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1. Abstract 
 

The trebuchet was an immense counterpoise siege engine that became the artillery 

weapon of choice throughout the middle ages.  This project’s aim was to model the 

mechanics of one such engine by use of an Euler method as opposed to the more common 

Lagrangian form.  While the mechanics of second complexity level have been modelled 

quite successfully using Excel, once further complexity and greater degrees of freedom 

are introduced the difficulty increases substantially.  For the basic seesaw, the optimum 

conditions were found to be a 4:1 arm length ratio, a 100:1 mass ratio, and an angle of 

release of approximately 37.49º.  Preliminary results have also been acquired for the 

more complicated trebuchet with sling model, these are also presented here. 
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2. Introduction 

 

The trebuchet is a specific type of siege engine, the next evolutionary stage in the generic 

term of catapult.  While previous catapults, such as the onager, were a family of torsion 

siege engines (i.e. they relied upon stored energy in the form of tension for their power, 

much like a bow) the trebuchet and its direct predecessor, the mangonel, were 

counterpoise engines, drawing their power from a counterweight. 

 

As their name suggests, “siege engines” had the sole purpose of breaking down castle 

walls, and consequentially would be required to launch vast projectiles towards the target.  

Not only this, but their range would also need to be greater than that of a defending 

archer, lest the operators be in danger.  “Modern experiments suggest that a trebuchet, 

the most advanced medieval siege engine, with an arm of approximately 15m in length 

would have been capable of throwing a 135kg projectile a distance of 275m, this would 

require a counterpoise of approximately 10 tonnes” [3]. 

 

The primary advantages of the trebuchet were its accuracy and relative rate of fire.  A 

weapon may be capable of launching immense missiles, but if it cannot be aimed it will 

prove highly unsuccessful.  The trebuchet was, intrinsically, no more accurate than other 

siege engines.  However, the motion of fire was so smooth that after launch it remained 

stationary, allowing the engineers to adjust the trajectory.  This was a significant 

improvement on previous engines, most notably the onager whose very name translates to 

“Wild Ass” [4]. 

 

The trebuchet is very much in vogue at present, with numerous websites [14] featuring 

building varying scales of replicas, to computer modelling and engineering competitions.  

The machine has even made it so far as Hollywood with trebuchets having a prominent 

(for a machine at least) role in several feature films, namely Lord of the Rings: The 

Return of the King and Kingdom of Heaven, as shown in Figures 1 and 2 respectively. 

 

 

Figure 1: Trebuchet depicted in LotR [15] 

 

 

Figure 2: Trebuchet shown in KoH [16] 

 

Due to the machine’s popularity, many educational organisations have constructed their 

own models for various Design and Physics lessons.  Figure 3 is of the trebuchet from 
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Charterhouse School, Godalming.  The key points and distances have been labelled, and 

this is the convention for notation throughout this project. 

 

 

Figure 3: The Charterhouse trebuchet; where L1 and L2 are the distances from the pivot to the 

counterweight and projectile slings respectively, L3 and L4 the sling lengths for the counterweight 

and projectile respectively, h the height of the pivot off the ground and m1 and m2 the counterweight 

and projectile masses respectively. 

3. Modelling 
 

The computational modelling stages have attempted to recreate each machine’s 

performance; the only exception is that forces of friction have been neglected.  In this 

way the full potential of the machine could be examined, looking at the “best case” 

scenario for each trebuchet.  While friction was ignored on the modelling of the 

trebuchet, the effects of drag were taken into account when calculating the range from the 

launch velocity and angle of release provided. 

 

The calculation steps are described in Figure 4 and the spreadsheets themselves are 

presented as appendices A-C. 
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Figure 4: Graphical representation of the calculation steps as used in appendices A & B, calculations 

with unspecified equations are trivial.  The final calculated values of velocity and release angle are 

then used with the calculations shown in appendix C. 
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3.1 The Perfect Engine 

 

A catapult, that is, the generic term for medieval artillery, may be modelled with varying 

degrees of complexity.  Specifically here counterpoise engines were examined, those that 

derive their power from using a counterweight.  The counterweight has a certain amount 

of gravitational potential energy; a portion of this is then converted into kinetic energy for 

the projectile.  The most perfect siege engine would convert 100% of the counterweight’s 

potential energy into kinetic energy for the projectile using Equation 1.   

 

This is the best possible situation for the projectile.  If the siege engine’s range is 

considered, again assuming perfect conditions, i.e. no air resistance, then the maximum 

range is achieved if this 100% conversion of energy is launched at a release angle, γ, of 

45°, as is shown in Figure 5. 

 

 

Figure 5: Trajectory plot of projectile with no air resistance
i
, where v is the 

launch velocity, and the angle of release is represented by the angle γ 

 

The flight time, tii, can be calculated with Equation 2: 

 

The maximum range is then given by Equation 4: 

 

Then using the launch velocity, v, from re-arranging Equation 1, the equation becomes: 

 

                                                 
i
 Note that trajectory is symmetrical where air resistance is not taken into account 

ii
 Where t is the time to reach maximum height and return to ground 
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The maximum range is achieved when the launch angle, γ, is 45º, consequentially 

Equation 5 for Rmax becomes: 

It should be noted that for the perfect engine, the maximum available potential energy is 

converted into kinetic energy, thereby achieving the highest possible launch velocity.  

However, for other machines, a compromise between launch velocity and angle of release 

must be considered and hence Equation 5 is the more accurate.  This is explained more 

fully in section 3.2. 

 

The interesting point here is that for maximum range, only the relative masses are 

required, and that the length of the beam is irrelevant.  This would seem to imply that the 

mass ratio determines what range can potentially be achieved, leaving the characteristics 

of the trebuchet itself, i.e. the arm length ratio, to determine the efficiency of the 

machine. 

 

The results in Table 1 display the maximum range for perfect versions of the engines 

considered at later stages of modelling.  The “Britannica” trebuchet is looking at a real 

trebuchet which would fire a projectile of 135kg.  The “Standard” trebuchet was 

determined through examining the optimal conditions in section 3.2.  The “Charterhouse” 

series is concerned with the Charterhouse trebuchet in section 4 and the different 

combinations of counterweight and projectile masses available.  The purpose is to 

provide a comparison value and thus establish the efficiency of engine in each stage of 

development. 

 

Trebuchet Mass Ratio Maximum Range (m) 

Britannica 100:1.35 628.54 

Standard 100:1 282.84 

Charterhouse 1 75:1 94.40 

Charterhouse 2 100:1 125.87 

Charterhouse 3 125:1 157.33 

Charterhouse 4 26:1 32.83 

Charterhouse 5 35:1 43.78 

Charterhouse 6 43:1 54.72 

Table 1: Perfect Engine Rmax results 

 

Perfect conditions are unlikely; there will be friction to take into account at each point of 

contact, there is recoil present, due to unused kinetic energy and air resistance should be 

taken into account.  Therefore, a siege engine’s effectiveness really depends on its 

efficiency.  How much of that gravitational potential energy is converted into kinetic 

energy for the projectile?  As far as modelling is concerned, the complexities lie purely in 

the calculation of the projectile’s launch angle and velocity.  Once these values are 

known it is relatively straightforward to calculate the projectile’s range.  Of course, 

greater accuracy can be introduced at this stage too; the projectile’s trajectory itself can 

be calculated, taking into account the drag effective on the projectile. 

2
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3.1.1 Efficiency Calculations 

 

The perfect engine calculations provide the maximum possible range for a set of 

counterweight and projectile masses by analysing the respective energies.  It is these 

values that will be used to calculate a specific trebuchet’s efficiency with Equation 7. 

 

 

 

Where the efficiency of an engine, ε, is proportional to the range calculated by that 

trebuchet complexity level, Rcalc, and inversely proportional to the range of those masses 

in the perfect engine, Rmax.  The efficiency is converted into a percentage for ease of 

analysis.  For experimental results, the calculated range, Rcalc, is merely replaced by a 

measured range, Rmeas.  This method is used throughout the project to calculate 

efficiency. 

3.2 The Seesaw Trebuchet 

 

 

Figure 6: The Seesaw Trebuchet 

 

The most basic trebuchet is based on a simple seesaw, shown in Figure 6.  The 

counterweight positioned at one end of the beam and the projectile on the other.  By 

calculating the torque produced on the arm by each mass, the angular acceleration can 

therefore be calculated.  As the torque of each mass is produced by the effect of gravity 

on them, the forces on the arm will vary throughout the beam’s motion, and 

consequentially so too, will the torque and angular acceleration.   

 

In this case the net torque, τ, is due to the difference between the torques of the masses, 

Equation 8.  The angular acceleration, α, requires the net torque, τ, and the moment of 

inertia, I, to be known.  A system’s moment of inertia being the sum of all the component 

masses, mi, present in that system multiplied by the square of their respective distances 

from the rotational axes, ri
2
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Due to the use of an Euler method, it may be assumed that the equations of motion will 

hold true for each individual time step.  Although the acceleration of the projectile will 

vary on its path until launch, each time step is small enoughiii that it should be acceptable 

to assume the acceleration remains constant for that brief period.  As the projectile 

progresses along its arc, a tangential velocity, or launch velocity for a given release angle, 

is continually calculated. 

 

Based on the background research [2, 3, 11], the trebuchet engineers were able to crudely 

determine the angle of release, therefore an assumption has been introduced that the 

release angle can be stated.  In this way the variables are reduced and the launch velocity 

is simply read off when the angle of release, γ, has been reached. 

3.2.1 Investigating Arm length Ratio 

 

This being one of the initial tests of the equations, performed at the start of the project, 

keeping the numbers simple and the quantity of results data to analyse minimal, seemed 

appropriate.  The choice of a 10:1 mass ratio was purely arbitrary.  Hence a 10kg 

counterweight and a 1kg projectile were used.  This can be seen in Figure 7. 
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Figure 7: The effect of arm length ratio on projectile range 

From this point on the standard set-up for my modelled trebuchet was to have the 

optimum 4:1 arm length ration.  Using this new standard, the effect of the respective 

masses was also considered.   

                                                 
iii

 For the trebuchet spreadsheets ∆t was taken as 0.0005s 
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3.2.2 Investigating Counterweight to Projectile Mass Ratio 

 

Various counterweights were used for a projectile of 1kg; Figure 8 displays the results of 

the investigation into optimum mass ratio conditions. 
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Figure 8: The effect of mass ratio on projectile range 

From calculations using the Perfect Engine model, it was expected that the range would 

simply be a linear relation with the mass ratio.  As Figure 8 depicts, initially this is true, a 

small increase in counterweight mass will have a large effect on the range.  There comes 

a point where this no longer applies, and it takes a huge increase in counterweight mass to 

have any significant change in range
iv

.  The new standard values will therefore be a 

counterweight of 100kg and a projectile of 1kg.  This mass ratio is comparable to that 

investigated in “Siege engine dynamics” [2] where a counterweight mass of 10000kg and 

a projectile mass of 100kg were used. 

3.2.3 Investigating the Optimum Launch Angle 

 

The next stage of the project was to find the optimum launch angle for a seesaw 

trebuchet.  Using the now established values for L1, L2, m1 and m2 the release angle will 

be varied in order to find the effect this has on the range.  From the perfect engine, there 

is the statement that the optimum angle of release is 45°, thus providing the maximum 

range.  However, now a real engine is considered, the angle of release and launch 

velocity become inextricably linked.  The further the distance which the projectile has to 

accelerate over, the greater its tangential velocity.  Thus the maximum tangential velocity 

will be when the counterweight is at the lowest point on its arc, i.e. the beam is vertical.  

                                                 
iv

 Note that mass ratio and range still remain proportional 
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However, the angle of release at this point will be 0°; obviously this will not provide the 

maximum range.  So, there must be some optimum “compromise” where the angle of 

release is closer to 45° but the launch velocity is still high.  These results are shown in 

Figure 9. 
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Figure 9: Determining the optimum launch angle 

The optimum range is not achieved when the theoretical optimum angle of 45° is used 

but it is found to be approximately 37.49°.  This situation reaching the best compromise 

between angle of release and launch velocity. 

3.2.4 Investigating Efficiency 

 

There are obviously several points that will cause the efficiency to decrease.  The perfect 

engine has the benefit of having both the maximum velocity and the optimum launch 

angle with which to acquire its maximum range.  The seesaw trebuchet must make a 

compromise between the two.  However, there is a discrepancy between the maximum 

range for the perfect engine and the maximum range if the seesaw was a perfect engine.  

As well as the variation of velocity with release angle there is another variable to take 

into account.   

 

For the perfect engine the value of ∆h remains constant for a fixed L1.  However, as the 

release angle for the seesaw trebuchet varies depending on the optimal conditions, ∆h is 

not necessarily fixed.  A release angle of less than 45º will mean that the value of ∆h 

must be greater than for the equivalent perfect engine.  This discrepancy equates to an 

increase of approximately 2.5% in the maximum range, and it is these increased ranges 

that are used for the efficiency calculations.  The results of this compromise can be seen 

in Table 2. 
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Seesaw Trebuchet 
Range Calculated with 

Seesaw model (m) 
Perfect Engine 

Maximum Range (m) Efficiency (%) 

Britannica 115.59 645.25 17.91 

Standard 38.88 290.36 13.39 

Charterhouse 1 11.08 96.91 11.43 

Charterhouse 2 11.52 129.21 8.92 

Charterhouse 3 11.72 161.51 7.26 

Charterhouse 4 8.89 33.71 26.37 

Charterhouse 5 9.68 44.94 21.54 

Charterhouse 6 10.19 56.18 18.14 

Table 2: The Efficiency of the Seesaw Trebuchet 

The modelled seesaw trebuchet is quite inefficient.  It is interesting to note the quite 

extensive variation of efficiency for the “Charterhouse series”, where the only variables 

are the two masses.  There appears to be a relation that as the ratio between the 

counterweight and projectile masses increase, the efficiency of the machine decreases.  

This is especially apparent when only considering the Charterhouse series.  The results in 

Figure 8 would seem to corroborate this hypothesis, where the benefit due to an increased 

mass ratio is only applicable to a certain degree.  Once the region of 100-200:1 is reached 

the benefit of a further increase in mass ratio is negligible. 

3.3 Calculating the Projectile Trajectory 

 

The calculation for Rmax, using Equation 5, while perfectly valid, does not take into 

account any resistive forces, i.e. drag on the projectile due to air.  Once the trebuchet 

model has calculated a launch velocity and angle of release, it is then possible to plot an 

accurate trajectory including the effects of air resistance. 

 

An Euler method was used to calculate the trajectory, recording a position and velocity 

components at each time interval.  By this method we consider that the projectile’s 

acceleration varies throughout its flight.  Trajectory models which neglect the effect of air 

resistance show only a variation in the vertical velocity of the projectile, from the initial 

vy to zero before returning to vy, meanwhile, the horizontal component of velocity, vx, 

would remain constant.  Successive recalculation of the horizontal and vertical velocity 

components as well as the direction of propagation of the projectile was required.  As 

stated in section 3.2, the use of an Euler method allows the use of the equations of motion 

despite acceleration not being constant over the entire system.  

 

The trajectory model has introduced the effect of air resistance as an additional 

acceleration on the projectile.  This acceleration is calculated through Newton’s second 

law with the resistive force given by the drag equation shown below: 

 

 

 

Equation 11 [8, 9] relies heavily on the projectile’s velocity, v.  Obviously a faster 

moving projectile must move through more air per second, and thus the force of drag will 

be higher than for a slower moving projectile.  The value of the density of air, ρ, was 

2

2

dACv
D

ρ
=

Equation 11 
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taken to be 1.225kgm
-3

 
v
[12].  The reference area, A, is not necessarily equal to the cross 

section, however, as it is related to it, this seemed an acceptable assumption to make.  

The drag coefficient is a specific value for a shape.  Typically, a sphere has a drag 

coefficient of 0.47 [10], which is the value used for the calculations. 

 

The height of the projectile’s launch was also incorporated into the calculations, an 

improvement on the Rmax equation, which assumes that the projectile’s initial and final 

position y-component are equal to zero. 

 

To find the optimum conditions, v and γ, Equation 5 was used.  The Rmax value was 

calculated for each iteration and then the maximum value was found.  The launch angle 

and angle of release corresponding to this maximum Rmax value were then entered into 

the trajectory model in order to calculate the true flight path. 

3.4 Trebuchet with Hinged Counterweight 

 

 

Figure 10: The trebuchet with hinged counterweight 

 

This next model would include the addition of a hinged counterweight suspended from 

the end of the beam L1, on a sling of length L4.  As torque is proportional to the mass’ 

perpendicular distance from the pivot, the effect of this additional degree of freedom is 

that as the distance from the counterweight to the pivot now increases throughout the 

trebuchet’s motion, so too, will the torque. 

 

This should counteract the reduction in torque and, consequentially, angular acceleration 

once the beam has passed the maximum value at the horizontal.  There will still be a 

factor increasing the trebuchet’s torque. 

 

Although this extra torque will naturally increase the range of the trebuchet, the 

improvement gained from the hinged counterweight should be significantly less than that 

gained by introducing a sling.  Therefore, rather than focusing on one minor aspect, work 

proceeded onto the next stage of the project. 

                                                 
v
 At 288.16K density of air is 1.2250514kgm

-3
 [12] 
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3.5 The Trebuchet with Sling 

 

 

Figure 11: The trebuchet with sling 

 

With the introduction of the sling, demonstrated in Figure 11, the projectile no longer 

follows the straightforward circular arc of the beam.  Initially the projectile is constrained 

to a trough until there is a great enough vertical component of tension to counteract the 

force due to gravity, the projectile’s weight.  The projectile then begins to follow an arc 

before it is snapped back before being launched, as described in Figure 12. 

 

 

Figure 12: Plot of projectile around trebuchet with sling 

 

To further compound the problems, there is no longer the situation of a straight L2:L1 

ratio.  A new value must be considered, the distance from the pivot to the projectile, r, as 

shown in Figure 11.  Any factor dependant upon the projectile’s distance from the pivot, 

will now vary throughout the projectile’s motion about the trebuchet.  This effectively 

replaces L2, certainly with regards to the moment of inertia and therefore the subsequent 
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values calculated.  The distance r will now be changing throughout the projectile’s 

motion along its path, from a minimum distance of L2 – L3, to a maximum of L2 + L3. 

3.5.1 The Angle α 

 

The complexity with this model was in calculating the position of the projectile once it 

had left the trough.  It was necessary to calculate the height, Ay, in order to calculate α.  

However, once α reaches 90°, i.e. the sling becomes vertical, due to using the sine 

function there resulted an error.  This was solved by calculation instead through the 

tangent function.  

3.5.2 The Effect of the Sling 

 

The addition of a sling not only introduces another degree of freedom, but also increases 

the number of variables.  The effect of the sling length, L3, on the system must be 

considered.  The results in Table 3 are for a trebuchet with the standard values as defined 

in section 3.2, but with the addition of a sling of various lengths.   

 

Trebuchet Sling length (m) 

Range 

calculated with 

sling model (m) 

Perfect Engine 

maximum Range 

(m) 

Efficiency 

(%) 

Standard 1 3 210.92 290.36 72.64 

Standard 2 2.5 195.85 290.36 67.45 

Standard 3 3.5 202.94 290.36 69.89 

Standard 4 2 141.77 290.36 48.83 

Table 3: Effect of sling length on trebuchet efficiency 

Again there would appear to be an optimum condition for the relative length of L3, 

although to truly analyse this characteristic of the trebuchet it is necessary to have a 

generic spreadsheet for the trebuchet with sling and to get results for more combinations. 

4. Experimental Results 
 

The Charterhouse Trebuchet 

 

A trebuchet housed at Charterhouse School, Godalming, Surrey was available for 

experiments.  The trebuchet available was slightly more complex than those modelled, 

having an additional degree of freedom in the use of a hinged counterweight, although the 

effects of friction will outweigh any benefit.  Still frames of video taken of this 

experiment are included in Appendix D. 

 

The arm length ratio was different to the established standard of 4:1, instead, the ratio of 

L2:L1 for the Charterhouse trebuchet was 3:1.  Two separate projectiles were used during 

the experiment, a hockey ball (m2 = 158g) and a croquet ball (m2 = 463g).  These were 



Final Year Project – Matt Taggart 

 16 

each tested with counterweight masses of 12, 16 and 20 kg
vi

.  This provided 

counterweight to projectile mass ratios of approximately 75:1, 100:1 and 125:1 for the 

lighter projectile, and 26:1, 35:1 and 43:1 for the heavier projectile.   

 

Each set of variables was tested 5 times, to detect anomalous results and to test the 

trebuchet's famed accuracy.  From operating the machine its smoothness of motion was 

apparent. 

 

Figure 13: Landing positions of projectile 

The firing range itself was marked out for intervals of 3 metres, signified by the yellow 

circle in Figure 13, and while the trebuchet operator launched the projectile, a “spotter” 

would mark the landing point of each projectile, as shown by the red circles in Figure 13.   

 

The range for each launch was recorded and evaluated in Table 4.  The standard 

deviations seem quite high, especially for the lighter projectile, which would seem to 

contradict the historical reports of the trebuchet’s fabled accuracy.  However, there were 

some unexplained “misfires” throughout the course of the experiment.  This was possibly 

due to a twisted sling introducing a further degree of freedom to the projectile.  The fact 

that one of the sets of results, Charterhouse 5, had in fact a very low standard deviation 

implies the inaccuracy of results is more to do with the inexperience of the trebuchet 

handlers, rather than being the fault of the machine.  Also, the trajectory of the projectile 

was quite high so this may be due to the effect of the little wind present as the lighter 

projectile would be more susceptible to this, and also had the higher standard deviations.   

 

 

 

                                                 
vi

 The lighter hockey ball results are classed as “Charterhouse 1-3” and the heavier croquet ball results are 

classed as “Charterhouse 4-6” 
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Trebuchet CW Mass 

(kg) 

Average 

Range (m) 

Standard 

Deviation 

Theoretical 

Range (m) 

Efficiency 

(%) 

Charterhouse 1 12 28.75 1.374 96.91 29.67 

Charterhouse 2 16 37.78 1.822 129.21 29.24 

Charterhouse 3 20 41.31 2.753 161.51 25.58 

Charterhouse 4 12 13.31 1.073 33.71 39.48 

Charterhouse 5 16 20.18 0.2843 44.94 44.90 

Charterhouse 6 20 27.93 1.098 56.18 49.72 

Table 4: Experimental results 

As described by the perfect engine results, the smallest mass ratio provides the shortest 

range and the greatest mass ratio provides the longest range.  The varying efficiency 

however, prevents the experimental data matching the theory exactly.   

 

The correlation with these results and the model for the seesaw trebuchet is interesting.  

Both exhibit a curious variation of efficiency with respect to mass ratio. This is contrary 

to the earlier deduction, that the mass ratio plays little or no role in determining the 

efficiency of the engine.  However, while the modelled trebuchet showed that the 

trebuchet's efficiency was inversely proportional to its mass ratio, the experimental 

results imply that there is in fact an optimum mass ratio for the efficiency of a machine.  

This is again supported by the data in Figure 8, the beneficial effect of an increased 

counterweight mass being offset by a rapid reduction in efficiency.  This efficiency curve 

is displayed in Figure 14. 
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Figure 14: Efficiency against mass ratio curve for experimental data 



Final Year Project – Matt Taggart 

 18 

Although Figure 14 shows a peak in trebuchet efficiency around the 43:1 mark, this 

requires further investigation as no results were taken for ratios from 43:1 - 75:1.  To 

truly achieve reliable data on this issue, more mass ratios would need to be tested. 

5. Analysis 
 

The efficiency of different engines will now be compared.  The only experimentally 

examined trebuchet was the Charterhouse trebuchet.  The efficiency of that engine was 

therefore not only due to the mechanics of the engine, as was the case with the models, 

but also due to the frictional forces inherent in the machine. 

 

The comparison in Table 5 looks at 4 different engines of varying complexity and their 

respective efficiencies.  As the efficiency of a trebuchet is dependant upon both the mass 

ratio as well as the arm length ratio, the average efficiency was used to examine the type 

of machine rather than to confuse the issue with the characteristics, which are 

investigated elsewhere in this project.   

 

Type of trebuchet Average Efficiency (%) Standard deviation 

Perfect engine 100 0 

Seesaw trebuchet 16.18 6.95 

Trebuchet with sling 64.7 10.79 

Charterhouse trebuchet 36.43 9.72 

Table 5: Comparing efficiencies of the different models 

The perfect engine obviously is the idealised model, with 100% conversion of potential 

energy into kinetic energy.  The calculation lacks accuracy however, due to its 

dependence on the ∆h term, which leads to a 2.5% error in the Rmax calculation.  The 

other models should, and do, all have efficiencies less than that for the perfect engine.  

The seesaw trebuchet, our most simple attempt at modelling the trebuchet’s mechanics is, 

as expected the least efficient model.  The Charterhouse trebuchet utilises all historic 

methods of increasing range; the sling, a hinged counterweight and wheels.  This 

additional complexity still is not enough to offset the effects of friction, which 

substantially reduce the efficiency of the machine.  As expected the trebuchet with sling 

provides the most efficient model here, having the benefit of both additional degrees of 

freedom and frictionless materials.  These results compare well to those in “Trebuchet 

Mechanics” [11], with a seesaw efficiency of 11% and trebuchet with sling efficiency of 

83%
vii

. 

                                                 
vii

 The average efficiency of the sling was greatly reduced due to the effect of the lowest valued result, 

however, the trend still remains of the this being the most efficient model considered 
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6. Conclusion 
 

The trebuchet is a highly sensitive mechanism, even the so-called “perfect engine” was 

limited by a factor of ∆h, albeit by only 2.5%.  The seesaw trebuchet has had optimum 

values calculated and defined as:   

• L2:L1 equal to 4:1 

• m1:m2 approximately 100:1 before efficiency begins to decrease 

• Release angle of approximately 37.49º 

 

The trebuchet with sling is obviously an improvement on the basic seesaw, with even the 

poorest result acquired more than tripling the range of the standard trebuchet.  At present 

it appears the optimum sling length would be roughly 75% of the length of L2, however, 

without further tests this is little more than speculation. 

 

Of course, these were determined in the absence of friction, which as Table 5 shows, 

greatly affects the engine’s efficiency. 

7. Further Work 
 

The next stage for this project would be to develop the spreadsheet for the trebuchet with 

sling further, so that one set of equations would cover a trebuchet of any dimensions.  It 

would also prove interesting to further investigate the length ratio for the trebuchet with 

sling, in order to find the optimum conditions regarding L2 and L3 with respect to L1.  The 

next stage would then be to acquire some results for the effect of adding a hinge to the 

counterweight, and to investigate whether this alters the optimum ratio for the seesaw 

trebuchet due to the now varying ratio of length.  A further investigation to explain the 

physics behind this mass ratio relationship with the trebuchet efficiency would also be 

another avenue to explore. 
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10. Appendices 
 

Appendices A – C are screen dumps of the spreadsheets used for the modelling section of 

this project.  Due to the complexity and size of the files in some cases, not all information 

was possible to show.  The key areas have been selected as described by Figure 4.  

Appendix D displays still images from video of the Charterhouse trebuchet. 

10.1 Appendix A – Seesaw Trebuchet Calculations 
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10.2 Appendix B – Trebuchet with Sling Calculations 

 

10.3 Appendix C – Trajectory Calculations 
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10.4 Appendix D – Still Frames of the Charterhouse trebuchet 

 

 

 

 
 

 

 
 


