
Using Trust and Risk in
Role-Based Access Control Policies

Nathan Dimmock András Belokosztolszki David Eyers
Jean Bacon Ken Moody
University of Cambridge Computer Laboratory
JJ Thomson Avenue, Cambridge CB3 0FD, UK

Firstname.Lastname@cl.cam.ac.uk

ABSTRACT
Emerging trust and risk management systems provide a framework
for principals to determine whether they will exchange resources,
without requiring a complete definition of their credentials and in-
tentions. Most distributed access control architectures have far
more rigid policy rules, yet in many respects aim to solve a sim-
ilar problem. This paper elucidates the similarities between trust
management and distributed access control systems by demonstrat-
ing how the OASIS access control system and its rôle-based policy
language can be extended to make decisions on the basis of trust
and risk analyses rather than on the basis of credentials alone. We
apply our new model to the prototypical example of a file storage
and publication service for the Grid, and test it using our Prolog-
based OASIS implementation.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed Sys-
tems; D.4.6 [Operating Systems]: Security and Protection—ac-
cess controls

General Terms
Security

Keywords
Trust, Risk, Access Control, OASIS, SECURE

1. INTRODUCTION
Computing entities will continue to become ever more ubiqui-

tous over the next decade. These entities increasingly ‘talk’ with
each other in a peer-to-peer fashion, avoiding the need for large-
scale hierarchical communication infrastructures. It is highly de-
sirable that these communities of inter-communicating entities pro-
vide a means for sharing or trading resources. In the past such com-
munities would tend to be manually configured in a static manner,

To appear in the Ninth ACM Symposium on Access Control Models
and Technologies(SACMAT), Yorktown Heights, New York, June 2004.
Please do not distribute.

however as devices are now often portable, we would prefer to have
that configuration occur as automatically as possible.

Acceptance of foreign devices is only prudent if adequate levels
of trustworthiness can be ascertained. The term trust management
system was introduced by Blaze et al. in [6], but the solution it
proposes involves an unduly static notion of trust — application
programmers choose where to insert code to evaluate their notion
of trust, for example at the starting point of a given execution ses-
sion. Such an approach does not adequately model the fact that
these trust values may be continually changing. To take an exam-
ple from the non-computing world, a customer interacting with a
particular business will at first tend to be cautious as to the quality
of the service provided, but over time will increase their trust in the
quality and reliability of the services provided by that organisation.
A good overview of trust management systems is given in [9].

In this paper, we explore access control systems which extend
the current practice in which privilege decision outcomes are de-
termined through the credentials presented by a principal. Instead
we make it possible to incorporate notions of trust into the checks
performed by an access control system during its rule inferencing
process. We use the OASIS system, our existing Rôle-Based Ac-
cess Control (RBAC) framework described in section 3, to validate
our ideas and elaborate on potential applications in sections 5 and 6.

Most of the past research combining access control with trust
concepts focuses on a trust-management approach in which trust
values flow in a manually-defined way through access control pol-
icy — for example, using explicit incremental negotiation to es-
tablish mutual trust [14, 17]. Our approach instead relies on a
computational-trust scheme; trust computation itself is orthogonal
to our trust-aware access control architecture and can be included
or excluded as required, giving maximum flexibility to the policy
specifier.

2. THE SECURE FRAMEWORK
The SECURE1 project is working towards a trust-based generic

decision-making framework for use in Global Computing. One of
the target application-areas is Trust-Based Access Control (TBAC),
extending our existing work on rôle-based access control (described
in section 3) to give the authorisation manager finer-grained control
over who they trust.

In SECURE, the access control manager grants or denies per-
mission for principals to execute actions, as shown in figure 1. A
decision is a parameterised boolean value — the parameters allow
the AC manager to indicate its reasons for denying a request or

1Secure Environments for Collaboration among Ubiquitous Roam-
ing Entities, European Union project IST-2001-32486.

Figure 1: A simplified overview of the SECURE framework

constrain a positive decision.
For every decision the SECURE framework considers the trust

it has in the requesting principal p and the risk of granting the re-
quest. In our previous work [8], we observed that risk is the combi-
nation of the costs and likelihoods of all the possible outcomes and
we described a model for combining trust and cost information to
give a risk metric. The problem with this approach is that the risk
metrics were insufficiently expressive to capture all the subtleties
conveyed by the trust value. Information is lost since decisions can
only be made based on simplistic metrics such as expected benefit
and standard deviation. In this new model, we still use an outcome
based approach, but allow the policy author to reason about and
compare the raw trust and cost information on a per-outcome basis,
thereby giving them full-control over the level of uncertainty they
wish to permit.

2.1 The SECURE Trust Model
A request by principal p to perform an action is submitted to

the access control manager. The principal may also supply a list
of credentials which may include signed trust-assertions (recom-
mendations) from other principals, and/or a list of referees whom
the trust calculator may wish to contact for recommendations. The
AC manager looks up the relevant contexts for the requested ac-
tion, and queries the trust calculator for a trust-value, Tv about p.
The notion of context is important in the SECURE trust model. We
observe that trust is a multi-dimensional quantity — by analogy,
a person who is trusted to drive a car may not be trusted to fly a
plane. However, in the absence of directly relevant information, we
may infer a trust-value in one dimension from trust-information in
related dimensions, so it may be possible to infer some informa-
tion about a server’s trustworthiness to relay e-mail (and not spam)
from how much they are trusted to serve webpages. We call these
different dimensions, trust-contexts.

Trust in a principal is computed by examining evidence relevant
to the current context. Evidence consists of observations of previ-
ous interactions we have had with this principal and recommenda-
tions from other principals, suitably discounted depending on our
trust in them [12].

The output of the trust calculator is Tv , a list of (t, c) pairs, where
t is the trust-value assigned to p for trust-context c. The domain of
a trust-value ti in trust-context ci is the lattice Tc over which there
are two orderings defined, trust (indicating increasing/decreasing
trustworthiness) and information (how much evidence was used to
calculate the trust-value) [7]. For each possible action, the pol-
icy author specifies which trust-contexts are relevant and the trust
calculator forms a projection of the relevant contexts from all the
trust-information known about p.

Since principals may be identified by any suitable mechanism,

for example, public-keys, biometrics, passwords or similar, and
some mechanisms are more capable and/or secure than others, Tv
also includes tid , our trust in the mechanism used to authenticate
or recognise p [15].

2.2 Making Trust-based Decisions
Intuitively, a high-risk action requires greater trust in its partic-

ipants and the lower the risk, the less worthwhile it is expending
resources in establishing a high level of trust. The majority of com-
putational trust systems, such as [1] and [2], concentrate on aspects
relating to assigning a trust-value to a principal; they do not con-
sider policy-driven decision-making using trust.

[18] and [19] make use of thresholding in their policy languages
— the former checks that the trust-value is greater than a scalar,
while in the latter there must be at least a certain number of evi-
dence statements of at least a predefined level of reliability. How-
ever, all of these thresholds are statically determined by the policy
author and there is no run-time evaluation of risk.

In SECURE, an explicit cost-benefit analysis is used to deter-
mine how much trust is required to offset the risk. While the trust
framework is calculating a trust-value for p, the AC manager looks
up the outcome costs for the action and checks any specified envi-
ronmental constraints (for example, time of day), then evaluates a
series of predicates which compare trust-values to costs.

3. THE OPEN ARCHITECTURE FOR
SECURE INTERWORKING SERVICES

Rôle-Based Access Control (RBAC) introduces a level of indi-
rection between users (principals) and permissions (privileges) and
in doing so is intended to simplify access control policy manage-
ment compared with previous mandatory (MAC) and discretionary
(DAC) access control models. In RBAC, users are assigned to rôles,
and rôles are assigned privileges. Access control (authorisation)
policy is therefore expressed simply in terms of rôles, and user ad-
ministration merely involves principal to rôle assignment. Most
RBAC research involves models more complex than this basic sit-
uation. One common extension is the support of rôle hierarchies,
wherein rôles inherit the privileges of their subordinate rôles. Often
this allows the access control rôles to reflect the hierarchy of organ-
isational rôles. Another useful extension is to allow constraints to
be associated with rôle activation and resource access. Constraints
may involve time, database queries and, for rôle activation, may
require a principal to already be active in some set of prerequisite
rôles. RBAC models supporting constraints thus have a dynamic
notion of rôle activation compared to the static principal-rôle as-
signment functions in simpler RBAC models.

The Open Architecture for Secure Interworking Services (OASIS)
[4, 5] is a rôle-based access control implementation which includes
some novel extensions. It has a formal, logic-based model, which
is reflected in the Horn-clause style of its policy language.

OASIS policies define the conditions for activating rôles and
those for acquiring privileges. All OASIS policy elements can be
parameterised, thus allowing request-dependent information to be
included in the access control decisions. OASIS access control pol-
icy is specified via two types of rules. An authorisation rule spec-
ifies the rôles a principal must hold and environmental constraints
that must be satisfied for a privilege to be exercised. A rôle activa-
tion rule specifies the prerequisite conditions and constraints that a
principal must satisfy in order to enter a rôle.

Rôle credentials are short-lived; that is, since rôles are activated
within the frame of a given user session the rôle credentials only
persist for the duration of that session. This allows users to limit

the rôles in which they are active to those which provide a path to
currently necessary privileges. Persistent credentials, such as em-
ployment categories and group memberships are supported through
appointments, which may also appear in rôle activation rules as
prerequisites. Delegation of privilege is also supported, indirectly,
through the appointment mechanism – the delegator may issue an
appointment to the delegatee which can be used as a credential in
the appropriate rôle activation.

Information about the current environment may be assigned to
rôle and privilege parameters. OASIS allows environmental con-
ditions to be evaluated through environmental predicates. These
predicates may provide two-way communication to components
outside the policy-enforcing environment. OASIS parameters are
strongly typed and valid binding behaviour is indicated by distin-
guishing between in and out parameters. Below we include some
example policy rules and introduce the OASIS policy rule notation.
Note that in the notation we use in this document, out parameters
are marked by a question mark postfix.

Authorisation rules map rôles to privileges, and follow the struc-
ture:

r, e1, ..., ene ` p

According to such rules the r rôle is assigned the p privilege,
if all of the ne number of ek environmental predicates are
satisfied.

Activation rules have the form:
r1, r2, ...,rnr , ac1, ...,acnac , e1, ..., ene ` r

They may contain any number of prerequisite rôles ri , ap-
pointment certificates ac j , and environmental predicates ek .
If a principal holds all the prerequisite rôles and appointment
certificates prescribed in such an activation rule, and all of
the environmental predicates are satisfied, they may enter the
target rôle r .

In activation rules certain prerequisites can be marked as
membership conditions. Such prerequisites must remain true
for the principal to remain active in the rôle, as opposed to
only needing to be true at rôle activation time. If the mem-
bership condition becomes false (the principal is no longer
active in the marked prerequisite rôles, does not hold the
marked appointment certificates, or the environmental pred-
icates become false) the target rôle is automatically revoked
from the principal.

4. A MODEL FOR TRUST-BASED ACCESS
CONTROL

4.1 Trust-reasoning in the OASIS Policy
Language

This section presents the first main step towards unifying trust-
reasoning into access control, namely integrating trust and cost in-
formation into our existing OASIS policy language.

Both OASIS and SECURE support the concept of principals
making requests to obtain permission to carry out an action. OA-
SIS models this via its authorisation rules which determine whether
a principal has the right to do an action. To fully support the rich
range of applications we envisage for SECURE (see sections 5 and
6), we use OASIS’s type system to create an action type with which
to parameterise privileges and subtypes to distinguish between dif-
ferent sorts of action, as shown in figure 2. Actions are in turn pa-
rameterised with request-specific information, such as a filename.
Depending on the action type, OASIS will use different functions

to access these parameters. In this paper we use capitalised sub-
words to denote types (for example, FileAction) and lower case
words separated with underscores in parameter names (for exam-
ple, file action).

Figure 2: The Action type and its sub-types.

The following functions, encoded in policy rules through the use
of environmental predicates, can be used to access parameters of
the subtypes shown in figure 2:

get ActionName(act : Action, action name? : String)

get FileActionOwner(act : FileAction, owner? : String)

get FileActionFilename(act : FileAction, f ile name? : String)

4.2 OASIS Environmental Predicate interfaces
to SECURE

Due to the openness of the OASIS environmental predicate call-
out mechanism, it is straightforward to define the interfaces re-
quired to allow trust and cost/benefit computations to be included
within OASIS policy rules. We describe the three main predicates
we require:

Trust retrieval: The first predicate uses the contexts associated
with the action to retrieve relevant trust values into rule pa-
rameters for a named principal:

trust (princi pal, context, value?)

Cost retrieval: The second predicate is one which retrieves the set
of outcome costs into rule parameters for a named action:2

cost (action, outcome, cost?)

Risk thresholding: This third type of predicate fails if the trust is
too low for the outcome’s cost. This failure is in the same
sense as any other OASIS rule predicate returning false — if
using OASIS semantics in which all routes are explored to
reach the potential target rôle or privilege, such failure will
cause backtracking to attempt other potential activation or
authorisation rules. Further details of these risk predicates
are given below.

4.3 Risk Thresholding Predicates
Although the OASIS policy language is not sufficiently expres-

sive to encode all the policies we require in SECURE, we use
the ability to call external services via environmental predicates
to extend the OASIS model to provide the required functionality.
Our initial investigations have suggested that many policies will be

2Unfortunately this formulation means that outcomes cannot be up-
dated dynamically — the structure of the policy rules must also be
changed.

fairly simple comparisons of trust and cost metrics which can be
expressed in the following basic grammar, described in standard
BNF notation:

PREDICATE ::= CONDITION
| if CONDITION then PREDICATE

else PREDICATE endif
CONDITION ::= CONDITION CONDOP COND2
COND2 ::= EXPR | COND2 CONDOP2 EXPR
EXPR ::= true | false | (CONDITION)

| ARITHEX EXPROP ARITHEX
ARITHEX ::= ARITHEX2

| ARITHEX ARITHOP ARITHEX2
ARITHEX2 ::= ARITHEX3

| ARITHEX2 ARITHOP2 ARITHEX3
ARITHEX3 ::= VALUE | exp(ARITHEX) | (ARITHEX)
VALUE ::= tval | cost | id | NUM | -VALUE

CONDOP ::= ||
CONDOP2 ::= &&
EXPROP ::= == | != | > | < | =< | >=
ARITHOP ::= + | -
ARITHOP2 ::= * | /
NUM ::= int | float

The standard definitions of the numeric datatypes int and float
are assumed. id is an identifier (variable name) and exp(ARITHEX)
is the exponential function, ex where x may be another arithmetic
expression. Operator binding and precendence is based on ANSI
C [10].

5. EXAMPLE APPLICATION: THE GRID
While recent years have seen tremendous performance advances

in micro-computers, there are still some science, engineering and
business applications that require specialised resources that remain
beyond the means of an infrequent user. One solution has been
to attempt to create something akin to a “power grid” of computa-
tional resources — the user “plugging-in” to this grid may access
a whole range of services not available at their current location,
possibly in return for a fee [3].

As the Internet has shown, exposing computers to the entire world
makes for some tricky problems — how does a user know which
server to trust with their computation, or which server has the cor-
rect version of the document they want to retrieve. Likewise, the
server must decide whether this user is a genuine customer if they
are likely to pay for the work carried out or if their program will use
more resources than the server is willing to allocate. Linking the
user to a credit card may mitigate some of these problems, but this
is inappropriate for small transactions or pro-bono agreements (for
example, where there exist reciprocal agreements between organi-
sations to allow them to use each others’ computing resources).

5.1 A file-storage and publication service for
the Grid

To illustrate our model, we will apply it to a Grid file-storage and
publication service. There are a number of possible use-cases:

• Alice is going on a long research trip, and wishes to ensure
some data she needs is widely available, not only for herself,
but to potential collaborators she may meet along the way.

• Bob has a very large data set he needs processed by a grid
computation server. To save network cost, he wants to host
the data as close to the compute server as he can.

• Charlie has a very controversial paper he is expecting a lot of
people will want to download. His local sysadmin has told
him that their web-server is unlikely to take the strain, and
Charlie is also worried that people who object to his paper
may try to block its distribution.

Each server offering this service has different properties — apart
from their fee, they differ in bandwidth available, uptime guar-
antee, storage integrity and the strictness with which they check
access control credentials. These are all represented in our trust-
framework via contexts. Correspondingly, the user must specify
the importance of the file in each of these categories. Alice will
wish to use several servers that are geographically distributed with
average availability and integrity, but are known to be very trust-
worthy when it comes to not allowing unauthorised people to ac-
cess her files. In contrast, Bob needs only one server (so can pay
a little more for it), but he needs very good availability and storage
integrity. Finally, Charlie wants to publish his paper widely on a
large number of cheap servers which are trusted for their high level
of integrity.

The Grid hosts also use SECURE to make decisions about which
clients they can trust. Since there is a certain amount of anonymity
on the Internet, there is always the danger that a service vendor will
not receive payment, or that they will publish a file that results in
the server being overwhelmed or dropped into hot water with the
authorities or lawyers! Of course, there are also services which may
want very popular files (if they have a fat pipe and an appropriate
charging scheme in place) and even ones that actively look to host
information that has been censored in other legal jurisdictions (for
example, http://cryptome.org).

The advantage of SECURE here is that while a Grid host may
have never personally dealt with a potential client before, our trust-
framework allows us to also consider the reported experiences of
its peers. This nicely models human communities in which persons
who repeatedly act in an anti-social manner are eventually rejected
by the community, thus giving principals an incentive to behave
well.

5.1.1 File Retrieval and Deletion
Trust-based reasoning may also be used for determining who

should be able to retrieve or delete the shared files. During her trav-
els, Alice meets David at a conference and wants to give him access
to a copy of her slides. Rather than having to log into all the servers
where the files are stored to update the access control policy, she
gives him a signed recommendation that any Grid host containing
her files should permit him to download the file, slides.pdf.

David returns home from the conference and contacts a server
that Alice told him contains the file. Retrieving files does not re-
quire payment, so he submits a request to read Alice’s file, along
with the recommendation she gave him. The server weighs up the
strength of Alice’s recommendation and its confidence in David’s
authenticity against the importance Alice has indicated she places
in the confidentiality of the file. For a public presentation, only
a low confidence in David’s authentication as being the David re-
ferred to in the recommendation is needed, but for a presentation
intended only for project partners, the server may decide the file
is sufficiently important to expend resources on further authentica-
tion, such as a challenge-response exchange.

A similar process is used when a server is asked to delete a file,
but in addition to checking the authorisation and identity of the re-
quester, it also examines their carefulness trust-context to check
how much the user themselves can be trusted when issuing com-
mands of serious consequence, such as delete! This models the
concept of trust in oneself.

Action Outcomes Trust Contexts Trust-value
FileAction (un)available availability % uptime, no. of days measured
(client publishes) ignore AC policy confidentiality no. of incorrect grants, no. of incorrect denials, total re-

quests
too strict on authorisation
file is corrupted or deleted integrity no. of corrupted/deleted files, no. of files checked

identification % confidence
WriteFileAction client doesn’t pay honesty (belief,disbelief)
(server) popular file (overloaded) popularity avg. bandwidth consumption, no. of files evaluated

controversial file (legal difficulties) controversialness no. of controversial files, no. of files hosted
identification

ReadFileAction (un)authorised authorisation (belief,disbelief)
identification

WriteFileAction (un)authorised authorisation
(un)intended carefulness no. of mistakes, no. of operations

identification

Table 1: Outcomes for a Grid File Storage and Publication Service

Full details of the possible actions, their outcomes, relevant trust-
contexts and format of trust-values are shown in table 1. Most of
the trust-values used are self-explanatory, but for a few we use
(belief, disbelief) pairs which summarise the weight of evidence
for and against a particular trust-assignment, with belief + disbe-
lief ≤ 1. This can be compared to Jøsang’s logic of uncertain prob-
abilities, based on the Dempster-Shafer theory of evidence [11].
A further complication of the honesty trust-context is that it was
observed that a person’s ability and willingness to pay might be
dependent on the amount of money involved. For example, a user
might be known to be willing to pay small amounts but tend to
renege on the deal if the amount is large, or a credit-card com-
pany might recommend that someone is good for up to £100, but no
more. To model this we divide the space of possible payments into
intervals and compute a (belief, disbelief) pair for the relevant one.
For example, in our prototype implementation (see section 5.2) we
use the intervals [0, 10), [10, 30), [30, 60), [60,∞).
5.1.2 A Publish-File Policy in OASIS

For each server which offers a publication service within her
budget, Alice submits the request:

request (server id, f ile action)

The f ile action object (of type FileAction) is parameterised
with the name of the file to be published, and Alice’s name. Al-
ice has specified in the file’s meta-data that high file availability
is important to her, but she intends to achieve that via replication,
so she only attributes medium importance to the individual servers
uptime and integrity. The file does not contain highly confidential
data so Alice is able to assign a low importance to the server giving
the file away indiscriminately. Further, she needs to be able to eas-
ily retrieve the file and so she is anxious not to host it with servers
which are over-zealous in enforcing access control policy therefore
assigning low importance to the enforcement aspect. All of this in-
formation is made available to the AC manager via the SECURE
cost analyser.

The OASIS policy is then used to determine whether this server
is a suitable host for her files as shown in figure 3, where the costs
are computed from the information supplied by Alice as to the im-
portance of her file.

5.1.3 A Retrieve-File Policy in OASIS
To retrieve the file Alice has given him permission to download,

trust (server id, ‘availability’, t1),

trust (server id, ‘confidentiality’, t2),

trust (server id, ‘integrity’, t3),

cost (f ile action, ‘unavailable’, cost1),

cost (f ile action, ‘ignore AC’, cost2),

cost (f ile action, ‘too strict’, cost3),

cost (f ile action, ‘lost’, cost4),

risk unavailable(t1, cost1),

risk ignoreAC(t2, cost2),

risk tooStrict (t2, cost3),

risk lost (t3, cost4) ` request (server id, f ile action)

Figure 3: The OASIS policy used to determine whether
server id is a suitable server for hosting Alice’s files.

David submits the following request where the read f ile action
is paramaterised with (Alice, slides.pdf). The OASIS policy the
server uses to determine whether he may read the file is shown in
figures 4 and 5.

request (David, read f ile action)

The costs Alice assigned to her file are given in section 5.1.2,
from which we can deduce that provided the server is over 60%
confident that is it “David” that it is interacting with, since cost1
is “low”, the server must just have more belief than disbelief that
David is authorised to read the file to grant him access to it. Since
David has supplied a recommendation from Alice strongly recom-
mending that he be able to read the file, unless the server has fur-
ther information to the contrary (perhaps another recommendation
from Alice with a later time-stamp revoking that authorisation) it
will therefore allow him to read the file.

5.1.4 More Complex Policies
The expressiveness gained by using the OASIS infrastructure is

clearly demonstrated if we consider that Alice may also make rec-
ommendations about rôles, as well as individuals. For instance, she
might recommend that all members of the University of Cambridge
Computer Laboratory can retrieve her presentation, but members of
the University of Oxford may not read any of her files.

trust (princi pal, ‘authorised’, t1),

trust (princi pal, ‘identification’, tid),

get FileActionName(read f ile action, f ile name),

cost (f ile name, ‘authorised’, cost1),

cost (f ile name, ‘unauthorised’, cost2),

read f ile risk(t1, tid , cost1, cost2)

` request (princi pal, read f ile action)

Figure 4: The OASIS policy used by the server to determine
whether a principal may access a file.

if trust_id < 0.6 then
false

else
if cost1 == low then
t1.belief - t1.disbelief > 0

else
if cost1 == high then

if cost2 == high then
t1.belief - t1.disbelief > 0.6

else
t1.belief - t1.disbelief > 0.7

endif
else

if cost2 == high then
t1.belief - t1.disbelief > 0.5

else
t1.belief - t1.disbelief > 0.6

endif
endif

endif
endif

Figure 5: Definition of the read f ile risk predicate.

5.2 Implementation
To check the viability of the ideas presented in this paper, we

integrated the SECURE trust predicate interface into our Prolog
OASIS implementation. For non-prototype deployment, we would
expect to rework the necessary environmental predicates into our
more heavy-weight J2EE OASIS implementation.

For example, translating OASIS XML policy to check whether
a user is willing to store a given file on a particular server, we get
the Prolog OASIS shown in figure 6. Note that this is a particular
instance of a FileAction, with a set parameter structure (server ID
followed by the filename). This is a consequence of the Prolog
translation; in fact our XML policy format allows more flexibility
than this when specifying the binding of parameters within rules.

For our tests, the SECURE properties for trust and cost relating
to users, servers and objects are encoded statically with facts of the
following form — that is, the SECURE trust and cost properties are
static and locally available.

trustProperty(server(1),availability=[99,1]).
% ...
costProperty(file(testFile),authorised=high).
costProperty(file(testFile),

unauthorised=high).
% ...

As a consequence of this encoding, we could have implemented

privilegeRequest(fileAction_store,
[ServerID,FileName]):-

% check policy parameter modes
nonvar(ServerID),nonvar(FileName),
% check prerequisites
trust(ServerID,availability,T_1),
trust(ServerID,confidentiality,T_2),
trust(ServerID,integrity,T_3),
trust(ServerID,reliability,T_4),
cost(FileName,unavailable,Cost_1),
cost(FileName,ignore_AC,Cost_2),
cost(FileName,too_strict,Cost_3),
cost(FileName,lost,Cost_4),
risk(unavailable,T_1,Cost_1),
risk(ignoreAC,T_2,Cost_2),
risk(tooStrict,T_3,Cost_3),
risk(lost,T_4,Cost_4).

Figure 6: The Prolog OASIS form of the policy used to deter-
mine whether to store a file on a server.

trust and cost predicates within the OASIS XML policy. Our choice
not to do so emphasises the OASIS/SECURE interface which would
be necessary to support interaction with an external SECURE en-
gine. The interfaces to retrieve SECURE properties within OASIS
policy were thus able to be implemented as follows:

trust(User,Property,Value):-
trustProperty(User,Property=Value).

% ...
cost(Object,Property,Cost):-

costProperty(Object,Property=Cost).

The risk predicates are encoded into Prolog from our risk ex-
pression syntax given in section 4.3. This translation is done us-
ing the Definite Clause Grammar (DCG) extensions of SWI-Prolog
(DCGs are not part of ISO Prolog, but commonly appear nonethe-
less). A simpler example of a SECURE-influenced OASIS Policy
rule is given below, in which a principal requests to read a particu-
lar file. For the FileName parameter to make sense, this rule would
need to be evaluated on the server protecting the file in question.

privilegeRequest(fileAction_read,
[Principal,FileName]):-

% check policy parameter modes
nonvar(Principal),nonvar(FileName),
% check prerequisites
trust(Principal, authorised,T_1),
trust(Principal, identification, T_id),
cost(FileName,authorised, Cost_1),
cost(FileName,unauthorised,Cost_2),
readFileRisk(T_1,T_id,Cost_1,Cost_2).

A number of manual privilege requests were issued to check
that our framework was producing the expected results. Integra-
tion with the under-development SECURE engine to allow us to
advance beyond this proof of concept level is in progress.

6. OTHER APPLICATIONS
Given the similarity of the goals of Grid computing and peer-

to-peer systems, namely the pooling and coordination of the use
of distributed resources, our system is likely to be applicable in

peer-to-peer systems, and would provide considerably greater ex-
pressiveness than existing trust models designed for peer-to-peer
applications [16, 2].

The large-scale, widely-distributed and unpredictable nature of
pervasive computing systems along with their limited resources,
also makes it difficult to use existing access control models. A
set of requirements for a trust-based policy language for use in a
pervasive environment are described in [13] and we believe our
model meets these.

Other potential applications include distributed spam detection,
more powerful reputation systems and online auctions — all cur-
rently being investigated by the SECURE project.

7. CONCLUSIONS AND FUTURE WORK
In this paper we have demonstrated how to extend existing ac-

cess control architectures to incorporate trust-based evaluation and
reasoning, and the resulting advantages — namely a more dynamic
form of policy that can reason with uncertainty and explicitly man-
age risk. We have further demonstrated how this model can be
applied to a file-storage and publication service for the Grid and
explored its application to the areas of peer-to-peer and pervasive
computing.

We have validated our ideas through our prototype Grid applica-
tion implementation, and work is on-going with our project part-
ners to further integrate this work with the SECURE engine, and
develop a spam filtering application, among others.

Future work includes exploring automated policy evolution, by
allowing risk to evolve in a similar manner to trust. We foresee
the possibility of the outcomes and costs being updated based on
evidence already gathered by the SECURE framework for the pur-
poses of updating trust beliefs. We also believe we can improve
the efficiency of our engine by making use of OASIS sessions and
caching potentially expensive trust-calculator lookups where the
risk from stale information is acceptably low.

8. REFERENCES
[1] Alfarez Abdul-Rahman and Stephen Hailes. Supporting trust

in virtual communities. In Hawaii International Conference
on System Sciences 33, pages 1769–1777, 2000.

[2] Karl Aberer and Zoran Despotovic. Managing trust in a
peer-2-peer information system. In Proceedings of the Tenth
International Conference on Information and Knowledge
Management(CIKM01), pages 310–317. ACM Press,
November 2001.

[3] Ashton Applewhite. Getting the Grid. IEEE Distributed
Systems Online, May 2002.

[4] Jean Bacon, Ken Moody, and Walt Yao. Access control and
trust in the use of widely distributed services. In Middleware
2001, volume 2218, pages 300–315, November 2001.

[5] Jean Bacon, Ken Moody, and Walt Yao. A model of OASIS
role-based access control and its support for active security.
ACM Transactions on Information and System Security
(TISSEC), 5(4):492–540, November 2002.

[6] Matt Blaze, Joan Feigenbaum, and Jack Lacy. Decentralized
trust management. In Proc. IEEE Conference on Security
and Privacy. AT&T, May 1996.

[7] Marco Carbone, Mogens Nielsen, and Vladimiro Sassone. A
formal model for trust in dynamic networks. Research Series
RS-03-04, BRICS, Department of Computer Science,
University of Aarhus, January 2003. EU Project SECURE
IST-2001-32486 Deliverable 1.1.

[8] Nathan Dimmock. How much is ‘enough’? Risk in
trust-based access control. In IEEE International Workshops
on Enabling Technologies: Infrastructure for Collaborative
Enterprises — Enterprise Security, pages 281–282, June
2003.

[9] Tyrone Grandison and Morris Sloman. A survey of trust in
internet applications. IEEE Communications Society, Surveys
and Tutorials, 3(4), 2000.

[10] ISO/IEC JTC1/SC22 Working Group. ISO/IEC 9899 -
Programming languages - C, 1999.

[11] Audun Jøsang. A logic for uncertain probabilities.
International Journal of Uncertainty, Fuzziness and
Knowledge-Based Systems, 9(9), June 2001.

[12] Audun Jøsang, Elizabeth Gray, and Michael Kinateder.
Analysing topologies of transitive trust. In Proceedings of
the Workshop of Formal Aspects of Security and Trust
(FAST), September 2003.

[13] Lalana Kagal, Tim Finin, and Anupam Joshi. Trust-based
security in pervasive computing environments. IEEE
Computer, pages 154–157, DEC 2001.

[14] Ninghui Li, John C. Mitchell, and William H. Winsborough.
Design of a role-based trust management framework. In
2002 IEEE Symposium on Security and Privacy, pages
114–131. IEEE, May 2002.

[15] Jean-Marc Seigneur, Stephen Farrell, Christian Damsgaard
Jensen, Elizabeth Gray, and Chen Yong. End-to-end trust in
pervasive computing starts with recognition. In Proceedings
of the First International Conference on Security in
Pervasive Computing, 2003.

[16] Li Xiong and Ling Liu. Building trust in decentralized
peer-to-peer electronic communities. In The 5th
International Conference on Electronic Commerce Research,
October 2002.

[17] Walt Teh-Ming Yao. Fidelis: A policy-driven trust
management framework. In Proc. of the 1st Intern’l Conf. on
Trust Management, number 2692 in LNCS. Springer-Verlag,
May 2003.

[18] Bin Yu and Munindar P. Singh. An evidential model of
distributed reputation management. In 1st Intern’l Joint
Conf. on Autonomous Agents and MultiAgent Systems. ACM,
July 2002.

[19] Yuhui Zhong and Bharat Bhargava. Authorization based on
evidence and trust. In Yahiko Kambayashi, Werner
Winiwarter, and Masatoshi Arikawa, editors, Data
Warehousing and Knowledge Discovery(DaWaK 2002), 4th
International Conference, volume 2454 of Lecture Notes in
Computer Science, pages 94–103. Springer, 2002.

