AN INTRODUCTION TO THE LINNIK PROBLEMS
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Abstract. This paper is a slightly enlarged version of a series of lectures on the Linnik problems
given at the SMS—NATO ASI 2005 Summer School on Equidistribution in Number Theory.
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1. Introduction

In these lectures | will discuss the classical Linnik problems about the distribution
of lattice points on a sphere and analogous hyperbolic problems associated to
binary quadratic forms. These problems were introduced by Linnik and are dis-
cussed in his bookrgodic Properties of Algebraic FieldgLinnik, 1968) Linnik
applied an intricate ergodic method to solve them subject to a certain condition.
In 1987 lwaniec (lwaniec, 1987) made a breakthrough in the theory of modular
forms of half-integral weight that allowed the Linnik problems to be solved un-
conditionally using more traditional modular forms methods (Duke, 1988). These
methods have since been much further developed in the more general context
of subconvexity estimates fdr-functions, where they have far-ranging impli-
cationgapplications. My main purpose is to give an exposition of the original
modular forms approach emphasizing the original ideas, which have an intuitive
appeal. | will only introduce briefly the connection withfunctions. Recently
there has been striking progress by a number of mathematicians in the analytic
theory ofL-functions in connection with various equidistribution problems. Hope-
fully, these lectures will provide some background for these developments, and
serve as a rough guide to help those interested in pursuing details. An excellent
exposition of many of the topics treated here is (Sarnak, 1990).

2. The Linnik Problems

THE SPHERE

Consider the lattice pointg € Z3 with [a> = X2 + x5 + X3, for a = (X1, X2, X3).
The setQ, = {X = a/|al;@ € Z3|a?> = n} for n € Z* lies on the unit sphere
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2 W. DUKE

S2. By a classical result of Legend£®, is non-empty ff n # 43(8b + 7) for a
andb integers, a non-negative. Linnik asked whether the(sesubject to the
condition thatn = 1,2,3,5,6 (mod 8) is uniformly distributed with respect to
(normalized) Lebesgue measuke on S?; is it the case given a reasonable subset
of S? that the proportion of points in it frorf), approaches the measure of the set
asn — oo? Linnik was able to prove this using his “ergodic method” but subject
to the condition required by the method that the Legendre symbql) (= 1

for a fixed odd primep. An advance made by Iwaniec in the estimation of Fourier
codficients of cusp forms of half-integral weight later allowed this condition to be
removed. To state this, it is convenient to couch the uniform distribution property
in terms of the approximation of the integral of a test function by “Riemann sums.”
For simplicity | will restrict attention here to the most interesting case whése
square-free.

THEOREM A. Suppose that £ C*(S?). Then, as n— oo with n square-free

and n# 7 (mod 8)
1
- E f(X) —>L2 f do.

XeQn

| will spend most of the lectures explaining, modulo many technical details, the
proof of this result. It should be pointed out that one may ask the same question
about the lattice points on a ellipsoid given by a positive definite integral ternary
quadratic form. Then, most of the interest shifts to the question of characterizing
by mean of congruences those integerhat are represented by the form. For
square-fre@, the analytic techniques used to prove Theorem A apply directly, but
for general the issue becomes quite delicate (see e.g. (Duke and Schulze-Pillot,
1990; Duke, 1997)).

CM POINTS

Another problem introduced by Linnik concerns the distribution of roots of inte-
gral quadratic equations with a large negative discriminant. Here the appropriate
setting istI'\'H, whereH is the upper half-plane arid= SL(2, Z) is the modular
group. The quadratic equations are best introduced via positive definite binary
guadratic forms

Q=0Q(xy) =axX +bxy+cy’, d=b’-4ac=discQ<0

with a,b,c € Z, a > 0. After Gauss, there are only finitely mahyequivalence
classes of such forms with a giver(see (Cox, 1989)).
For a givenQ = ax® + bxy+ cy? with discQ = d, the root ofax’ + bx+c=0

-b+ Vd
0= ——— €

2a H
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associated t@) is called a CM point. It is readily shown that the orpig runs
over the roots of the forms equivalent@ wherey € I' acts as a linear fractional
map. Letf denote the standard fundamental domairifor

7—'={ze H; -3 <Rez<0andlZ > 1or0<Rez<  and|z > 1}.

We shall writeAq = {zg € ¥, discQ = d}. For everyd = 0, 1(mod 4) we can find
a (principal)Q with discQ = d and associatezh € 7

PR P (
d=0(4) : ¥ - 2y" 2=,
d=1(4) : x>+ xy— Ey2 Zq = —it \/a.
y 2
It is convenient to define by convention a sum o%grto mean that a summand
should be weighted by if Q = a(x*+y?) and by if Q = a(x*+xy+y?) to account
for the automorphs iir. In particular,H(d) = >4, 1 is called the Hurwitz class
number. Recall thadl is said to be fundamental when it equals the discriminant
of Q(Vd). In this case, whed < —4, H(d) equals to the class numbkefd) of
Q(Vd) Generally | will only be concerned with fundamental discriminants.
A PSL(2 R)-invariant measure fo# is given bydx dy/y? and

ff dx dy/y? = /3.
.

Let us denote bylu = (3/7) dx dy/y? the normalized invariant measure. The
second Linnik problem concerns the distribution of thes ¥ asd — —co.

THEOREM B. Suppose that € C*(H) isT-invariant and bounded of{. Then,
as d— —oco with d a fundamental discriminant,

1

ZeNg

The proof of this result is quite analogous to that of Theorem A but requires more
machinery. The main reason for this is the fact fhgk{ is non-compact.

There is a parallel result one can obtain for indefinite formsl as +oo,
namely the uniform distribution of closed geodesicstd\H when grouped by
discriminant. In fact, the proof of Theorem B yields this result as well. This prob-
lem is in fact a revealing paradigm for more general situations in which infinite
unit groups exist (see. e.g. (Cohen, 2005) and references given there).
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3. Holomorphic Modular Forms of Half-Integral Weight

This subject is based on the properties of the Jacobi theta series

6(2) = Z e(n’2),

nez

which has a product representation via the Jacobi triple product formula: write

q=e?) )
0@ = | |-+ H>
n=1

This remarkable function satisfies fpe I'o(4), wherd o(N) = {y € SL(2 Z):c =
0(N)}, the transformation formula

6(y2) = j(y,26(2),

where j(y,2) = (c/d)sg*(cz+ d)/?, with (c/d) the (extended) Legendre sym-
1, d=1(@4)
i, d=3(4)
(see (Shimura, 1973)). Actually, Jacobi stud#d/2), whose relevant group is
conjugate td'o(4), namelyl'(2).

Fork e %Z* andN = 0(4) if 2k is odd, a holomorphic modular form of weight
k for I'p(N) is a holomorphic function oftf sit for y € To(N)

t02 = i62*1 (@,

together with the condition thdtbe holomorphic in the cusps B§(N). The usual
way to do this is to define the Fourier expansiorf @i each cusp and require that
no negative terms occur. This is easily donécat where the Fourier expansion

must look like
@ =) ameny. (1)
n>0
For other cusps andk2odd this is a little bit trickier and is best done using a
cover of SL(2R) (see (Shimura, 1973) or (Koblitz, 1984)). For our purposes it
is enough to impose the equivalent growth condition on the invariant function
V¥2|f(2)| = F(2) that

bol, g4 = andzt/? = |7Y?exp@iargz), with -7 < argz < n,

F@ <y*+y”? forsome A>0 (2)

and allz € H. Let Mi(N) denote the space of all such functions; it is known to
be finite dimensional. The subspace of cusp foB8pEN) consists of thes& €
Mk(N) whose zeroth Fourier cfiicient in every cusp vanishes. Hor> 0 this is
equivalent to having (2) witth = 0.
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The proof of Theorem A relies heavily on non-trivial estimates for the Fourier
codficients of cusp forms. This turns out to be rather harder wikes@ld, which
is the case needed. Let us recall the trivial bound of Hecke for a cuspffemal
anyk:
la(n)| < nk/2. ©)

The proof is easy. For any> 0

1
a(n)e & = f e(—nx) f(x + iy) dx
0

and so using (2) witl\ = 0 gives

1
la(n)] < €My /2 f F(x +iy) dx
0
< MWy k2

Takingy = 1/n gives (3).
Hecke’s bound certainly can fail for non-cusp forms; consider the easiest
example when weighk = 4 of the Eisenstein series

Es@d=cs ), (cz+d) =1+ 2405} oa(n)e(n2), (4)
n=1

yel\I'

which haso3(n) = g d3 and cannot be bounded by a constant timres

It is an important fact that one can make enough modular forms via Eisenstein
series to subtracttbthe growth of an arbitrary modular form in the cusps, leaving
a cusp form. This is harder fdr= % 1, %’ and 2 since then the Eisenstein series
do not converge absolutely. In fact, in these cases one is stuck dealing with non-
holomorphic modular forms. This turns out to be the maifiedénce between

Theorems A and B.

4. Theta Series With Harmonic Polynomials

The relevance of modular forms to the Linnik problems is through the concept
of a Weyl sumRecall that for a finite set of point&, on St = R/Z, the Weyl
criterion for equidistribution oK, with respect to Lebesgue measuraas o is

that for eachme Z, m # 0,
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asn — co. The situation for our point&, on S? is very similar. Observe that

(|§::§|)m:e(m€)
and X iy \™
(|x—iy|) = &(-m)

if = arg(x + iy)/2r, form > 0. Now (x + iy)™ and & — iy)™ are homogeneous
harmonic polynomials ofR?. This example generalizes beautifullyRd. In par-
ticular for R2 it can be shown that anfye C2(S?) can be uniformly approximated

by a finite sum of homogeneous harmonic polynomia®frestricted toS? (for

a proof see Stein (Stein and Weiss, 1971, Corollary 2.3, p. 141)). Thus the Weyl
criteria for uniform distribution of the lattice points @7 requires that we prove
that for any homogeneous harmonic polynoniék) on R2 of degree? > 0

1

ZP(X)—>0 as n— oo,
N XeQn

as in Theorem A. Equivalently, we require

> Pli) = orstn)

acZ3
lal?=n

wherera(n) = #a € Z3: o> = n}.
PROPOSITION 4.1.The theta series
0zP) = ) P2 = ) r(n; P)e(n)

aeZ3 n

is a holomorphic modular form of Weig§t+ ¢ for I'p(4), which is a cusp form if
¢ > 0. Also,6(z, P) = O unles<( is even.
Proof. See (Shimura, 1973). O

When¢ = degP = 0 we have
0z 1) = @) = ) ra(ne(na).
n>0
To prove Theorem A, we need two ingredients:
(L) r3(n) >, n?7¢for nas in Theorem A and all > 0,
(U) |r(n, P)| < n¥271/4=¢ for n square-free and some fixéd> 0, whent > 0.
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To see this, NOt&, ,2—n P(e/lal) = n=¢/2r(n; P) andk/2— 7 = £/2+ 1, so (U) says
equivalentlyy,z-, P(a/lal) < nt/2% = o(r3(n)). As we shall review below, (L)
follows from classical results of Gauss and Siegel, but with affiéntve constant.

5. Linnik Problem for Squares and the Shimura Lift

At this point we see how far from (U) Hecke’s exponéyi® is. Before turning
to this problem in earnest, let us treat a related problem that leads to integral
weights, namely the distribution of rational points®h These points are in one-
one correspondence with the primitivey (a2, a3) € Z3 with |a]? = P viaa +—
(1/m)a, m> 0. Herem s the height of the point. This easily leads us to consider
the Linnik problem ors? for n = n?.

Building an earlier results of Stieltjes, Hurwitz showed that

(o)

-S ) g"(s)zj(s— 1)
nZ:;rg(nz)n =6(1-2¢ )m,

wherey_4(-) = (=2) is the Kronecker symbol. One easily derives from this that
for oddn
ra(n?) > n, (5)

which is even better than (L). This phenomenon was generalized by Shimura and
is called the Shimura lift. In our case we can infer for 0 that there is a cusp
form F(2) = Za(n)e(n2) of weight Z + 2 for I'p(2) such that

S 2 pys 21 amn
nZ:;r(n ,P)n"° = L tra)

(see (Niwa, 1975)).
Thus
r(n%,P) = > a(@u(@r-o(HH)

dn
and so in place of (U) we need a bound &fn) of the form

la(n)| < n‘*1-¢

as k—-1=¢+1,

in order to beat the lower boumg(n?) > n. Thus any non-trivial bounftbr weight

2¢+ 2 cusp forms gives Theorem A for squares. Itis then an easy matter to restrict
to primitive points and derive the uniform distribution of rational points of a given
height onS? as the height tends to infinity.
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6. Nontrivial Estimates for Fourier Coefficients

At first look, the methods we shall apply to establish non-trivial estimates for the
Fourier codficients of cusp forms of integral and half-integral weights appear to
be the same. However, there is a strikinffetience. Roughly speaking, one must
overcome the bound given by Weil’'s bound for Kloosterman sums in the half-
integral weight case. In fact, this bound is more appropriately called “trivial,” as
we will see.

The story about obtaining non-trivial bounds in the integral weight case has
a complex plot. Here | will describe the Kloosterman sums approach. It will be
observed that the role of Hecke operators has been ignored so far. Such an omis-
sion becomes a serious liability in the integral weight case but, since their role in
the half-integral weight case is less central, at least for our purposes here, we will
continue to not emphasize them.

Historically speaking, the first approach to obtaining non-trivial estimates for
Fourier codicients was via the circle method. Kloosterman produced his sums in
this context and by non-trivially estimating them solved an important problem on
the representations of integers by positive definite integral quadratic forms in four
variables. Later it was found by Petersson and Selberg that one could take direct
advantage of automorphy by constructing Poigcsaries.

Consider fol" = Tp(N) andm > 0 the function

Puzk) = ) () *emy2),
Y€l \I'

which converges absolutely and uniformly on compact subsefd ,gbrovided
thatk > 2. It is not hard to show th&;, € Sk(N) for m > 0 and in fact they span
Sk. Consider that foff € Si(N) with f(z) = 37" a(n)e(n2)

—  dxdy
[ L P Ty
[ 3 o emafay? dxay

NH o eror

[ " ema (Y2 dx dy
0 0
a(m)(4rm) ™k - 1). (6)

Thus(Ppy, fy =0forallm> 1= a(m) = 0= f = 0. It follows that it is enough
for us to estimate the Fourier dbeients ofPy,.
A nice calculation (see (Sarnak, 1990) or (lwaniec, 1997)) shows that if we

write A
Pu(z k) = > Pr(me(n?)

n>0

(Pm, f)
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then

ﬁﬁm:ﬂmw“ﬁmém+ZWk§:JWiMXEWMmmdﬁl @)

c=0(N)
c>0
where

( 1)6’ 7z \k-1+2¢
J“®_Z@mwm()

is theJ-Bessel function and

K(m,n;c) = Z

d(mod
((dr?c())= ?

c st_gke(md_+ nd)

is a Kloosterman sum of weight a kind of finite analogue ajx_; (via an integral
representation).

SUPPOSK > 2 IS EVEN

This is enough to handle the Linnik problem for squares above, since the cusp
form there was weight2+ 2. We shall ignore the case of odd integkaleven
though in general this is very interesting.

For everk the Kloosterman sum is

K(m,n;c) = Z e(md+nd)
d(o) ¢
(d.0)=1

and satisfies the famous Weil bound
IK(m, n; )| < ct/?*e,
E
The J-Bessel function satisfies for> 0

. 1
Jk-1(X) < min {xk‘l, —}

X

so we may conclude from (7) that

A \n k-1 c \12
Pm(n) <, nkb/2 Z (T) cL2+e | | plk-1)/2 Z (%) o l/2re

c>4r y/mn c<4r+/mn
< nk—l Z C1/2—k+s + nk/2—3/4 Z e
c>4r/mn c<4r/mn

< n/2-Lhve
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This gives the following result, hence the Linnik probleniok squares

PROPOSITION 6.1.For k > 2 even and fe Sk(N) with f = £a(n)e(n2 we have
a(n) < n/Z-Y4re,
Remarks. ’

1. Any non-trivial bound folK(m, n; ) yields a non-trivial bound foa(n). This
is what Kloosterman accomplished.

2. Another way to obtain a non-trivial estimate is the Rankin—Selberg method.
This works well for integral weights but falls short of Weil's bound.

For generak > 2 andf; = Xa;(n)e(n2 an ortho-normal basis fd(N), (6)
gives

Pm(z K)

J
Z<Pm, fif;

Sl Z &M

= (drm)L

and so

J
P00 = Gyt D B0
J:

Writing (7) for Pr(n, K) yields the Petersson formula. It is especially useful for
estimations when = m:

rk-1) < 3 i 4 |
(Arn)k-1 ,Z:; [a(n)I? = 1+ 2ri~* Z c 1Jk—l(%)K(n, n; c). (8)

c=0(N)

It is easily checked that this yields the estimate of Proposition 6.1 again.

For integralk this method reaches its limit here. One must introduce Hecke
operators and interpret the Fourier fila@ents of Hecke eigenforms algebraically.
This led to Deligne’s proof of the Ramanujan conjecture (Eichler proved the case
k=2).

THEOREM 6.2 (Deligne).For k € Z* and f € S(N) we have

a(n) < nk-1r2+e,
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7. Salié Sums

When X is odd the Kloosterman sum still satisfies

IK(m, n; ¢)| < ct/?+e
&

and Proposition 6.1 still holds, but now it is ifaient to get the Linnik problem
since we needed to obtain fér- 0 andk > 5/2 the bound

Ir(n, P)| < n¥/2-Y/4-9, (L)

Perhaps it is appropriate that the exporiei2— %1 is in fact “trivial” in the sense
that Weil's bound in this case is entirely elementary. This is due to the fact that
the Kloosterman sum can be evaluated, a fact observed in special casesby Sali
This evaluation is one of the keys behind Iwaniec’s result. In this section we give
a recent proof of Sadi's result found byArpad Toth via Gauss sums 6th, 2005).

For the cas& = % + ¢, £ even, the Kloosterman sum is

K(m,n;c) = Z ad(g)e( md: nd )

d(c)

This sum can be evaluated in a simpler form. By (8) we only need thewcase.
An application of the Chinese reminder theorem and quadratic reciprocity puts
the main behaviour on the Salsum forg > 0 odd (factor out the even part)

S(m,n; q) = Z (g)e(mag na)‘

a(modaq)

The Jacobi symbol makes the Sedum a finite analogue df_; for 2k odd, which
is elementary; for instance,

J1/2(Z) = \/%sinz. (9)

By changing variables whem,(q) = 1 we have
s(n.n.a) = (3) s’ 1.0

The analogue of (9) is

PROPOSITION 7.1.
2Xn

S(n%,1,0) = &g V4 Z e(—)

x*=1(q) q
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Toth’s proof.We use the Gauss sum

axt + bX)

Glabia) = ) (™

X()
with evaluation a
G(@.0;0) = £ V[ )

Now letA = 3 o_n2q) &(2X/0) so that we must show

S(n?% 1;q) = &g VA
Now
2x a(x? - nz))

A=l
q q q

(@) a(q)

- é%e(a, 2;q)e($)

1 —ar?
= = G(a,2;0)e|—
q(a%ll ( 9 )

sinceG(a, b; g) = 0if (a,g) 1 2 andq is odd (exercise). But forg(q) = 1

e(%a)G(a, 0;0)

o[ ekava

G(a 2;09)

SO

which gives the result sinck = A.

8. An estimate of lwaniec

In 1987 Iwaniec (Iwaniec, 1987) proved

THEOREM 8.1. Let f € Sk(N) with 2k > 5 odd. Then, for n square-free,

|a(n)| < nk/2—1/4—l/28+8.
&
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Remark.By the Shimura lift this holds for alh. It also holds for forms with
k = 1, 3 but now the square-free condition is needed.

Iwaniec’s estimate makes use of an equivalent form of Proposition 7.1, namely
that forgodd and f,q) = 1

S(n,n; Q) = (g)eq \Vg Z e(Zn(g— 2_)) (20)
(2%?31

He uses a lovely embedding idea in conjunction with the Petersson formula;
cusp forms fo'o(N) are also cusp forms fdrp(M), if N|M. This, together with
positivity leads to

< ——+
1 logP

la(n)|? P K(n,n;c) 47N
nk- Jk_l( E ) '

(logP)™* (11)

P<p<2p [c=(modpN)

By exploiting the bilinear form of (10) he was able to give eventually the
bound

PROPOSITION 8.2.

E |KNP(X)| < [XP 172 + Xn_l/2 + (X + n)5/8(x1/4P3/8 + n1/8x1/8P1/4)](xn p)g,
&
P<p<2P

where 5
Ko(X) = 12K (n, n; (ﬂ') forv=0,1,-1.
o(x) Z o (n,n; c)e - orv=0,1,

Cc<X

c=0Q

When combined with (11), this eventually leads to Theorem 8.1. Of course,
this brief description hardly does justice to Iwaniec’s argument. Sarnak has given
an excellent treatment of the essential ideas in (Sarnak, 1990) and for full details
the best reference is Iwaniec’s original paper. lwaniec later gaviéaaatit and in
some ways simpler proof of theorem (with a weaker exponent) in (Iwaniec, 1997).

9. Theorems of Gauss and Siegel

In order to complete the proof of Theorem A we must now prove (L), since (U)
follows from lwaniec’s estimate with any < 1/28. In the Disquisitiones, Gauss
proved that3(n) is related to a class number. Suppose square-free. Then for

d = discQQ(v-n) Gauss’s formula can be put in the simple form

ra(n) = 12H(d)(1 - (g))
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where €/2) is the Kronecker symbol. But Siegel proved (see (Iwaniec and Kowal-
ski, 2004)) that
H(d) > |d|¥/?~®

for anye > 0, but with an innéective constant. Nonetheless, this gives (L), but
it should be observed that we are forced to obtain (U) with a power savings—
nothing less sflices. On the other handnyé > 0 is enough.

The proof of Siegel’s Theorem is based on the class number formula of Dirich-
let. Consider the Eisenstein seriesfoe SL(2, Z)

E(zs) = Z (Imy2)°, Res>1,
yel\I'

for which £(2s)E(z s) has an analytic continuation with a simple polesat 1.

Now
|d| s/2
(@9 Y E@9=(3) Lexao, 12)

ZgeAg

and taking residues at= 1 gives the class number formula
H(d) = cld"2L(1, xa).

Siegel’s Theorem is based on propertie$ @f, yq).

10. The Nonholomorphic CaseDuke, 1988

The proof of Theorem B follows along similar lines as the proof of Theorem A, but
now we are forced to consider non-holomorphic modular forms. The first step, the
identification of the Weyl sums, is accomplished via the spectral decomposition
of the hyperbolic Laplacian oaI'\'H for I" = SL(2, Z).

We are lead naturally to consider the following two types of sums

(E) Zzpenq Ezo. 9) for Res= 3.
(C) Tagenq $(Zq) for ¢ a Maass cusp form withy = A, A = —y*(9% + 65).
We just saw that (E) &t = 1 leads to the class number formula which indeed

gives the same lower bound via Siegel's Theorem that we must overcome. On
Res= % the problem becomes by (12) to estimate in termiglldbr somes > 0

L(% +it, yq) < |d|Y/4-9. (13)

This is precisely what Burgess (Burgess, 1963) accomplished in 1963, when he

applied the RH for curves to get ady< 1i6. Note that we also use the estimate

(1 + 2it)| > log(t| + 2)~* of de la Valke Poussin.
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To treat (C), we must generalize the theta function construction of Theorem A.
This entails using a theta series for indefinite ternary forms, originally constructed
by Siegel. A “theta lift” found in this context by Maass allows one to write (C)
in terms of thedth Fourier coéicient of a Maass cusp form of weiglét An
important refinement of the Maass construction was given by Katok and Sarnak
(Katok and Sarnak, 1993) that identifies explicitly the eigenvalue dependence.

Although this is technically quite involved, conceptually it is not much dif-
ferent than the holomorphic case. One must replace the Petersson formula with a
Kuznetsov formula that relates sums of Kloorterman sums to the whole (V\@ight
spectrum. This leads, with an appropriate choice of test functions, to the needed
general version of Iwaniec’s estimate (Proposition 8.2).

The Linnik problem for closed geodesicseh\H mentioned before is proven
at the same time since the needed Weyl integrals occur adthhmdficients of
the same half-integral weight form, where now> 0. One starts as before by
considering the role of the Eisenstein series in the Dirichlet class humber formula
for real quadratic fields.

11. Transition to Subconvexity Bounds forL-Functions

The appearance of Burgess’s bound (13) strongly hints that the problem of es-
timating non-trivially the Fourier cd&cients of%-integral weight forms can be
converted to the problem of boundithgfunctions on the critical line. This is the
case, with the paradigm being provided by Waldspurger’'s Theorem. It turns out
that in order to obtain non-trivial estimates in this way one must go beyond the
convexity estimate of the Phragmen-LinafeTheorem, hence the name subcon-
vexity bounds (see (lwaniec and Sarnak, 2000)). This has led to a number of
recent developments in the analytic theoryLefunctions, which is currently an
extremely active area.

After a series of papers by D. Friedlander and Iwaniec on GL{f#)nctions
(see (Duke et al., 2002) for references), various convolutiumctions have been
considered with associated equidistribution problems. For subconvexity estimates
other important new contributions have been made by, among others, Bernstein,
Blomer, Conrey, Harcos, Kowalski, Liu, Michel, Reznikov, Sarnak, Vanderkam,
Venkatesh, Ye, (see e.g. (Michel, 2004)) for some recent references). The mixture
of ergodic methods with topics around subconvexity is an exciting new direction
being pursued by Lindenstrauss and Venkatesh.

12. An Application to Traces of Singular Moduli

| will end by describing a recent application of Theorem B to the asymptotics of
traces of singular moduli (Duke, 2006).
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Recall the classicgtfunction onH

o (1+24038 03N
i@ = i (r‘ll_qn)24 =+ 744+ 196884) + . ..
n=1

whereq = €2 = €"2 Now j(y2) = j( fory € T and j(2) = j(E) is the |-
invariant of the elliptic curvée/C determinant byC/L, whereL = {m+nzmn e
Z}. For a negative discriminanta pointzg € Aq is called a CM point sinc(zg)
is the j-invariant of the elliptic curvee which has CM by the ordéf[zg]. In fact,
all such curves occur this way. The valuggg) are called singular moduli and
are known to be conjugate algebraic integersztpre Ag. Let K = Q( Vd) have
discriminant-D. The field:K(j(zy)) is Abelian overK and unramified outside of
(m) whered = —Dn?, called a ring class field. i = —D is fundamental then
K(j(zy)) is the Hilbert class field oK, that is the maximal unramified Abelian
extension oK whose degree is the class numb) of K (see (Cox, 1989)). Let
us restrict to the case of fundamendalHere is a table of the first few values of
j(zq) (see Table I).

Consider T(j(zg)) = XA, i(Z0), which ford < -4 fundamental is the sum of
the conjugates of(zy). Clearly Tr(j(zy)) € Z. We shall apply Theorem B to get a
precise asymptotic for Tj(zg)). A crude asymptotic is

Tr j(zq) = (~1)%" VI 1 O(e2 Vi)

for any fixeda > % This comes from an easy examination of the height of the

otherzg's in the sum and an estimation of their number. To state a much more
refined result, consider the exponential sumdor O (later alias—Sadi sum)

Su(©)= ), e@x/o).

x2=d(c)

Note that3 S¢(4) = (-1). The refinement is

TABLE I.

d  j(z)

-3 0

-4 12

-7 -15°

-8 2C

-11 -32

-15 1(-191025- 85995V5), the first irrational value
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Corollary. As d — —co through fundamental discriminants

Tri@)-3 > Sa@e™Vde| - 720

0<c<2Vd
c=0(4)

1
h(d)

An equivalent form of this result was conjectured recently by Bruinier, Jenkins
and Ono. It is remarkable that the constant 720 is an integer!

To see that this result is a consequence of Theorem B, $>0 and consider
for a smooth C*) test functiony: R* — [0,1] thatis 0 on [01] and 1 on [1+
g, ), thel-invariant Poinca series

h(@= ) w(imyde(-y2).

yel\I'

HereI'., consists of thosg € I’ that act as translations. Clearly for b 1 + ¢
we have

he(2) = &(-2)

and sof(2) = j(2) — h.(2) is C*, T-invariant and bounded o#/. By Theorem B
we have that ad —» —

h(ld)(zj(z) Zh(z)} fJ(Z) hs(2) du.

2eAg ZeNg

Now,

D h@= ), e(-zq)+O(eh(-d)).

ZeAy Imzp>1

after applying again Theorem B to a suitable function.

Also,
> e-z)=% Y Syt VIe
Imzg>1 O<c<2+[d
c=0(4)

comes from the well known Gauss parametrization of root€ af d(c).
Next we need to evaluate

f i@ - h(@ du = lim f i@ du
N\H Y=o Uiy

whereFy = {z€ F;Imz < Y} sincefﬂ h.(2 du = 0. Lerche, Schellenkens,
and Warner showed how to evaluate such an integral using Stokes’s Theorem
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(see (Borcherds, 1998)). One uses the Eisenstein series of weilghzR:=
1-24%7 o1(n)g" and its non-holomorphic modular version

Ea(2) = o)~ 2y ™

Since 1/ 5 3 3
— _ - i
E = —| — —_ N — = —
OE2/0z 2(8x " I(’)y)( ny) 2my2
anddz dz= 2i dx dywe get by Stokes’s Theorem

1/2+iY .
3 j(z)o'xzOly - f J(X + IY)Ea(x + iY) dx
T JFy y —1/2+iY

= constant term of Ex(x + iY)

= 74a-2v-3y1 720, asY — co.
T
To see thaB(TY h.(2) du = 0, simply integrate the cutfbPoincaé series

hey@ = D uv(imyde(-y2)

yelo\I'

whereyy(y) = { ‘é’(y)’ zi ¥ , which coincides witth, on . Thus,

he dy = f hey du = 0.
Fy F
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