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Abstract 

In this paper, we study a special kind of learning problem in which 
each training instance is given a set of (or distribution over) 
candidate class labels and only one of the candidate labels is the 
correct one. Such a problem can occur, e.g., in an information 
retrieval setting where a set of words is associated with an image, 
or if classes labels are organized hierarchically. We propose a 
novel discriminative approach for handling the ambiguity of class 
labels in the training examples. The experiments with the proposed 
approach over five different UCI datasets show that our approach is 
able to find the correct label among the set of candidate labels and 
actually achieve performance close to the case when each training 
instance is given a single correct label. In contrast, naIve methods 
degrade rapidly as more ambiguity is introduced into the labels. 

1 Introduction 

Supervised and unsupervised learning problems have been extensively studied in the 
machine learning literature. In supervised classification each training instance is 
associated with a single class label, while in unsupervised classification (i.e. 
clustering) the class labels are not known. There has recently been a great deal of 
interest in partially- or semi-supervised learning problems, where the training data is 
a mixture of both labeled and unlabelled cases. Here we study a new type of semi­
supervised learning problem. 

We generalize the notion of supervision by thinking of learning problems where 
multiple candidate class labels are associated with each training instance, and it is 
assumed that only one of the candidates is the correct label. For a supervised 
classification problem, the set of candidate class labels for every training instance 
contains only one label, while for an unsupervised learning problem, the set of 
candidate class labels for each training instance counts in all the possible class 
labels. For a learning problem with the mixture of labeled and unlabelled training 
data, the number of candidate class labels for every training instance can be either 
one or the total number of different classes. 

Here we study the general setup, i.e. a learning problem when each training instance 
is assigned to a subset of all the class labels (later, we further generalize this to 



include arbitrary distributions over the class labels). For example, there may be 10 
different classes and each training instance is given two candidate class labels and 
one of the two given labels is correct. This learning problem is more difficult than 
supervised classification because for each training example we don't know which 
class among the given set of candidate classes is actually the target. For easy 
reference, we called this class of learning problems 'multiple-label' problems. 

In practice, many real problems can be formalized as a 'multiple-label' problem. For 
example, the problem of having several different class labels for a single training 
example can be caused by the disagreement between several assessors. 1 Consider 
the scenario when two assessors are hired to label the training data and sometimes 
the two assessors give different class labels to the same training example. In this 
case, we will have two class labels for a single training instance and don't know 
which, if any, is actually correct. Another scenario that can cause multiple class 
labels to be assigned to a single training example is when there is a hierarchical 
structure over the class labels and some of the training data are given the labels of 
the internal nodes in the hierarchy (i.e. superclasses) instead of the labels of the leaf 
nodes (subclasses). Such hierarchies occur, for example, in bioinformatics where 
proteins are regularly classified into superfamilies and families. For such 
hierarchical labels, we can treat the label of internal nodes as a set of the labels on 
the leaf nodes. 

2 Related Work 

First of all, we need to distinguish this 'multiple-label' problem from the problem 
where the classes are not mutually exclusive and therefore each training example is 
allowed several class labels [4]. There, even though each training example can have 
multiple class labels, all the assigned class labels are actually correct labels while in 
'multiple-label' problems only one of the assigned multiple labels is the target label 
for the training instance. 

The essential difficulty of 'multiple-label' problems comes from the ambiguity in 
the class labels for training data, i.e. among the several labels assigned to every 
training instance only one is presumed to be the correct one and unfortunately we 
are not informed which one is the target label. A similar difficulty appears in the 
problem of classification from labeled and unlabeled training data. The difference 
between the 'multiple-label' problem and the labeled/unlabeled classification 
problem is that in the former only a subset of the class labels can be the candidate 
for the target label, while in the latter any class label can be the candidate. As will 
be shown later, this constraint makes it possible for us to build up a purely 
discriminative approach while for learning problems using unlabeled data people 
usually take a generative approach and model properties of the input distribution. 

In contrast to the 'multiple-label' problem, there is a set of problems named 
'multiple-instance' problems [3] where instances are organized into 'bags' of 
several instances, and a class label is tagged for every bag of instances. In the 
'multiple-instance' problem, at least one of the instances within each bag 
corresponds to the label of the bag and all other instances within the bag are just 
noise. The difference between 'multiple-label' problems and 'multiple-instance' 
problems is that for 'multiple-label ' problems the ambiguity lies on the side of class 
labels while for 'multiple-instance' problem the ambiguity comes from the instances 
within the bag. 

1 Observer disagreement has been modeled using the EM algorithm [1] . Our multiple­
label framework differs in that we don't know which observer assigned which label to 
each case. This would be an interesting direction to extend our framework. 



The most related work to this paper is [6], where a similar problem is studied using 
the logistic regression method. Our framework is completely general for any 
discriminative model and incorporates non-uniform 'prior' on the labels. 

3 Formal Description of the 'Multiple-label' Problem 

As described in the introduction, for a 'multiple-label' problem, each training 
instance is associated with a set of candidate class labels, only one of which is the 
target label for that instance. Let Xi be the input for the i-th training example, and Si 
be the set of candidate class labels for the i-th training example. Our goal is to find 
the model parameters e E e in some class of models M , i.e. a parameterized 
classifier with parameters e which maps inputs to labels, so that the predicted class 
label y for the i-th training example has a high probability to be a member of the set 
Si. More formally, using the maximum likelihood criterion and the assumption of 
i.i.d. assignments, this goal can be simply stated as 

4 Description of the Discriminative Model for the 
'Multiple-label' Problem 

(1) 

Before discussing the discriminative model for the 'multiple-label' problem, let's 
look at the standard discriminative model for supervised classification. Let p(y I X i ) 

stand for some given conditional distribution of class labels for the training instance 
Xi and p(y I x"f}) be the model-based conditional distribution for the training data Xi 

to have the class label y. A common and sensible criterion for finding model 
parameters (/ is to minimize the KL divergence between the given conditional 
distributions and the model-based distributions, i.e. 

B* = arg min {L L p(y I x,) log p(y I x) } 
B ; y p(y I x ;, B) 

(2) 

For supervised learning problems, the class label for every trammg instance is 
known. Therefore, the given conditional distribution of the class label for every 
training instance is a delta function or jJ(y I Xi) = c5(y, Yi) where Yi is the given class 
label for the i-th instance. With this, it can be easily shown that Eqn. (2) will be 
simplified as maximum likelihood criterion. For the 'multiple-label' problem, each 
training instance Xi is assigned to a set of candidate class labels Si and therefore Eqn. 
(2) can be rewritten as: 

()* = arg min {L L p(y I X,) log p(y I x,) } 
B i YES; p(y I Xi' (}) 

(3) 

with the constraints Vi L yESi p(y I Xi) = I . (4) 

In the 'multiple-label' problem the distribution of class labels p(y I x,) is unknown 
except for the constraint that the target class label for every training example is a 
member of the corresponding set of candidate class labels. A simple solution to the 
problem of unknown label distribution is to assume it is uniform, I.e. 
p(y I x,) = p(y' I x,) for any y, y' E Si . Then, Eqn. (3) can be simplified to: 



B* = argmin {L:-1 L:loi 1 J} =argmax{L:-1 L:IOgp(YIXi' B)} , (5) 
B i I Si I YES, II Si I p(y I x"B) B i I Si I YES, 

which corresponds to minimizing the KL divergence (2) to a uniform over Sj . For 
the case of multiple assessors giving differing labels to the data, discussed in the 
introduction, this corresponds to concatenating the labeled data sets. Standard 
learning algorithms can be applied to learn the conditional model p(y I x,B). For 
later reference, we called this simple idea the ' Naive Model'. 

A better solution than the 'NaIve Model' is to disambiguate the label association, 
i.e. to find which label among the given set is more appropriate than the others and 
use the appropriate label for training. It turns out that it is possible to apply the EM 
algorithm [2] to accomplish this goal, resulting in a procedure which iterates 
between disambiguating and classifying. Starting with the assumption that every 
class label within the set is equally likely, we train a conditional model p(y I x, B). 

Then, with the help of this conditional model, we estimate the label distribution 
jJ(y I x,) for each data point. With these label distributions, we refit the conditional 

model p(y I x , B) and so on. More formally, this idea can be expressed as follows: 

First, we estimate the conditional model based on the assumed or estimated label 
distribution according to Eqn. (3). This step corresponds to the M-step in the EM 
algorithm. Then, in the E-step, new label distributions are estimated by maximizing 
Eqn. (3) W.r.t. jJ(y I x,) under the constraints (4), resulting in: 

1 
P(yIXi,B) 

jJ(y I Xi) = L: p(y' I Xi' B) 
Y ESj 

o 

VYESi 

(6) 

otherwise 

importantly, this procedure optImIzes the objective function in Eqn. (1), by the 
usual EM proof. The negative of the KL divergence in Eqn. (3) is a lower bound on 
the log likelihood (1) by Jensen's inequality. Substituting Eqn. (6) for jJ(y I Xi) into 
(3) we obtain equality. For easy reference, we called this model the 'EM Model'. 

in some 'multiple-label' problems, information on which class label within the set 
Sj is more likely to be the correct one can be obtained. For example, if three 
assessors manually label the training data, in some cases two assessors will agree on 
the class label and the other doesn't. We should give more weights to the labels that 
are agreed by two assessors and low weights to the labels that are chosen by only 
one. To accommodate prior information on the class labels , we generalize the 
previous framework so that the estimated label distribution jJ(y I Xi) has low 
relative entropy with the prior on the class labels. Therefore, the objective function 
(1) and its EM -bound (4) can be modified to be 

B* = arg~in{ ~ ~ p(y I x,)logP:i.lyx,) -~ ~ p(y I X,) log p(y I Xi,B)} (7) 

where " i,y is the prior probability for the i-th training example to have class label y. 

The first term in the objective function (7) encourages the estimated label 
distribution to be consistent with the prior distribution of class labels and the second 
term encourages the prediction of the model to be consistent with the estimated 
label distribution. The objective (7) is an upper bound on - L:\og L: 7l'i,yP(Y I xi,B) . 

YE Si 



When there is no prior information about which class label within the given set is 
preferable we can set n ;,y = 1/ I S; I and Eqn. (7) becomes 

B* = argmin{II p(y I xJlog p(y I x;) - II p(y I xJlogp(y I X;,B)} 
(I ; YES, 1/ I S; I ; YES, 

(7') 
= argmin{II p(y I xJlog p(y I xJ + Ilog I S; I} = argmin{I I p(y I xJlog p(y I xJ } 

II ; yES, p(y I x;,B) ; II; yES, p(y I x;,IJ) 

Eqn. (7') is identical to Eqn. (3), which shows that when there is no pnor 
knowledge on the class label distribution, we revert back to the' EM Model' . 

Again we can optimize Eqn. (7) using the EM algorithm, estimating the label 
distribution p(y I x;) in the E step fitting any standard discriminative model for 

p(y I x,B) in the M step. The label distribution that optimizes (7) in the Estep 
is: p(y I x.) = 7r. p(y I x B) / " 7r .p(y'l x B), and 0 otherwise. As we would expect, 

I I, ), I' ~Y'ESi I ,), I' 

the label distribution p(y I xJ trades off both the prior n ;,y and the model-based 

prediction p(y I x;, B). We will call this model 'EM+Prior Model'. 

Figure I: Diagram for graphic model 
interpretation of 'EM+Prior' model 

The 'EM+Prior Model' can also be 
interpreted from the viewpoint of a graphical 
model. The basic idea is illustrated in Figure 
1, where the random variable ti represents the 
event that the true label Yi belongs to the 
label set Si. For the 'EM+Prior' model, n ;,y 

actually plays the role of a likelihood or 
noise model where, where p(y E Si I x i ,(}) in 
Eqn. (1) is replaced as in Eqn. (8). From this 
point of view, generalizing to Bayesian 
learning and regression is easy. 

P(ti = 11 xi,B) = LP(ti = 11 y)p(y I xi,B) = L"i.yP(y I xi,B) (8) 
YE5i YESi 

5 Experiments 

The goal of our experiments is to answer the following questions: 

l. Is the 'EM Model' better than the 'Nai've Model'? The difference between the 
'EM Model' and the 'Naive Model' for the 'multiple-label' problems is that the 
'Naive Model ' makes no effort in finding the correct label within the given label set 
while the 'EM Model' applies the EM algorithm to clarify the ambiguity in the class 
label. Therefore, in this experiment, we need to justify empirically whether the 
effort in disambiguating class labels is effective. 

2. Will prior knowledge help the model? The difference between the 'EM Model' 
and the 'EM+Prior Model' is that the 'EM+Prior Model' takes advantage of prior 
knowledge on the distribution of class labels for instances. However, since 
sometimes the prior knowledge on the class label can be misleading, we need to test 
the robustness of the 'EM+Prior Model' to such noisy prior knowledge. 

5.1 Experimental Data 

Since there don't exist standard data sets with trammg instances assigned to 
multiple class labels, we actually create several data sets with multiple class labels 



from the UCI classification datasets. To make our experiments more realistic, we 
tried two different methods of creating datasets with multiple class labels: 

• Random Distractors. For every training instance, in addition to the original 
assigned label, several randomly selected labels are added to the label candidate set. 
We varied the number of added classes to test reliability of our algorithm. 

• Nai"ve Bayes Distractors. In the previous method, the added class labels are 
randomly selected and therefore independent from the original class label. However, 
we usually expect that distractors are in the candidate set should be correlated with 
the original label. To simulate this realistic situation, we use the output of a NaIve 
Bayes (NB) classifier as an additional member of the class label candidate set. 1 

First, a NaIve Bayes classifier using Gaussian generation models is trained on the 
dataset. Then, the trained NB classifier is asked to predict the class label of the 
training data. When the output of the NB classifier differs from the original label, it 
is added as a candidate label. Otherwise, a randomly selected label is added to the 
candidate set. Since the NB classifier errors are not completely random, they should 
have some correlation with the originally assigned labels. 

In these experiments we chose a simple maximum entropy (ME) model [5] as the 
basic discriminative model, which expresses a conditional probability p(y I i,e) in an 
exponential form, i.e. p(y I i ,e) = exp(e· i ) / Z(i ) where x is the input feature vector and 
Z(x) is the normalization constant which ensures that the conditional probabilities 
over all different classes y sum to 1. 

T bill £ b f UCI d h d· h a e n ormatIOn a out lve atasets t at are use III t e expenments 

Class Name ecoli wine pendi2it iris 21ass 

Number of Instances 327 178 2000 154 204 

Number of Classes 5 3 10 3 5 

Number of Features 7 13 16 14 10 

% NB Output;tAssigned Label 15% 8% 22.3% 13.3% 16.6% 

Error Rate for ME on clean 12.6% 3.7% 9% 5.7% 9.7% 
data (lO-fold cross validation) 

Five different VCI datasets were selected as the testbed for experiments. 
Information about these datasets is listed in Table 1. For each dataset, the 10-fold 
cross validation results for the ME model together with the percentage of time the 
NB output differs from the originally assigned label are also listed in Table 1. 

5.2 Experiment Results (I): 'Naive Model' vs. 'EM Model' 

Table 2 lists the results for the 'NaIve Model' and 'EM Model' over a varied 
number of additional class labels created by the 'random distractor' and the 'NaIve 
Bayes' distractor. Since 'wine' and 'iris' datasets only have 3 different classes, the 
maximum additional class labels for these two data sets is 1. Therefore, there is no 
experiment result for the case of 2 or 3 distractor class labels for 'wine' and 'iris'. 

As shown in Table 2, for the random distractor, the 'EM Model' substantially 
outperforms the 'NaIve Model' in all cases. Particularly, for the 'wine' and 'iris' 
datasets, by introducing an additional class label to every training instance, there is 
only one class label left out of the class label candidates and yet the performance of 
the 'EM Model' is still close to the case when there are no additional class labels. 

1 NaIve Bayes distractor should not be confused with the multiple-label NaIve Model. 



Meanwhile, the 'NaIve Model' degrades significantly for both cases, i.e. from 3.7% 
to 10.0% for 'wine' and 5.7% to 18.5% for 'iris'. Therefore, we can conclude that 
the 'EM Model' is able to reduce the noise caused by randomly added class labels. 

T bl 2 A a e verage 10 D Id - 0 cross va I attOn error rates D b h 'N or ot aIve M d I' d 'EM M d I' o e an o e 

Class Name ecoli wine pendigit iris glass 

1 extra label Naive 17.3% 10% 14.2% 18.5% 24.9% 
by random 

EM 13.6% 4.4% 8.9% 5.2% 12.9% distracter 

2 extra labels Naive 20.7% 15.4% 44.9% 
by random 

EM 14.9% 9.4% 12% distracter 

3 extra labe ls Naive 25 .8% 17.6% 34.6% 
by random 

EM 18.3% 11.7% 33.5% distracter 

1 extra labe l Naive 22.4% 15.7% 17.2% 18.5% 27.7% 
byNB 

EM 14.6% 6.8% 15.4% 6.7% 20.6% distracter 

Secondly, we compare the performance of these two models over a more realistic 
setup for the 'multiple-label' problem where the distractor identity is correlated with 
the true label (simulated by using the NB distractor). Table 1 gives the percentage 
of times when the trained Naive Bayes classifier disagreed with the 'true' labels, 
which is also the percentage of the additional class labels that is created by the 
'Naive Bayes distracter'. The last row of Table 2 shows the performance of these 
two models when the additional class labels are introduced by the 'NB distracter'. 
Again, the 'EM Model' is significantly better than 'NaIve Model'. For dataset 
'ecoli', 'wine' and 'iris', the averaged error rates of the 'EM Model' are very close 
to the cases when there are no distractor class labels. Therefore, we can conclude 
that the 'EM Model' is able to reduce the noise caused not only by random label 
ambiguity but also by some systematic label ambiguity. 

5.3 Experiment Results (II): 'EM Model' vs. 'EM+Prior Model' 

T bl 3 A a e verage 10 D Id - 0 cross va I attOn error rates D 'EM P' M d I' or + nor o e over f UCld Ive atasets. 

Class Name ecoli wine pendigit iris glass 

I extra label Perfect 13 .3% 3.7% 8.7% 5.2% 12.4% 
by random 

Noisy 13 .3% 3.2% 9.0% 18.5% 12 .9% distracter 

2 extra labels Perfect 13.6% 9.0% 12.5% 
by random 

Noisy 13.9% 9.4% 13.6% distracter 

3 extra labels Perfect 12.6% 10.0% 12.4% 
by random 

Noisy 13.9% 11.0% 16.8% distracter 

I extra labe l Perfect 13.9% 5.0% 13.4% 5.2% 16.7% 
byNB 

Noisy 15.3% 6.2% 14.2% 6.7% 19.0% distracter 

In this subsection, we focus on whether the information from a prior distribution on 
class labels can improve the performance. In this experiment, we study two cases: 

• 'Perfect Case '. Here the guidance of the prior distribution on class labels is 
always correct. In our experiments for every training instance Xi we set the 
probability Jri, y; twice as large for the correct Yi as for other Jri ,yo<y; • 



• 'Noisy Case '. For this case, we only allow the guidance of the prior distribution 
on the class label to be correct 70% of the time. With this setup, we are able to see if 
the ' EM+Prior Model' is robust to noise in the prior distribution. 

Table 3 lists the results for 'EM+Prior Model' under both 'Perfect' and ' Noisy' 
situations over five different collections. In the 'perfect case ', the averaged error 
rates of 'EM+Prior Model ' are quite close to the case when there is no label 
ambiguity at all (see Table 1). Moreover, the performance of the 'Noisy case' is also 
close to that of the 'Perfect case ' for most data sets listed in Table 3. Therefore, we 
can conclude that our 'EM+Prior Model' is able to take advantage of the pnor 
distribution on class labels even when some of the' guidance' is not correct. 

6 Conclusions and Future Work 

We introduced the 'multiple-label' problem and proposed a discriminative 
framework that is able to clarify the ambiguity between labels. Although it is 
discriminative, this framework is firmly grounded in the EM algorithm for 
maximum likelihood estimation. The framework was generalized to take advantage 
of prior knowledge on which class label is more likely to be the target label. Our 
experiments clearly indicate that the proposed discriminative model is robust to the 
addition of noisy class labels and to errors in the prior distribution over class labels. 

The idea of this framework, allowing the target distribution p(y I x,) to be inferred 
from the classifier itself, can be extended in many different ways. We outline 
several promising directions which we hope to explore. (1) It should be possible to 
extend this framework to function approximation, where y E 91, and ranges or 
distributions are given for the target. In this case, it may be useful to 
parameterize p(y I x,) to simplify the resulting variational optimization problem. 
(2) We have focused on maximum likelihood; however Bayesian generalizations, 
where the goal is to compute a posterior distribution over () given ambiguously 
labeled data would be interesting. (3) It is possible to use these ideas as a framework 
for combining multiple models. Each model is trained on a small labeled data set 
and predicts labels on a large unlabeled data set. These predicted labels can be 
combined with the small set to form a larger multiply-labeled data set (since not all 
models will agree). This larger data set can be used to train a more complex model. 
(4) It is possible to extend this framework to handle the presence of label noise and 
to combine it with the multiple-instance problem [3]. 
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