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Overview
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Wireless Sensor Networks (WSN)

« The “many - tiny” principle: wireless networks of
thousands of inexpensive miniature devices capable of
computation, communication and sensing

« Their use throughout society “could well dwarf previous
milestones in the information revolution”: U.S. National
Research Council Report, 2001.

Berkeley Mote (MICAz MPR 2400 Series)
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Timeline

1970’s: Wired sensors connected to central location

1980’s: Distributed wired sensor networks

1993: LWIM project at UCLA

1999-2003: DARPA SenslIT project: UC Berkeley, USC, Cornell etc.
2001: Intel Research Lab at Berkeley focused on WSN

2002: NSF Center for Embedded Networked Sensing

2001-2002: Emergence of sensor networks industry; startup
companies including Sensoria, Crossbow, Ember Corp, SensiCast
plus established ones: Intel, Bosch, Motorola, General Electric,
Samsung.

2003-2004: IEEE 802.15.4 standard, Zigbee Alliance.

© Bhaskar Krishnamachari 2005 4



University of Southern California

Wireless Sensor Networks (WSN)

* Provide a bridge between the real physical and virtual
worlds

* Allow the ability to observe the previously unobservable
at a fine resolution over large spatio-temporal scales

« Have a wide range of potential applications to industry,
science, transportation, civil infrastructure, and security.
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Some Sample Applications

« Habitat and Ecosystem Monitoring

« Seismic Monitoring

 Civil Structural Health Monitoring

* Monitoring Groundwater Contamination
« Rapid Emergency Response
 Industrial Process Monitoring

* Perimeter Security and Surveillance

« Automated Building Climate Control
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Basic Components of a
WSN Node

Sensors

Memory Processor |- GPS

Radio Transceiver

Power Source
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Challenges

Energy Efficiency

Responsiveness

Robustness

Self-Configuration and Adaptation
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Challenges (contd.)

Scalability

Heterogeneity

Systematic Design

Privacy and Security
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Outline for the Rest of the Tutorial

* Deployment

* Localization

« Time Synchronization

« Wireless Link Characteristics
 Medium Access

« Sleep Based Topology Control
* Routing

« Data Centric Networking

* Transport
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Deployment
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Deployment Issues

« Structured versus Randomized Deployment

* Overdeployed versus Incremental Deployment

« Connectivity and Coverage Metrics of Interest

© Bhaskar Krishnamachari 2005 12
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Random Graph Models

* For some applications, WSN nodes could be scattered
randomly (e.g. from an airplane)

« Random Graph Theory is useful in analyzing such
deployments

 The most common random graph model is G(n,R):
deploy n nodes randomly with a uniform distribution in a
unit area, placing an edge between any two that are
within Euclidean range R.
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Geometric Random Graph G(n,R)
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Some Key Results

« All monotone graph properties have an asymptotic
critical range R beyond which they are guaranteed with
high probability (Goel, Rai, and Krishnamachari ‘04)

« The critical range for connectivity is O(/(=22))
(Penrose ‘97, Gupta and Kumar ‘98)

» The critical range to ensure that all nodes have at least k

neighbors also ensures k-connectivity w.h.p. (Penrose
‘99)
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Connectivity in G(n,R)
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Power Control

* Provides a degree of flexibility in configuring the network
connectivity after deployment.

« Must carefully balance several factors, including
connectivity, energy usage, and interference.

« The CBTC (Li et al. ‘01) provides a distributed rule for
global connectivity: increase power until there is a
neighbor within range in every sector of angle o<5m/6
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Coverage Metrics
« Much more application specific than connectivity.

« Some that have been studied in particular detail are:

— Path observation metrics: An example of this is the maximal
breach distance, defined as the closest any evasive target must
get to a sensor in the field (Meguerdichian et al. ‘99)

— K-Coverage: ensure that all parts of the field are within sensing
range of K sensors (e.g. Wang et al. ‘03)
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Key Results on K-Coverage

« A field is K-covered if and only if all intersection points
between sensing circles are at or inside the boundary of
K+1 sensing circles. (Wang et al. ‘03)

« If aregion is K-covered by n sensors, they also form a K-
connected graph if their communication range is at least
twice the communication range. (Wang et al. ‘03)

A 2-covered region
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| ocalization
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L ocalization Issues

» Location information necessary/useful for many functions,
Including measurement stamps, coherent signal
processing, cluster formation, efficient querying and
routing.

+ Key Questions:
— What to localize?
— When to localize?
— How well to localize?
— How to localize?
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Coarse Grained Node Localization

Several techniques provide approximate solutions for node
localization based on the use of minimal information:

* Proximity

« Centroids

« Geometric Constraints
 APIT

 Identifying Codes
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Geometric Constraints

® Reference node
© Unknown node
Constrained

location region

Disc Sector

Quadrant Annulus
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Approximate Point in Triangle (APIT)

@ ERelerence node
O Unknown node

(He, Huang, et al. ‘03)

© Bhaskar Krishnamachari 2005 25



University of Southern California

ID-Codes

A B C
D E
AR
F G H
Node Localions Conneciivily (zraph

Transmillets A, F, C, H provide unigue 1Ds [or all node localions

. | A|lB|C|D|E|F |G| H
D: A|AC| C |AF|CH| F |FH| H

(Ray et al. 03)
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Fine-Grained Node Localization

« Basic Approach: Ranging

— ranging using radio signal strengths (m-level
accuracy)

— ranging using time difference of arrival (cm-level
accuracy over short distances)

* Position estimation is then an MMSE problem:
Ej=  Ry=V ((06%)P+(yiy,))
Find (xi,yi) to minimize X (Ej)?

« Angle of arrival techniques are particularly useful in
conjunction with ranging
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Time Difference of Arrival
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RF coustic

Receiver | I
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Fine-Grained Node Localization (contd.)

« Pattern matching techniques such as RADAR (Bahl and
Padmanabhan, ‘00) require pre-training of signal
strengths at different locations in the environment.

« Ecolocation (Yedavalli et al. ‘04) is based on sequence
decoding.

— Record the received signal strengths at different reference nodes
from a given unknown node, and order these into a sequence

— Return as the unknown node’s location the location that “best
matches” the measured sequence
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Network Localization

 Different from node localization. Few reference nodes
and several networked unknown nodes.

e Several approaches:
— Constraint satisfaction/optimization (centralized)
— Joint estimation using ranging estimates (centralized)
— Multihop distance estimation (distributed)
— lterative localization (distributed)
— Potential fields (distributed)
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Iterative Localization

(10,10)
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Iterative Localization

(0,10) 1. (5, 25/3)
(10,10)
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Reference-less Localization

« What if there are no reference nodes with known
locations?

e Three-step solution (Rao ‘03):

— 1. If all boundary nodes have known locations, use
iterative centroid calculations

— 2. If boundary nodes do not have known locations,
use pairwise hop-counts to get approximate locations
and apply step 1.

— 3. If nodes are not aware of boundary, use a flood to
identify boundary nodes and apply step 2.

« The solution provides only a relative map, useful for
geographic routing
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lllustration of Reference-less Localization

Localization assuming only
known boundary nodes

Correct locations
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Rigidity and Unique Localization

« The network is said to be uniquely localizable if there
exists a unique assignment of (x,y) coordinates to all
nodes that is consistent with the available positions and
distance estimates in a network.

+ Let Gy be the grounded graph, i.e. the network graph
augmented with distance-labelled edges between all
pairs of reference nodes.

 Theorem: A network is uniquely localizable if its
grounded graph is globally rigid. (Eren et al. ‘04)
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Global Rigidity

Not Rigid

(b)

(©)
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Time Synchronization
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Synchronization Techniques

« Receiver Broadcast Synchronization: multiple receivers
synchronize to the same broadcast (Elson, Girod, and
Estrin ‘02)

« Timing-Sync Protocol for Sensor Nets (TPSN): traditional
sender-receiver synchronization (Ganeriwal, Kumar and
Srivastava ‘03)

 FTSP: Multiple time stamping at sender and receiver for
each packet to mitigate processing time |jitter. Possible to
synchronize nodes to within 1us. (Maroti et al. ‘04)

© Bhaskar Krishnamachari 2005 38
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Reference Broadcast Synchronization

EXCHANGE REF

@
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TPSN
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Wireless Link Characteristics

© Bhaskar Krishnamachari 2005 41



University of Southern California

Empirical Observations

« Early studies all assumed a simple perfect-connectivity-
within-range model for simulations and analysis.

* A number of empirical studies suggest this can be very
misleading ( Ganesan ‘02; Zhao and Govindan ‘03; Woo,
Tong and Culler ‘03).

« A better characterization is that links fall into three
regions: connected, transitional and unconnected. The
transitional region will contain a large number of
unreliable links.
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Link Regions

® | |
I . I
0.9 ] ' . ® 1
kel o 1 ® 1 ]
] |
0.8} : * . ' '
ol ' o .
< o7} : o : '
= 1 * g 1
% 0.6} . iy . 7
in Connected ~ ®  Transitional . Disconnected
5 osk Region Region I Region .
= ' ¢ '
% . s & 1
& nak ' . .
= 0.4 I I
- | ® L R |
.
203} D . ; '
o I 2 @ ® . ’ 1
0.2} ' e : l
1 ® & .
0.1F o ** e - | |
19 L ® 1

0 10 20 30 40 50
Transmitier—Receiver Distance (m])

© Bhaskar Krishnamachari 2005 43



University of Southern California

Received Power (dBm)

Received Signal Strength
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Radio Reception
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Explanation for Link Regions
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Link Quality Assurance

 Blacklisting: Identify neighbors with poor link quality
(weak/highly variable/asymmetric links) and eliminate
them from neighbor table (Woo, Tong and Culler ‘03,
Gnawali et al. ‘04).

« Blacklisting can be implemented using a global threshold
or using a local rule like blacklisting all but the top k links.

« Blacklisting provides reliable link quality at the risk of
providing a disconnected topology.

© Bhaskar Krishnamachari 2005 47
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University of Southern California

Radio Frequency/Data Rate Sleep Receive | Transmit | Startup

CC 2420 2.4 GHz, 250kbps 60 W 59 mW 52 mW 0.6 ms
CC 1000 868 MHz, 19.2 kbps 0.6 uW | 29 mW 50 mW 2ms
MIT p AMPS-1 2.4 GHz, 1 Mbps negligible | 279 mW | 330 mW | 0.5 ms
I[EEE 802.11b 2.4 GHz, 11 Mbps negligible | 1.4W 225W 1 ms

(compiled from various sources)

« Transmit and Receive/ldle energy costs are typically the

same for most radios. Sleep is the only energy efficient
mode.

« Startup times and costs vary from radio to radio, but can
be quite significant.

© Bhaskar Krishnamachari 2005 48
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Medium Access

© Bhaskar Krishnamachari 2005 49
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Issues

« Unlike traditional MAC protocols, WSN schemes must
also incorporate sleep modes during radio inactivity, to
maximize energy efficiency.

* Two main classes of protocols: contention based and
contention free

« Contention based protocols offer low complexity and
more flexibility, though not suited for heavy traffic
conditions.
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IEEE 802.15.4
(for Low Rate Low Power WPAN)

16 channels in the 2450 MHz band, 10 channels in the
915 MHz band, and 1 channel in the 868 MHz band

 QOver-the-air data rates of 250 kb/s, 40 kb/s, and 20 kb/s
« Star or peer-to-peer operation
* Allocated 16 bit short or 64 bit extended addresses

« CSMA/CA channel access and allocation of guaranteed
time slots, ACKS

« Energy detection (ED) and Link quality indication (LQI)
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University of Southern California

IEEE 802.15.4 MAC
(beacon-enabled mode for star topology)

Active Sleep

» CAP <« » CFP «¢

T GTS| GTS
Periodic
Beacon
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B-MAC
B-MAC Components ROM | RAM
Basic B-MAC 3046 | 166
Basic B-MAC hili 4092 | 170
[ BasicB-MAC [ 00 GSN 4386 | 172
Basic B-MAC _ [L0ut XSl RTS/CTS || 4616 | 277

A highly configurable MAC protocol implemented
on TinyOS/Motes (Polastre, Hill and Culler ‘04)

Many independent components that can be turned
off 1f not needed for a particular application

© Bhaskar Krishnamachari 2005
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Energy-Efficient Contention-based MAC

« Low Power Listening / Preamble Sampling: wake up the
radio only when needed to transmit, and periodically to
check for preamble from transmitter. No synchronization

necessary.

« S-MAC/D-MAC: periodic sleep-wake duty cycle, adapted
for higher traffic, adjusted to minimize delay.

* Asynchronous: use a periodic schedule but not
synchronized across nodes. Useful for highly dynamic
scenarios.

© Bhaskar Krishnamachari 2005 54
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Preamble Sampling

Preamble

Sender /

Send Data Message

NN

® ] NONONONONNNNN
Recetver \ / ActiV;:Receive

Preamble Sampling Message
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S-MAC Schedule

B o B o |-
- Off - Off |-
- Off - Off |-

(Ye, Heidemann and Estrin ‘02)
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D-MAC

Rx Sleep

Rx Sleep .......

(Lu, Krishnamachari and Raghavendra ‘04)
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Asynchronous Schedule

Node 1

Node 2

Node 3

Node 4

voies [N

(Zheng, Hou and Sha ‘03)
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Sleep-based Topology Control

© Bhaskar Krishnamachari 2005 59
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Sleep-based Topology Control

 If network is over-deployed initially, then excess nodes
must be kept in sleep mode until necessary for
coverage/connectivity (due to failures of other nodes).
This is the function of topology control.

« QOperate over a much longer time scale than sleep
modes for medium access protocols.

 Are typically implemented in a distributed fashion
through the use of a finite state machine with states
including sleep, active and test modes. Different
protocols use different timers and conditions for

switching between modes.
© Bhaskar Krishnamachari 2005 60
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Topology Control for Connectivity

« BECA (Xu, Heidemann and Estrin ‘00): Nodes switch to
active mode when there is routing traffic present for them
to participate In.

* GAF (Xu, Heidemann and Estrin ‘00): Geographically
organized clusters with one active node in each cluster.

« ASCENT (Cerpa and Estrin ‘02): Nodes switch to active
mode if the number of active neighbors falls below some
threshold, or if measured loss rates are high.

« SPAN (Chen et al. ‘01): nodes activate to become
coordinators to ensure that any pair of neighboring
nodes can communicate directly or through a coordinator
node.

© Bhaskar Krishnamachari 2005 61
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State Transitions in ASCENT

A

after Tp

after T|,
after T,

(neighbors < NT and
lossrate > LT) or help

Passive

neighbors > NT or leads to increased loss rate
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Techniques Incorporating Coverage

 PEAS (Ye et al. ‘03): Randomized wakeup with adaptive
sleeping, tunable coverage ensures that there is at least
one active neighbor within range R,

« Sponsored Sector (Tian and Georganas ‘03): Nodes are
activated if they determine that their own coverage area
is not fully covered by neighboring nodes.

« CCP (Wang et al. ‘03): An integrated protocol using
Intersections to determine K-coverage.

« LDAS (Wu et al.): Probabilistic coverage by ensuring that
a constant number (5-11) of active neighbors are awake
within range.
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Routing
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Overview

WSN Routing can be made robust and efficient by
incorporating different types of local state information:

« Link quality
« Link distance
* Residual energy

 Position information

© Bhaskar Krishnamachari 2005
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Robust Routing

« Given the unreliable and time varying wireless links, it is
very important to provide robust delivery of information.

* There are several approaches to providing robustness:

— use of appropriate link quality metrics (e.g. ETX, De
Couto et al. ‘03)

— multipath routing (e.g. GRAB, Ye et al. ‘03)

— wireless diversity-based routing techniques (e.qg.
ExOR, Biswas and Morris ‘04)

© Bhaskar Krishnamachari 2005 66
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The ETX Metric

Probability of
Successful Reception

Expected Number of Transmissions, ETX = 1/(d..d.)

© Bhaskar Krishnamachari 2005 67
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Mesh Multipath Routing

Source
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Extremely Opportunistic Routing (EXOR)

B|ID|E|C

Priority of
candidate
receivers

Destination
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Energy Efficient Routing

« Key link metrics for energy efficiency include
transmission cost T, residual energy R, and initial energy
E

« General Formulation (Chang and Tassiulas ‘00):

I | —bh .

LEV

* Optimization formulations can also be used to determine
efficient network flows given a number of constraints.
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Flow Optimization Formulations

max i fini T

n+1 mn

SEVig (41, Y fi—=> [i=0 (a)
j=1 j=1
n+1 i
(D fiCi+ ) fi-R)-T<E (b)
*.r‘.'.lirl—:l1 C =
» [+ i< B (b)
i=1 j=1

Over a given interval, maximize total data obtained at the
sink node, subject to per-node constraints on (a) flow
conservation, (b) available energy, and (c) available
bandwidth.
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Geographic Routing

« (Geographic routing techniques are of interest in WSN
where there is ready availability of position information.

* |In the basic greedy geographic technique, the packet is
forwarded at each step to the neighbor whose position is
closest to destination (Finn ‘87)

« Greedy forwarding, however, is susceptible to problem of
dead-ends (Bose et al. ‘99, Karp and Kung ‘00)

« Trajectory based forwarding allows packets to traverse
arbitrary paths (Niculescu and Nath ‘03)
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Dead-end with
Greedy Geographic Forwarding
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Data Centric Networking

© Bhaskar Krishnamachari 2005 75
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Data-Centric Operation

« Uniquely appropriate to sensor networks because of
their application-specific nature

« Data centric routing, storage, and querying techniques
are based on application-level content names instead of

network address.

« Twin advantages:
— lower overhead due to removal of address indirection,

— greater energy savings by allowing easier in-network processing
(including refinement, aggregation and compression)
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Directed Diffusion Routing

@ / \ (()P;I'Ce @ / \ ource

Sink Sink @
e °

(c) (d)
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Rumor Routing

O OO Q ...... »O.S
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Data-Centric Storage

« Store sensor measurements within the network in an
organized manner to allow for efficient retrieval.

 The GHT mechanism (Ratnasamy et al. ‘03) hashes
event names to a unique geographic location for storage
and retrieval.

 The DIM mechanism (Li et al. ‘03) hashes
multidimensional ranges to a unique binary code, and
binary codes to a unique geographic zone for storage
and retrieval.
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DCS for Multidimensional Range Queries

(DIM)
0010
10
000
> 0011
6136,045)///////////
0100
01 110 111
(0.13, 0.85)— 0101
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The Database Perspective
 Treat the sensor network as a distributed database.

« Can then use a simple SQL-like language to query and
task the WSN. E.g. TinyDB/TinySQL (Madden et al. ‘02)

SELECT max{temperature}, locationID FROM sensors

WHERE lightIntensity > 120

EPOCH DURATION 30s

» Allows for easy in-network aggregation and optimization
of query plans
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Transport
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Key Issues

« Many transport-level QoS guarantees are essential in
WSN: reliable delivery, priority delivery, delay guarantee,
energy efficient delivery, fairness, application-specific
quality of gathered information, etc.

« Challenges include channel loss, bandwidth limitation,
interference and congestion, bursty traffic, buffer size
and computational constraints.

© Bhaskar Krishnamachari 2005 83
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Transport Design Parameters

« Rate Control

« Scheduling Policy

* Drop Policy

 MAC backoff

« Use of explicit notification messages
« ACKS

© Bhaskar Krishnamachari 2005 84
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Transport Techniques for WSN

« PSFQ (Wan, Campbell and Krishnamurthy ‘02), RMST
(Stann and Heidemann ‘03) : advocate the use of
message sequencing and hop-by-hop NACKs for reliable
message transfer.

« ARC (Woo and Culler ‘01), CODA (Wan, Eisenman,
Campbell ‘03): open loop rate control based on hop-by-
hop back-pressure

« ESRT (Sankarasubramaniam, Akan and Akyildiz ‘03):
closed loop rate control based on application-specific
feedback from sink
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ESRT

Optimal

Reliability
[ Threshold

Sink Report Arrival Reliability

operating poin\

Index of Regions

* A: uncongested, sub-threshold

* B: uncongested, over-threshold
C: congested, over-threshold

congested sub-threshold

Reporting rate (f)

© Bhaskar Krishnamachari 2005
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Real Time Transport

« SPEED (He, Stankovic, et al. ‘03): each node estimates
expected speed of packet delivery through each
neighbor. A speed threshold is used to decide whom to
forward the packet to, or if the packet should be dropped.

« VMS (Lu et al. ‘02): A velocity is calculated dynamically
for each packet at each intermediate location, given a
deadline. Scheduling is monotonic with velocity
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Velocity Monotonic Scheduling

TTD = time to deadline

2 Priority queue
At N:

Velocity(S,)=dist(N,D,)/(TTD,)
Velocity(S,)=dist(N,D,)/(TTD,)
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Other Topics
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Further Topics

Asymptotic network capacity

Hardware and software tools

Tracking point targets and diffuse phenomena

Programming, middleware, and systematic design

Security issues and protocols
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Conclusions
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Conclusions

 WSN are a widely applicable, major emerging
technology.

« They bring a whole host of novel research challenges
pertaining to energy efficiency, robustness, scalability,
self-configuration, etc.

* These challenges must be tackled at multiple levels
through different protocols and mechanisms.

« Existing partial solutions offer much hope for the future,
but much work remains to be done.
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