A Method for Symbolic Computation
of Abstract Operations*

Aditya Thakur! and Thomas Reps'+2

! University of Wisconsin; Madison, WI, USA
2 GrammaTech, Inc.; Ithaca, NY, USA

Abstract. This paper helps to bridge the gap between (i) the use of
logic for specifying program semantics and performing program analy-
sis, and (ii) abstract interpretation. Many operations needed by an ab-
stract interpreter can be reduced to the problem of symbolic abstraction:
the symbolic abstraction of a formula ¢ in logic £, denoted by a(yp),
is the most-precise value in abstract domain A that over-approximates
the meaning of . We present a parametric framework that, given £
and A, implements @. The algorithm computes successively better over-
approximations of @(y). Because it approaches &(y) from “above”, if it
is taking too much time, a safe answer can be returned at any stage.

Moreover, the framework is“dual-use”: in addition to its applications in
abstract interpretation, it provides a new way for an SMT (Satisfiability
Modulo Theories) solver to perform unsatisfiability checking: given ¢ €
L, the condition @(¢) = L implies that ¢ is unsatisfiable.

1 Introduction

This paper concerns the connection between abstract interpretation and logic.
Like several previous papers [29, 37,21, 12], our work is based on the insight that
many of the key operations needed by an abstract interpreter can be reduced to
the problem of symbolic abstraction [29].

Suppose that A is an abstract domain with concretization function v : A —
C. Given a formula ¢ in logic £, let [¢] denote the meaning of p—i.e., the set of
concrete states that satisfy ¢. The symbolic abstraction of p, denoted by a(y),
is the best A value that over-approximates [¢]: @(p) is the unique value A € A
such that (i) [¢] € v(A), and (ii) for all A" € A for which [¢] C v(A"), AC A"

This paper presents a new framework for performing symbolic abstraction,
discusses its properties, and presents several instantiations for various logics and
abstract domains. In addition to providing insight on fundamental limits, the

* This research is supported, in part, by NSF under grants CCF-{0810053, 0904371},
by ONR under grants N00014-{09-1-0510, 10-M-0251}, by ARL under grant
WI11NF-09-1-0413, by AFRL under grants FA9550-09-1-0279 and FA8650-10-C-
7088; and by DARPA under cooperative agreement HR0011-12-2-0012. Any opin-
ions, findings, and conclusions or recommendations expressed in this publication are
those of the authors, and do not necessarily reflect the views of the sponsoring agen-
cies. T. Reps has an ownership interest in GrammaTech, Inc., which has licensed
elements of the technology reported in this publication.

2 Aditya Thakur and Thomas Reps

new algorithm for & also performs well: our experiments show that it is 11.3
times faster than a competing method [29,21,12], while finding dataflow facts
(i.e., invariants) that are equally precise at 76.9% of a program’s basic blocks,
better (tighter) at 19.8% of the blocks, and worse (looser) at only 3.3% of the
blocks.

Most-Precise Abstract Interpretation. Suppose that G = C %) Ais a
Galois connection between concrete domain C and abstract domain 4. Then the
“best transformer” [7], or best abstract post operator for transition 7, denoted
by].:T()\St[’f] : A — A, is the most-precise abstract operator possible, given A, for
the concrete post operator for 7, Post[r] : C — C.].:T()\St[’f] can be expressed in
terms of «, v, and Post[7], as follows [7): Post[r] = & o Post[r] o y. This equation
defines the limit of precision obtainable using abstraction .A. However, it is non-
constructive; it does not provide an algorithm, either for applying Post[r] or for
finding a representation of the function ﬁc;t[T]. In particular, in many cases, the
application of v to an abstract value would yield an intermediate result—a set
of concrete states—that is either infinite or too large to fit in computer memory.

Symbolic Abstract Operations. The aforementioned problem with applying
~ can be side-stepped by working with symbolic representations of sets of states
(i.e., using formulas in some logic £). The use of £ formulas to represent sets
of states is convenient because logic can also be used for specifying a language’s
concrete semantics; i.e., the concrete semantics of a transformer Post[7] can be
stated as a formula ¢, € L that specifies the relation between input states
and output states. However, the symbolic approach introduces a new challenge:
how to bridge the gap between £ and A [29]. In particular, we need to develop
(i) algorithms to handle interconversion between formulas of £ and abstract
values in A4, and (ii) symbolic versions of the operations that form the core
repertoire at the heart of an abstract interpreter.

1. 4(A): Given an abstract value A € A, the symbolic concretization of A,
denoted by 7(A), maps A to a formula 7(A) such that A and 7(A) represent
the same set of concrete states (i.e., v(A) = [Y(A)]).

2. a(p): Given ¢ € L, the symbolic abstraction of ¢, denoted by @(y), maps ¢
to the best value in A that over-approximates [¢] (i.e., a(¢) = a([¢]))-

3. Agu?le[gp] (A): Givenp € Land A € A, Agu?le[go] (A) returns the best value
in A that over-approximates the meaning of ¢ in concrete states described
by A. That is, AguTne[(p](A) equals a(Je] Ny(A)).

4. Creation of a representation of ﬁ(;t[T]: Some intraprocedural [15] and many
interprocedural [32,22] dataflow-analysis algorithms operate on instances of
an abstract datatype 7 that (i) represents a family of abstract functions
(or relations), and (ii) is closed under composition and join. By “creation
of a representation of Post [7]”, we mean finding the best instance in 7 that
over-approximates Post[7].

Several other symbolic abstract operations are discussed in §6.
Experience shows that, for most abstract domains, it is easy to write a 7§
function (item 1) [29]. The other three operations are inter-related. & (item 2)

A Method for Symbolic Computation of Abstract Operations 3

can be reduced to Assume (item 3) as follows: a(y) = Aﬁne[cp]('l’). Item 4 can
be reduced to item 2 as follows: The concrete post operator Post[r] corresponds
to a formula ¢, € L that expresses the transition relation between input states
and output states. An instance of abstract datatype 7 in item 4 represents
an abstract-domain element that denotes an over-approximation of [o,]. @(¢r)
computes the best instance in 7 that over-approximates [¢,].

This paper presents a parametric framework that, for some abstract domains,
is capable of performing most-precise abstract operations in the limit. Because
the method approaches its result from “above”, if the computation takes too
much time, it can be stopped to yield a safe result—i.e., an over-approximation
to the best abstract operation—at any stage. Thus, the framework provides
a tunable algorithm that offers a performance-versus-precision trade-off. We
replace “7 7 with “7~” to denote over-approximating operators—e.g., &(y),
Assume[g](A4), and Post[7](A).3

Key Insight. In [35], we showed how Stalmarck’s method [33], an algorithm for
satisfiability checking of propositional formulas, can be explained using abstract-
interpretation terminology—in particular, as an instantiation of a more general
algorithm, Stalmarck[.A], that is parameterized by a (Boolean) abstract domain
A and operations on A. The algorithm that goes by the name “Stalmarck’s
method” is one instantiation of Stalmarck[.A] with a certain abstract domain.
Abstract value A’ is a semantic reduction [7] of A with respect to ¢ if
(1) v(A) N e] = v(A) N [g], and (ii) A’ C A. At each step, Stalmarck[.A] holds
some A € A; each of the so-called “propagation rules” employed in Stalmarck’s
method improves A by finding a semantic reduction of A with respect to ¢.
The key insight of the present paper is that there is a connection between
Stalmarck[A] and & 4. In essence, to check whether a formula ¢ is unsatisfiable,
Stalmarck[A] computes &4 () and performs the test “@a(p) = L 47 If the test
succeeds, it establishes that [¢] € v(L4) = 0, and hence that ¢ is unsatisfiable.
In this paper, we present a generalization of Stalmarck’s algorithm to richer
logics, such as quantifier-free linear rational arithmetic (QF_LRA) and quantifier-
free bit-vector arithmetic (QF_BV). Instead of only using a Boolean abstract
domain, the generalized method of this paper also uses richer abstract domains,
such as the polyhedral domain [8] and the bit-vector affine-relations domain [12].
By this means, we obtain algorithms for computing « for these richer abstract
domains. The bottom line is that our algorithm is “dual-use”: (i) it can be used
by an abstract interpreter to compute & (and perform other symbolic abstract
operations), and (ii) it can be used in an SMT (Satisfiability Modulo Theories)
solver to determine whether a formula is satisfiable.
Because we are working with more expressive logics, our algorithm uses sev-
eral ideas that go beyond what is used in either Stalmarck’s method [33] or
in Stalmarck[A] [35]. The methods described in this paper are also quite dif-

3 Post[r] is used by Graf and Saidi [14] to mean a different state transformer from the
one that Post[r] denotes in this paper. Throughout the paper, we use Post[r] solely
to mean an over-approximation of Post[7]; thus, our notation is not ambiguous.

4 Aditya Thakur and Thomas Reps

ferent from the huge amount of recent work that uses decision procedures in
program analysis. It has become standard to reduce program paths to formu-
las by encoding a program’s actions in logic (e.g., by symbolic execution) and
calling a decision procedure to determine whether a given path through the pro-
gram is feasible. In contrast, the techniques described in this paper adopt—and
adapt—the key ideas from Stalmarck’s method to create new algorithms for key
program-analysis operations. Finally, the methods described in this paper are
quite different from previous methods for symbolic abstraction [29,37,21,12],
which all make repeated calls to an SMT solver.

Contributions. The contributions of the paper can be summarized as follows:

— We present a connection between symbolic abstraction and Stalmarck’s
method for checking satisfiability (§2).

— We present a generalization of Stalmarck’s method that lifts the algorithm
from propositional logic to richer logics (§3).

— We present a new parametric framework that, for some abstract domains, is
capable of performing most-precise abstract operations in the limit, includ-
ing a(p) and Aﬁne[ap](ﬁl), as well as creating a representation of P/ozt[T].
Because the method approaches most-precise values from “above”, if the
computation takes too much time it can be stopped to yield a sound result.

— We present instantiations of our framework for two logic/abstract-domain
pairs: QF_BV/KS and QF_LRA /Polyhedra, and discuss completeness (§4).

— We present experimental results that illustrate the dual-use nature of our
framework. One experiment uses it to compute abstract transformers, which
are then used to generate invariants; another experiment uses it for checking
satisfiability (§5).

86 discusses other symbolic operations. §7 discusses related work. Proofs can be
found in [36].

2 Overview

We now illustrate the key points of our Stalmarck-inspired technique using two
examples. The first shows how our technique applies to computing abstract trans-
formers; the second describes its application to checking unsatisfiability.

The top-level, overall goal of Stalmarck’s method can be understood in terms
of the operation a(v). However, Stalmarck’s method is recursive (counting down
on a parameter k), and the operation performed at each recursive level is the
slightly more general operation Assume[t)](A). Thus, we will discuss Assume.

Ezample 1. Consider the following x86 assembly code
L1: cmp eax, 2 L2: jz L4 L3:

The instruction at L1 sets the zero flag (zf) to true if the value of register eax
equals 2. At instruction L2, if zf is true the program jumps to location L4 (not
seen in the code snippet) by updating the value of the program counter (pc)
to L4; otherwise, control falls through to program location L3. The transition
formula that expresses the state transformation from the beginning of L1 to the

A Method for Symbolic Computation of Abstract Operations 5

beginning of L4 is thus ¢ = (zf < (eax = 2)) A (pc’ = ITE(z£,14,L3)) A (pc’ =
L4) A (eax’ = eax). (¢ is a QF_BV formula.)

Let A be the abstract domain of affine relations over the x86 registers. Let
Ap = T4, the empty set of affine constraints over input-state and output-state
variables. We now describe how our algorithm creates a representation of the A
transformer for ¢ by computing Assume[¢](Ag). The result represents a sound
abstract transformer for use in affine-relation analysis (ARA) [27,21, 12]. First,
the ITE term in ¢ is rewritten as (zf =>(pc’ = L4)) A (—-zf =(pc’ = L3)). Thus,
the transition formula becomes ¢ = (zf <(eax = 2)) A (zf =(pc’ = L4)) A
(—zf =(pc’ = L3)) A (pc’ = L4) A (eax’ = eax).

Next, propagation rules are used to compute a semantic reduction with re-
spect to ¢, starting from Ag. The main feature of the propagation rules is that
they are “local”; that is, they make use of only a small part of formula ¢ to
compute the semantic reduction.

1. Because ¢ has to be true, we can conclude that each of the conjuncts of ¢
are also true; that is, zf < (eax = 2), zf =(pc’ = L4), —zf =(pc’ = L3),
pc’ = L4, and eax’ = eax are all true.

2. Suppose that we have a function pud 4 such that for a literal [€ £, A’ =
ua4(l) is a sound overapproximation of a(l). Because the literal pc’ = L4
is true, we conclude that A" = uaa(pc’ = L4) = {pc’ — L4 = 0} holds, and
thus A; = AgM A’ = {pc’ — L4 = 0}, which is a semantic reduction of A.

3. Similarly, because the literal eax’ = eax is true, we obtain As = A; N
pnag(eax’ = eax) = {pc’ — L4 = 0, eax’ — eax = 0}.

4. We know that —zf =(pc’ = L3). Furthermore, ua4(pc’ = L3) = {pc’ —L3 =
0}. Now {pc’—L3 = 0}MAz is L, which implies that [pc’ = L3]Ny({pc’—L4 =
0,eax’ — eax = 0}) =). Thus, we can conclude that —zf is false, and hence
that zf is true. This value of zf, along with the fact that zf <(eax = 2)
is true, enables us to determine that A” = pa4(eax = 2) = {eax — 2 = 0}
must hold. Thus, our final semantic-reduction step produces Az = AsMA" =
{pc’ — L4 =0,eax’ — eax = 0,eax — 2 = 0}.

Abstract value As is a set of affine constraints over the registers at L1 (input-
state variables) and those at L4 (output-state variables), and can be used for
affine-relation analysis using standard techniques (e.g., see [19] or [12, §5]). O

The above example illustrates how our technique propagates truth values
to various subformulas of ¢. The process of repeatedly applying propagation
rules to compute Assume is called 0-assume. The next example illustrates the
Dilemma Rule, a more powerful rule for computing semantic reductions.

Ezample 2. Let £ be QF_LRA, and let A be the polyhedral abstract domain [8].
Consider the formula ¢ = (ag < bo) A (ap < ¢o) A (bg < a1 Vg < a1) A(ag <
b1) Alar < e1) A (by < ag Vea < ag) A(ag < ag) € L (see Fig. 1(a)). Suppose
that we want to compute Assume[t)](T 4).

To make the communication between the truth values of subformulas
and the abstract value explicit, we associate a fresh Boolean variable with
each subformula of ¢ to give a set of integrity constraints Z. In this case,

6 Aditya Thakur and Thomas Reps

\\!

(Plv"a‘l) = (Po,Ag) M (B,T) (Po.Ao) 1M (B,T) = (P2,A)

m (PaA)=(PLAYUPLA) |

|

|

a o a Ui

0 N L a |
¢ ~™c, 7 2 ! = \

(PLAY) (P2.A2)
(a) (b)
Fig. 1. (a) Inconsistent inequalities in the (unsatisfiable) formula used in Ex. 2. (b)

Application of the Dilemma Rule to abstract value (Po, Ao). The dashed arrows from
(P, A;) to (P, AL) indicate that (P}, A}) is a semantic reduction of (P;, A;).

Iw = {U,l =4 /\§22 Ui, U <:>(a0 < b()), us <:>(a() < C()), U4 <:>(U,9 V U,lo), us <:>(a1 <
bl), Ug <:>(Cl1 < Cl), ur <:>(U11 \ U,lg), us <:>(Cl2 < ao), Ug <:>(b0 < al), U0 <:>(C() <
a1),u11 < (b1 < az),u12 < (c1 < az)}. The integrity constraints encode the struc-
ture of ¢ via the set of Boolean variables Y = {uy, ua,...,u12}. When Z is used
as a formula, it denotes the conjunction of the individual integrity constraints.

We now introduce an abstraction over U; in particular, we use the Cartesian
domain P = (U — {0,1,*}), in which * denotes “unknown”, and each element
in P represents a set of assignments in P(U4 — {0,1}). We denote an element of
the Cartesian domain as a mapping, e.g., [u; — 0,u2 — 1,uz — %], or [0, 1, %]
if uy, ug, and uz are understood. Tp is the element Au.x. The “single-point”
partial assignment in which variable v is set to b is denoted by Tp[v — b].

The variable u; € U represents the root of ¥; consequently, the single-point
partial assignment Tp[u; — 1] corresponds to the assertion that 1 is satisfiable.
In fact, the models of 1 are closely related to the concrete values in [Z] N
¥(Tplur — 1]). For every concrete value in [Z] N (T p[ur — 1]), its projection
onto {a;, bi,¢; | 0 < i <1} U{az} gives us a model of ¢; that is, [¢] = ([Z] N
Y(Tplur = 1]))|({as,bi,csl0<i<1}U{as})- By this means, the problem of computing
Assumel[t)](T 4) is reduced to that of computing Assume[Z]((Tp[u; — 1], T 4)),
where (Tplu; — 1], T 4) is an element of the reduced product of P and A.

Because wj is true in Tplu; — 1], the integrity constraint u1<:>/\§:2 u;
implies that ws...us are also true, which refines Tplu; — 1] to Py =
[1,1,1,1,1,1,1, 1, %, %, , *|. Because us is true and ug <(ag < bg) € Z, T 4 can be
refined using pua 4 (ag < by) = {ap—by < 0}. Doing the same for us, us, ug, and ug,
refines T 4 to Ag = {ap—bo < 0,a9—cy < 0,a1—b; < 0,a1—c1 < 0,a2—ag < 0}.
These steps refine (Tp[u; — 1], T 4) to (Po, Ag) via 0-assume.

To increase precision, we need to use the Dilemma Rule, a branch-and-merge
rule, in which the current abstract state is split into two (disjoint) abstract
states, O-assume is applied to both abstract values, and the resulting abstract
values are merged by performing a join. The steps of the Dilemma Rule are
shown schematically in Fig. 1(b) and described below.

A Method for Symbolic Computation of Abstract Operations 7

In our example, the value of ug is unknown in Py. Let B € P be Tp[ug + 0];
then B, the abstract complement of B, is T p[ug — 1]. Note that v(B)Ny(B) = 0,

and v(B) U~(B) = v(T). The current abstract value (P, Ao) is split into
(Pl, Al) = (P(), Ao) [(B, T) and (PQ, Ag) = (P(), A()) 1 (E, T)

Now consider 0-assume on (P;, A1). Because ug is false, and uy is true, we can
conclude that uig has to be true, using the integrity constraint ug < (ug V u1g).
Because u1g holds and w19 <(co < a1) € Z, Ay can be refined with the constraint
co — a1 < 0. Because ag — ¢y < 0 € Ay, ag — a1 < 0 can be inferred. Similarly,
when performing 0-assume on (P, A3), ag — a1 < 0 is inferred. Call the abstract
values computed by 0-assume (P], A}) and (P5, A), respectively. At this point,
the join of (P], A}) and (P}, A}) is taken. Because ag — a; < 0 is present in both
branches, it is retained in the join. The resulting abstract value is (Ps, A3) =
([1,1,1,1,1,1,1, 1, %, %,%,%],{ao — bp < 0,a0 —cp < 0,a1 — b1 < 0,a1 — ¢ <
0,a2 —ag < 0,a9 —ay < 0}. Note that although Ps equals Py, A3 is strictly more
precise than Ag (i.e., A3 C Ap), and hence (Ps, A3) is a semantic reduction of
(Po, Ag) with respect to .

Now suppose (Ps, A3) is split using u1;. Using reasoning similar to that
performed above, a; — ag < 0 is inferred on both branches, and hence so is
ap — az < 0. However, ag — as < 0 contradicts as — ag < 0; consequently, the ab-
stract value reduces to (Lp, L 4) on both branches. Thus, Assume[t)](T 4) = LA,
and hence 1) is unsatisfiable. In this way, Assume instantiated with the polyhe-
dral domain can be used to decide the satisfiability of a QF_LRA formula. O

The process of repeatedly applying the Dilemma Rule is called 1-assume.
That is, repeatedly some variable u € U is selected whose truth value is unknown,
the current abstract value is split using B = Tp[u +— 0] and B = Tpu — 1],
0-assume is applied to each of these values, and the resulting abstract values
are merged via join (Fig. 1(b)). Different policies for selecting the next variable
on which to split can affect how quickly an answer is found; however, any fair
selection policy will return the same answer. The efficacy of the Dilemma Rule
is partially due to case-splitting; however, the real power of the Dilemma Rule
is due to the fact that it preserves information learned in both branches when a
case-split is “abandoned” at a join point.

The generalization of the 1-assume algorithm is called k-assume: repeatedly
some variable u € U is selected whose truth value is unknown, the current
abstract value is split using B = Tp[u + 0] and B = Tp[u — 1]; (k-1)-assume
is applied to each of these values; and the resulting values are merged via join.
However, there is a trade-off: higher values of k give greater precision, but are
also computationally more expensive.

For certain abstract domains and logics, Assume[¢)](T 4) is complete—i.e.,
with a high-enough value of k for k-assume, Assume[)](T 4) always computes
the most-precise A value possible for 1. However, our experiments show that
Assume[t)](T 4) has very good precision with k = 1 (see §5)—which jibes with
the observation that, in practice, with Stalmarck’s method for propositional
validity (tautology) checking “a formula is either [provable with k& = 1] or not a
tautology at all!” [18, p. 227].

8 Aditya Thakur and Thomas Reps

Algorithm 1: Assume|y](A)

1 (T, up) < integrity(p) Algorithm 3: k-assume[Z]((P, A))
2 P+ Tplu, — 1] .
5 7 1 repea
3 (P,A) <—~k-assume[I]((P, A)) 2 (PLA) « (P, A)
4 return A 3 foreach u € U such that P(u) = x do
4 (P(),A()) — (P7A)

Algorithm 2: 0-assume[Z]((P, 4)) (B,B) « (Tplurs 0], Tplu — 1))
1 repeat 6 (P1, A1) < (Po,A0) (B, T)
2 (P A"« (PA) 7 (P2, A2) < (Po, Ao) 1 (B, T)
3 foreach J€Z do 8 (P, A}) + (k-1)-assume[Z]((P1, A1))
4 if J has the form u<{ then 9 (P3, Ab) < (k—1)-assume[Z]((Pz, A2))
5 (P, A) = LeafRule(J, (P, A)) 10 (P, A) « (P}, A}))U (P4, Ab)
6 else 11 until ((P, A) = (P', A")) || timeout
7 (P, A) < InternalRule(J, (P, 4)) 12 return (P, A)
8 until ((P,A) = (P, A")) || timeout
9 return (P, A)

p:=1 £ € literal(L) © 1= 10D P2
LEAF INTERNAL
up, >l €T Uy < (Up, OD Up,) €T

Fig. 2. Rules used to convert a formula ¢ € £ into a set of integrity constraints Z. op
represents any binary connective in £, and literal(£) is the set of atomic formulas and
their negations.

3 Algorithm for Assume[p](A)

This section presents our algorithm for computing Assume|y](A) € A, for p € L.
The assumptions of our framework are as follows:

1. There is a Galois connection C % A between A and concrete domain C.
2. There is an algorithm to performathe join of arbitrary elements of A.
3. Given a literal [€ £, there is an algorithm pa to compute a safe (overap-
proximating) “micro-a”—i.e., A" = pa(l) such that y(A4") 2 [I].
4. There is an algorithm to perform the meet of an arbitrary element of A with
an arbitrary element of {ua(l) | ¢ € literal(L)}.
Note that A is allowed to have infinite descending chains; because Assume works
from above, it is allowed to stop at any time, and the value in hand is an over-
approximation of the most precise answer.
Alg. 1 presents the algorithm that computes Assume|yp](A) for ¢ € £ and
A € A. Line (1) calls the function integrity, which converts ¢ into integrity
constraints Z by assigning a fresh Boolean variable to each subformula of ¢,
using the rules described in Fig. 2. The variable u, corresponds to formula ¢.
We use U to denote the set of Boolean variables created when converting ¢ to Z.
Alg. 1 also uses a second abstract domain P, each of whose elements represents
a set of Boolean assignments in P(U — {0, 1}). For simplicity, in this paper P
is the Cartesian domain (U — {0,1,%}),, but other more-expressive Boolean
domains could be used [35].

A Method for Symbolic Computation of Abstract Operations 9

On line (2) of Alg. 1, an element of P is created in which u,, is assigned the
value 1, which asserts that ¢ is true. Alg. 1 is parameterized by the value of k
(where k > 0). Let vz((P, A)) denote y((P, A)) N [Z]. The call to k-assume on
line (3) returns (P, A), which is a semantic reduction of (P, A) with respect to Z;
that is, v2((P, A)) = vz((P, A)) and (P, A) T (P, A). In general, the greater the
value of k, the more precise is the result computed by Alg. 1. The next theorem
states that Alg. 1 computes an over-approximation of Assume[p](A).

Theorem 1 ([36]). For all p € L, A € A, if A= Assume|g](A), then v(A) D
[l Nv(A), and AT A. O

Alg. 3 presents the algorithm to compute k-assume, for £ > 1. Given the in-
tegrity constraints Z, and the current abstract value (P, A), k-assume[Z]((P, A))
returns an abstract value that is a semantic reduction of (P, A) with respect to
Z. The crux of the computation is the inner loop body, lines (4)—(10), which
implements an analog of the Dilemma Rule from Stalmarck’s method [33].

The steps of the Dilemma Rule are shown schematically in Fig. 1(b). At
line (3) of Alg. 3, a Boolean variable u whose value is unknown is chosen. B =
Tp[u — 0] and its complement B = Tp[u + 1] are used to split the current
abstract value (P, Ag) into two abstract values (P, A1) = (P, A) M (B, T) and
(P2, Ay) = (P,A) (B, T), as shown in lines (6) and (7).

The calls to (k-1)-assume at lines (8) and (9) compute semantic reductions
of (P1, A1) and (P,, A2) with respect to Z, which creates (Py, A}) and (Pj, A}),
respectively. Finally, at line (10) (P}, A}) and (Py, A}) are merged by performing
a join. (The result is labeled (Ps, A3) in Fig. 1(b).)

The steps of the Dilemma Rule (Fig. 1(b)) are repeated until a fixpoint
is reached, or some resource bound is exceeded. The next theorem states that
k-assume[Z]((P, A)) computes a semantic reduction of (P, A) with respect to Z.

Theorem 2 ([36]). For all P € P and A € A, if (PLA) =
k-assume[Z]((P, A)), then vz((P', A")) = vz((P,A)) and (P',A’) C (P,A). O

Alg. 2 describes the algorithm to compute 0-assume: given the integrity con-
straints Z, and an abstract value (P, A), O-assume[Z]((P, A)) returns an abstract
value (P’, A’) that is a semantic reduction of (P, A) with respect to Z. Tt is
in this algorithm that information is passed between the component abstract
values P € P and A € A via propagation rules, like the ones shown in Figs. 3
and 4. In lines (4)—(7) of Alg. 2, these rules are applied by using a single integrity
constraint in Z and the current abstract value (P, A).

Given J € T and (P, A), the net effect of applying any of the propagation
rules is to compute a semantic reduction of (P, A) with respect to J € Z. The
propagation rules used in Alg. 2 can be classified into two categories:

1. Rules that apply on line (7) when J is of the form p<(q op r), shown in
Fig. 3. Such an integrity constraint is generated from each internal subfor-
mula of formula . These rules compute a non-trivial semantic reduction of
P with respect to J by only using information from P. For instance, rule

10

J=(uel)el P(u) =

Aditya Thakur and Thomas Reps

J = (U1 <:>(LL2 \/us)) [SVA P(U1) =0

Orl
(P M T[UQ — 0, us — 0], A)

J = (u1 <:>(UQ /\U3)) el P(Ul) =

1
AND1
(Pﬂ T[UQ — 1, uz — 1],A)

Fig. 3. Boolean rules used by Alg. 2 in the call InternalRule(J, (P, A)).

1 J=(usl)el Pu)=0
PTOA-1 (u) () PTOA-0

(P, ATT pava(l)) (P, AT paa(=))

J=(uel) el Anuaa(l) =

La
ATOP-0
(PN Tluw0],A)

Fig. 4. Rules used by Alg. 2 in the call LeafRule(J, (P, A)).

ANDI says that if J is of the form p< (¢ A1), and p is 1 in P, then we can
infer that both ¢ and r must be 1. Thus, P M T[g+— 1,7+ 1] is a semantic
reduction of P with respect to J. (See Ex. 1, step 1.)

Rules that apply on line (5) when J is of the form u < ¢, shown in Fig. 4. Such

an integrity constraint is generated from each leaf of the original formula ¢.

This category of rules can be further subdivided into

(a) Rules that propagate information from abstract value P to abstract value
A; viz., rules PTOA-0 and PTOA-1. For instance, rule PTOA-1 states
that given J = uw<(, and P(u) = 1, then AN pa(l) is a semantic
reduction of A with respect to J. (See Ex. 1, steps 2 and 3.)

(b) Rule AToOP-0, which propagates information from abstract value A to
abstract value P. Rule ATOP-0 states that if J = (u < ¢) and ANpa(l) =
1L 4, then we can infer that u is false. Thus, the value of PN T[u+— 0] is
a semantic reduction of P with respect to J. (See Ex. 1, step 4.)

Alg. 2 repeatedly applies the propagation rules until a fixpoint is reached, or

some resource bound is reached. The next theorem states that 0-assume com-
putes a semantic reduction of (P, A) with respect to Z.

Theorem 3 ([36]). For all P € P,A € A, if (P',A") = 0-assume[Z]((P, 4)),
then vz((P', A')) = z((P, A)) and (P', 4) C (P, A). 0

4

Instantiations

In this section, we describe instantiations of our framework for two logical-
language/abstract-domain pairs: QF_BV/KS and QF_LRA/Polyhedra. We say
that an Assume algorithm is complete for a logic £ and abstract domain A if it

is guaranteed to compute the best value AguTne[(p](A) for p € L and A € A.
We give conditions under which the two instantiations are complete.

A Method for Symbolic Computation of Abstract Operations 11

Bitvector Affine-Relation Domain (QF_BV /KS). King and Sgndergaard
[21] gave an algorithm for @ for an abstract domain of Boolean affine relations.
Elder et al. [12] extended the algorithm to arithmetic modulo 2% (i.e., bitvectors
of width w). Both algorithms work from below, making repeated calls on a SAT
solver (King and Sgndergaard) or an SMT solver (Elder et al.), performing joins
to create increasingly better approximations of the desired answer. We call this
family of domains KS, and call the (generalized) algorithm a;s.

Given a literal [€ QF_BV, we compute paks(l) by invoking &%S(Z). That is,
we harness aﬁs in service of Assu/\m/ng, but only for paks, which means that
@ES is only applied to literals. If an invocation of &\{(S does not return an answer
within a specified time limit, we use Txks.

Alg. 1 is not complete for QF_BV/KS. Let x be a bitvector of width 2, and
let ¢ = (x #0Ax # 1Az # 2). Thus, A@e[gp](TKs) = {z -3 = 0}.
The KS domain is not expressive enough to represent disequalities. For instance,
pua(z # 0) equals Tks. Because Alg. 1 considers only a single integrity constraint
at a time, we get Assume[p](Tks) = pa(z # 0)Muda(z # 1)Nud(z # 2) = Tks.

The current approach can be made complete for QF_BV/KS by making

0-assume consider multiple integrity constraints during propagation (in the limit,
having to call pa(p)). For the affine subset of QF_BV, an alternative approach
would be to perform a 2¥-way split on the KS value each time a disequal-
ity is encountered, where w is the bit-width—in effect, rewriting z # 0 to
(z =1V =2Vaz =3). Furthermore, if there is a gAssume operation, then the
second approach can be extended to handle all of QF_BV: pAssume[¢](A) would
be used to take the current KS abstract value A and a literal £, and return an
over-approximation of As?u\r_rﬂe[ﬁ] (A). All these approaches would be prohibitively
expensive. Our current approach, though theoretically not complete, works very
well in practice (see §5).
Polyhedral Domain (QF_LRA /Polyhedra). The second instantiation that
we implemented is for the logic QF_LRA and the polyhedral domain [8]. Because
a QF_LRA disequality ¢t # 0 can be normalized to (t < 0Vt > 0), every literal [in
a normalized QF _LRA formula is merely a half-space in the polyhedral domain.
Consequently, 1polyhedra(l) is exact, and easy to compute. Furthermore, because
of this precision, the Assume algorithm is complete for QF_LRA /Polyhedra. In
particular, if k = |¢|, then k-assume is sufficient to guarantee that Assume|[y](A)
returns Agu\me[ga] (A). For polyhedra, our implementation uses PPL [28].

The observation in the last paragraph applies in general: if ua4(l) is exact
for all literals I € £, then Alg. 1 is complete for logic £ and abstract domain .A.

5 Experiments

Bitvector Affine-Relation Analysis (ARA). We compare two methods for
computing the abstract transformers for the KS domain for ARA [21]:

— the a'-based procedure described in Elder et al. [12].

— the a-based procedure described in this paper (“a‘”), instantiated for KS.

12 Aditya Thakur and Thomas Reps

Prog. Measures of size @' Performance
name ||instrs| CFGs|BBs|brs [[WPDS|t/o post” |query

finger 532 18| 298| 48|| 110.9| 4|0.266(0.015
subst 1093 16| 609| 74| 204.4| 4(0.344|0.016
label 1167 16| 573|103|| 148.9| 2|0.344|0.032
chkdsk || 1468 18| 787|119|| 384.4| 16{0.219(0.031
convert|| 1927 38(1013(161| 289.9] 9]1.047|0.062
route 1982 40| 931(243|| 562.9| 14(1.281|0.046
logoff || 2470 46(1145(306|| 621.1| 16{1.938]|0.063
setup 4751 67|1862(589(| 1524.7| 64|0.968|0.047

Fig. 5. WPDS experiments (@'). The columns show the number of instructions (instrs);
the number of procedures (CFGs); the number of basic blocks (BBs); the number of
branch instructions (brs); the times, in seconds, for WPDS construction with &}
weights, running post*, and finding one-vocabulary affine relations at blocks that end
with branch instructions (query). The number of basic blocks for which aj.q-weight
generation timed out is listed under “t/o”.

Our experiments were designed to answer the following questions:

1. How does the speed of &' compare with that of a'?

2. How does the precision of &+ compare with that of a?
To address these questions, we performed ARA on x86 machine code, computing
affine relations over the x86 registers. Our experiments were run on a single core
of a quad-core 3.0 GHz Xeon computer running 64-bit Windows XP (SP2),
configured so that a user process has 4GB of memory. We analyzed a corpus of
Windows utilities using the WALI [20] system for weighted pushdown systems
(WPDSs). For the baseline a'-based analysis we used a weight domain of a'-
generated KS transformers. The weight on each WPDS rule encodes the KS
transformer for a basic block B of the program, including a jump or branch to a
successor block. A formula ¢p is created that captures the concrete semantics of
B, and then the KS weight for B is obtained by performing a'(pp) (cf. Ex. 1).
We used EWPDS merge functions [24] to preserve caller-save and callee-save
registers across call sites. The post™ query used the FWPDS algorithm [23].

Fig. 5 lists several size parameters of the examples (number of instructions,
procedures, basic blocks, and branches) along with the times for constructing
abstract transformers and running post”.* Col. 6 of Fig. 5 shows that the calls
to @' during WPDS construction dominate the total time for ARA.

Each call to @' involves repeated invocations of an SMT solver. Although the
overall time taken by @' is not limited by a timeout, we use a 3-second timeout
for each invocation of the SMT solver (as in Elder et al. [12]). Fig. 5 lists the
number of such SMT solver timeouts for each benchmark. In case the invocation
of the SMT solver times out, &' is forced to return Tkg in order to be sound.
(Consequently, it is possible for a* to return a more precise answer than a'.)

4 Due to the high cost of the a@'-based WPDS construction, all analyses excluded the
code for libraries. Because register eax holds the return value from a call, library func-
tions were modeled approximately (albeit unsoundly, in general) by “havoc(eax)”.

A Method for Symbolic Computation of Abstract Operations 13

1.0 TW I ||:I G'T=1sec [&' T=.4secs - at T_1 secs
091 i i - o § o
a' T=1sec 90 M ot
08f h @ T=.4 secs | | 2 sl 1Al ot
0.7F 1 i i . ol T= 1 S
e a' T=.1 secs §-7O N . . . 1
Z 06 AR | SRR | SURPRRR | SRPPRY § SRR | IUUURUN | IO o | M
g
Sosk b A | SRR | SURPRUN | SRPPRTH | FRPRINY § FOURRORY | FORRON o S
£ S 50 (-t -l A
€ L.. | . i -
5 04 S a0kl A
Z . 8
02k b e 1 RN | SRR 1 SRR | PR | PR | e S ook W | .
01k A I A SOURUS | SUSPRN | SUPPURRH | FRPURRRY § FRVRRORY | FOUROON . okl A
o e T L)
GO0t oSt g0 s et o oot sg\uo mea“ 8t ot o o et ou® oot Se\up “\ea“
(a) (b)

Fig. 6. (a) Performance: & vs. a'. (b) Precision: % of control points at which &* has
as good or better precision as @'; the lighter-color lower portion of ea(:h bar indicates
the % of control points at which the precision is strictly greater for at.

: T T
y =10z
_ — a=y
g -- z/l0=y
(53
&
— 10F A
2 v
£ R =
B , 3
© L ’ 8 L
k] 2
§ ' 1 3
k5] =
2 o g
= X =2
g Py
Q 5 ><><>2(g ;
c 2 L
% 1e-01F q §
2 I B ><x>< x QE)
= OB XA X K X x ooty
/ €
SONEEIERRIEBCOOBIOX X &
e i
<0.01 1e-01 1 10 E
Time taken per invocation of a' (sec) Number of dlamonds
(a) (b)

Fig. 7. (a) Log-log scatter plot of transformer-construction time. (b) Semilog plot of
73 vs. &' on xd formulas.

The setup for the a*-based analysis is the same as the baseline a'-based
analysis, except that we call a* when calculating the KS weight for a basic block.
We use l-assume in this experiment. Each basic-block formula ¢p is rewritten
to a set of integrity constraints, with ITE-terms rewritten as illustrated in Ex. 1.
The priority of a Boolean variable is its postorder-traversal number, and is used
to select which variable is used in the Dilemma Rule. We bound the total time
taken by each call to &t to a fixed timeout T. Note that even when the call to
&t times out, it can still return a sound non-Tkg value. We ran &t using T = 1
sec, T = 0.4 secs, and T = 0.1 secs.

Fig. 6(a) shows the normalized time taken for WPDS construction when
using a* with T = 1 sec, T = 0.4 secs, and T = 0.1 secs. The running time is
normalized to the corresponding time taken by @'; lower numbers are better.

14 Aditya Thakur and Thomas Reps

WPDS construction using &+ with T = 1 sec. is about 11.3 times faster than a'
(computed as the geometric mean), which answers question 1.

Decreasing the timeout T makes the a* WPDS construction only slightly
faster: on average, going from T = 1 sec. to T = .4 secs. reduces WPDS construc-
tion time by only 17% (computed as the geometric mean). To understand this
behavior better, we show in Fig. 7(a) a log-log scatter-plot of the times taken by
a' versus the times taken by a* (with T = 1 sec.), to generate the transformers
for each basic block in the benchmark suite. As shown in Fig. 7(a), the times
taken by a* are bounded by 1 second. (There are a few calls that take more
than 1 second; they are an artifact of the granularity of operations at which we
check whether the procedure has timed out.) Most of the basic blocks take less
than 0.4 seconds, which explains why the overall time for WPDS construction
does not decrease much as we decrease T in Fig. 6(a). We also see that the &'
times are not bounded, and can be as high as 50 seconds.

To answer question 2 we compared the precision of the WPDS analysis when
using a* with T equal to 1, 0.4, and 0.1 seconds with the precision obtained using
a'. In particular, we compare the affine relations (i.e., invariants) computed by
the at-based and a'-based analyses for each control point—i.e., the beginning of
a basic block that ends with a branch. Fig. 6(b) shows the percentage of control
points for which the at-based analysis computes a better (tighter) or equally
precise affine relation. On average, when using T= 1 sec, a*-based analysis com-
putes an equally precise invariant at 76.9% of the control points (computed as
the arithmetic mean). Interestingly, the at-based analysis computes an answer
that is more precise compared to that computed by the a'-based analysis. That
is not a bug in our implementation; it happens because a' has to return Tkg
when the call to the SMT solver times out. In Fig. 6(b), the lighter-color lower
portion of each bar shows the percentage of control points for which a‘-based
analysis provides strictly more precise invariants when compared to a'-based
analysis; on average, a*-based analysis is more precise for 19.8% of the control
points (arithmetic mean, for T = 1 second). &*-based analysis is less precise at
only 3.3% of the control points. Furthermore, as expected, when the timeout for
at is reduced, the precision decreases.

Satisfiability Checking. The formula used in Ex. 2 is just one instance of a
family of unsatisfiable QF_LRA formulas [25]. Let x4 = (aq < ao) A /\f;o1 ((a; <
bi) A (a; < i) AN((bi < aix1) V(¢ < aig1))). The formula ¢ in Ex. 2 is x2; that is,
the number of “diamonds” is 2 (see Fig. 1(a)). We used the QF_LRA /Polyhedra
instantiation of our framework to check whether a(yqy) = L for d = 1...25
using l-assume. We ran this experiment on a single processor of a 16-core 2.4
GHz Intel Zeon computer running 64-bit RHEL Server release 5.7. The semilog
plot in Fig. 7(b) compares the running time of &' with that of Z3, version
3.2 [11]. The time taken by Z3 increases exponentially with d, exceeding the
timeout threshold of 1000 seconds for d = 23. This corroborates the results of a
similar experiment conducted by McMillan et al. [25], where the reader can also
find an in-depth explanation of this behavior.

A Method for Symbolic Computation of Abstract Operations 15

On the other hand, the running time of a* increases linearly with d taking
0.78 seconds for d = 25. The cross-over point is d = 12. In Ex. 2, we saw
how two successive applications of the Dilemma Rule suffice to prove that v is
unsatisfiable. That explanation generalizes to x4: d applications of the Dilemma
Rule are sufficient to prove unsatisfiability of x4. The order in which Boolean
variables with unknown truth values are selected for use in the Dilemma Rule has
no bearing on this linear behavior, as long as no variable is starved from being
chosen (i.e., a fair-choice schedule is used). Each application of the Dilemma
Rule is able to infer that a; < a;+1 for some 7.

We do not claim that &' is better than mature SMT solvers such as Z3.
We do believe that it represents another interesting point in the design space of
SMT solvers, similar in nature to the GDPLL algorithm [25] and the k-lookahead
technique used in the DPLL(U) algorithm [4].

6 Applications to Other Symbolic Operations

The symbolic operations of ¥ and @ can be used to implement a number of other
useful operations, as discussed below. In each case, over-approximations result
if & is replaced by a.

— The operation of containment checking, A; C As, which is needed by anal-
ysis algorithms to determine when a post-fixpoint is attained, can be imple-
mented by checking whether a(5(A41) A =9(A2)) equals L.

— Suppose that there are two Galois connections Gy = C 42——11> A1 and

G, =C 4(1——2> As, and one wants to work with the reduced product of

A; and Ay [27, §10.1]. The semantic reduction of a pair (A, A2) can be per-
formed by letting ¥ be the formula 71 (A1) A J2(As2), and creating the pair
(@1(1), B2(1)).

— Given A; € Aj, one can find the most-precise value As € As that over-
approximates A; in Ay as follows: As = as(71(41)).

— Given a loop-free code fragment F', consisting of one or more blocks of pro-
gram statements and conditions, one can obtain a representation of its best
transformer by symbolically executing F' to obtain a transition formula ¢ p,
and then performing a(yg).

7 Related Work

Extensions of Stalmarck’s Method. Bjork [3] describes extensions of
Stalmarck’s method to first-order logic. Like Bjork, our work goes beyond the
classical setting of Stalmarck’s method [33] (i.e., propositional logic) and ex-
tends the method to more expressive logics, such as QF_LRA or QF_BV. How-
ever, Bjork is concerned solely with validity checking, and—compared with the
propositional case—the role of abstraction is less clear in his method. Our algo-
rithm not only uses an abstract domain as an explicit datatype, the goal of the
algorithm is to compute an abstract value A’ = Assume|[y](A).

Our approach was influenced by Granger’s method of using (in)equation
solving as a way to implement semantic reduction and Assume as part of his

16 Aditya Thakur and Thomas Reps

technique of local decreasing iterations [16]. Granger describes techniques for per-
forming reductions with respect to (in)equations of the form z1 x F(z1,...,zy)
and (1 % F(z1,...,2,)) } G(x1,...,2,), where M stands for a single relational
symbol of £, such as =, #, <, <, >, >, or = (arithmetical congruence). Our
framework is not limited to literals of these forms; all that we require is that for a
literal I € L, there is an algorithm to compute an overapproximating value pa(l).
Moreover, Granger has no analog of the Dilemma Rule, nor does he present any
completeness results (cf. §4).

SMT Solvers. Most methods for SMT solving can be classified according to
whether they employ lazy or eager translations to SAT. (The SAT procedure
then employed is generally based on the DPLL procedure [10,9].) In contrast,
the algorithm for SMT described in this paper is not based on a translation to
SAT; instead, it generalizes Stalmarck’s method for propositional logic to richer
logics.

Lazy approaches abstract each atom of the input formula to a distinct propo-
sitional variable, use a SAT solver to find a propositional model, and then check
that model against the theory [1,13,11]. The disadvantage of the lazy approach
is that it cannot use theory information to prune the search. In contrast, our
algorithm is able to use theory-specific information to make deductions—in par-
ticular, in the LeafRule function (Fig. 4) used in Alg. 2. The use of theory-specific
information is the reason why our approach outperformed Z3, which uses the lazy
approach, on the diamond example (§5).

Eager approaches [5,34] encode more of the theory into the propositional
formula that is given to the SAT solver, and hence are able to constrain the
solution space with theory-specific information. The challenge in designing such
solvers is to ensure that the propositional formula does not blow up in size. In
our approach, such an explosion in the set of literals in the formula is avoided
because our learned facts are restricted by the abstract domain in use.

A variant of the Dilemma Rule is used in DPLL(LJ), and allows the theory
solver in a lazy DPLL-based SMT solver to produce joins of facts deduced along
different search paths. However, as pointed out by Bjgrner et al. [4, §5], their
system is weaker than Stalmarck’s method, because Stalmarck’s method can
learn equivalences between literals.

Another difference between our work and existing approaches to SMT is
the connection presented in this paper between Stalmarck’s method and the
computation of best abstract operations for abstract interpretation.

Best Abstract Operations. Several papers about best abstract operations
have appeared in the literature [14,29,37,21,12]. Graf and Saidi [14] showed
that decision procedures can be used to generate best abstract transformers
for predicate-abstraction domains. Other work has investigated more efficient
methods to generate approximate transformers that are not best transformers,
but approach the precision of best transformers [2, 6].

Several techniques work from below [29, 21, 12]—performing joins to incorpo-
rate more and more of the concrete state space—which has the drawback that if
they are stopped before the final answer is reached, the most-recent approxima-

A Method for Symbolic Computation of Abstract Operations 17

tion is an under-approzimation of the desired value. In contrast, our technique
works from above. It can stop at any time and return a safe answer.

Yorsh et al. [37] developed a method that works from above to perform
Assume[p](A) for the kind of abstract domains used in shape analysis (i.e.,
“canonical abstraction” of logical structures [30]). Their method has a splitting
step, but no analog of the join step performed at the end of an invocation of the
Dilemma Rule. In addition, their propagation rules are much more heavyweight.

Template Constraint Matrices (TCMs) are a parametrized family of linear-

inequality domains for expressing invariants in linear real arithmetic. Sankara-
narayanan et al. [31] gave a parametrized meet, join, and set of abstract trans-
formers for all TCM domains. Monniaux [26] gave an algorithm that finds the
best transformer in a TCM domain across a straight-line block (assuming that
concrete operations consist of piecewise linear functions), and good transform-
ers across more complicated control flow. However, the algorithm uses quan-
tifier elimination, and no polynomial-time elimination algorithm is known for
piecewise-linear systems.
Cover algorithms. Gulwani and Musuvathi [17] defined the “cover problem”,
which addresses approximate existential quantifier elimination: Given a formula
v in logic £, and a set of variables V', find the strongest quantifier-free formula @
in £ such that [3V : ¢] C [@]. They presented cover algorithms for the theories
of uninterpreted functions and linear arithmetic, and showed that covers exist
in some theories that do not support quantifier elimination.

The notion of a cover has similarities to the notion of symbolic abstraction,
but the two notions are distinct. Our technical report [36] discusses the differ-
ences in detail, describing symbolic abstraction as over-approximating a formula
@ using an impoverished logic fragment, while a cover algorithm only removes
variables V from the vocabulary of ¢. The two approaches yield different over-
approximations of ¢, and the over-approximation obtained by a cover algorithm
does not, in general, yield suitable abstract values and abstract transformers.

References

1. A. Armando, C. Castellini, and E. Giunchiglia. SAT-based procedures for temporal
reasoning. In Recent Advances in AI Planning, 2000.

2. T. Ball, A. Podelski, and S. Rajamani. Boolean and Cartesian abstraction for
model checking C programs. In TACAS, 2001.

3. M. Bjork. First order Stalmarck. J. Autom. Reasoning, 42(1):99-122, 20009.

4. N. Bjgrner and L. de Moura. Accelerated lemma learning using joins—DPLL(L).
In LPAR, 2008.

5. R. E. Bryant and M. N. Velev. Boolean satisfiability with transitivity constraints.
Trans. on Computational Logic, 3(4), 2002.

6. E. Clarke, D. Kroening, N. Sharygina, and K. Yorav. Predicate abstraction of
ANSI-C programs using SAT. FMSD, 25(2-3), 2004.

7. P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In
POPL, 1979.

8. P. Cousot and N. Halbwachs. Automatic discovery of linear constraints among
variables of a program. In POPL, 1978.

18

10.

11.
12.

13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.

37.

Aditya Thakur and Thomas Reps

M. Davis, G. Logemann, and D. Loveland. A machine program for theorem-
proving. Commun. ACM, 5(7), 1962.

M. Davis and H. Putnam. A computing procedure for quantification theory. J.
ACM, 7(3), 1960.

L. de Moura and N. Bjgrner. Z3: An efficient SMT solver. In TACAS, 2008.

M. Elder, J. Lim, T. Sharma, T. Andersen, and T. Reps. Abstract domains of
affine relations. In SAS, 2011.

C. Flanagan, R. Joshi, X. Ou, and J. Saxe. Theorem proving using lazy proof
explication. In CAV, 2003.

S. Graf and H. Saidi. Construction of abstract state graphs with PVS. In CAV,
1997.

S. Graham and M. Wegman. A fast and usually linear algorithm for data flow
analysis. J. ACM, 23(1):172-202, 1976.

P. Granger. Improving the results of static analyses programs by local decreasing
iteration. In FSTTCS, 1992.

S. Gulwani and M. Musuvathi. Cover algorithms and their combination. In ESOP,
2008.

J. Harrison. Stalmarck’s algorithm as a HOL derived rule. In TPHOLs, 1996.

M. Karr. Affine relationship among variables of a program. Acta Inf., 6, 1976.

N. Kidd, A. Lal, and T. Reps. WALi: The Weighted Automaton Library, 2007.
www.cs.wisc.edu/wpis/wpds/download.php.

A. King and H. Sgndergaard. Automatic abstraction for congruences. In VMCAI,
2010.

J. Knoop and B. Steffen. The interprocedural coincidence theorem. In CC, 1992.
A. Lal and T. Reps. Improving pushdown system model checking. In CAV, 2006.
A. Lal, T. Reps, and G. Balakrishnan. Extended weighted pushdown systems. In
CAV, 2005.

K. McMillan, A. Kuehlmann, and M. Sagiv. Generalizing DPLL to richer logics.
In CAV, 2009.

D. Monniaux. Automatic modular abstractions for template numerical constraints.
LMCS, 6(3), 2010.

M. Miiller-Olm and H. Seidl. Analysis of modular arithmetic. TOPLAS, 2007.
PPL: The Parma polyhedra library. www.cs.unipr.it/ppl/.

T. Reps, M. Sagiv, and G. Yorsh. Symbolic implementation of the best transformer.
In VMCAI 2004.

M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis via 3-valued logic.
TOPLAS, 24(3):217-298, 2002.

S. Sankaranarayanan, H. Sipma, and Z. Manna. Scalable analysis of linear systems
using mathematical programming. In VMCAI, 2005.

M. Sharir and A. Pnueli. Two approaches to interprocedural data flow analysis.
In Program Flow Analysis: Theory and Applications. Prentice-Hall, 1981.

M. Sheeran and G. Stalmarck. A tutorial on Stalmarck’s proof procedure for
propositional logic. FMSD, 16(1), 2000.

0. Strichman. On solving Presburger and linear arithmetic with SAT. In FMCAD,
2002.

A. Thakur and T. Reps. A generalization of Stalmarck’s method. TR 1699, CS
Dept., Univ. of Wisconsin, Madison, WI, Oct. 2011.

A. Thakur and T. Reps. A method for symbolic computation of precise abstract
operations. TR 1708, CS Dept., Univ. of Wisconsin, Madison, WI, Jan. 2012.

G. Yorsh, T. Reps, and M. Sagiv. Symbolically computing most-precise abstract
operations for shape analysis. In TACAS, 2004.

