen without making the presentation confusing. For example, the playing
field in 3D Kodo was slightly spherical; this looks more interesting, allows more tiles to
fit in the view and would be hard to accomplish in 2D (see figure 18).

38

Chapter 6 - Evaluation

We did not have time to incorporate many shader effects into the prototype, the only
advanced effect used was refraction, and honestly it did not add much to the game; the
crystals could have been drawn with blending instead and the difference would not have
been significant for the casual observer. However, the main advantage of shaders is
perhaps not that they enable more advanced effects but instead the freedom and
precision that they allow. Shaders give the freedom to implement virtually any kind of
appearance that can be thought of and the precision to make it work exactly as
envisioned. This might involve coming up with a totally new and odd surface effect, but
might just as well simply be used to slightly adjust a well known effect to fit a certain
situation. For example, in 3D Kodo we used the “modulate 2x” lighting calculation and
we blended between different background textures depending on the time of day. Such
effects are not necessarily advanced, but might be difficult or even impossible to
achieve without shaders. As a result, shaders allow games to look more interesting and
stay closer to the artist's vision.

39

Figure 18: Night in 3D Kodo

Chapter 7 - Conclusions and Further Work

7 Conclusions and Further Work
In most aspects, a 3D game engine for mobile hardware is very similar to a PC game
engine. The biggest difference is that a mobile game engine must be small and able to
minimise memory consumption. Although the actual engine must be smaller and
simpler than contemporary PC game engines, the accompanying tools can be just as
advanced since they are used on a PC. Even though enabling advanced effects and
providing optimised rendering are important aspects of a 3D game engine, perhaps it is
even more important for it to allow game development to be as simple and fast as
possible. This is something that became even more clear to us while we worked on 3D
Kodo. The engine should provide a simple interface to the application programmer so
that is easy to implement game features, this enables rapid prototyping of ideas and
speeds the whole process of game development up. It should also be simple for artists to
import art assets into the engine, and preferably it should be possible for artists and
programmers to modify and test different art assets and settings in real-time in the
engine. These features must be addressed by both the engine and accompanying tools.

Some current mobile hardware, such as the Nokia N93, seems perfectly capable of
handling advanced 3D graphics without shaders. If phones with equal or better
performance soon become more common, 3D games on mobile phones might very well
become commonplace.

Since we didn't get a hold of any mobile OpenGL ES 2.0 hardware, many questions
regarding the capabilities of future phones are left unanswered. Based on what is
currently known, phones with OpenGL ES 2.0 support will probably be capable of fairly
advanced graphics, almost rivalling the image quality of recent PC games (albeit at a
lower resolution). Such phones will most probably be made available sometime during
2008, although if and when they become commonplace is hard to say. Other interesting
questions that remain unanswered on mobile OpenGL ES 2.0 hardware are how the
performance of shadow volumes would be relative to shadow mapping and if deferred
shading would be a viable option.

40

Conclusions and Further Work

Bibliography
[1] JAMES M. VAN VERTH, LARS M. BISHOP. 2004. Essential Mathematics for Games and
Interactive Applications: A Programmer's Guide. Morgan Kaufmann. ISBN
155860863X.

[2] Scenegraph Image: http://opensg.vrsource.org/trac/wiki/Tutorial/OpenSG1/
FirstApplication. Last accessed Nov. 2007.

[3] JAMES T. KAJIYA. 1986. The Rendering Equation. Proceedings of the 13th annual
conference on Computer graphics and interactive techniques, pg. 143–150.

[4] ALAN H. WATT. 1999. 3D Computer Graphics. Addison Wesley. ISBN 0201398559.

[5] MICHAEL F. DEERING, STEPHANIE WINNER, BIC SCHEDIWY, CHRIS DUFFY, NEIL HUNT. 1988.
The Triangle Processor and Normal Vector Shader: a VLSI System for High
Performance Graphics. ACM SIGGRAPH Computer Graphics, 22(4), pg. 21–30.

[6] Culling Images: http://techpubs.sgi.com/library/tpl/cgi-
bin/getdoc.cgi/0650/bks/SGI_Developer/books/Optimizer_PG/sgi_html/ch05.html. Last
accessed Nov. 2007.

[7] DAVID H. EBERLY. 2004. 3D Game Engine Architecture: Engineering Real-Time
Applications with Wild Magic. Morgan Kaufmann. ISBN 012229064X.

[8] MICHAEL WIMMER, JIŘI BITTNER. 2005. Hardware Occlusion Queries Made Useful.
GPU Gems 2, pg. 91–108. Addison Wesley. ISBN 031335597.

[9] JOHN W. RATCLIFF. 2001. Sphere Trees for Fast Visibility Culling, Ray Tracing,and
Range Searching. Game Programming gems 2, pg. 384–387. Charles River Media.
ISBN 1584500549.

[10] MIGUEL GOMEZ. 2001. Compressed Axis-Aligned Bounding Box Trees. Game
Programming gems 2, pg. 388–393. Charles River Media. ISBN 1584500549.

[11] Octree Image: http://dev.gameres.com/Program/Visual/3D/OCTREETutorial6.jpg.
Last accessed Nov. 2007.

[12] MARK SEGAL, KURT AKELEY. 2006. The OpenGL Graphics System: A Specification.

[13] OpenGL Pipeline Images: http://www.khronos.org/opengles/2_X/. Last accessed
Nov. 2007.

[14] RANDI J. ROST. 2006. OpenGL Shading Language. Addison-Wesley. ISBN
0321334892.

[15] KHRONOS GROUP. 2007. OpenGL ES Common/Common-Lite Profile Specification
Version 1.1.10 (Full specification).

41

Conclusions and Further Work
[16] KHRONOS GROUP. 2007. OpenGL ES Common Profile Specification 2.0.

[17] WILLIAM SHOAFF. 2000. A Short History of Computer Graphics.
http://cs.fit.edu/~wds/classes/graphics/History/history/history.html, Last accessed Nov.
2007.

[18] WIKIPEDIA. 2007. Comparison of NVIDIA Graphics Processing Units.
http://en.wikipedia.org/wiki/Comparison_of_NVIDIA_Graphics_Processing_Units,
Last accessed Nov. 2007.

[19] 3D-TEST. 2007. Q&A Ed Plowman, ARM Mali Product Manager. http://www.3d-
test.com/interviews/arm_2.htm, Last accessed Nov. 2007.

[20] WIKIPEDIA. 2007. Nokia N93. http://en.wikipedia.org/wiki/Nokia_N93, Last
accessed Nov. 2007.

[21] IMAGINATION TECHNOLOGIES. 2007. PowerVR MBX - Overview.
http://www.imgtec.com/PowerVR/Products/Graphics/MBX/index.asp, Last accessed
Nov. 2007.

[22] LASZLO KISHONTI. 2007. GLBenchmark. http://www.glbenchmark.com, Last
accessed Nov. 2007.

[23] MATHEW KUMAR. 2007. GDC China: Developing For The N-Gage And 3D Graphics
In A 3G World. http://www.gamesondeck.com/feature/1677, Last accessed Nov. 2007.

[24] IMAGINATION TECHNOLOGIES. 2007. PowerVR SGX - Overview.
http://www.imgtec.com/PowerVR/products/Graphics/SGX/index.asp, Last accessed
Nov. 2007.

[25] RYAN BLOCK. 2007. Toshiba's G900 and E01 with Windows Mobile 6.
http://www.engadget.com/2007/02/12/toshibas-g900-and-e01-with-windows-mobile-6/,
Last accessed Nov. 2007.

[26] NATHAN KIRSCH. 2006. The Future Of Handheld Gaming: GoForce 5500.
http://www.legitreviews.com/article/327/1/, Last accessed Nov. 2007.

[27] AMD. 2007. Imageon 2380/2388 Overview.
http://ati.amd.com/products/imageon238x/index.html, Last accessed Nov. 2007.

[28] ARM. 2007. Mali Graphics Solution - Products Overview.
http://www.arm.com/products/esd/multimediagraphics_malioverview.html, Last
accessed Nov. 2007.

[29] PAUL GLINKER. 2004. Fight Memory Fragmentation with Templated Freelists. Game
Programming Gems 4, pg. 43-50. Charles River Media. ISBN 1584502959.

[30] DAN GINSBURG. 2000. Octree Construction. Game Programming Gems, pg. 439-443.
Charles River Media. ISBN 1584500492.

42

Conclusions and Further Work
[31] THATCHER ULRICH. 2000. Loose Octrees. Game Programming Gems, pg. 444-453.
Charles River Media. ISBN 1584500492.

[32] SCOTT BILAS. 2000. A generic Handle-Based Resource Manager. Game
Programming Gems, pg. 68-79. Charles River Media. ISBN 1584500492.

[33] BRIAN HAWKINS. 2002. Handle-Based Smart Pointers. Game Programming Gems 3,
pg. 44-48. Charles River Media. ISBN 1584502339.

43

TRITA-CSC-E 2008:024
ISRN-KTH/CSC/E--08/024--SE

ISSN-1653-5715

www.kth.se

	1 Introduction
	1.1 Problem Statement
	1.2 Delimitations
	1.3 Thesis Outline

	2 3D Game Engine Overview
	2.1 Resource Handling
	2.1.1 Models
	2.1.2 Textures
	2.1.3 Shaders
	2.1.4 Materials
	2.1.5 Animations

	2.2 Scenegraphs
	2.3 Rendering
	2.3.1 Methods
	2.3.2 View Frustum Culling
	2.3.3 Occlusion Culling
	2.3.4 Spatial Acceleration Structures
	2.3.5 Hardware Specific Optimisations

	3 Graphics Libraries
	3.1 OpenGL
	3.1.1 Versions 1.0 – 1.5
	3.1.2 Versions 2.0 – 2.1

	3.2 OpenGL ES
	3.2.1 Versions 1.0 – 1.1
	3.2.2 Version 2.0

	4 Graphics Hardware
	4.1 PC Hardware
	4.2 Mobile Hardware

	5 Approach
	5.1 3D Game Engine
	5.1.1 The Effect Files
	5.1.2 The Model Files
	5.1.3 Scene Representation
	5.1.4 Scene Management
	5.1.5 Animations
	5.1.6 Built-in and Custom Uniforms
	5.1.7 Scene Rendering

	5.2 The Demon Demo
	5.2.1 OpenGL ES 1.1 Adaptation
	5.2.2 Symbian OS Adaptation

	5.3 3D Kodo Game Prototype

	6 Evaluation
	6.1 3D Game Engine
	6.1.1 Resource Handling
	6.1.2 Data Files
	6.1.3 Scene Management
	6.1.4 Rendering

	6.2 Demon Demo
	6.3 3D Kodo Game Prototype

	7 Conclusions and Further Work

