
Pattern Recognition 35 (2002) 505}513

An incremental prototype set building technique

V. Susheela Devi�, M. Narasimha Murty��*

�Department of Electrical Engineering, Indian Institute of Science, Bangalore 560 012, India
�Department of Computer Science and Automation, Indian Institute of Science, Bangalore 560 012, India

Received 27 April 2000; received in revised form 30 November 2000

Abstract

This paper deals with the task of "nding a set of prototypes from the training set. A reduced set is obtained which is
used instead of the training set when nearest neighbour classi"cation is used. Prototypes are added in an incremental
fashion, where at each step of the algorithm, the number of prototypes selected keeps on increasing. The number of
patterns in the training data classi"ed correctly also keeps on increasing till all patterns are classi"ed properly. After this,
a deletion operator is used where some prototypes which are not so useful are removed. This method has been used to
obtain the prototypes for a variety of benchmark data sets and results have been presented. � 2001 Pattern Recogni-
tion Society. Published by Elsevier Science Ltd. All rights reserved.

Keywords: Pattern classi"cation; Prototype selection; Supervised learning; k-nearest neighbour

1. Introduction

While it is a well-known fact that using nearest neigh-
bour classi"cation [8] gives good results and is used
commonly, it su!ers from various drawbacks. Firstly,
this method requires a large memory space as the entire
training data set has to be stored. Secondly, as it com-
pares each test pattern with every training pattern, it
requires a large computation time. Thirdly, it is sensitive
to outlier samples. Prototype selection is the process by
which a smaller set of patterns (prototypes) is selected
and used for classi"cation. This results in a saving in
memory space, reduces the computation time and if
chosen properly may result in a higher classi"cation
accuracy. Prototypes may be either elements of the train-
ing set or new patterns formed by using the training
patterns.
One of the "rst and most popularly used methods of

prototype selection is the condensed nearest-neighbour
(CNN) algorithm proposed by Hart [1]. In this algo-

*Corresponding author. Tel.: #91-80-309-2779; fax: #91-
80-360-2911.
E-mail address: mnm@csa.iisc.ernet.in (M.N. Murty).

rithm, "rst a single pattern is put in the condensed set.
Then each pattern is considered and its nearest neigh-
bour in the condensed set is found. If its label is the same
as that of the pattern in the condensed set, it is left out;
otherwise the new pattern is included in the condensed
set. After one pass through all the training patterns,
another iteration is carried out where each training pat-
tern is classi"ed using the patterns in the condensed set.
These iterations are carried out till every training pattern
is correctly classi"ed using the NNC on the patterns in
the condensed set. In 1972, Swonger proposed the iter-
ative condensation algorithm (ICA) [2]. This approach
permits both addition and deletion of samples to and
from the condensed subset. It is an iterative algorithm
and at every iteration there will be a reference sample
vector set. Using this reference sample set, classi"cation
of the patterns in the training set is carried out. For every
sample in the training set, the margin of misclassi"cation
is calculated. The sample from each class with the largest
margin of misclassi"cation is included in the reference
sample vector set. At the same time, for every element in
the reference vector set, if no patterns are classi"ed cor-
rectly the element is deleted. The reduced nearest-neigh-
bour (RNN) rule of Gates [3] derives the condensed set
by iteratively contracting the given set of training sam-
ples. Each original sample is tested to see whether its

0031-3203/01/$20.00 � 2001 Pattern Recognition Society. Published by Elsevier Science Ltd. All rights reserved.
PII: S 0 0 3 1 - 3 2 0 3 (0 0) 0 0 1 8 4 - 9

deletion a!ects the correct classi"cation of the remaining
samples and is retained only if it has such a consequence.
Sanchez et al. [4] have used proximity graphs for proto-
type selection. Several editing experiments are carried
out by Ferri et al. [5] and comparative results presented.
Soft computing tools like genetic algorithms, simulated
annealing and tabu search have been used for prototype
selection [6, 9, 10]. In [6], the authors have used stochas-
tic techniques on optical character recognition data for
prototype selection. This su!ers from the disadvantage
that we do not know the number of prototypes to use.
We have given some results in Section 5 for one data set
using prototype sets of di!erent sizes.
The information available in the training patterns has

to be used to classify the test patterns. If the training set
has patterns close together which can be replaced by
a single pattern, or if it has outliers which can be left out
or if it has ambigious patterns, then reducing the set of
patterns will give a higher accuracy besides reducing
memory requirement and improving speed of classi"ca-
tion. For cases where the dimensionality is high and the
training set is very large, the time taken for classi"cation
can be quite signi"cant and using a smaller set of proto-
types will be highly advantageous.
The optimum number of prototypes for a particular set

depends on many factors such as the number of features
and the range of each feature. In a class, if there is little
variation in the features, the number of prototypes re-
quired for this class may be less as compared to other
classes. For example, in the digit recognition problem,
the digit class `1amay not require as many prototypes as
other digit classes. If the training set is already close to
the optimum then prototype selection maynot give much
improvement. But in data sets where the training set has
a lot of redundant samples, prototype selection is highly
advantageous.

2. Methodology

In any problem, especially one of high dimensionality,
the boundaries of each class are very di$cult to deter-
mine. In the method proposed, we make an attempt to
partition the region of a class into simpler non-overlap-
ping regions. This is done in an incremental manner,
adding prototypes to a representative prototype set till
"nally all the training patterns are classi"ed correctly
using this set of representative prototypes. At this stage,
the region pertaining to each class has been resolved into
approximate Voronoi regions.

R
�
"

�
�
���

V
��
, j"1,2, c,

where n is the number of regions in class j. Total number
of classes is c. Note that

V
��
�V

��
"�, iOk

and

V
��
�V

��
"�, jOk or iOl.

In our algorithm, which we call the modi"ed conden-
sed nearest-neighbour (MCNN) algorithm, we get a set of
prototypes in an incremental manner as described below.
We start with a basic set of prototypes comprising one
pattern from each class. The training set is classi"ed
using these prototypes. Based on the misclassi"ed sam-
ples, a representative prototype for each class is deter-
mined and added to the set of basic prototypes. Now the
training set is classi"ed again with the augmented set of
prototypes. Representative prototypes for each class are
again determined based on the misclassi"ed samples.
This process is repeated till all patterns in the training set
are classi"ed correctly. Determining the representative
pattern for each class for the misclassi"ed samples is also
done in an iterative manner as described later.
The method used for "nding a single representative

sample of a group of patterns depends on the data set
used. One simple method of doing this is by using the
centroid as the representative of the group of patterns. Of
course, this works well in the case of patterns with a Gaus-
sian distribution with covariance matrix equal and diag-
onal. This is also alright if the class can be split up into
regions with the above property. In the case of binary
patterns, especially, in the case of character recognition,
the method described in Section 2.1 is found to work well.

2.1. Single representative sample of a group of patterns

At every iteration in the algorithm, we have to "nd
a set of representative samples for a group of patterns.
This is done by "nding one sample to represent all the
samples in each class.
One method of "nding a single representative sample

of a group of patterns is to use the sample mean or
centroid of all the patterns. The sample mean or the
centroid M of a collection of patterns X

�
,X

�
,2,X

�
is

given by

M"

�
�
���

X
�

r
,

where M is a vector containing f elements where f is the
number of features. The sample mean gives the direc-
tional vector and the pattern in that class which is closest
toM is chosen as the representative sample. This method
of "nding representative samples has been used in the
algorithm described in Section 3.1.
While this may work well in the case of points which

have a Gaussian distribution, in cases where the shape of
the cluster is concentric, di!erent classes may have identi-
cal sample means. We have used another method of
"nding out the typical pattern in a group of patterns.
This is applicable to binary patterns only. First of all,

506 V.S. Devi, M.N. Murty / Pattern Recognition 35 (2002) 505}513

considering a binary pattern, all the 1s are summed up to
give the total¹

�
for the ith pattern. This is done for all the

n patterns in the class and the mean no-of-ones is found
out. The mean no-of-ones (MN) is

MN"

��
���

¹
�

n
.

We then "nd out for each feature what is the frequency
of occurrence of 1. If we have n patterns X

�
,X

�
,2,X

�
,

and if each pattern has f features, then for every feature j,
we sum

S
�
"

�
�
���

X
��
.

We then arrange S
�
in decreasing order and form a new

prototype where the "rst MN features occuring in the
ordered sequence is set to 1 and the rest of the positions is
set to zero. The vector in the training set which is closest
to this prototype is found. This gives us the typical
prototype for the set of patterns.

3. Modi5ed CNN (MCNN) algorithm

3.1. Algorithm

The MCNN algorithm is detailed below.
1. T"�¹

��
/j"1,2, c, i"1,2, n

�
�,

where n
�
gives the number of samples in class j.

2. t"0.
3. Let S

�
"T.

4. t"t#1.
5. S

�
"�X

��
/j"1,2, c, i"1,2, n1

�
�

where n1
�
" number of samples of class j in S

�
.

6. ∀j, j"1,2, c, C
��

"����
���

X
��
/n1

�
.

/H This step "nds the centroid of the misclassi"ed
samples H/.

7. ∀j, j"1,2, c, P
��

"X
��

such that d(C
��
,X

��
)(

d(C
��
,X

��
) ∀i, i"1,2, n1

�
, iOk.

8. Let S
�
"�.

Let S
�

"�.
9. ∀X

��
3S

�
.

if d(X
��
,P

��
)(d(X

��
,P

��
), kOj.

S
�
"S

�
��X

��
�

else if �k such that d(X
��
,P

��
)'d(X

��
,P

��
), kOj

S
�

"S
�
��X

��
�.

/H If pattern is misclassi"ed add it to S
�
. If classi"ed

correctly, add it to S
�
. H/.

10. Set S
�
"S

�
.

11. if S
�

O�, go to 4
/H Repeat steps 4}10 till no misclassi"ed samples
exist H/.

12. Q"Q��P
��
, i"1,2, c�

/H Add representative prototypes in P to overall
prototype set Q H/.

13. Let Q"�Q
��
/i"1,2, n2

�
, j"1,2, c�.

14. Let S
�

"�.
Let S

�
"�.

15. ∀X
��

3T
if �Q

��
such that

d(X
��
,Q

��
))d(X

��
,Q

�	
),

∀q"1,2, c, qOj
and ∀p"1,2, n2

	
,

then S
�
"S

�
��X

��
�,

else S
�

"S
�
��X

��
�.

/H If sample is misclassi"ed add it to S
�
. If classi"ed

correctly, add it to S
�
.H/.

16. Set S
�
"S

�
17. if S

�
"�, stop else go to 4.

/H if no samples are misclassi"ed, stop and output
Q as the prototype set selected. H/.

In this algorithm the symbols used are:

Q " set containing the prototypes at each stage.
Prototypes keep being added on to Q in an
incremental fashion. After the termination of the
algorithm Q contains the complete set of proto-
types selected.

T " Training set.
S
�

" set of correctly classi"ed samples.
S
�

" set of misclassi"ed samples.
c " number of classes.

As can be seen, steps 4}10 are repeated till we get repre-
sentative samples for a group of samples which is a subset
of the misclassi"ed samples. As we get the representative
samples at each stage, they are added on to the existing
set of prototypes and the entire set of training patterns is
classi"ed using these prototypes. The procedure is stop-
ped when all the patterns in the training set are classi"ed
correctly. As the above procedure is run on the training
set, the number of misclassi"ed samples keeps coming
down till "nally all the samples are classi"ed correctly.
We now have the set of prototypes which classi"es all the
training patterns correctly. It is to be noted that the
number of prototypes in this set of each class may not be
equal. At any iteration, if all the patterns of a particular
class are classi"ed correctly, then in the next iteration,
there will not be any representative pattern added for
that class. As the iterations progress, the number of
classes which have representative sample added keeps on
coming down. In the case of digit recognition, we found
that representative samples for digit `1a were not being
added quite early in the iterations, while "nally, only
representative samples for digit `8a were being added and
all other classes were being classi"ed correctly. Digit `1a
is relatively simple and requires fewer representative
samples whereas `8a being more `complexa requires
more prototypes. It can be seen therefore, that this

V.S. Devi, M.N. Murty / Pattern Recognition 35 (2002) 505}513 507

scheme identi"es the `complexitya of each pattern class
and accordingly choses the number of prototypes.

3.2. Analysis of MCNN algorithm

The following properties of the MCNN algorithm
make it a very robust and useful algorithm.

Property 1. The MCNN algorithm converges in a xnite
time.

Proof. In steps 4}12 of algorithm MCNN, atleast one
prototype is selected to be added to set Q. Even if one
prototype is selected at each iteration, it will take at most
n iterations to include all the samples in the training set
to set Q. In fact, since c prototypes are added in the "rst
pass through the algorithm, even if one sample is in-
cluded from training set in the other iterations, atmost
n!c#1 iterations are required. Since there are "nite
samples in the training set, n is "nite. The MCNN algo-
rithm therefore converges in "nite time. �

Property 2. The set Q of prototypes generated by MCNN
algorithm gives 100% accuracy on the training set.

Proof. The prototypes P
��
added to the setQ in 12 are all

samples in the training set, i.e. P
��

3T. In step 17, the
termination criterion is that all X

��
3T, are correctly

classi"ed. In the worst case, if all X
��

3T are added to the
set Q, all samples in the training set will be classi"ed
correctly. The MCNN algorithm will therefore stop
when 100% accuracy is obtained on the training set. �

Property 3. The MCNN algorithm is order independent.

Proof. In this algorithm, three operations are repeatedly
carried out.

1. Finding the centroid or mean of a set of points (step 6).
2. Finding the closest sample to the centroid (step 7).
3. Using nearest neighbour classi"er to "nd the samples

in a data set which are classi"ed correctly and those
misclassi"ed (steps 9 and 15).

Taking up these points one by one,

1. Consider two permutations of the data set of class
j, D

��
and D

��
where the "rst index gives the permuta-

tion number. The sets D
��
and D

��
are the same as all

and only the elements in set D
��

are in set D
��
. The

order of the elements in the two sets only di!er. As
given in step 6, the centroid of a class j is given by

C
��

"

����

���
X

��
n1

�

.

In this equation, the numerator is the sum of all the
data elements. Addition being a commutative opera-
tion, the order of the data elements does not matter.
The sum remains invariant to the order of the data
elements. The denominator is the number of data
elements. Thus, it can be seen that this operation is
independent of the order of the data.

2. The centroid is a "xed value in the class. This opera-
tion consists of "nding the distance of all the data
points from the centroid. The smallest of these distan-
ces is found and that point is chosen as the representa-
tive prototype. If there is a tie between two or more
points for the shortest distance from the centroid, the
point with the smaller value of feature 1 is chosen. If
this is the same, then the point with the smaller value
of feature 2 is chosen etc. In other words, the points
are chosen in lexicographic order. Here the distance
measure is independent of the order of the data and
the minimum of these distances remains the same
whatever the order of the data. In case of a tie also, the
point chosen is the same and independent of the order
of the data.

3. This operation involves taking every point and "nding
the distance of this point from all the prototypes.
The minimum of these distances is determined and
the point is assigned to the appropriate class. This is
done for all the points in the data set. The classi"ca-
tion of each point is carried out and this operation is
invariant of the order of the data. The points in the
misclassi"ed set S

and the correctly classi"ed set will

also be the same. Only the order of the elements in
these two sets may vary depending on the order of the
data.

The other steps in the algorithm are either just assign-
ment statements or conditional if statements or termina-
tion statements. These steps do not depend on the order
of the data which is quite evident.
Thus, it can be seen that the algorithm is order inde-

pendent. �

3.3. Comparison with CNN Algorithm

It is a well-known fact that CNN is order dependent.
When it is applied to a particular data set, it gives
a certain condensed prototype set leading to a set of
non-intersecting Vornoi regions. Now if the order of the
data set is changed, it will result in another set of non-
intersecting Vornoi regions. If there are n data points, by
permuting this data set in n! ways, we can get n! di!erent
condensed prototype sets. One or more of these orders of
the data set lead to the condensed set obtained by the
MCNN. This is evident by putting all the prototypes
obtained by the MCNN in the order they are obtained at
the beginning and then putting the other data points and

508 V.S. Devi, M.N. Murty / Pattern Recognition 35 (2002) 505}513

Fig. 1. A small example problem.

using CNN on that. This yields the exact condensed set
obtained by MCNN. Therefore,

C
����

L

���r
�
���

C
����

,

whereC
����

is the set of prototypes obtained byMCNN
and C

����
is the set of prototypes obtained by a particu-

lar order of the data set using CNN.

Conjecture. Does one of the n! permutations of the data
produce a condensed set using CNN which is optimum?

First of all, one measure of optimality could be the
condensed set which gives 100% accuracy on the training
set and has the minimum number of prototypes. It is to
be noted that both CNN and MCNN give 100% accu-
racy on the training set. These methods are classi"cation
equivalent.
We took an example to illustrate this. Consider Fig. 1.

This example consists of two classes with a total of 10
points.
The MCNN on this data yields a condensed prototype

set of size 5. The points enclosed in squares in Fig. 1 are
the prototypes selected by MCNN. All the 10! orders of
the data set were produced and CNN was applied to
them. The minimum condensed prototype set consisted
of 4 prototypes. Fig. 1 shows these selected prototypes.
The CNN has found a prototype set which is smaller
than that of the MCNN in this case. To produce this it is
necessary to run CNN for all the n! permutations of the
data set. Finding all permutations is very time consuming
and doing it for data sets with more than about 15 data
points is almost impossible. Besides, is this set of proto-
types really optimum? Just by looking at Fig. 1 it can be
seen that in class 1 one of the outer points is chosen. This
has lead to a smaller prototype set, but it may not lead to
a better classi"cation accuracy because obviously, it does
not represent the class 1 samples properly. The optimum
prototype set cannot be based only on the minimum
number of prototypes as in that case the set of prototypes
using only the centroid in each class should be considered
optimum but of course is not. What is optimum is the
minimum number of prototypes which gives maximum
accuracy on a validation set.
To "nd out the optimum condensed prototype set,

another validation data set was used. This consists of 20
points, 10 belonging to class 1 and 10 belonging to class
2. This set was classi"ed using MCNN leading to 100%
accuracy. This set was then classi"ed using all the n!
permutations obtained using CNN. The prototype sets
which gave 100% accuracy on the validation set consis-
ted of 5 prototypes. The MCNN condensed set was one
of the sets obtained. The prototype set consisting of
4 prototypes obtained using one of the data orders of
CNN gave a classi"cation accuracy of 65%.

Let O be the optimal prototype set where OLT. The
optimal setO should give 100% accuracy on the training
set. Besides, it should be the minimum prototype set
which gives higher classi"cation accuracy on a validation
set. The set O just like the MCNN prototypes and the
CNN prototypes consists of prototypes which if put in
a certain order, will be chosen by CNN as the prototype
set. So if set O is put in the beginning of the data set in
a certain order and then the rest of the data points, the
optimal set O should be the prototypes chosen by CNN.
This is one of the n! di!erent orders of the data set
yielding the optimum setO. Therefore, it can be seen that
one of the n! orders of the data set yield the optimum
prototype set.

4. Deletion operation incorporated in the algorithm

After using the MCNN algorithm, we get a set of
prototypes. The MCNN algorithm used by us, allows
only addition of new prototypes to Q. Deletion of the
prototypes from Q is not there. Along with addition
of prototypes, if deletion is also used, then the operations
in the algorithm are su$cient to obtain an optimum

V.S. Devi, M.N. Murty / Pattern Recognition 35 (2002) 505}513 509

Table 1
Classi"cation accuracy obtained using OCR data

Accuracy (%)

GA 86.02
SA 83.77
TS 70.54
CNN 87.04
MCNN 88.0

Table 2
Details of data sets used

No. of trg.
patterns

No. of test
patterns

No. of
features

No. of
classes

OCR 6670 3333 192 10
Wine 120 57 13 3
Thyroid 144 71 5 3
Iris 99 51 4 3
Liver 230 155 6 2
Pima 512 256 8 2
Balance 416 209 4 3
Opt. dig. rec. 3823 1797 64 10

solution. After running the MCNN and obtaining Q,
we have assessed the usefulness of each prototype
and the less useful prototypes have been deleted.
This is done in the following way. The prototype setQ is
used to classify the training set using the nearest-neigh-
bour algorithm. This will give 100% classi"cation. For
every training pattern, the prototype from Q which is
closest to it is noted. All prototypes which do not partici-
pate in the classi"cation (except for classifying itself) are
deleted. We thus get a reduced set of prototypes from
MCNN.

Property 4. The MCNN algorithm with the deletion opera-
tion is order independent.

As shown in Property 3, the MCNN algorithm
which produces set Q of prototypes is order inde-
pendent. It is thus necessary to show that only the dele-
tion operation is order independent. In this algorithm,
each pattern in the training pattern is classi"ed using
the prototype set Q and each pattern closest to the
training pattern from setQ is noted. After going through
the entire training set, each prototype from set Q is
examined and if it does not participate in the classi"ca-
tion it is deleted. Since the deletion is carried out after
going through the classi"cation of every point in the
training set, the order of data in the training set does not
matter.

5. Results

Before using this method, soft computing tools were
used by us [6] to obtain prototypes only for the OCR
data. A total of 1500 prototypes were obtained. The
results obtained were not so encouraging. This may be
due to the large number of features in the OCR data.
Genetic algorithms (GA), simulated annealing (SA) and
tabu search (TS) were used. Due to the large size of the
data the determination of the "tness function which in-
volved "nding out the classi"cation accuracy obtained
on the training set was very time consuming. Due to the
large number of features, a large number of iterations will
have to be used so that convergence takes place. Table
1 gives the results obtained by soft computing tools as
also CNN and MCNN.
MCNN has been tried out on a number of data

sets. These data set are taken from Murphy and
Aha [7] except for the "rst one which is the optical
character recognition data. This consists of 6670
training patterns and 3333 test patterns. Each pattern has
192 features. There are 10 classes, corresponding to the
digits 0}9. Table 2 gives relevant details of the data sets
used.
The results obtained on these data is produced in

Table 3. The accuracy obtained using the MCNN, the

condensed nearest neighbour (CNN) and accuracy ob-
tained using all prototypes are given for each data set.
Fig. 2 shows the number of patterns classi"ed correctly as
the iterations increase for di!erent data sets using the
MCNN algorithm. Finally, all the patterns in the train-
ing set are classi"ed correctly.
The results obtained reveal that theMCNN does fairly

well. In many cases, it gives better results than the CNN
and even gives better than (or matches) the accuracy
obtained using all the training set as prototypes. As can
be seen from Table 3, by and large MCNN gives better
results than the CNN. Only in the cases of iris data and
the optical digit recognition data the CNN does slightly
better than the MCNN. In the cases of thyroid data and
liver data, MCNN gives higher accuracy with the re-
duced set than using all the prototypes. In the case of
wine data, the accuracy obtained using the two methods
are the same. It is found that there is a drastic reduction
in the number of samples used. In the case of wine data,
the reduction is from 120 to 16 which is really sharp. The
accuracy obtained remains the same. In the case of iris
data, while the accuracy drops slightly, there is a reduc-
tion in the number of training patterns used from 99 to 11
which is a reduction by a factor of 9. In the case of optical
digit recognition, since the number of training patterns is
very high (3823), the reduction of prototypes to 325 gives
a very noticeable increase in the speed of classi"cation
and if the reduction of accuracy by a small amount is all

510 V.S. Devi, M.N. Murty / Pattern Recognition 35 (2002) 505}513

Fig. 2. Improvement in accuracy as iterations are increased using MCNN.

Table 3
Accuracy obtained using the MCNN method

MCNN CNN Using all prototypes

� of prototypes Accuracy (%) � of prototypes Accuracy (%) � of prototypes Accuracy (%)

OCR 1527 88.0 1580 87.04 6670 92.0
Wine 14 94.74 27 94.74 120 94.74
Thyroid 18 95.77 16 91.55 144 94.37
Iris 10 92.16 16 96.08 99 94.12
Liver 136 72.17 150 64.35 230 63.48
Pima 250 67.97 266 65.23 512 69.14
Balance 157 74.64 143 71.77 416 77.03
Opt. dig. rec. 325 94.32 305 96.38 3823 98.00

right, it is de"nitely worth using the reduced set of proto-
types.
The number of iterations necessary to obtain the

prototype set in each data set using MCNN and CNN is
presented in Table 4. It is true that CNN requires a signif-

icantly lesser number of iterations. But since this is carried
out o%ine it does not matter. Of more importance is to get
the optimum set of prototypes. Also if CNN has to get the
optimum number of prototypes it has to "nd prototypes
using n! permutations of the data, in the worst case.

V.S. Devi, M.N. Murty / Pattern Recognition 35 (2002) 505}513 511

Table 5
Accuracy obtained using template selection by GA, SA and TS for wine data

No. of GA SA TS
prototypes

No. correct Accuracy (%) No. correct Accuracy (%) No. correct Accuracy (%)
Total"57 Total"57 Total"57

12 50 87.72 47 82.45 54 94.74
15 50 87.72 51 89.47 54 94.74
30 53 92.98 50 87.72 54 94.74
45 52 91.23 54 94.74 55 96.49
60 53 92.98 54 94.74 53 92.98
90 50 87.72 54 92.98 55 96.49

Table 4
No. of iterations using MCNN and CNN

MCNN CNN

OCR 238 5
Wine 18 5
Thyroid 12 4
Iris 6 4
Liver 73 4
Pima 138 4
Balance 63 2
Opt. dig. rec. 51 3

Table 6
Accuracy obtained using the MCNN and CNN with delete
operation

MCNN CNN

� of Accuracy � of Accuracy
prototypes (%) prototypes (%)

OCR 1098 88 1131 87.04
Wine 12 94.74 21 94.74
Thyroid 15 95.77 12 92.96
Iris 9 96.08 14 96.08
Liver 59 71.30 53 69.57
Pima 124 73.05 121 73.44
Balance 82 75.60 91 74.16
Opt. dig. rec. 290 94.49 275 96.72

Regarding the template generation algorithm, the
number of prototypes which will give maximum accuracy
is hard to determine. Table 5 gives the results for just one
data set, the wine data set, considering di!erent sizes of
the prototype set. Three techniques are used namely the
GA, SA and TS. The results vary according to the num-
ber of prototypes and it is necessary to determine what
are the number of prototypes required to give good
classi"cation accuracy. To determine the number of
prototypes to be used of each class is a time consuming
process.
After using MCNN on these data sets, the prototypes

produced were reduced using the deletion operator.
Table 6 gives the reduced number of prototypes and the
accuracy obtained using MCNN and the CNN algo-
rithm.
The deletion operation results in a reduction

in the number of prototypes which is sometimes
quite signi"cant. In the case of Pima and Balance
data, the number of prototypes reduce to half. In the
liver data, the number of prototypes reduces to one third.
The classi"cation accuracy generally increases with the
use of deletion operator or remains the same in a few
cases.

6. Conclusion

This paper describes a technique for obtaining the
prototypes in an incremental fashion. This technique is
simple and at the end of the procedure, the training set is
classi"ed with an accuracy of 100%. It is based on taking
the misclassi"ed patterns at each stage and "nding proto-
types to classify these patterns correctly. The algorithm is
fast and order independent. A deletion operator is also
used to reduce the number of prototypes by removing
prototypes which do not participate very much in the
classi"cation procedure. Results have been presented on
a number of data sets. The accuracy obtained has been
compared with CNN and also with using nearest-neigh-
bour with all the training patterns.

Acknowledgements

The authors would like to thank the reviewers for
doing a very thorough job of reviewing the paper and

512 V.S. Devi, M.N. Murty / Pattern Recognition 35 (2002) 505}513

About the Author*V. SUSHEELA DEVI received her B.E. degree in Electrical Engineering from Bangalore University and her M.S.
degree from the Department of Electrical Engineering, Indian Institute of Science, Bangalore, India. She is now working towards her
Ph.D. degree at the Indian Institute of Science. Her interests include Pattern Recognition, Genetic Algorithms and Data Mining.

About the Author*M. NARASIMHA MURTY received his B.E., M.E. and Ph.D. degrees from the Indian Institute of Science,
Bangalore, India. He is currently a Professor in the Department of Computer Science and Automation. His research interests include
Pattern Recognition, Genetic Algorithms and Data Mining.

giving a constructive criticism on an earlier version of the
paper which has helped to improve the paper.

References

[1] P.E. Hart, The condensed nearest neighbor rule, IEEE
Trans. Inform. Theory IT-14 (3) (1968) 515}516.

[2] C.W. Swonger, Sample set condensation for a condensed
nearest neighbor decision rule for pattern recognition,
Front. Pattern Recognition (1972) 511}519.

[3] G.W. Gates, The reduced nearest neighbour rule, IEEE
Trans. Inform. Theory IT-18 (3) (1972) 431}433.

[4] J.S. Sanchez, F. Pla, F.J. Ferri, Prototype selection for the
nearest neighbour rule through proximity graphs, Pattern
Recognition Lett. 18 (6) (1995) 507}513.

[5] F.J. Ferri, J.V. Albert, E. Vidal, Considerations about
sample-size sensitivity of a family of edited nearest neigh-

bour rules, IEEE Trans. Systems Man Cybernet. Part B:
Cybernetics 29 (5) (1999) 667}672.

[6] V. Susheela Devi, M. Narasimha Murty, Handwritten
digit recognition using soft computing tools, in: S.K. Pal,
A. Ghosh, M.K. Kundu (Eds.), Soft Computing for Image
Processing, Springer, Berlin, 2000.

[7] P.M. Murphy, D.W. Aha, UCI Repository of machine
learning databases [http://www.ics.uci.edu/mlearn/
MLRepository.html], Department of Information and
Computer Science, University of California, Irvine, CA,
1994.

[8] T.M. Cover, P.E. Hart, Nearest neighbor pattern classi-
"cation, IEEE Trans. Inform. Theory IT-13 (1967) 21}27.

[9] L. Kuncheva, Editing for the k-nearest neighbours rule by
a genetic algorithm, Pattern Recognition Lett. 16 (8) (1995)
809}814.

[10] L. Kuncheva, L.C. Jain, Nearest neighbor classi"er: simul-
taneous editing and feature selection, Pattern Recognition
Lett. 20 (1999) 1149}1156.

V.S. Devi, M.N. Murty / Pattern Recognition 35 (2002) 505}513 513

