
ar
X

iv
:0

80
6.

16
15

v1
  [

m
at

h.
Q

A
] 

 1
0 

Ju
n 

20
08

THE HOCHSCHILD COHOMOLOGY RING OF THE

STANDARD PODLEŚ QUANTUM SPHERE

ULRICH KRÄHMER

Abstract. The cup and cap product in twisted Hochschild (co)homolo-
gy is computed for the standard quantum 2-sphere and used to construct
a cyclic 2-cocycle that represents the fundamental Hochschild class.

1. Introduction

The aim of this article is to compute for the quantised coordinate ring A =
Cq[S

2] (the standard Podleś quantum 2-sphere) the cup and cap product

` : Hm(A, σA) ⊗Hn(A, τA) → Hm+n(A, τ◦σA),

a : Hn(A, σA) ⊗Hm(A, τA) → Hn−m(A, τ◦σA)

in the Hochschild (co)homology of A with coefficients in the bimodules σA
that arise by twisting the canonical bimodule structure of A by σ ∈ Aut(A).
In [8] we carried out similar computations for Cq[SU(2)]. For Cq[S

2] they
become much simpler and their conceptual content that was somewhat hid-
den in [8] between lengthy computations becomes more transparent.

For the coordinate ring of a smooth variety X, the Hochschild-Kostant-
Rosenberg theorem identifies Λ(A) := (

⊕

n≥0H
n(A,A),`) with the algebra

of multivector fields on X, and
⊕

n≥0Hn(A,A) as a Λ(A)-module (via a)

with the differential forms Ω(X) on X. For noncommutative algebras, Λ(A)
tends to be fairly degenerate. However, twisting by σ allows one to consider
richer cohomology rings that encode more information about A.

For example, the generators of the Drinfeld-Jimbo quantisation of the Lie
algebra of SU(2) act via twisted rather than usual derivations onA = Cq[S

2].
These give rise to two cohomology classes [∂±1] ∈ H1(A,

σ−1

mod

A), where

σmod is Woronowicz’s modular automorphism determined for example by (2)
below. We will see that they behave under the cup product similar to the
corresponding classical SU(2)-invariant vector fields on S2 = SU(2)/U(1),

[∂1] ` [∂1] = [∂1] ` [∂−1] + q2[∂−1] ` [∂1] = [∂−1] ` [∂−1] = 0,

and use them to define a functional on H2(A, σmod
A) ≃ C of the form

(1) ϕ([ω]) := q−1

∫

[ω] a ([∂1] ` [∂−1]) ∈ C.

Here [ω] ∈ H2(A, σmod
A) is acted on by [∂1] ` [∂−1] ∈ H2(A,

σ−2

mod

A) to

produce a class in H0(A, σ−1

mod

A), and then one applies a certain twisted

trace
∫

∈ (H0(A, σA))∗ in order to obtain a numerical invariant of [ω].
1
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The functional ϕ provides a dual description of the fundamental class
[dA] ∈ H2(A, σmod

A) that corresponds under the Poincaré-type duality [12]

(2) Hn(A, σmod
A) ≃ H2−n(A,A)

to 1 ∈ H0(A,A). From the practical point of view, one can use ϕ to deter-
mine the homology class of a given Hochschild cycle, and for Cq[SU(2)] this
tool allowed us to compute the cyclic homology [13] built upon Hn(A, σA)
as a special case of Connes-Moscovici’s Hopf-cyclic homology [3].

The trace
∫

in (1) is for Cq[S
2] actually a character (namely the restriction

of the counit ε of Cq[SU(2)] to Cq[S
2]), so on the level of chains a0⊗a1⊗a2

in the standard Hochschild complex, ϕ acts as

ϕ(a0, a1, a2) = q−1ε(a0)F (a1)E(a2),

where E,F : A→ k are the (untwisted) derivations given by

E(a) := ε(∂−1(a)), F (a) := ε(∂1(a)).

There seems to be a general principle behind this that we observed already
in [8]. Therein, the trace

∫

needed was the integral over the unquantised
maximal torus in quantum SU(2). For the quantum 2-sphere the corre-
sponding submanifold of S2 is simply a point, namely one of the two leaves
of the symplectic foliation of the Poisson manifold S2 quantised by A.

Finally we discuss how to add a counter term η to ϕ in order to ob-
tain a functional on cyclic homology without changing the functional on
H2(A, σmod

A). Schmüdgen and Wagner have defined a cyclic 2-cocycle in
[17] that looks like ϕ, only the trace

∫

is the Haar functional of Cq[SU(2)],
and this makes their functional trivial on Hochschild homology [6].

The structure of the paper is as follows. In Sections 2-5 we recall the def-
inition of Hochschild (co)homology, of the cup and cap product, give some
more background about the above mentioned Poincaré duality and introduce
then the algebra A = Cq[S

2] we want to study. In Section 6 we recall from
[6] an explicit formula for the fundamental class dA of A. In Section 7 we
determine the twisted centre of A and its cap product action on the second
Hochschild homology: in [6] it was shown that H2(A, σA) = 0 except when
σ = σn

mod for some n ≥ 1, and then H2(A, σn
mod

A) ≃ C. Here we identify
the sum of all these nontrivial homology groups with the free module of
rank 1 over a polynomial ring k[x0] that constitutes the twisted centre of A.
We continue in Section 8 with recalling from [6] (but in a slightly simplified
form) the computation of the zeroth Hochschild homology groups of A and
of the twisted traces on A, describing in addition the cap product action
of the twisted centre. Section 9 is the first really interesting one, here we
compute the cup product between twisted derivations of A that arise from
the action of the quantised Lie algebra of SU(2) on A. We observe similar as
in [8] that these twisted derivations generate a quantised exterior algebra.
These computations are then used in Section 10 to define and discuss ϕ.
Section 11 recalls the definition and some key properties of cyclic homology,
and finally we show in Section 12 that ϕ can be altered by a Hochschild
coboundary to obtain a cyclic cocycle.

I acknowledge support by the EPSRC fellowship EP/E/043267/1.
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2. Hochschild (co)homology with coefficients in σA

Let A be a unital associative algebra over a field k and σ ∈ Aut(A) be
an automorphism. We denote by σA the A-bimodule which is A as vector
space with left and right A-actions given by a ⊲ b ⊳ c := σ(a)bc, a, b, c ∈ A,
and by Hn(A, σA) and Hn(A, σA) the Hochschild (co)homology groups of A
with coefficients in σA. Explicitly, Hn(A, σA) is the homology of the chain
complex Cσ

n := A⊗n+1 with boundary map bn : Cσ
n → Cσ

n−1 given by

bn(a0 ⊗ . . . ⊗ an) =

n−1
∑

i=0

(−1)ia0 ⊗ . . .⊗ aiai+1 ⊗ . . .⊗ an

+(−1)nσ(an)a0 ⊗ . . .⊗ an−1.

Usually we will write b(a0, . . . , an) instead of bn(a0 ⊗ . . .⊗an) and similarly
for other multilinear maps. Dually, Hn(A, σA) is the cohomology of the
cochain complex Cn

σ := Homk(A
⊗n, A) with coboundary map given by

(bnψ)(a0, . . . , an) = σ(a0)ψ(a1, . . . , an)

+
n−1
∑

i=0

(−1)i+1ψ(a0, . . . , aiai+1, . . . , an)

+(−1)n+1ψ(a0, . . . , an−1)an.

In degree 0, we identify ψ : A⊗0 := k → A with a := ψ(1) ∈ A. This is a
cocycle precisely when ab = σ(b)a for all b ∈ A. Thus H0(A, σA) consists of
the σ-central elements of A. In degree 1, a cocycle is a σ-twisted derivation
ψ : A → A, ψ(ab) = σ(a)ψ(b) + ψ(a)b, and H1(A, σA) is the space of all
such derivations modulo those of the form ψ(a) = ba−σ(a)b for some b ∈ A.
For more information and details, see e.g. [2, 7, 13, 14, 20].

3. The cup and cap product

The cup product is the map

` : Hm(A, σA) ⊗Hn(A, τA) → Hm+n(A, τ◦σA), σ, τ ∈ Aut(A)

given on the level of cochains by

(3) (ϕ ` ψ)(a1, . . . , am+n) = τ(ϕ(a1, . . . , am))ψ(am+1, . . . , am+n).

For any monoid G ⊂ Aut(A), it turns

ΛG(A) :=
⊕

n∈N,σ∈G

Hn(A, σA)

into an N ×G-graded algebra that we would like to view as some analogue
of an algebra of multivector fields on a classical space. Twisted derivations
play here the role of vector fields, and the following easily checked (see [8])
relations demonstrate their behaviour under ` :

lemma 3.1. In degree 0, ` reduces to the opposite product of A,

(4) a ` b = ba, a ∈ H0(A, σA), b ∈ H0(A, τA),

and for c ∈ H0(A, σA) and twisted derivations ϕ ∈ C1
σ, ψ ∈ C1

τ we have

ψ ` c = τ(c) ` ψ, [ϕ] ` [ψ] = −[σ−1 ◦ ψ ◦ σ] ` [ϕ] ∈ H2(A, τ◦σA).
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Dually,

ΩG(A) :=
⊕

n∈N,σ∈G

Hn(A, σ−1A)

becomes an N ×G-graded (right) module over ΛG(A) via the cap product

a : Hn(A, σA) ⊗Hm(A, τA) → Hn−m(A, τ◦σA), m ≤ n.

Explicitly, this is given between ϕ ∈ Cm
τ and a0 ⊗ . . . ⊗ an ∈ Cσ

n by

(a0 ⊗ . . .⊗ an) a ϕ = τ(a0)ϕ(a1, . . . , am) ⊗ am+1 ⊗ . . .⊗ an ∈ Cτ◦σ
n−m.

In particular, the cap product with a twisted central element c ∈ H0(A, σA)
is simply given by multiplication from the left,

(5) (a0 ⊗ . . . ⊗ an) a c = σ(a0)c⊗ . . . ⊗ an = ca0 ⊗ . . .⊗ an.

For more information, see e.g. [2, 8, 15].

4. Poincaré duality

The cup and cap product structures are intimately related to Poincaré-
type dualities between homology and cohomology. As became clear in recent
years, there is for many algebras A a distinguished automorphism σmod and
for all τ ∈ Aut(A) a canonical k-linear isomorphism

(6) Hn(A, τA) ≃ Hdim(A)−n(A, τ◦σmod
A),

where dim(A) is the dimension of A in the sense of [2], see e.g. [1, 5, 7, 11, 12]
but first of all [19] for this story. Under the above isomorphism, the canon-
ical element 1 ∈ H0(A,A) corresponds to a class [dA] ∈ Hdim(A)(A, σmod

A),
and then the isomorphism is given by the cap product with this fundamental
class. In [8] we carried this out explicitly for the standard quantised coordi-
nate ring Cq[SU(2)] (see e.g. [10] for background on quantum groups), and
the aim here is to do the same for the standard quantum 2-sphere of Podleś
that we introduce in the next section. For the coordinate ring of a smooth
affine variety such a duality will hold if and only if the variety is Calabi-Yau,
that is, if the line bundle on X whose sections are the top degree Kähler
differentials Ωdim(X)(X) is trivial (in general one has to twist not by an au-
tomorphism but by this module, see e.g. [11]). This happens if and only if
there is a nowhere (i.e. in no localisation at prime ideals) vanishing element

in Ωdim(X)(X), and under the Hochschild-Kostant-Rosenberg isomorphism
Ωdim(X)(X) ≃ Hdim(X)(k[X], k[X]) such an element will be identified with
the fundamental class [dk[X]].

5. The Podleś sphere

From now on we fix k = C, an element q ∈ k\{0} assumed to be not a
root of unity, and A is the standard Podleś quantum 2-sphere [16], that is,
the universal k-algebra generated by x−1, x0, x1 satisfying the relations

x±1x0 = q∓2x0x±1, x±1x∓1 = q∓2x2
0 + q∓1x0.

It follows easily from these relations that the elements

eij :=

{

xi
0x

j
1 j ≥ 0,

xi
0x

−j
−1 j < 0,

i ∈ N, j ∈ Z



THE HOCHSCHILD COHOMOLOGY RING OF THE STANDARD PODLEŚ QUANTUM SPHERE5

form a vector space basis of A.
We denote by G the automorphism group of A. The defining relations

imply that for any λ ∈ k\{0} there is a unique σλ ∈ G with σλ(xn) = λnxn.

lemma 5.1. Any σ ∈ G is of the form σλ for some λ, that is, G ≃ k\{0}.

Proof. It is straightforward to classify the characters of A and to see
that the intersection of their kernels is the ideal generated by x0. It fol-
lows that any automorphism σ maps x0 to a nonzero scalar multiple of x0.
Hence x0σ(x±1) = q±2σ(x±1)x0 which implies σ(x±1) = f±x±1 for some
f± ∈ k[x0]. Inserting into the defining relations gives the claim. 2

See also [4, 10] for more information about this algebra.

6. The fundamental class

As shown in [12], A satisfies (6) with dim(A) = 2 (as it probably should
be for a quantum 2-sphere), and with σmod determined uniquely by

σmod(xn) = q2nxn.

So H2(A, σmod
A) ≃ H0(A,A), the centre of A. This consists only of the

scalars, hence [dA] is unique up to normalisation. Hadfield has computed
explicit vector space bases of all Hn(A, σA) for general automorphisms σ [6]
and has given in particular an explicit cycle representing [dA] ∈ H2(A, σmod

A):

dA := 2x1 ⊗ (x−1 ⊗ x0 − q2x0 ⊗ x−1)

+2x−1 ⊗ (q−2x0 ⊗ x1 − x1 ⊗ x0)

+1 ⊗ (qx1 ⊗ x−1 − q−1x−1 ⊗ x1 + (q − q−1)x0 ⊗ x0)

+2x0 ⊗ (x1 ⊗ x−1 − x−1 ⊗ x1 + (q2 − q−2)x0 ⊗ x0).

7. The twisted centre and H2(A, σA)

As we pointed out above, the fundamental class is classically (meaning for
the coordinate ring of a smooth variety) represented by a nowhere vanishing
algebraic differential form of top degree, and this form can be multiplied by
any regular function to give a new top degree form. Analogously we can act
via the cap product by any twisted central element a ∈ H0(A, τA) on the
fundamental class [dA] ∈ H2(A, σmod

A) and obtain another homology class
in H2(A, τ◦σmod

A). This operation clarifies completely the structure of all
the other nonvanishing H2(A, σA) that were computed by Hadfield, since
they become altogether identified with a free k[x0]-module of rank 1:

lemma 7.1. The twisted centre Λ0
G(A) of A is the subalgebra generated by

x0 ∈ H0(A, σmod
A), and for every [ω] ∈ H2(A, σA), σ any automorphism,

there exists exactly one polynomial f ∈ k[x0] such that [ω] = [dA] a f .

Proof. Since any automorphism fixes x0, any twisted central element
must commute with x0 and is hence a polynomial in x0 (use the vector
space basis eij). Conversely, it is clear that x0 ∈ H0(A, σmod

A) and hence
xi

0 = x0 ` . . . ` x0 ∈ H0(A, σ
q2i
A) (recall Lemma 3.1). The second part

follows by Poincaré duality (6), but of course also from Hadfield’s explicit
computations of all the nontrivial H2(A, σA). 2
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8. Twisted traces and H0(A, σA)

As a vector space, H0(A, σA) can be described as follows [6]:

lemma 8.1. For σ = σλ, the following is a vector space basis of H0(A, σA):

{[1]} ∪ {[xj
±1] | j 6= 0, λ = 1} ∪ {[x0] |λ 6= q2i, i > 0} ∪ {[xi

0] |λ = q2i, i > 0}.

Proof. By definition, H0(A, σA) is as a vector space the quotient of A
by the subspace spanned by elements of the form b(a, b) = ab−σ(b)a. Since

a⊗ bc = ab⊗ c+ σ(c)a⊗ b− b(a, b, c),

one has b(a, bc) = b(ab, c) + b(σ(c)a, b), so im b is spanned by the elements
bkij := b(eij , xk), i ∈ N, j ∈ Z, k = −1, 0, 1 which are for σ = σλ given by

b−1
ij = (1 − λ−1q2i)eij−1, j ≤ 0

b−1
ij = (q−4j+2 − λ−1q2i+2)ei+2j−1 + (q−2j+1 − λ−1q2i+1)ei+1j−1, j > 0,

b0ij = (q−2j − 1)ei+1j ,

b1ij = (1 − λq−2i)eij+1, j ≥ 0

b1ij = (q−4j−2 − λq−2i−2)ei+2j+1 + (q−2j−1 − λq−2i−1)ei+1j+1, j < 0.

Reducing this by sheer inspection gives that im b is spanned by the elements

ei+1j , (λ− 1)e0j , j 6= 0,

(λ− q2i+4)q−2i−2ei+20 + (λ− q2i+2)q−2i−1ei+10, i ≥ 0.

The claim follows easily. 2

Dually, H0(A, σA) can be described in terms of σ-twisted traces, that is,
linear functionals

∫

: A→ k satisfying
∫

ab =

∫

σ(b)a, a, b ∈ A.

Such traces obviously descend to well-defined functionals onH0(A, σA) which
we denote for simplicity by the same symbol. For each of the basis elements
in Lemma 8.1, we can (and do) define one such trace

∫

[xj
±1

]
ekl :=

{

1 k = 0,±j = l,
0 otherwise,

j ≥ 0,

∫

[x0]
ekl :=







1 k = 1, l = 0,

(−1)k+1q1−k 1−λq−2

1−λq−2k k > 1, l = 0,

0 otherwise,
∫

[xi
0
]
ekl :=

{

1 k = i, l = 0,
0 otherwise,

i > 1.

Note that
∫

[x0]
is defined in such a way that the case λ = q2 is included.

Note also that
∫

[1] is in fact the character ε determined by ε(xn) = 0. Any

automorphism of A leaves ker ε invariant, so this is a twisted trace with



THE HOCHSCHILD COHOMOLOGY RING OF THE STANDARD PODLEŚ QUANTUM SPHERE7

respect to all automorphisms of A. Since we have for all elements [ω], [η] of
the basis of H0(A, σA) from Lemma 8.1

∫

[ω]
[η] =

{

1 [ω] = [η],
0 otherwise,

we can (and will) use the
∫

[ω] to determine the homology class of a given 0-

cycle. For example, it helps describing the cap product action of the twisted
centre on H0(A, σA):

lemma 8.2. The action of Λ0
G(A) on H0(A, σλ

A), is determined by

[xj
±1] a x0 = 0, j > 0,

[xi
0] a x0 = [xi+1

0 ] =

{

0 i = 0, λ = q2k, k > 0,

−q 1−λ
q2−λ

[x0] i = 1, λ 6= q2.

Proof. As we remarked in (5), x0 acts on cycles by multiplication from
the left. The claim follows by applying all the above constructed twisted
traces to the resulting cycles. 2

In particular, the span of the classes [xi
0] ∈ H0(A, σi

mod

A) is the orbit of

[1] ∈ H0(A,A) under the action of the twisted centre. In a sense, the span

of the [xj
±1] can be viewed as the orbit of [1] under the cap product with

x±1, although the latter do not belong to the twisted centre of A: for any
subalgebra B ⊂ A with σ(B) ⊂ B, there is a map Hn(B, σB) → Hn(A, σA)
given on the level of cycles by the embedding of B into A in each tensor
component. If a class is in the image of this map, then taking the cap
product with a twisted central element of B is well-defined, and this applies
here to the case B is the subalgebra generated by x1 or x−1, respectively.

9. Three twisted derivations

The Podleś sphere is a module algebra over the Hopf dual Cq[SU(2)]◦ of
the quantised coordinate ring of SU(2), hence twisted primitive elements
therein act as twisted derivations on A. We will not need Hopf algebra
theory later, so we rather state the following lemma that the reader can
verify directly by checking compatibility with the defining relations of A:

lemma 9.1. The assignments

∂1 : x−1, x0, x1 7→ 0, qx−1, 1 + (q + q−1)x0,

∂0 : x−1, x0, x1 7→ −x−1, 0, x1,

∂−1 : x−1, x0, x1 7→ 1 + (q + q−1)x0, q
−1x1, 0

can be extended uniquely to 1-cocycles ∂i ∈ C1

σ
−|i|
mod

,

∂i(ab) = σ
−|i|
mod(a)∂i(b) + ∂i(a)b, a, b ∈ A, i = −1, 0, 1.

The following lemma describes the cup product action of Λ0
G(A) on these

derivations. Admittedly, the result is slightly weird:

lemma 9.2. The Λ0
G(A)-module generated by [∂0] is free, but [∂±1] ` x0 = 0.
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Proof. One checks directly that one has for all a ∈ A

(∂±1 ` x0)(a) = x0∂±1(a) = ±
1

q − q−1
(x∓1a− ax∓1),

so the derivations ∂±1 ` x0 are inner. On the other hand, the computation
of ejkx1 − σi

mod(x1)ejk = b1jk in the proof of Lemma 8.1 shows that no inner

derivations in C1
σi
mod

can map x1 to xi
0x1 = (∂0 ` xi

0)(x1). 2

For the reason explained at the end of the previous section, it does make

sense to take the cup product between ∂±1 and xj
∓1, although these are

not twisted central, and this produces new twisted derivations. Acting with
them on the fundamental class and comparing the result with the generators
of H1(A, σA) computed in [6] allows one to describe all twisted derivations
of A, see [8] where we carried this out for Cq[SU(2)]. However, there is little
gain in this for the main purpose of the present paper which is to obtain a
functional describing dA in a dual fashion, so I leave out these calculations.

Let us compute instead the algebra generated by the [∂i]. Classically, a
differential form can be contracted with a vector field to reduce its degree,
and in the quantum case this is generalised by the cap product action of
(the cohomology class of) a twisted derivation on a homology class. Here is
the full orbit of dA under this action of the ∂i:

dA a ∂0 = 2q−2x−1x0 ⊗ x1 + 2q2x1x0 ⊗ x−1 − 2(q2 + q−2)x2
0 ⊗ x0

+q−1x−1 ⊗ x1 + qx1 ⊗ x−1 − 2(q + q−1)x0 ⊗ x0,

(dA a ∂0) a ∂0 = 2(q2 − q−2)x3
0 + 3(q − q−1)x2

0,

(dA a ∂0) a ∂−1 = 2(−q5 + q−1)x1x
2
0 + (−2q2 + 1 + q−21)x1x0 + q−1x1,

(dA a ∂0) a ∂1 = 2(q − q−5)x−1x
2
0 + (q2 + 1 − 2q−2)x−1x0 + qx−1,

dA a ∂−1 = −2q−1x2
1 ⊗ x−1 − 2q−1x2

0 ⊗ x1 + 2(q3 + q−3)x1x0 ⊗ x0

−(1 + q−2)x0 ⊗ x1 + (1 + q−2)x1 ⊗ x0 − q−1 ⊗ x1,

(dA a ∂−1) a ∂0 = 2(q−3 − q3)x1x
2
0 + (−q2 − 1 + 2q−2)x1x0 − q−1x1,

(dA a ∂−1) a ∂−1 = 2(q2 − q−6)x2
1x0 + (q−3 − q−5)x2

1,

(dA a ∂−1) a ∂1 = 2(q−8 − 1)x3
0 + (−q − 2q−1 + q−5 + 2q−7)x2

0

+(−2 − q−2 + q−4)x0 − q−1,

dA a ∂1 = 2qx2
−1 ⊗ x1 + 2qx2

0 ⊗ x−1 − 2(q3 + q−3)x−1x0 ⊗ x0

+(q2 + 1)x0 ⊗ x−1 + (−q2 − 1)x−1 ⊗ x0 + q ⊗ x−1,

(dA a ∂1) a ∂0 = 2(q3 − q−3)x−1x
2
0 + (2q2 − 1 − q−2)x−1x0 − qx−1,

(dA a ∂1) a ∂−1 = 2(1 − q8)x3
0 + (−2q7 − q5 + 2q + q−1)x2

0

+(−q4 + q2 + 2)x0 + q,

(dA a ∂1) a ∂1 = 2(q6 − q−2)x2
−1x0 + (q5 − q3)x2

−1.
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In homology, this reduces to:

([dA] a [∂i]) a [∂i] = 0,

([dA] a [∂0]) a [∂−1] = −([dA] a [∂−1]) a [∂0] = q−1[x1],

([dA] a [∂0]) a [∂1] = −([dA] a [∂1]) a [∂0] = q[x−1],

([dA] a [∂1]) a [∂−1] = −q2([dA] a [∂−1]) a [∂1] = (q2 + 1)[x0] + q.

From this, we see:

lemma 9.3. The ∂i satisfy no other relations than those dictated by Lemma 3.1,

[∂i] ` [∂j ] = −q2ij [∂j ] ` [∂i], i ≤ j.

Proof. Poincaré duality tells that the ΛG(A)-module ΩG(A) is free and
generated by dA, so the [∂i] satisfy under ` all the relations they satisfy as
linear maps on ΩG(A). The result follows from the above computations. 2

10. The volume form

Finally, we now put

ϕ : ΩG(A) → k, [ω] 7→ q−1

∫

[1]
[ω] a ([∂1] ` [∂−1]),

or explicitly on chain level

ϕ(a0, a1, a2) = q−1

∫

[1]
σ−2

mod(a0)σ
−1
mod(∂1(a1))∂−1(a2).

Our above computation of ([dA] a [∂1]) a [∂−1] implies

ϕ(dA) = 1,

so the functional ϕ provides a dual description of the fundamental class.
It is a very useful tool (and probably the only really applicable one) for
checking whether or not a given σmod-twisted 2-cycle has trivial class in
H2(A, σmod

A) or not, which as a result of the above computations (recall
that H2(A, σmod

A) ≃ C) is the fact if and only if ϕ vanishes on the cycle.
Note that we remarked in Section 8 that

∫

[1] is actually a character that we

also denote by ε (when embedding A as usual into the quantised coordinate
ring of SU(2), this character becomes the restriction of the counit). Hence
ϕ can also be written as simple as

ϕ(a0, a1, a2) = q−1ε(a0)F (a1)E(a2),

where E,F : A→ k are the (untwisted) derivations given by

E(a) := ε(∂−1(a)), F (a) := ε(∂1(a)).

A moment’s reflection now gives the explicit formula

(7) ϕ(eij , ekl, emn) = q−1δi0δj0δk0δl1δm0δn−1.

This looks surprisingly simple (not to say banal), usually one expects
∫

to be some sort of integral. However, we observed already in [8] for the
case of quantum SU(2) that the functional appearing when expressing the
volume form dual to dA as above is given by something like the integral
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of the restriction of functions to a maximal torus which is a Poisson sub-
group of the Poisson group quantised by Cq[SU(2)]. Here we have the same
phenomenon, but it appears much sharper since the functional

∫

[1] is really

integration over (meaning evaluation in) a single point. It somehow seems
that the homological information about a quantum space can be supported
in a classical subspace of smaller dimension.

Note also that one can alternatively define

ϕ± : ω 7→ ±q∓1

∫

[x∓1]
ω a (∂0 ` ∂±1),

where
∫

[±1] is the trace (no twist) dual to [x±1] ∈ H0(A,A). Again, the

above computations give ϕ±(dA) = 1, hence ϕ = ϕ+ = ϕ− as functionals on
H2(A, σmod

A) ≃ C (but not as functionals on Cσmod

2 ), and for some purposes
this representation of the functional might be better suited that ϕ.

11. Cyclic homology

In the classical case A = k[X], X a smooth variety, exterior derivation
d turns the algebraic differential forms Ω(X) into a cochain complex that
computes the algebraic de Rham cohomology Hn(X) of X. In the non-
commutative case, Connes’ cyclic homology provides a subtle analogue of
Hn(X). The extension of cyclic homology to the twisted coefficients σA
arose in the work of Kustermans, Murphy and Tuset on covariant differen-
tial calculi over quantum groups [13], but can also be viewed as a special
case of Connes-Moscovici’s Hopf-cyclic homology [3], see e.g. our article [8]
and the references therein for more background.1

The precise relation between HCn(k[X]) (σ = id) and Hn(X) is

(8) HCn(k[X]) ≃ Ωn(X)/im d ⊕Hn−2(X) ⊕Hn−4(X) ⊕ . . . ,

so all differential n-forms (not only the closed ones in ker d!) have classes in
HCn(k[X]), and this gives a map

I : Ωn(X) ≃ Hn(k[X], k[X]) → HCn(k[X]).

Furthermore, d (applied to Ωn(X)/im d) gives a well-defined map

B : HCn(k[X]) → Ωn+1(X) ≃ Hn+1(k[X], k[X])

which kills all the Hn−2i(X) summands in (8), and finally there is

S : HCn(k[X]) → HCn−2(k[X])

that cuts off the first term Ωn(X)/im d and leaves the rest untouched (using
the obvious embedding Hn−2(X) → Ωn−2(X)/im d in the next summand).

This whole picture carries over to the general noncommutative case and
becomes condensed into Connes’ SBI-sequence, see [14, 20] for the details.
The upshot of this is that HCn(A) contains a whole lot of ballast, the
really interesting part is only the image of the natural map I coming from
Hochschild homology, which equals the kernel of the periodicity map S.

One way to define the cyclic theory is in terms of the operator

t : Cσ
n → Cσ

n : a0 ⊗ . . .⊗ an 7→ (−1)nσ(an) ⊗ a0 ⊗ . . .⊗ an−1.

1As Jack Shapiro informed me, he will discuss in a forthcoming article the corresponding
version of noncommutative de Rham theory [18].
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Its coinvariants Cσ
n/im (id − t) form a quotient complex of (Cσ

n , b) whose
homology is HCσ

n(A) (k should contain Q and σ should be diagonalisable,
otherwise the result might be not what one wants). As a consequence, a
linear functional ψ : Cσ

n → k with ψ(im b) = 0 descends to a functional
on HCσ

n(A) if it is invariant under t, ψ = ψ ◦ t. Clearly, ψ also induces
a functional on Hn(A, σA), but this might vanish even when the one on
HCσ

n(A) doesn’t (namely when there exists χ : Cσ
n−1 → k with ψ = χ ◦ b,

but no such χ which is cyclic, χ = χ◦ t). Such a functional on HCσ
n (A) that

vanishes on Hn(A, σA) corresponds to the above described ballast in cyclic
homology, it vanishes in the classical case on the leading term Ωn(X)/im d

of HCn(k[X]) and is rather a functional on some HCσ
n−2k(A), k > 0, that

is promoted to a functional on HCσ
n(A) using the periodicity operation S.

12. The case of the Podlsś sphere

Let now A be again the Podleś sphere. Schmüdgen and Wagner have
constructed in [17] a nontrivial cyclic 2-cocycle on A which later was shown
by Hadfield to be trivial when viewed on Hochschild homology. It is now
natural to ask whether our volume form ϕ constructed above does also give
rise to a nontrivial functional on cyclic homology.

It is easily checked that a functional ψ : Cσ
n → k vanishing on im b is

cyclic if and only if ϕ(1, a1, . . . , an) = 0 for all a1, . . . , an ∈ A. Using this
one sees that our ϕ itself is not cyclic since by (7) we have

ϕ(1, x1, x−1) = q−1 6= 0.

However, we can alter ϕ by a coboundary to make it cyclic, so the problem
is only a matter of representing the functional on H2(A, σmod

A) properly:

lemma 12.1. Define η := φ ◦ b : Cσmod

2 → k, where the linear functional

φ : A⊗A→ k vanishes on all ekl ⊗ emn except on the following ones:

φ(1, x0) :=
1

q−2 − 1
, φ(1, x2

0) :=
1

q − q−1
, φ(x0, x0) :=

1

2(q − q−1)
.

Then η induces the trivial functional on H2(A, σmod
A) and ϕ+ η is cyclic.

Proof. By its definition, η vanishes on im b and defines the trivial func-
tional on H2(A, σmod

A). By (7), the only chain of the form 1⊗ ekl ⊗ emn on
which ϕ does not vanish is 1⊗x1 ⊗x−1, where ϕ has the value q−1, and one
easily checks using

η(1, a1, a2) = φ(a1, a2) − φ(1, a1a2) + φ(σmod(a2), a1)

that similarly η(1, ekl, emn) vanishes except when ekl ⊗ emn = x1 ⊗ x−1 and
then it equals −q−1. The result follows. 2
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