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Abstract

In this paper, we introduce a mixed finite element method on a staggered mesh for the

numerical solution of the steady state Navier-Stokes equations in which the two components

of the velocity and the pressure are defined on three different meshes. This method is

a conforming quadrilateral Q1 × Q1 − P0 element approximation for the Navier-Stokes

equations. First-order error estimates are obtained for both the velocity and the pressure.

Numerical examples are presented to illustrate the effectiveness of the proposed method.
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Key words: Mixed finite element method, Staggered mesh, Navier-Stokes equations, Error

estimate.

1. Introduction

It is well known that the simplest conforming low-order elements like the P1 − P0 (linear

velocity vector, constant pressure) triangular element and Q1 − P0 (bilinear velocity vector,

constant pressure) quadrilateral element are not stable when applied to the Navier-Stokes (NS)

equations [6]. Therefore, some special treatments are needed in order to keep the schemes stable.

During the last two decades, there has been a rapid development in practical stabilization

technique for the P1 − P0 element and the Q1 − P0 element for solving the NS equations

[1, 7, 8, 9, 11]. In [3], an economical finite element scheme is proposed to construct three finite-

dimensional subspaces for the two velocity components and the pressure. In [2], a mixed finite

element scheme for the Stokes equations is investigated. In this paper, we extend the idea in [3]

to construct a mixed finite element scheme for the NS equations, which is more efficient than

the scheme given in [3] as the degree of freedom is reduced. The optimal error estimate of this

scheme is obtained.

The outline of the paper is as follows. In the next section, we give a formulation of the

mixed finite element method for the Navier-Stokes equations. In Section 3, the error estimates

will be provided. In Section 4, two numerical examples will be considered. Finally, we end the

paper with a short concluding section.

2. A Mixed Finite Element Formulation for the NS Equations

We consider the following boundary value problem of the Navier-Stokes equations:






−ν∆u + (u · ∇)u + ∇p = f , in Ω,

div u = 0, in Ω,

u = 0, on ∂Ω,

(2.1)
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Fig. 2.1. Quadrangulations: (a) Jh, (b) J
1
h , (c) J

2
h .

where Ω ⊂ R2 is a rectangular domain, ν is the viscosity, u = (u1, u2)
T represents the velocity

vector, p is the pressure, and f = (f1, f2)
T is the given body force. Let Hn(Ω) and H1

0 (Ω) denote

the standard Sobolev spaces with the norm ‖ · ‖n,Ω and ‖ · ‖1,Ω respectively. Furthermore, let

V ≡ H1
0 (Ω) × H1

0 (Ω), M ≡

{

q : q ∈ L2(Ω) and

∫

Ω

qdx = 0

}

.

Then the boundary value problem (2.1) is reduced to the following equivalent variational prob-

lem [3]:







Find u ∈ V and p ∈ M, such that

a(u,v) + a1(u;u,v) + b(v, p) = (f ,v) ∀v ∈ V,

b(u, q) = 0 ∀q ∈ M,

(2.2)

where

a(u,v) = ν

∫

Ω

∇u · ∇vdx,

a1(w;u,v) =
1

2

2
∑

i,j=1

∫

Ω

wj

( ∂ui

∂xj

vi −
∂vi

∂xj

ui

)

dx,

b(v, q) = −

∫

Ω

qdiv vdx, (f ,v) =

∫

Ω

f · vdx.

For simplicity we assume that the domain Ω is a unit square, but the finite element method

discussed below can be easily generalized to include the case that the domain Ω is rectangular.

Let N be a given integer and h = 1/N . We shall construct the finite-dimensional subspaces of

V and M by introducing three different quadrangulations Jh, J 1
h , J 2

h of Ω. First we divide Ω

into equal squares

Ti,j =
{

(x1, x2) : (x1)i−1 ≤ x1 ≤ (x1)i, (x2)j−1 ≤ x2 ≤ (x2)j

}

, i, j = 1, · · · , N,

where (x1)i = ih and (x2)j = jh. The corresponding quadrangulation is denoted by Jh. Then

for all Ti,j ∈ Jh we connect all the midpoints of the vertical sides of Ti,j by straight line

segments if the midpoints have a distance h, and extend the resulting mesh to the boundary

Γ. Then Ω is divided into squares and rectangles, and the corresponding quadrangulation is

denoted by J 1
h . Similarly, for all Ti,j ∈ Jh we connect all the midpoints of the horizontal sides

of Ti,j by straight line segments if the midpoints have a distance h, and extend the resulting

mesh to the boundary Γ. Then we obtained the third quadrangulation of Ω, which is denoted

by J 2
h (see Fig. 2.1).
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Corresponding to the quadrangulation Jh, let

Mh :=

{

qh : qh|T = constant ∀T ∈ Jh and

∫

Ω

qhdx = 0

}

,

Mh is a subspace of M . Furthermore, using the quadrangulation J 1
h and J 2

h , we construct two

subspaces of H1
0 (Ω). Set

S1
h =

{

vh ∈ C(0)(Ω) : vh|T 1 ∈ Q1(T
1) ∀T 1 ∈ J 1

h , and vh|Γ = 0
}

,

S2
h =

{

vh ∈ C(0)(Ω) : vh|T 2 ∈ Q1(T
2) ∀T 2 ∈ J 2

h , and vh|Γ = 0
}

,

where Q1 denotes the space of all polynomials of degree not exceeding one with respect to each

of the two variables x1 and x2. Let

Vh = S1
h × S2

h;

obviously, Vh is a subspace of V. Using the subspaces Vh and Mh instead of V and M

in the variational problem (2.2), we obtain the discrete problem which is the finite element

approximation of the nonlinear variational problem (2.2):







Find uh ∈ Vh and ph ∈ Mh, such that

a(uh,vh) + a1(uh;uh,vh) + b(vh, ph) = (f ,vh) ∀vh ∈ Vh,

b(uh, qh) = 0 ∀qh ∈ Mh.

(2.3)

3. Well-Posedness of Problem (2.3) and Optimal Error Estimate

In order to attain the error estimate of the finite element approximation to the nonlinear

variational problem (2.2), we first introduce some notations. Let

N = sup
u,v,w∈V

|a1(w;u,v)|

|u|1,Ω|v|1,Ω|w|1,Ω
,

Nh = sup
uh,vh,wh∈Vh

|a1(wh;uh,vh)|

|uh|1,Ω|vh|1,Ω|wh|1,Ω
,

‖f‖∗ = sup
v∈V

(f ,v)

|v|1,Ω
, ‖f‖∗h = sup

vh∈Vh

(f ,vh)

|vh|1,Ω
,

G(u;v,w) = a1(u;u,w) − a1(v;v,w),

where | · |1,Ω is the semi-norm of H1(Ω). Obviously, the following inequalities hold

Nh ≤ N, ‖f‖∗h ≤ ‖f‖∗. (3.1)

For the quadrangulation Jh, we divided the edges of all squares into two sets. The first set

contains all vertical edges and is denoted by LV . The second set contains all horizontal edges

and is denoted by LH . We define the operator Π : V → Vh by Πu = (Π1
hu1, Π

2
hu2)

T ∈ S1
h ×S2

h

satisfying:
∫

l

Π1
hu1ds =

∫

l

u1ds ∀l ∈ LV ,

∫

l

Π2
hu2ds =

∫

l

u2ds ∀l ∈ LH .

For the problem (2.3), we have the following result. Its proof is omitted as it is basically

the same as in continuous problem (see [4] Chapter IV).



A Mixed Finite Element Method on a Staggered Mesh for Navier-Stokes Equations 819

Theorem 3.1. Problem (2.3) has at least one solution (uh, ph) ∈ Vh × Mh. Moreover, the

solution is unique if the following condition holds

Nh‖f‖
∗

h/ν2 < 1.

Theorem 3.2. Under the assumption that

N‖f‖∗/ν2 < 1 − δ, (3.2)

where 0 < δ < 1 is a constant, the finite element solution of problem (2.3) (uh, ph) ∈ Vh × Mh

satisfies:































|u− uh|1,Ω ≤ C

{

|u− Πu|1,Ω + inf
qh∈Mh

‖p − qh‖0,Ω + sup
wh∈Vh

|G(u; Πu,wh)|
|wh|1,Ω

}

,

‖p − ph‖0,Ω ≤ C

{

|u − Πu|1,Ω + inf
qh∈Mh

‖p − qh‖0,Ω

+ sup
wh∈Vh

|G(u; Πu,wh)|
|wh|1,Ω

+ sup
wh∈Vh

|G(u;uh,wh)|
|wh|1,Ω

}

.

(3.3)

Before the proof we recall some results from [2], which only give the error estimate for the

Stokes equations, using the same finite element formulations as in this paper.

Lemma 3.1. (i) For any u ∈ V, we have
∫

Ω

qhdiv (u− Πu)dx = 0 ∀qh ∈ Mh. (3.4)

(ii) There exist two constants C1 and C2 independent of h, such that

inf
vh∈Vh

‖u− vh‖1,Ω ≤ ‖u− Πu‖1,Ω ≤ C1h|u|2,Ω,

inf
qh∈Mh

‖p− qh‖0,Ω ≤ C2h|p|1,Ω.
(3.5)

(iii) There is a constant B > 0 such that

|b(v, q)| ≤ B‖v‖1,Ω‖q‖0,Ω. (3.6)

(iv) (Ladyzhenskaya-Babus̆ka-Brezzi condition) There exists a constant β0 > 0 independent

of h such that

sup
vh∈Vh

b(vh, qh)

‖vh‖1,Ω
≥ β0‖qh‖0,Ω ∀qh ∈ Mh. (3.7)

(v) There exists a constant C3 independent of h such that

‖Πu‖1,Ω ≤ C3‖u‖1,Ω ∀u ∈ V.

Proof of Theorem 3.2. By inequality (3.2), we know that

Nh‖f‖
∗

h/ν2 ≤ N‖f‖∗/ν2 ≤ 1 − δ. (3.8)

It follows from Theorem 3.1 that problem (2.3) has a unique solution (uh, ph) ∈ Vh × Mh.

Setting vh = uh in the first equation in (2.3), and observing that a1(uh;uh,uh) = 0 and

b(uh, ph) = 0, we obtain

(f ,uh) = a(uh,uh) + a1(uh;uh,uh) + b(uh, ph) = a(uh,uh).
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Consequently,

ν|uh|
2
1,Ω = a(uh,uh) = (f ,uh) ≤ |f |∗h|uh|1,Ω,

which yields

|uh|1,Ω ≤
‖f‖∗h

ν
. (3.9)

Let zh = uh − Πu and

Φ = a(uh, zh) + a1(uh;uh, zh) − a(Πu, zh) − a1(Πu; Πu, zh).

Then we have

Φ = a(uh, zh) + a1(zh;uh, zh) + a1(Πu;uh, zh) − a(Πu, zh) − a1(Πu; Πu, zh)

= a(zh, zh) + a1(zh;uh, zh) + a1(Πu; zh, zh)

= a(zh, zh) + a1(zh;uh, zh) ≥ ν|zh|
2
1,Ω − Nh|uh|1,Ω|zh|

2
1,Ω

≥
(

ν −
Nh‖f‖

∗

h

ν

)

|zh|
2
1,Ω ≥

(

ν −
N‖f‖∗

ν

)

|zh|
2
1,Ω ≥ νδ|zh|

2
1,Ω,

which gives that

|zh|
2
1,Ω ≤

1

νδ
|Φ|. (3.10)

On the other hand, we know that

Φ = (f , zh) − b(zh, ph) − a(Πu, zh) − a1(Πu; Πu, zh)

= a(u, zh) + a1(u;u, zh) + b(zh, p) − b(zh, ph) − a(Πu, zh) − a1(Πu; Πu, zh)

= a(u − Πu, zh) + b(zh, p − ph) + G(u; Πu, zh)

= a(u − Πu, zh) + b(zh, p − qh) + b(uh − Πu, qh − ph) + G(u; Πu, zh)

= a(u − Πu, zh) + b(zh, p − qh) + b(uh − u, qh − ph) + G(u; Πu, zh)

= a(u − Πu, zh) + b(zh, p − qh) + G(u; Πu, zh) ∀qh ∈ Mh.

Furthermore, we obtain, for any qh ∈ Mh,

|Φ| ≤

(

ν|u − Πu|1,Ω + B‖p − qh‖0,Ω + sup
wh∈Vh

|G(u; Πu,wh)|

|wh|1,Ω

)

|zh|1,Ω. (3.11)

Combining (3.10) and (3.11), we have

|zh|1,Ω ≤
1

νδ

(

ν|u − Πu|1,Ω + B inf
qh∈Mh

‖p− qh‖0,Ω + sup
wh∈Vh

|G(u; Πu,wh)|

|wh|1,Ω

)

.

Using the triangle inequality yields

|u− uh|1,Ω ≤ |u− Πu|1,Ω + |Πu − uh|1,Ω

≤ C

{

|u− Πu|1,Ω + inf
qh∈Mh

‖p − qh‖0,Ω + sup
wh∈Vh

|G(u; Πu,wh)|

|wh|1,Ω

}

, (3.12)
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where C is a constant dependent only on B, δ and ν. To estimate error ‖p − ph‖0,Ω, consider

b(vh, ph − qh) = b(vh, ph − p) + b(vh, p − qh)

= a(u− uh,vh) + G(u;uh,vh) + b(vh, p − qh),

for any vh ∈ Vh and qh ∈ Mh. By (iv) of Lemma 3.1, we obtain, for any qh ∈ Mh,

‖ph − qh‖0,Ω ≤
1

β0
sup

vh∈Vh

|b(vh, ph − qh)|

|vh|1,Ω

≤
1

β0

{

ν|u− uh|1,Ω + B‖p − qh‖0,Ω + sup
vh∈Vh

|G(u;uh,vh)|

|vh|1,Ω

}

. (3.13)

Combining inequalities (3.12), (3.13) and using the triangle inequality lead to the conclusion

(3.3). �

Now we estimate G(u; Πu,vh) and G(u;uh,vh). We have

Lemma 3.2. Suppose (u, p) is the solution of problem (2.2) and u ∈ V ∩ (H2(Ω))2, p ∈ M ∩

H1(Ω). Then there exists a constant C independent of h and (u, p), such that

sup
vh∈Vh

|G(u; Πu,vh)|

|vh|1,Ω
≤ Ch‖u‖1,Ω|u|2,Ω, (3.14)

sup
vh∈Vh

|G(u;uh,vh)|

|vh|1,Ω
≤ C|u − uh|1,Ω

{

‖f‖∗ + |u|1,Ω

}

. (3.15)

Proof. Observe that

|G(u; Πu,vh)| = |a1(u;u,vh) − a1(Πu; Πu,vh)|

= |a1(u − Πu;u,vh) + a1(Πu;u,vh) − a1(Πu; Πu,vh)|

= |a1(u − Πu;u,vh) + a1(Πu;u − Πu,vh)|

≤ N |u− Πu|1,Ω

{

|u|1,Ω + |Πu|1,Ω

}

|vh|1,Ω

≤ Ch|u|2,Ω‖u‖1,Ω|vh|1,Ω,

where the last inequality used (ii) and (v) of Lemma 3.1. This ends the proof of (3.14). Similarly,

we have

|G(u;uh,vh)| = |a1(u;u,vh) − a1(uh;uh,vh)|

= |a1(u − uh;u,vh) + a1(uh;u,vh) − a1(uh;uh,vh)|

= |a1(u − uh;u,vh) + a1(uh;u − uh,vh)|

≤ N |u− uh|1,Ω

{

|u|1,Ω + |uh|1,Ω

}

|vh|1,Ω

≤ C|u − uh|1,Ω

{

|u|1,Ω + ‖f‖∗
}

|vh|1,Ω,

where we used (3.9) in the last step. The inequality (3.15) is then proved. �

Finally, an application of Theorem 3.2 and Lemma 3.2 yields the following error estimates.

Theorem 3.3. Suppose that the condition (3.2) holds and that the solution of problem (2.2)

satisfies u ∈ V ∩ (H2(Ω))2, p ∈ M ∩ H1(Ω). Then the following error estimates hold:

|u − uh|1,Ω ≤ Ch
{

|u|2,Ω + |p|1,Ω + ‖u‖1,Ω|u|2,Ω

}

, (3.16)

‖p − ph‖0,Ω ≤ Ch
{

|u|2,Ω + |p|1,Ω + ‖u‖1,Ω|u|2,Ω

}(

1 + |u|1,Ω + ‖f‖∗
)

. (3.17)
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Proof. The inequality (3.16) follows from (ii) of Lemma 3.1, Theorem 3.2 and Lemma 3.2.

For the inequality (3.17), we have

‖p − ph‖0,Ω

≤ C

{

‖u− Πu‖1,Ω + inf
qh∈Mh

‖p − qh‖0,Ω + sup
wh∈Vh

|G(u; Πu,wh)|

‖wh‖1,Ω
sup

wh∈Vh

|G(u;uh,wh)|

‖wh‖1,Ω

}

≤ C
{

h
(

|u|2,Ω + |p|1,Ω + ‖u‖1,Ω|u|2,Ω

)

|u − uh|1,Ω

(

‖f‖∗ + |u|1,Ω

)

}

≤ Ch
(

|u|2,Ω + |p|1,Ω + ‖u‖1,Ω|u|2,Ω

)

(

1 + |u|1,Ω + ‖f‖∗
)

.

This completes the proof of the theorem. �

4. Numerical Examples

In this section, we present two numerical examples to show the performance of the FEM

described above: one has a known analytical solution that allows a study of the convergence

rate and another one is a benchmark problem.

Example 4.1. Let Ω = (0, 1)× (0, 1) and L be the number of partitions for the interval (0, 1),

i.e., h = 1/L. We choose the velocity vector u(x) = (u1(x), u2(x))T and the pressure p as

follows:






u1(x1, x2) = sin2 πx1 sinπx2 cosπx2,

u2(x1, x2) = − sin2 πx2 sin πx1 cosπx1,

p(x1, x2) = − cos 2πx1 cos 2πx2/16.

(4.1)

It is straightforward to check that (u, p) is the exact solution of problem (2.1) with a body force

f = (f1, f2)
T , where

f1(x1, x2) =
1

8
π cos 2πx2 sin 2πx1 − 2π2 cos2 πx1 cosπx2 sinπx2

+ 6π2 cosπx2 sin2 πx1 sin πx2 + π cosπx1 cos2 πx2 sin3 πx1 sin2 πx2

+ π cosπx1 sin3 πx1 sin4 πx2, (4.2)

f2(x1, x2) =
1

8
π cos 2πx1 sin 2πx2 + 2π2 cosπx1 cos2 πx2 sinπx1

− 6π2 cosπx1 sin πx1 sin2 πx2 + π cos2 πx1 cosπx2 sin2 πx1 sin3 πx2

+ π cosπx2 sin4 πx1 sin3 πx2. (4.3)

Table 4.1: Numerical error and rate for Example 4.1.

Meshes H1 error for u rate H0 error for p rate

N = 4 5.39 × 10−1 1.47 × 10−1

N = 8 3.13 × 10−1 0.78 5.47 × 10−2 1.42

N = 16 1.64 × 10−1 0.93 1.65 × 10−2 1.73

N = 32 8.46 × 10−2 0.95 4.57 × 10−3 1.85

Fig. 4.1 shows the pressure and velocity field given by (4.1). Table 4.1 gives the numerical

errors and convergence rates obtained on successively refined meshes. These results agree with

the optimal theoretical convergence rates except that the convergence rate for p is great than

1.
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Fig. 4.1. The solution (4.1). (a) the pressure field and (b) the velocity field.

Example 4.2. The second example is the driven cavity problem, in which the incompressible

fluid is enclosed in a square box, with an imposed velocity of unity in the horizontal direction

on the top boundary, and a no slip condition on the remaining walls.

This problem has been widely used for validating incompressible fluid dynamic algorithms,

in spite of the singularities at two of its corners. We will compare our results to those obtained

by Ghia et al. [5] and Kaya and Riviere [10].
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Fig. 4.2. Velocity field for Example 4.2. From left to right: Re = 1, 100 and 400.

We consider the flow for different Reynolds numbers on a fixed mesh with h = 1/20 or

h = 1/40. For low Reynolds numbers (Re = 1) the flow has only one vortex located above

the center. When the Reynolds number increases to Re = 100, the flow pattern starts to form

reverse circulation cells in two lower corners. It is found that the results for Re = 1, 100 and

400 are in good agreement with the solutions presented in [5] and [10].

5. Conclusion

In this paper, we proposed a mixed finite element method on a staggered mesh for the

numerical solution of the Navier-Stokes equations. The method is a conforming quadrilateral

Q1 ×Q1 −P0 element approximation on three different meshes. The optimal error estimates of

the numerical solution are given, and two numerical examples are used to show the effectiveness

and feasibility of the given method.
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