
International Journal of Computer Applications (0975 – 8887) 

Volume 32– No.7, October 2011 

28 

 

Monitoring Software Reliability using Statistical 
Process Control: An Ordered Statistics Approach 

 
 

Bandla Srinivasa Rao 
Associate Professor., 

Dept. of Computer Science 

VRS & YRN College 

 

Dr. R Satya Prasad 
Associate Professor, 

Dept. of Computer Science & Eng., 

Acharya Nagarjuna University 

 

Dr. R.R. L Kantham 
Professor, 

Dept. of Statistics 
Acharyan Nagarjuna University 

 

 

ABSTRACT 
The nature and complexity of software have changed 

significantly in the last few decades. With the easy availability 

of computing power, deeper and broader applications are made. 

It has been extremely necessary to produce good quality 

software with high precession of reliability right in the first 

place. Olden day‟s software errors and bugs were fixed at a later 

stage in the software development. Today to produce high 

quality reliable software and to keep a specific time schedule is 

a big challenge. To cope up the challenge many concepts, 

methodology and practices of software engineering have been 

evolved for developing reliable software. Better methods of 

controlling the process of software production are underway. 

One of such methods to assess the software reliability is using 

control charts. In this paper we proposed an NHPP based control 

mechanism by using order statistics with cumulative quantity 

between observations of failure data using mean value function 

of exponential distribution. 

General Terms 

Software reliability, Software quality, Six Sigma, Control 

Charts, PDF, CDF 

 

Keywords: Ordered Statistics, Statistical Process Control 

(SPC), Exponential Distribution, Control Limits, software 

reliability, software quality 

 

1. INTRODUCTION 
As computer applications became more diverse and spread 

through almost every area of everyday life, reliability became a 

very important characteristic for software, since it is a matter of 

economy. To produce a software having reliability, it is 

necessary to measure and control its reliability. To do this, a 

number of models have been developed; new models try to 

make better predictions. Software reliability represents a user 

oriented view of software quality. It relates directly to operation 

rather than design of the program, and hence it is dynamic. For 

this reason software reliability is interested in failures 

occurrence and not faults in a program 

 

 

 

1.1. Software reliability Modeling 
The probability that a given program will work as intended by 

the user, i.e., without failures in a specified environment and for 

a specified duration can be termed as software reliability [1][2].  

The aim of software engineer is to increase this probability and 

make it one if possible. To do this one must measure the 

reliability of the software. A commonly used approach for 

measuring software reliability is by using an analytical model 

whose parameters are generally estimated from available data on 

software failures. Reliability quantities have been defined with 

respect to time, although it is possible to define them with 

respect to other variables. We have taken inter failures time data 

of Musa(1975)  which are random values. In reliability study 

there are two characteristics of a random process: 1) the 

probability distribution of the random variables, i.e., Poisson and 

2) the variation of the process with time. A random process 

whose probability distribution varies with time is called non 

homogeneous. For the random process for time variation we can 

define two functions, the mean value function m(t), as the 

average cumulative failures associated with each time point and 

the failure intensity function as the rate of change of mean 

value function. When there are changes in the software i.e. 

software corrections occur it is called non homogeneous 

process. 

Let M(t) be the random process representing the number of 

failures experienced by time t, then the mean value function is 

defined by . i.e. the expected number of failures 

at time t. the failure intensity function of the  process is the 

instantaneous rate of change of the expected number of failures 

with respect to time or . [3] 

2. ORDERED STATISTICS 
Let X denote a continuous random variable with Probability 

Density Function (PDF) f(x) and Cumulative Distribution 

Function (CDF) F(x), and let (X1 , X2 , …, Xn) denote a random 

sample of size n drawn on X. The original sample observations 

may be unordered with respect to magnitude. A transformation 

is required to produce a corresponding ordered sample. Let (X1 , 

X2 , …, Xn) denote the ordered random sample such that X1 < 

X2 < … < Xn; then (X1, X2, …, Xn) are collectively known as the 

order statistics derived from the parent X. The various 

distributional characteristics can be known from Balakrishnan 

and Cohen [4]. The inter-failure time data represent the time 

lapse between every two consecutive failures.  On the other 

hand if a reasonable waiting time for failures is not a serious 

problem, we can group the inter-failure time data into non 



International Journal of Computer Applications (0975 – 8887) 

Volume 32– No.7, October 2011 

29 

 

overlapping successive sub groups of size 4 or 5 and add the 

failure times within each sub group.  For instance if a data of 

100 inter-failure times are available we can group them into 20 

disjoint subgroups of size 5.  The sum total in each subgroup 

would denote the time lapse between every 5th order statistics in 

a sample of size 5. In general for inter-failure data of size „n‟, if 

r (any natural no) less than „n‟ and preferably a factor n, we can 

conveniently  divide the data into „k‟ disjoint subgroups (k=n/r) 

and the cumulative total in each subgroup indicate the time 

between every rth  failure.  The probability distribution of such a 

time lapse would be that of the rth ordered statistics in a 

subgroup of size r, which would be equal to rth power of the 

distribution function of the original variable m (t).The whole 

process involves the mathematical model of the mean value 

function and knowledge about its parameters. If the parameters 

are known they can be taken as they are for the further analysis, 

if the parameters are not know they have to be estimated using a 

sample data by any admissible, efficient method of distribution.  

This is essential because the control limits depend on mean 

value function, which intern depends on the parameters. If 

software failures are quite frequent keeping track of inter-failure 

is tedious.  If failures are more frequent order statistics are 

preferable.[5] 

 

2.1. Model Description 
Considering failure detection as a non homogenous Poisson 

process with an exponentially decaying rate function, the 

expected number of failures observed by time t is given 

by ) and the failure rate by  . To 

calculate the parameter values and control limits using Order 

Statistics approach, we considered exponential distribution [8]. 

The mean value function of exponential distribution is  

 

In order to group the inter-failure time data into non overlapping 

successive sub groups of size r the mean value function can be 

written as 

 

  

     2.1.1 

The likelihood function L can be written as 

     2.2.2 

Substituting eq-2.1.1 in eq-2.2.2 we can write 

   

    2.2.3 

     2.2.4 

Substitute equation 2.2.4 in 2.2.3 we get 

   2.2.5 

 ,  

=        2.2.6 

 

 ,  

  

     2.2.7 

Substitute equation 2.2.6 in 2.2.7 we obtain the following 

equation 

   2.2.8 

Derivate with respect to b of equation 2.2.8 we obtain 

   2.2.9 

2.2. Parameter estimation and Control limits 

Parameter estimation is a statistical method trying to estimate 

parameters based on inter failures time data which is based on 

ordered statistics. For the given observations using equations 

2.2.8 and 2.2.9 the parameters „a‟ and „b‟ are computed by using 

the popular Newton Rapson method A program written in C was 

used for this purpose. [3] 

Based on the time between failures data given in Table-1, we 

compute the software failure process through mean value control 

chart. We use cumulative time between failures data for 

software reliability monitoring through SPC. The parameters 

obtained from Goel-Okumoto model applied on the given time 

domain data are as follows: 

Table 1: Parameter estimates and their control limits of 4 

and 5 order Statistics 

 

Data Set of 

Table 2 

 

Order 



a  


b  

4th 2.415117 0.000099 

5th 1.933309 0.000114 

„


a ‟ and „



b ‟ are ordered statistics of parameters and the values 

can be computed using analytical method for the given time 

between failures data shown in Table 1. Using values of „a‟ and 

„b‟ we can compute . Now equate the pdf of m(t) to 

0.00135, 0.99865, and 0.5 and the respective control limits are 

given by  

 



International Journal of Computer Applications (0975 – 8887) 

Volume 32– No.7, October 2011 

30 

 

 

 

These limits are convert at and are given 

by 

,  

, 

 

They are used to find whether the software process is in control 

or not by placing the points in Mean value chart shown in 

figure-1.and figure-2. A point below the control limit 

indicates an alarming signal. A point above the control 

limit indicates better quality. If the points are falling 

within the control limits it indicates the software process is in 

stable. [6] 

STATISTICAL PROCESS CONTROL  
Statistical process control is the application of statistical 

methods to provide the information necessary to continuously 

control or improve processes throughout the entire lifecycle of a 

product [7]. SPC techniques help to locate trends, cycles, and 

irregularities within the development process and provide clues 

about how well the process meets specifications or 

requirements. They are tools for measuring and understanding 

process variation and distinguishing between random inherent 

variations and significant deviations so that correct decisions can 

be made about whether to make changes to the process or 

product. One of such primary statistical technique used to assess 

process variation is the control chart. [8] 

2.3. Control Chart  
The control chart displays sequential process measurements 

relative to the overall process average and control limits. The 

upper and lower control limits establish the boundaries of 

normal variation for the process being measured. Variation 

within control limits is attributable to random or chance causes, 

while variation beyond control limits indicates a process change 

due to causes other than chance, a condition that may require 

investigation. [7] The upper control limit (UCL) and lower 

control limit (LCL) give the boundaries within which observed 

fluctuations are typical and acceptable There are many different 

types of control charts, pn, p, c, etc., [8], [9],[10] 

 

2.4. Developing Control Chart 
Given the n inter-failure data the values of m(t) at Tc, Tu, TL and 

at the given n inter-failure times are calculated. Then successive 

differences of m(t)‟s are taken, which leads to n-1 values. The 

graph with the said inter-failure times 1 to n-1  on X-axis, the n-

1 values of successive differences  m(t)‟s on Y-axis, and the 3 

control lines parallel to X-axis at m(TL), m(TU), m(TC) 

respectively constitutes mean value chart to assess the software 

failure phenomena on the basis of the given  inter-failures time 

data. 

2.5.  Illustration 
The procedure of a mean value chart for failure software process 

will be illustrated with an example here. Table 1 show the time 

between failures of software product reported by Musa (1975) 

[11]. 

Table 2: Software failure data reported by Musa (1975) [11] 

Fault Time Fault Time Fault Time Fault Time Fault Time Fault Time Fault Time Fault Time 

1 3 18 120 35 227 52 21 69 529 86 860 103 108 120 22 

2 30 19 26 36 65 53 233 70 379 87 983 104 0 121 75 

3 113 20 114 37 176 54 134 71 44 88 707 105 3110 122 482 

4 81 21 325 38 58 55 357 72 129 89 33 106 1247 123 5509 

5 115 22 55 39 457 56 193 73 810 90 868 107 943 124 100 

6 9 23 242 40 300 57 236 74 290 91 724 108 700 125 10 

7 2 24 68 41 97 58 31 75 300 92 2323 109 875 126 1071 

8 91 25 422 42 263 59 369 76 529 93 2930 110 245 127 371 

9 112 26 180 43 452 60 748 77 281 94 1461 111 729 128 790 

10 15 27 10 44 255 61 0 78 160 95 843 112 1897 129 6150 

11 138 28 1146 45 197 62 232 79 828 96 12 113 447 130 3321 

12 50 29 600 46 193 63 330 80 1011 97 261 114 386 131 1045 

13 77 30 15 47 6 64 365 81 445 98 1800 115 446 132 648 

14 24 31 36 48 79 65 1222 82 296 99 865 116 122 133 5485 

15 108 32 4 49 816 66 543 83 1755 100 1435 117 990 134 1160 

16 88 33 0 50 1351 67 10 84 1064 101 30 118 948 135 1864 

17 670 34 8 51 148 68 16 85 1783 102 143 119 1082 136 4116 



International Journal of Computer Applications (0975 – 8887) 

Volume 32– No.7, October 2011 

31 

 

 

 

 

 

Table 3:4th order cumulative faults and their m(t) successive difference. 

Fault 

4-order 

Cumulative 

Faults 

m(t) 

Successive 

Difference’s 

of m(t) 

Fault 

4-order 

Cumulative 

Faults 

m(t) 

Successive 

Difference’s 

of m(t) 

1 227 
0.053669607 0.050189929 

18 16358 
1.936901718 0.083134596 

2 444 
0.103859536 0.070964302 

19 18287 
2.020036314 0.079829413 

3 759 
0.174823838 0.064912354 

20 20567 
2.099865727 0.09363885 

4 1056 
0.239736192 0.191343658 

21 24127 
2.193504577 0.077302531 

5 1986 
0.431079851 0.131004192 

22 28460 
2.270807108 0.046687097 

6 2676 
0.562084043 0.296000509 

23 32408 
2.317494206 0.039546532 

7 4434 
0.858084551 0.097761832 

24 37654 
2.357040738 0.020362766 

8 5089 
0.955846384 0.042703058 

25 42015 
2.377403504 0.001034693 

9 5389 
0.998549441 0.132378119 

26 42296 
2.378438197 0.016427908 

1 6380 
1.13092756 0.12873383 

27 48296 
2.394866105 0.006274847 

11 7447 
1.259661391 0.053077534 

28 52042 
2.401140952 0.001810038 

12 7922 
1.312738924 0.22760806 

29 53443 
2.40295099 0.003163639 

13 10258 
1.540346985 0.075916166 

30 56485 
2.406114629 0.004113047 

14 11175 
1.616263151 0.102288223 

31 62651 
2.410227676 0.000973225 

15 12559 
1.718551373 0.061080293 

32 64893 
2.411200901 0.00261935 

16 13486 
1.779631666 0.103253053 

33 76057 
2.413820251 0.000925177 

17 15277 
1.882884719 0.054016999 

34 88682 
2.414745429  

 



International Journal of Computer Applications (0975 – 8887) 

Volume 32– No.7, October 2011 

32 

 

 

Fig-1: Mean Value Chart of 4th order data set 

Table: 4: 5th order cumulative faults and their m(t) successive difference 

Fault 
5-order 

Cumulative 
m(t) 

Successive Difference’s 

Of m(t)’s 
Fault 

5-order 

Cumulative 
m(t) 

Successive 

Difference’s 

Of m(t)’s 

1 342 
0.073925386 0.04791294 

15 17758 
1.62782472 0.050149302 

2 571 
0.121838326 0.080156008 

16 20567 
1.677974022 0.069965628 

3 968 
0.201994334 0.189702018 

17 25910 
1.74793965 0.084558265 

4 1986 
0.391696352 0.183547444 

18 29361 
1.832497915 0.032788872 

5 3098 
0.575243796 0.270820129 

19 37642 
1.865286786 0.041557817 

6 5049 
0.846063925 0.033556388 

20 42015 
1.906844603 0.010389187 

7 5324 
0.879620314 0.11950945 

21 45406 
1.91723379 0.005154027 

8 6380 
0.999129764 0.125362531 

22 49416 
1.922387817 0.004007073 

9 7644 
1.124492295 0.196749357 

23 53321 
1.92639489 0.002484134 

10 10089 
1.321241652 0.059242997 

24 56485 
1.928879023 0.001341437 

11 10982 
1.380484649 0.090964117 

25 62661 
1.930220461 0.001561037 

12 12559 
1.471448766 0.100355072 

26 74364 
1.931781497 0.001125183 

13 14708 
1.571803838 0.056020882 

27 84566 
1.93290668 0.00027658 

14 16185 
0.073925386 0.04791294 

    

 

 



International Journal of Computer Applications (0975 – 8887) 

Volume 32– No.7, October 2011 

33 

 

 
 

Fig 2: Mean Value Chart of 5th order data set 

 

 

3. CONCLUSION 

The Mean value charts of Fig 1 and 2 have shown out of 

control signals i.e. below LCL. By observing Mean value 

charts, we identified that failures situation is detected at an 

early stages. The early detection of software failure will 

improve the software reliability. When the control signals 

are below LCL, it is likely that there are assignable causes 

leading to significant process deterioration and it should be 

investigated. Hence, we conclude that our control 

mechanism proposed in this chapter giving a positive 

recommendation for its use to estimate whether the process 

is in control or out of control. 

4. REFERENCES 

[1] Musa, J.D, Software Reliability Engineering McGraw- 

Hill,  1998  

[2] Musa, J.D., Iannino, A., Okumoto, k., 1987. “Software 

Reliability: Measurement Prediction Application”. 

McGraw-Hill, New York.  

[3] Pham. H., 2003. “Handbook of Reliability 

Engineering”, Springer 

[4] Balakrishnan.N., Clifford Cohen; Order Statistics and 

Inference; Academic Press inc.;1991. 

 

 

 

 

[5] K.Ramchand H Rao, Dr. R.Satya Prasad, Dr. 

R.R.L.Kantham, Assessing Software Reliability Using 

SPC : An Order Statistics Approach, International 

Journal of Computer Science, Engineering and 

Applications (IJCSEA) Vol.1, No.4, August 2011 

[6] MacGregor, J.F.,  Kourti, T., 1995. “Statistical process 

control of multivariate processes”. Control 

Engineering Practice Volume 3, Issue 3, March 1995, 

Pages 403-414 

[7] The Organizational Process Management Cycle 

Programmed Workbook, Interaction Research 

Institute, Inc., Fairfax, Virginia. 

[8] Carleton, A.D. and Florac, A.W. 1999. Statistically 

controlling the Software process. The 99 SEI Software 

Engineering Symposimn, Software Engineering 

Institute, Carnegie Mellon University 

[9] Smith, Gary, Statistical Reasoning, Allyn and Bacon, 

Boston, MA, 1991. 

[10]Caprio, William H., "The Tools for Quality," Total 

Quality Management Conference, Ft. Belvoir, 

Virginia, July 13-15, 1992. 

[11] Juran, J. M. (ed.), Juran's Quality Control Handbook, 

4th ed., McGraw-Hill, Inc., New York, 1988. 

[12] Hong Pharm; System Reliability; Springer;2005;Page 

No.281 


