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ABSTRACT

Replication is a widely used method for achieving high avail-
ability in database systems. Due to the nondeterminism in-
herent in traditional concurrency control schemes, however,
special care must be taken to ensure that replicas don’t
diverge. Log shipping, eager commit protocols, and lazy
synchronization protocols are well-understood methods for
safely replicating databases, but each comes with its own
cost in availability, performance, or consistency.

In this paper, we propose a distributed database system
which combines a simple deadlock avoidance technique with
concurrency control schemes that guarantee equivalence to
a predetermined serial ordering of transactions. This ef-
fectively removes all nondeterminism from typical OLTP
workloads, allowing active replication with no synchroniza-
tion overhead whatsoever. Further, our system eliminates
the requirement for two-phase commit for any kind of dis-
tributed transaction, even across multiple nodes within the
same replica. By eschewing deadlock detection and two-
phase commit, our system under many workloads outper-
forms traditional systems that allow nondeterministic trans-
action reordering.

1. INTRODUCTION

Concurrency control protocols in database systems have
a long history of giving rise to nondeterministic behavior.
They traditionally allow multiple transactions to execute in
parallel, interleaving their database reads and writes, while
guaranteeing equivalence between the final database state
and the state which would have resulted had transactions
been executed in some serial order. The key modifier here is
some. The agnosticism of serialization guarantees to which
serial order is emulated generally means that this order is
never determined in advance; rather it is dependant on a
vast array of factors entirely orthogonal to the order in which
transactions may have entered the system, including:

e thread and process scheduling

e buffer and cache management
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e hardware failures
e variable network latency
e deadlock resolution schemes

Nondeterministic behavior in database systems causes com-
plications in the implementation of database replication
and horizontally scalable distributed databases. We
address both of these issues in turn.

1.1 Replication

Replication of OLTP databases serves several purposes.
First, having multiple replicas of a database improves avail-
ability, since transactions can continue to be executed by
other replicas should one go down. Furthermore, bringing a
crashed server back up following a failure can be simplified
by copying a replica’s state instead of rebuilding the crashed
server’s state from logs [16]. Finally, read-only queries may
be executed by only one replica, so replication can signifi-
cantly improve throughput under read-heavy workloads.

The consequence of using nondeterministic concurrency
control protocols is that two servers running exactly the
same database software with the same initial state and re-

ceiving identical sequences of transaction requests may nonethe-

less yield completely divergent final database states. Repli-
cation schemes take precautions to prevent or limit such
divergence. Three properties are desirable in a replication
scheme:

e consistency across replicas
e currentness of all replicas

e low overhead

Since modern database systems allow nondeterministic be-
havior, replication schemes typically make tradeoffs between
the properties of consistency, currentness, and low overhead.
Commonly used replication schemes generally fall into one
of three families, each with its own subtleties, variations,
and costs.

e Post-write replication. Writes are performed by a
single replica first, and the replication occurs after the
write is completed. This category includes traditional
master-slave replication, where all transactions are ex-
ecuted by a primary “master” system, whose write sets
are then propagated to all other “slave” replica sys-
tems, which update data in the same order so as to
guarantee convergence of their final states with that
of the master. This is typically implemented via log
shipping [14, 20]—the master sends out the transac-
tion log to be replayed at each replica.



This category also includes schemes where different
data items have different masters, and variations on
this theme where different nodes can obtain “leases” to
become the master for a particular data item. In these
cases, transactions that touch data spanning more than
one master require a network communication protocol
such as two-phase commit to ensure consistency across
replicas. Distributed deadlock must also be detected if
locking-based concurrency control protocols are used.

For both the traditional master-slave, and variations
with different data being mastered at different nodes,
writes occur at the master node first, and data is repli-
cated after the write has completed. The degree to
which replicas lag behind the master is dependent on
the speed with which they apply the master’s write
sets, but they are always at least a small amount be-
hind. Therefore, read-queries sent to replicas are not
guaranteed to return fresh results without incurring
the additional latency of waiting for replicas to “catch
up” (although for some applications this is acceptable
[22, 19, 2]).

Furthermore, there is a fundamental latency-durability-
consistency tradeoff in post-write replication systems.
Either latency is increased as the master node waits to
commit transactions until receiving acknowledgment
that shipped data has arrived at a replica ([15, 21]), or
if not, then when the master fails, log records in flight
at the time of the failure may not be delivered. In such
a case, either the in-flight transactions are lost, reduc-
ing durability, or they are retrieved only after the failed
node has recovered, but the transactions executed on
the replica in the meantime threaten consistency.

e Active replication with synchronized locking.
All replicas have to agree on write locks granted to
data items [4]. Since writes can only proceed with
an agreed-upon exclusive lock, all replicas will per-
form updates in a manner equivalent to the same serial
order, guaranteeing consistency. The disadvantage of
this scheme is the additional latency due to the net-
work communication for the lock synchronization. For
this reason, it is used much less frequently in practice
than post-write replication schemes.

e Replication with lazy synchronization. Multiple
active replicas execute transactions independently—

possibly diverging temporarily—and reconcile their states

at a later time [10, 7, 17]. Lazy synchronization schemes
enjoy good performance at the cost of consistency.

If a database system were to execute sequences of incom-
ing transactions in a purely deterministic manner, tradeoffs
between the desirable properties described above could be
avoided entirely. Transactions could be ordered in advance
by a centralized server (or by a distributed service [18, 24]),
dispatched in batches to each replica to be deterministically
executed, assuring that each replica independently reaches
a final state consistent with that of every other replica while
incurring no further agreement or synchronization overhead.

1.2 Horizontal scalability

Horizontal scalability—the ability to partition DBMS data
across multiple (typically commodity) machines (“nodes”)

and distribute transactional execution across multiple par-
titions while maintaining the same interface as a single-
node system—is an increasingly important goal for today’s
database system designers. As a larger number of applica-
tions require a transactional throughput larger than what
a single machine is able to deliver cost-effectively, the need
for horizontally scalable database systems increases. How-
ever, non-deterministic behavior significantly increases the
complexity and reduces the performance of ACID-compliant
distributed database system designs.

In order to satisfy ACID’s guarantees, distributed transac-
tions generally use a distributed commit protocol, typically
two-phase commit, in order to gather the commit/abort de-
cisions of all participating nodes, and to make sure that a
single decision is reached—even while participating nodes
may fail over the course of the protocol. The overhead
of performing these two phases of the commit protocol—
combined with the additional time that locks need to be
held—can significantly detract from achievable transaction
throughput in partitioned systems. This performance hurdle
has contributed to the movement towards using technologies
that relax ACID (particularly atomicity or consistency) in
order to achieve scalable distributed database systems (e.g.
many so-called “NoSQL” systems).

Deterministic database systems that use active replication
only need to use a one-phase commit protocol. This is be-
cause replicas are executing transactions in parallel, so the
failure of one replica does not affect the final commit/abort
decision of a transaction. Hence, the additional care that
is taken in two-phase commit protocols to ensure appropri-
ate execution in the face of potential node failure is not
necessary. For transactions that have no user-level aborts
specified in the transactional code (i.e. there exists no po-
tential for integrity constraint violations or other conditional
abort logic), the need for a distributed commit protocol is
eliminated completely (since unpredictable events such as
deadlock are barred from causing transactions to be nonde-
terministically aborted). Employing a deterministic execu-
tion scheme therefore mitigates, and, for some transactions,
completely eliminates the most significant barrier to design-
ing high-performance distributed transactional systems.

1.3 Contribution

In this paper, we present a transactional database exe-
cution model with the property that any transaction 7;,’s
outcome is uniquely determined by the database’s initial
state and a universally ordered series of previous transac-
tions {To, 11, ..., Tn—1} (Section 2).

Further, we implement a database system prototype us-
ing our deterministic execution scheme alongside one which
implements traditional execution and concurrency control
protocols (two-phase locking) for comparison. Benchmark-
ing of our initial prototype, supported by analytical mod-
eling, shows that the performance tradeoff on a single sys-
tem (without considering replication) between deterministic
and nondeterministic designs has changed dramatically with
modern hardware. The deterministic scheme significantly
lowers throughput relative to traditional schemes when there
are long delays in transaction processing (e.g. due to fetch-
ing a page from disk). However, as transactions get shorter
and less variable in length, the deterministic scheme results
in nearly negligible overhead (Sections 3 and 4). We there-
fore conclude that the design decision to allow nondetermin-



ism in concurrency control schemes should be revisited.

We also examine the performance characteristics of our
deterministic execution scheme when implemented in con-
junction with the partitioning of data across multiple ma-
chines (Section 5). We find that our prototype outperforms
systems relying on traditional lock-based concurrency con-
trol with two-phase commit on OLTP workloads heavy in
multi-partition transactions.

2. MAINTAINING EQUIVALENCE TO A
PREDETERMINED SERIAL ORDER

Since the nondeterministic aspects of current systems stem
from the looseness of ACID’s serializability constraints, to
achieve entirely predictable behavior we restrict valid exe-
cutions to those equivalent to a single predetermined serial
execution.

The simplest way for a concurrency control protocol to
guarantee equivalence to an execution order {To7 T, ..., Tn}
would be to remove all concurrency, executing transactions
one-by-one in the specified order. On modern multi-core
machines, however, schemes which allow most processors to
sit idle clearly represent suboptimal allocation of computa-
tional resources and yield poor performance accordingly.

Fortunately, it is possible to use locking to allow for some
amount of concurrency while still guaranteeing equivalence
to a predetermined serial order. Predetermined serial order
equivalence (as well as deadlock freedom) can be achieved by
restricting the set of valid executions to only those satisfying
the following properties:

e Ordered locking. For any pair of transactions 7; and
T; which both request locks on some record r, if i < j
then T; must request its lock on r before T} does®.
Further, the lock manager must grant locks strictly in
the order that they were requested.

e Execution to completion. Every transaction that
enters the system must go on to run to completion—
either until it commits or until it aborts due to deter-
ministic program logic. Therefore, if a transaction is
delayed in completing for any reason (e.g. due to a
hardware failure within a replica), that replica must
keep that transaction active until the transaction ex-
ecutes to completion or the replica is killed®>—even if
other transactions are waiting on locks held by the
blocked one.

In practice, ordered locking is typically implemented by
requiring transactions to request all their locks immediately
upon entering the system, although there exist transaction
classes for which this may not be possible. We examine
these cases in depth in Section 4.2. For the purposes of
the comparisons presented in the next section, however, we
consider a very straightforward implementation of the above
scheme.

This is a well-known deadlock avoidance technique.
Postgres-R [13] is an example of a system that performs
locking in this way.

2In some situations—for example when a transaction has
deterministically entered a stalled state—it may be desir-
able to temporarily switch to a traditional execution and
replication scheme. The prospect of a seamless, on-the-fly
protocol for shifting between execution models presents an
intriguing future avenue of research.

3. THE CASE FOR NONDETERMINISM

Before making the case for disallowing nondeterministic
behavior in database systems, it is important to revisit the
arguments for its inclusion.

A good transactional database system should be fast, flex-
ible, and fault-tolerant. A premium is placed on the capa-
bility of transactional systems to guarantee high isolation
levels while optimally allocating computational resources. It
is desirable also to support essentially arbitrary user-defined
transactions written in a rich and expressive query language.

Historically, solutions to many of the challenges of design-
ing such systems have relied heavily on the loose serializabil-
ity constraints discussed above. To illustrate the value of
transaction reordering in achieving these goals, we consider
a hypothetical transactional database system chugging along
under some archetypical transactional workload. When a
transaction enters the system, it is assigned to a thread
which performs the transaction’s task, acquiring locks ap-
propriately, and then commits the transaction, releasing the
locks it acquired. Let’s say this hypothetical system is well-
designed, with an impeccable buffer-management scheme,
an efficient lock manager, and high cache locality, so that
most transactions are executed extremely quickly, holding
their locks for minimal duration. Lock contention is low
and transactions complete almost as soon as they enter the
system, yielding excellent throughput.

Now, suppose a transaction enters the system, acquires
some locks, and becomes blocked for some reason (examples
of this include deadlock, access to slow storage, or, if our
hypothetical database spans multiple machines, a critical
network packet being dropped). Whatever the cause of the
delay, this is a situation where a little bit of flexibility will
prove highly profitable. In the case of deadlock or hardware
failure, it might be prudent to abort the transaction and
reschedule it later. In other cases, there are many scenar-
ios in which resource allocation can be vastly improved by
shuffling the serial order to which our (non-serial) execution
promises equivalence. For example, suppose our system re-
ceives (in order) a sequence of three transactions whose read
and write sets decompose into the following:

To: read(A); write(B); read(X);
T:: read(B); write(C); read(Y);
T5: read(C); write(D); read(Z);

If Th becomes delayed when it tries to read X, 77 will fail
to acquire a read lock on record B and will be unable to
proceed. In a deterministic system, T> would get stuck be-
hind T due to the read-write dependency on C. However, if
we can modify the serial order to which we promise equiv-
alence, T could acquire its lock on C (since 77 blocked on
B before requesting it) and would complete its execution,
moving ahead of Ty and 7% in the equivalent serial order.
Therefore, as long as the system requires equivalence only
to some execution order, and not necessarily to the order in
which transactions were received, idle resources can imme-
diately be effectively allocated to executing T%.

The above example provides some insight into the class
of problems that on-the-fly transaction reordering remedies.
To better quantify this advantage, we create an analyti-
cal model and perform an experiment in which we observe
the effects of introducing a stalled transaction in a tradi-



tional system vs. under the deterministic execution model
described above. Due to space constraints, the analytical
model is presented only in the appendix, but the model
yields results consistent with those of the experiments pre-
sented here.

In our experiment, we implement a simple workload, where
each transaction accesses 10 of a database’s 10° records. Af-
ter each relevant record is looked up in a secondary index,
a lock is acquired and the item is updated. The transac-
tions are fairly short: we measure that locks are released
approximately 30us after the last one is granted. Execu-
tion proceeds under favorable conditions until, at time=1s,
a transaction enters the system, acquires 10 locks, and stalls
completely for a full second. At time=2s, the stalled trans-
action releases its locks and commits. We measure through-
put of each system as a function of time, as well as probabil-
ity that new transactions entering the system will be unable
to execute to completion due to lock contention. Under the
deterministic locking scheme, all 10 of a transaction’s locks
are requested immediately when it enters the system, while
in the traditional system, locks are requested sequentially,
and execution halts upon a single lock acquisition failure.
The traditional scheme also implements a timeout-based
deadlock detector which periodically aborts and restarts any
transaction (besides the initial slow transaction) which fails
to make progress for a specified timeout interval. See the
appendix for more on experimental setup.

Figure 1 shows our observations of the clogging behav-
ior for several different contention rates, displaying both the
probability that incoming transactions will be unable to im-
mediately complete and the total transactional throughput
as a function of time. Three key behaviors are evident here:

e Comparable performance absent long transac-
tions. Aslong as all transactions complete in a timely
manner, there’s very little difference in performance
between deterministic and nondeterministic transac-
tion ordering schemes, regardless of read /write set con-
flict rates. In fact, it turns out that the traditional
system actually executes and commits transactions in
almost exactly the same order as the deterministic sys-
tem during this period.

e Relative sensitivities to stalled transactions.
When a transaction stalls one second into execution,
the deterministic system becomes quickly clogged with
transactions which can neither complete (due to lock
contention) nor abort and restart later. In the tradi-
tional cases, where all locks are not immediately re-
quested, and when other nondeterministic transaction
reordering mechanisms are implemented, performance
degrades far more gradually. The plateaus that we
see in lock contention probability—which are reached
much faster when contention is higher—result from
a saturation of the system’s (ample) threadpool with
blocked transactions.

In both systems, sensitivity to clogging and the sever-
ity of its effect depend on the conflict rate between
transactions. Many modern OLTP workloads have low
contention rates.

e Clog resolution behavior. Regardless of execu-
tion model, when the stalled transaction finally com-
pletes and releases its locks, the clog in the lock man-
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Figure 1: Measured probability of lock contention
and transaction throughput with respect to time in
a 3-second interval. Two transactions conflict with
probabilities 0.01%, 0.1% and 1%, respectively.

ager dissipates almost instantaneously, and through-
put springs back to its pre-clog levels.

From this experiment it is clear that where transactions
can deadlock or stall for any reason, execution schemes which
guarantee equivalence to an a priori determined serial order
prove to be a poor choice. Hence, in an era where disk
reads caused wild variation in transaction length, allowing
nondeterministic reordering was the only viable option.

4. ADETERMINISTIC DBMSPROTOTYPE

As a larger percentage of transactional applications fit en-
tirely in main memory; hardware gets faster, cheaper and
more reliable; and OLTP workloads are dominated more
and more by short, streamlined transactions implemented
via stored procedures; we expect to find with diminishing
frequency scenarios which would cause clogging in a deter-
ministic system. The problem can be further ameliorated
with a few simple insights:



e Taking advantage of consistent, current repli-
cation. Instantaneous failover mechanisms in actively
replicated database systems can drastically reduce the
impact of hardware failures within replicas. Highly
replicated systems can also help hide performance dips
that affect only a subset of replicas.

e Distributed read-only queries. Read-only queries
need only be sent to a single replica. Alternatively,
a longer read-only query can often be split up across
replicas to reduce latency, balance load, and reduce the
clogging effect that it might cause if run in its entirety
on a single replica. Of course, long read-only queries
are increasingly avoided by today’s transactional ap-
plication designers—instead they are often sent to data
warehouses.

4.1 System architecture

Our deterministic database prototype consists of an in-
coming transaction preprocessor, coupled with arbitrarily
many database replicas.

Client Application

transaction requests

nondeterministic behavior allowed

Preprocessor determinism guarantee in effect

ordered & batched transactions

Database Replicas

dependent transaction restart requests

Figure 2: Architecture of a deterministic DBMS.

The preprocessor is the boundary of the system’s internal
deterministic universe. It accepts transaction requests, or-
ders them, and performs in advance any necessary nondeter-
ministic work (such as calls to sys.random() or time.now()
in the transaction code), passing on its results as transac-
tion arguments. The transaction requests are then batched
and synchronously recorded to disk, guaranteeing durability.
This is the pivotal moment at which the system is committed
to completing the recorded transactions and after which all
execution must be consistent with the chosen order. Finally,
the batched transaction requests are broadcast to all replicas
using a reliable, totally-ordered communication layer.

Each database replica may consist of a single machine or
partition data across multiple machines. In either case, it
must implement an execution model which guarantees both
deadlock freedom and equivalence to the preprocessor’s uni-
versal transaction ordering. The partitioned case will be
discussed further in Section 5.

Upon the failure of a replica, recovery in our system is per-
formed by copying database state from a non-faulty replica.
Alternative schemes are possible (such as replaying the trans-
actions from the durable list of transactions at the prepro-
cessor), as long as the recovery scheme adheres to the sys-
tem’s determinism invariant.

4.2 Difficult transaction classes

It isn’t necessarily possible for every transaction to request
locks on every record it accesses immediately upon entering
the system. Consider the transaction

U(z) :
y «read(x)
write(y)

where x is a record’s primary key, y is a local variable, and
write(y) updates the record whose primary key is y.

Immediately upon entering the system, it is clearly im-
possible for a transaction of type U to request all of its
locks (without locking y’s entire table), since the execution
engine has no way of determining y’s value without perform-
ing a read of record z. We term such transactions dependent
transactions. Our scheme addresses the problem of depen-
dent transactions by decomposing them into multiple trans-
actions, all of which but the last work towards discovering
the full read/write set so that the final one can begin exe-
cution knowing everything it has to access. For example, U
can be decomposed into the transactions:

Ui(z) :
y «read(x)
newtxnrequest(Uz(z, y))

and

Uz (:ZZ, y) :
y' «read(z)
if (y" # y)
newtxnrequest(Uz(z,y"))
abort()
else
write(y)

Us is not included in the ordered transaction batches that
are dispatched from the preprocessor to the replicas until
the result of Uy is returned to the preprocessor (any number
of transactions can be run in the meantime). U has some
information about what it probably has to lock and imme-
diately locks these items. It then checks if it locked the
correct items (i.e., none of the transactions that ran in the
meantime changed the dependency). If this check passes,
then Uz can proceed; however, if it fails, then Uz must be be
aborted (and its locks released). The preprocessor is noti-
fied of the abort and includes Uz again in the next batch of
transactions that are dispatched to the replicas. Note that
all abort-and-retry actions are deterministic (the transac-
tions that ran between U; and Us will be the same across
all replicas, and since the rescheduling of Uz upon an abort is
performed by the preprocessor, all future abort-and-retries
are also deterministic).

Since U’s decomposition requires only one additional trans-
action to calculate the full read/write set, we call U a first-
order dependent transaction. First-order dependent trans-
actions are often seen in OLTP workloads in the form of
index lookups followed by record accesses. Higher-order de-
pendent transactions such as the second-order transaction

V(z):
y <read(x)
z «read(y)
write(z)

appear much less frequently in real-world workloads, but



the same decomposition technique handles arbitrary higher-
order transactions.

This method works on a principle similar to that of opti-
mistic concurrency control, and as in OCC, decomposed de-
pendent transactions run the risk of starvation should their
dependencies often be updated between executions of the
decomposed parts.

To better understand the applicability and costs of this de-
composition technique, we perform a series of experiments
and support them with an analytical model. Full details
of the experiments and model are included in the appendix.
We observed that performance under workloads rich in first-
order dependent transactions is inversely correlated with
the rate at which the decomposed transactions’ dependen-
cies are updated. For example, in a workload consisting
of TPC-C Payment transactions (where a customer name
is often supplied in lieu a primary key, necessitating a sec-
ondary index lookup), throughput will suffer noticeably only
if every single customer name is updated extremely often—
hundreds to thousands of times per second. The overhead
of adding the additional read transaction to learn the de-
pendency is almost negligible. Since real-life OLTP work-
loads seldom involve dependencies on frequently updated
data (secondary indexes, for example, are not usually cre-
ated on top of volatile data), we conclude that workloads
that have many dependencies do not generally constitute a
reason to avoid deterministic concurrency control.

This scheme also fits nicely into database system environ-
ments that allow users to adjust the isolation level of their
transaction in order to improve performance. This is be-
cause there is a straightforward optimization that can be
performed for dependent reads that are being run at the
read-committed isolation level (instead of the fully serializ-
able isolation level). The transaction is still decomposed into
two transactions as before, but the second no longer has to
check to see if the previously read data is still accurate. This
check (and potential abort) are therefore eliminated. Note
that database systems implementing traditional two-phase
locking also struggle with high contention rates inherent to
workloads rich in long read-only queries, and that many such
systems already support execution at reduced isolation lev-
els®. We envision the potential for some back-and-forth be-
tween the deterministic database system and the application
designer, where the application designer is alerted upon the
submission of a transaction with a dependent read that per-
formance might be improved if this transaction was executed
at a lower isolation level.

5. TPC-C & PARTITIONED DATA

To examine the performance characteristics of our deter-
ministic execution protocol in a distributed, partitioned sys-
tem, we implement a subset of the TPC-C benchmark con-
sisting of 100% New Order transactions (the backbone of
the TPC-C benchmark). The New Order transaction sim-
ulates a customer placing an e-commerce order, inserting
several records and updating stock levels for 5-15 items (out
of 100000 possible items in each warehouse).

Figure 3 shows throughput for deterministic and tradi-
tional execution of the TPC-C New Order workload, vary-

3Multiversion and snapshot systems do not find read-only
queries problematic, but these systems are orthogonal the
approach described here, since there is room for multiversion
implementations of deterministic database systems.
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Figure 3: Deterministic vs. traditional throughput
of TPC-C (100% New Order) workload, varying fre-
quency of multipartition transactions.

ing frequency of multipartition transactions (in which part
of the customer’s order must be filled by a warehouse on
a remote node). In these experiments, data is partitioned
across two partitions. We include measurements for 2 ware-
houses and 10 warehouses (1 per partition and 5 per parti-
tion, respectively). See the appendix for further discussion
of experimental setup.

When multipartition transactions are infrequent, New Or-
der transactions stay extremely short, and the two execu-
tion schemes yield comparable throughput for a given data
set size—just as we observed in the experiment in Section
3 when no anomalously slow transactions were present in
the execution environment. With only 2 warehouses, both
schemes enjoy better cache locality than with 10 warehouses,
yielding a improved throughput absent multipartition trans-
actions. The fewer records there are, however, the more lock
conflicts we see. Two New Order transactions conflict with
probability approximately 0.05 with 2 warehouses and ap-
proximately 0.01 with 10 warehouses. Under both systems,
the overall decline in performance as a larger percentage of
transactions become multipartition is therefore greater with
2 warehouses than with 10 (since multipartition transactions
increase transaction length, exacerbating the effect of lock
conflict).

When we compare transactional throughput under the
two execution models, one might expect the clogging behav-
ior discussed in Section 3 to sink the deterministic scheme’s
performance compared to that of traditional execution when
network delays begin to entail longer-held locks—especially
in the 2-warehouse case where lock contention is very high.
In fact, we see the opposite: regardless of number of ware-
houses (and therefore contention rate) the deterministic pro-
tocol’s performance declines more gracefully than that of
traditional locking as multipartition transactions are added.

This effect can be attributed to the additional time that
locks are held during the two-phase commit protocol in the
traditional execution model. In the traditional case, all
locks are held for the full duration of two-phase commit.
Under deterministic execution, however, our preprocessor
dispatches each new transaction to every node involved in
processing it. The transaction fragment sent to each node
is annotated with information about what data (e.g. re-
mote reads and whether conditional aborts occur) is needed
from which other nodes before the updates involved in this
fragment can “commit”. Once all necessary data is received
from all expected nodes, the node can safely release locks for



the current transaction and move on the the next transac-
tion. No commit protocol is necessary to ensure that node
failure has not affected the final commit/abort decision since
node failure is a nondeterministic event, and nondeterminis-
tic events are not allowed to case a transaction to abort (the
transaction will have committed on a replica, which can be
used for recovery of the failed node as mentioned above).

This means that for multipartition transactions in the de-
terministic concurrency control case, each node working on a
transaction needs to send at most one message to each other
node involved in the transaction—and, conversely, needs to
receive at most one message from any other node. As long
as all nodes involved in a multipartition transaction emit
their communications at roughly the same time (which fre-
quently happens in our experiments since multi-partition
transactions naturally cause synchronization events in the
workload), locks are held for an additional duration of only
a single one-way network message.

Under the traditional execution model, each incoming trans-

action which blocks on a multipartition New Order must
remain blocked for up to the full duration of two-phase
commit—itself compounding the clog and further increas-
ing likelihood of lock contention for subsequent incoming
transactions. Measurements of actual lock contention and
average transaction latency taken during these experiments
are presented in the appendix and indicate that greater du-
ration of distributed transactions leads both to greater lock
contention than we see under the deterministic scheme and
to a higher cost associated with each instance of lock con-
tention.

6. RELATED WORK

Database systems that provide stricter serializability guar-
antees than equivalence to some serial order have existed
for over three decades. For example, there have been pro-
posals for guaranteeing equivalence to a given timestamp
order using a type of timestamp ordering concurrency con-
trol known as conservative T/O [3] (later referred to as “ul-
timate conservative T/O” [5] to distinguish it from other
forms of timestamp ordering concurrency control that allow
transaction aborts and reordering, thereby providing weaker
serializability guarantees). Conservative T/O delays the ex-
ecution of any database operation until it can be certain
that all potentially conflicting operations with lower times-
tamps have already been executed. In general, this is done
by having a scheduler wait until it receives messages from all
possible transaction sources, and then scheduling the lowest
timestamped read or write operation from all sources.

This naive implementation is overly conservative, since
in general it serializes all write operations to the database.
However, additional concurrency can be obtained by using
the transaction class technique of SDD-1 [6] where trans-
actions are placed into transaction classes, and only poten-
tially conflicting transaction classes need to be dealt with
conservatively. This is facilitated when transactions declare
their read and write sets in advance. Our work builds on
these decades-old techniques for guaranteeing equivalence
to a single serial order; however we chose to implement our
deterministic database using locking techniques and opti-
mistic methods for dealing with the lack of knowledge of
read/write sets in advance since most modern database sys-
tems use locking-based techniques for concurrency control
instead of timestamp-based techniques.

The theoretical underpinnings for the observation that de-
terministic execution within each replica facilitates active
replication can be found in work by Schneider [23]. This
work shows that if each replica receives transactions in the
same order and processes them deterministically in a serial
fashion, then each replica will remain consistent. Unfortu-
nately the requirement that each replica executes using a
single thread is not a realistic scenario for highly concur-
rent database systems. This observation was also made by
Jimenez-Peris et. al. [11], so they introduced a determinis-
tic thread scheduler enabling replicas to execute transactions
using multiple threads; each thread is scheduled identically
on each replica (with careful consideration for dealing with
the interleaving of local thread work with work resulting
from messages received from other servers as part of dis-
tributed transactions). Our work differs from this work by
Jimenez-Peris et. al. since we allow threads to be scheduled
arbitrarily (giving the scheduler more flexibility and allow-
ing network messages to be processed immediately instead
of waiting until local thread work is complete before pro-
cessing them) and guarantee determinism through altering
the database system’s concurrency control protocol.

Recent work by Basile et. al. [1] extends the work by
Jimenez-Peris et. al. by intercepting mutex requests invoked
by threads before accessing shared data, increasing concur-
rency by allowing threads that do not access the same data
to be scheduled arbitrarily. This solution, however, requires
sending network messages from leader nodes to replicas to
order mutex acquisition across conflicting threads, whereas
our solution does not require concurrency control network
messages between replicas.

The idea to order transactions and grant write locks ac-
cording to this order in order to facilitate eager replication
was presented in work by Kemme and Alonso [13]. Our work
differs from theirs in that our technique does not use shadow
copies and only requires a reliable, totally-ordered group
communication messaging protocol in sending requests from
the preprocessor to the database—never within multiparti-
tion transactions, as this would cause locks to be held for
prohibitively long durations in a deterministic system. Fur-
thermore we handle dependent transactions using an opti-
mistic method.

The observation that main memory database systems re-
sult in faster transactions and lower probability of lock con-
tention was made by Garcia-Molina and Salem [9]. They
further argue that in many cases it is best to execute trans-
actions completely serially and avoid the overhead of locking
altogether. Our work must deal with a more general set of
assumptions relative to Garcia-Molina and Salem in that
even though transactions in main memory are faster than
transactions which might have to go to disk, we consider
the case of network messages (needed for distributed trans-
actions) increasing the length of some transactions. Fur-
thermore, we do not require that transactions be executed
serially (even though equivalence to a given serial order is
guaranteed); rather multiple threads can work on different
transactions in parallel.

Whitney et. al. [26], Pacitti et. al [18], Stonebraker
et. al.[24], and Jones et. al. [12] all propose performing
transactional processing in a distributed database without
concurrency control by executing transactions serially in a
single thread on each node (where a node in some cases can
be a single CPU core in a multicore server [24]). Whit-



ney et. al. does not do this to perform active replication
(updates to replicas are logged first), but the latter two pa-
pers take advantage of the determinism to perform active
replication. However, multi-node (distributed) transactions
are problematic in both cases. Our scheme takes advan-
tage of deterministic concurrency control to avoid two-phase
commit, which significantly reduces the cost of multi-node
transactions, and further provides high levels of concurrency
across multiple threads.

Middleware solutions such as that implemented by xkoto
(recently acquired by Teradata) and Tashkent-API [8] at-
tempt to perform replication over multiple database systems
by applying the same transactions in the same order on each
system. However, since the database systems do not guaran-
tee equivalence to any given serial order, the middleware sys-
tems reduce the level of concurrency of transactions sent to
the database systems to avoid replica divergence, potentially
reducing throughput. Our solution is native to the database
system, greatly reducing necessary middleware complexity.

Tay et. al. compare traditional dynamic locking and
static locking (where all locks in a transaction are acquired
immediately) using a detailed analytical model [25]. How-
ever, for static locking, if all locks are not able to be acquired
immediately, the transaction is aborted and restarted (and
hence the protocol is not deterministic). Furthermore, the
model does not deal with the case where the location of all
data that needs to be locked is not known in advance.

7. CONCLUSIONS

We revisited in this paper the decision to allow nondeter-
ministic behavior in database systems.

We have shown that in light of current technology trends,
a transactional database execution model which guarantees
equivalence to a predetermined serial execution in order to
produce deterministic behavior is viable for current main
memory OLTP workloads, greatly facilitating active repli-
cation. Deterministic systems also render two-phase commit
unnecessary in distributed database systems, thus removing
performance barriers to distributed database systems.
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APPENDIX
Prototype implementation & experimental setup

Our prototype is implemented in c++. All transactions are
hand-coded inside the system. All benchmarks are taken
on a Linux cluster comprised of quad-core Intel Xeon 5140
machines, each with 4GB of 667 MHz FB-DIMM DDR2,
connected over a 100 megabit, full duplex local area network.
At no point during data collection for any of the experiments
performed in this paper did we observe network bandwidth
becoming a bottleneck.

Clogging experiment details

Index lookups entail traversing B+ trees, while records are
directly addressed by their primary keys. Updated records
are chosen with a Gaussian distribution such that any pair
of transactions will conflict on at least one data item with
easily measurable and variable probability.

As the reader may notice in Figure 1, regardless of ex-
ecution scheme, peak throughput is actually greater in the
higher-conflict-rate trials than in lower-contention cases. In-
creased skew in the record-choice distribution results in higher
lock contention rates by making certain records more likely
to be accessed by all transactions, but this also has the ef-
fect of increasing cache locality, and therefore has a positive
effect on throughput when no clog is present.

TPC-C New Order experiment details

In this experiment, we distribute data over two partitions on
separate physical machines within our cluster, with a mea-
sured network message round-trip latency averaging 130us.
We dedicate one core to query execution at each partition.
All measurements are taken over a 10-second interval fol-
lowing a short ramp-up period.

Performance model of the effects of clogging

We consider a database system executing a workload homo-
geneously composed of a transaction consisting of n updates,
where any two updates are disjoint with probability s (i.e.
they conflict with probability 1 —s). If we run a transaction
T; when k locks are held by other transactions, we expect
T; immediately to acquire all n locks with probability

Pn = (Sk)n — Sk:n
In this case, we assume (since transactions are short) that
T; commits and releases its locks immediately, so that T;y1
also executes in an environment where k records are locked.
If T; accesses any of the k locked records, however, it will
be unable to complete. In this case, we wish to examine the
expected number of new records T; locks to determine the
change in k. In a traditional execution model, T; requests
locks as it goes, blocking upon the first conflict and request-
ing no further locks. Expected change in k in the traditional
case therefore depends on the number of locks that are ac-
quired (represented by m below) before one overlaps with
one of the k already-held locks:

n—1

Ak = > mpm(p)

m=0
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Figure 4: Probability that each new transaction en-
tering the system conflicts with currently held locks.

Once again p, represents the probability that a set of x lock
requests all succeed; p, represents the probability that a set
of x lock requests all fail.

With our deterministic execution model, we have T; re-
quest all locks upon beginning execution, regardless of which
are granted, so expected change in k£ depends on the total
number of records on which T; conflicts with the k prior held
locks (n—m below, since m is again the number of new locks
acquired):

Ak = impm(ﬁn—m) <:@>
m=0

In both cases, we are interested not simply in how many
records are locked, but what effect this has on subsequent
execution. Figure 4 depicts the quantity 1 — p, (the prob-
ability that incoming transactions will be unable to execute
due to a lock conflict) as a function of ¢ (the number of new
transactions which have entered the system since Tp).

The origin represents the point in execution immediately
following Ty stalling: ¢ = 0 and 1 —p, = 1 — s"*. With
both execution models, early on—before many transactions
have gotten blocked directly or indirectly on To—most trans-
actions are able to execute without experiencing lock con-
tention, so k grows slowly. Further on, more transactions
get stuck, clogging the lock manager and creating a pos-
itive feedback loop in which the clog grows exponentially
for some time before asymptotically approaching a 100%
chance that incoming transactions will be unable to com-
plete. Unsurprisingly, the clog explodes much earlier in the
deterministic case where even transactions that conflict on
very few of their updates add their full read/write sets to
the set of locked records.

Since the purpose of this model is not to predict perfor-
mance characteristics of actual systems but simply to ex-
plain clogging behavior in general, we omit any horizontal
scale and observe that for any s, n, and initial value of k,
the model will yield a graph of this shape, albeit compressed
and/or shifted. Two further shortcomings of this simple
model make it unsuitable to fit to experimental data: (a)
it does not take into account active reordering (via releas-
ing locks and restarting slow transactions besides the stalled
one) in the traditional execution case, and (b) the horizontal
axis measures how many new transactions have entered the
system since Tp stalled, which is non-linearly correlated with
time, especially when transactions get periodically restarted
and when execution is performed by a fixed-size thread pool.



Performance model of decomposed first-order

dependent transactions

In order to identify and classify the situations in which the
method of transaction decomposition described in Section
4.2 is effective, we introduce to this discussion the notion of
a record’s wvolatility, which we define as the frequency with
which a given record is updated.

Under workloads heavy in decomposed dependent trans-
actions, we expect good performance if the transactions’ de-
pendencies are not often updated. As the records on which
transactions in the workload depend become more volatile,
however, performance is expected to suffer.

Let (T1,T>) represent the decomposition of a first-order
dependent transaction T" whose read/write set depended on
a set of tuples S. The total time during which an update to
a record r € S could cause T> to have to abort and restart
is approximately equal the time between 77 initiating the
transaction request for 7>, and 7> getting started. We will
refer to this time as D. If R represents total transaction
throughput and V represents the volatility of S, then the
probability that no transaction updates tuple during any
given interval of length D is given by

P=(1-V/RPR

and the expected number of times T> will be executed is

oo

> PA-P)(i—1) = 1/P

=0

Figure 5 describes the expected number of times a typical
decomposed transaction needs to be restarted as a function
of the volatility of its dependencies.

Experimental measurement of decomposed first-

order dependent transactions

To confirm the above result experimentally, we implement
the decomposition of a simple first-order dependent transac-
tion isomorphic to U in Section 4, which performs a lookup
in a secondary index and then updates a record identified by
the result. As a baseline, we also implement a transaction
which performs the same task (an index lookup followed
by a record update), but in a non-dependent fashion (i.e.
with its full read/write set supplied as an argument). We
then execute a variable mix of these two transactions while
a separate, dedicated processor performs a variable number
of updates per second on each entry in the index, redirecting
that entry to identify a different record.

Figure 6 shows total transactional throughput and the
number of times a transaction must be restarted on average
before executing to completion—both as a function of the
average volatility of index entries. Results are included for
workloads consisting of 0%, 20%, 40%, 60%, 80% and 100%
dependent transactions.

As one would expect, the workload consisting purely of
non-dependent transactions is essentially unaffected by fre-
quency of index updates, while more dependent workloads
loads fare worse as volatility increases.

‘We observe, however, that even in highly dependent work-
loads, when volatility is reasonably low to moderate (under
1000 updates per second of each record), decomposing trans-
actions to achieve compute read/write sets has almost neg-
ligible impact on performance.
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Figure 5: Expected number of times a decomposed
first-order dependent transaction must be restarted
as a function of total volatility of its dependencies.
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Figure 6: Measured throughput and average num-
ber of restarts of first-order dependent transactions
as a function of volatility of their dependencies.

Additional TPC-C performance characteristics

To support the analysis of the performance advantage of
avoiding two-phase commit in partitioned databases (pre-
sented in Section 5), we include in Figure 7 two additional
measurements generated from the same experiment that was
run to generate Figure 3: chance of lock contention, and av-
erage transaction latency (we include the original Figure 3
showing transaction throughput at the top of Figure 7 for
visual convenience). Lock contention is measured as the to-
tal fraction of transactions which blocked at least once due
to failure to acquire a lock. Transaction latency is measured
from when a transaction begins executing at a replica until
the time it commits at that replica.

Plotting contention and latency reveals two important ef-
fects which help illustrate the details of what is happening
in our experiment:

e The cost of two-phase commit. In the presence of
multipartition transactions, traditional execution suf-
fers much worse latency than deterministic execution.
The resulting longer-held locks give rise to a corre-
sponding increase in measured lock contention.



e Relative costs of increased contention. Decreas-
ing the total number of warehouses from ten to two
results in increased contention and latency under both
execution schemes. The impact of this on throughput
is very clearly visible in the traditional case. In the de-
terministic case, this is not immediately obvious, since
the two-warehouse version of the benchmark seems to
outperform the ten-warehouse version for most of the
graph. However, the improved cache locality of the
two-warehouse case is hiding what is truly going on.
A more careful examination of the graph will observe a
steeper decline in throughput in the two warehouse case
relative to ten warehouse case as the percentage of mul-
tipartition transactions increases. Hence the increased
contention of the two warehouse case does indeed af-
fect throughput for the deterministic implementation.
Overall, we see that increasing the contention rate has
qualitatively similar effects on the performance profiles
of the two schemes—but due to higher transaction la-
tency, the traditional execution is hit much harder by
the added contention.
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Figure 7: TPC-C (100% New Order) transactional
throughput, measured lock contention, and average
transaction latency.

Future Work

We intend to pursue several future avenues of research:

Preprocessor reordering

While arbitrary transaction reordering during execution is
likely to break the determinism invariant, the initial choice
of transaction order to which to guarantee equivalence is
much freer. It is not hard to see that if a local transaction
request arrives immediately after a distributed transaction
conflict, contention will ensue if the order is preserved, but
can probably be reduced if the local transaction is moved
before the distributed one. We plan to investigate reordering
techniques to be implemented in the preprocessor, so as to
further reduce workload contention levels and expand the
set of workloads for which a deterministic execution model
would be viable.

Seamless transitions between deterministic and non-
deterministic execution/replication models

As short as update transactions tend to be in today’s OLTP
workloads, and as reliable as we expect a deterministic sys-
tem to be given adequate replication, there may be times
where it is still prudent to nondeterministically reorder or
abort transactions in some replicas. This obviously cannot
occur unchecked, as such a scenario would lead to incon-
sistencies between replicas. We therefore intend to exam-
ine the possibility of supporting other traditional replica-
tion methods—inter-replica commit protocols, eventual con-
sistency, and/or log-shipping methods—in such a way that
the system can seamlessly and dynamically switch back and
forth between traditional and deterministic execution and
replication models, depending on the present workload and
other variable conditions.

Thread scheduling in deterministic systems

In traditional systems, transactions block on only one lock
acquisition at a time. Worker thread scheduling therefore
tends to be pretty easy: when you free a contended re-
source, simply wake up the thread which is acquiring it.
When transactions request all locks simultaneously and may
be blocked on multiple contentions, this may not always be
the best solution. Our experimentation thus far has demon-
strated that minimizing superfluous context switches (i.e.
avoiding prematurely scheduling threads blocked on mul-
tiple contentions) is key to maintaining acceptable perfor-
mance in deterministic systems in the face of higher rates
of lock contention. Our current prototype uses timer-based
and randomized techniques to accomplish reasonable thread
scheduling, but we believe further investigation in this area
could yield better scheduling with less overhead.

Other deterministic concurrency control schemes

The lock-based deterministic system proposed in this paper
guarantees equivalence to a predetermined serial ordering of
transactions, but there are certainly other mechanisms by
which such a property can be guaranteed. It would be in-
teresting to develop, compare, and benchmark deterministic
variants of other concurrency control schemes—particularly
multiversion concurrency control.



