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Abstract

Legendre’s conjecture states that there is a prime number between n2 and (n + 1)2 for every positive integer n. In this
paper we prove that every composite number between n2 and (n + 1)2 can be written u2 − v2 or u2 − v2 + u − v that u > 0
and v ≥ 0. Using these result as well as induction and residues (modq) we prove Legendre’s conjecture.
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1. Introduction

Bertrand’s postulate state for every positive integer n, there is always at least one prime p, such that n < p < 2n. This was
first proved by Chebyshev in 1850 which is why postulate is also called the Bertrand-chebyshev theorem. Ramanujan gave
a simple proof by using the properties of gamma function, which resulted in concept of Ramunajan primes (Ramanujan,
1919, p. 181-182). In 1932 Erdos published a simple proof using the Chebyshev’s function and properties of binomial
coefficient (Erdos, 1932, p. 194-198). Legendre’s conjecture states that there is a prime between n2 and (n + 1)2 for every
positive integer n, which is one of the four Landau’s problems. The rest of these four basic problems are:

(i) Twin prime conjecture: there are infinitely many primes p such that p + 2 is a prime.

(ii) Goldbach’s conjecture: every even integer n > 2 can be written as the sum of two primes.

(iii) Are there infinitely many primes p such that p − 1 is a perfect square?

problems (i),(ii),(iii) are open till date.

In this paper we state one proof for Legendre’s conjecture.

Theorem There is at least a prime between n2 and (n + 1)2.

We prove it by induction that if there is at least a prime between all squares less than (x−1)2, then there is a prime between
(x − 1)2 and x2, that x is a large positive integer. Assume that this is not hold, i.e all numbers in interval (x − 1)2 and x2

are composite and we reach to a contradiction.

To proceed to this proof, firstly we use the following Lemmas and Definitions.

2. Lemmas and Definitions

In this section, we present several lemmas and definitions which are used in the proof of our main theorem. In this article
we prove that every composite numbers, x2 − j that 1 ≤ j ≤ 2x − 2, between (x − 1)2 and x2 can be written u2 − v2 or
u2 − v2 + u− v = (u+ 1/2)2 − (v+ 1/2)2 = u2

1 − v2
1 that u > 0 and v ≥ 0 and u− v = u1 − v1 = q, where q is a prime number.

Lemma 2.1 All prime factors q where 2 ≤ q ≤ x are Appeared in numbers between (x − 1)2 and x2.

Proof: According to Algorithm division, x2 − j = qs + f in which 0 ≤ f ≤ q − 1, 1 ≤ j ≤ x − 1 and 2 ≤ q ≤ x, then
1 ≤ j + f ≤ 2x − 2.

Lemma 2.2 Every composite number between (x− 1)2 and x2 can be written to u2 − v2 or u2 − v2 + u− v where u > 0 and
v ≥ 0.

Proof: For simplicity we call the composite numbers x2 − j as T hereafter. If T is not prime, then:

T = q f , (q < x)

q is a prime number and f is a positive integer. Later we show that every composite number between (x − 1)2 and x2 has
a prime factor like q so that q < x.

f = q + w
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If w is an even number so w = 2v otherwise w = 2v + 1, so:

T = q2 + 2qv

Or
T = q2 + 2qv + q

Substituting q by u − v, we will have
q = u − v

So
T = u2 − v2

Or
T = u2 − v2 + u − v

Definition 1 If T = u2 − v2 so T = q(u + v), we assume that u + v = 2x − q + A, A is an integer.

Definition 2 If T = u2 − v2 + u − v = (u − v)(u + v + 1) = u2
1 − v2

1, in which, q = (u + 1/2) − (v + 1/2) = u1 − v1 so
T = q(u1 + v1), we assume that u1 + v1 = 2x − q + A, A is an integer, u1 = u + 1/2 and v1 = v + 1/2.

Lemma 2.3 If (x−m)2 − j = q(u′ + v′) = q(2(x−m)− q+ A′) and (x−m− 1)2 − j2 = p, where p is prime, A′ is an integer
and m > 1 should be defined earlier in the paper.

Notice: According to the hypothesis of induction there is at least a prime between all squares less than (x − 1)2.
If q = 1, then

− j1 + j2 − A′ + p = 0, 1 ≤ j1 ≤ 2x − 2m − 2 and 1 ≤ j2 ≤ 2x − 2m − 4

Proof: we consider two equation as

(x − m)2 − j = q(u′ + v′) = q(2(x − m) − q + A′) and (x − m − 1)2 − j2 = p

So we have
(2x − 2m − 1) − j + j2 = q(2x − 2m − q + A′) − p

Then
2x(q − 1) − (q2 − 1) + A′(q − 1) − 2m(q − 1) = − j + j2 − A′ + p

For (x − m)2 − j to be the prime number in a specific j = j1, 1 ≤ j1 ≤ 2x − 2m − 2, q should be equal to 1.
So

− j1 + j2 − A′ + p = 0

Lemma 2.4 Assume that x2 − j′ = q(2x− q− A1) and (x−m− 1)2 − j2 = p, in which p is prime, and also 1 ≤ j′ ≤ 2x− 2,
A1 is an integer, then:

2(m + 1)x − (m + 1)2 − j′ + j2 = 2xq − q2 + A1q − p

Lemma 2.5 If l to be the number of 2 ≤ q < x are in x2 − j′ = tq that 1 ≤ j′ ≤ 2x − 2 so l < x − 1 or l < x−1
q , for all

3 ≤ q < x.

Proof: If q = 2, we put j′ = i + 2l (i ≥ l), so i + 2l ≤ 2x − 2, then l < x − 1, but if q ≥ 3, we put j′ = i + 2ql (i ≥ l), so
i + 2ql ≤ 2x − 2, then l < x−1

q , in this case l is the number of q ≥ 3 that x2 − j′ = tq is odd.

Lemma 2.6 If f to be the number of p > x are in x2 − j′ = t1 p that these numbers are odd and 1 ≤ j′ ≤ 2x − 2.
So

f ≤ 2x − 2
9
· 1

2
Or

f ≤ x − 1
3
· 1 − 1/9

5
Or

f ≤ x − 1
3
· 1 − 1/9 − 1/15

7
.

.

.
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we continue this method to reach 1 − 1/9 − 1/15 − ... = 0.

Proof: If p > x and x2 − j′ = t1 p to be odd, since 1 ≤ j′ ≤ 2x − 2, so (x − 1)2/q ≤ p ≤ x2/q, in which 3 ≤ q < x. Since
the distance of between two primes should be at least 2, so (x − 1)2/q − 2 ≤ p − 2 = p′ ≤ x2/q − 2, p′ is prime number,
but (x − 1)2/q − 4 ≤ p − 4 = w ≤ x2/q − 4, w is not prime.

If q = 3, the number of such p is:

f ≤ 2x − 2
6
· 2

3
· 1

2

but since p > x, only one p > x could be in x2 − j′ = t1 p, so for q = 5, f ≤ x−1
3 ·

1−1/9
5 . For q = 7, f ≤ x−1

3 ·
1−1/9−1/15

7 , we
continue this method to reach, 1 − 1/9 − 1/15 − ... = 0.

3. The Proof of Main Theorem

Theorem There is at least a prime between (x − 1)2 and x2.

Proof: Let we have at least a prime between all squares less than (x − 1)2. By induction, we prove that, we have a prime
between (x − 1)2 and x2. Assume that this is not true, so we can write x2 − j′ = lq, i.e all numbers in interval (x − 1)2 and
x2 are not primes. Since 1 ≤ j′ ≤ 2x− 2 so according to (Hardy & Wright, 1964) there is a prime factor like q that for any
composite number in interval(x − 1)2 and x2. q ≤

√
x2 − 1 < x.

Note: If a number in interval (x − 1)2 and x2 like T is not prime so T has a prime factor like q that q ≤
√

x2 − 1 < x. In
this section we assume that j′′ = − j2 + h that 0 ≤ h < q and 1 ≤ j′′ ≤ 2x − 2, notice that for each number x2 − j′, there is
a corresponding divisor q. Now we start to prove main theorem: concluding from lemma 2.3, − j1 + j2 − A′ + p = 0, we
can rewrite below equations:

−A′ + p − 2(m + 1)x + (m + 1)2 = −b + q jt j + j1 + j2

−A′ + p − 2(m + 1)x + (m + 1)2 = −(b + 1) + qvtv + j1 + j2

.

.

.

−A′ + p − 2(m + 1)x + (m + 1)2 = 0 + qit1 + j1 + j2

−A′ + p − 2(m + 1)x + (m + 1)2 = 1 + q f t2 + j1 + j2

−A′ + p − 2(m + 1)x + (m + 1)2 = 2 + qst3 + j1 + j2

.

.

.

−A′ + p − 2(m + 1)x + (m + 1)2 = a + quta + j1 + j2

a, b will be determined later.

By substituting the above equations into − j1 + j2 − A′ + p = 0, we have:

− j2 + b − ( j2 + 2(m + 1)x − (m + 1)2) ≡ 0 (mod q j)

− j2 + (b + 1) − ( j2 + 2(m + 1)x − (m + 1)2) ≡ 0 (mod qv)

.

.

.

− j2 − a − ( j2 + 2(m + 1)x − (m + 1)2) ≡ 0 (mod qu)

We assume that j′′ = − j2 + h, in which −b ≤ h ≤ a.
So

j′′ − ( j2 + 2(m + 1)x − (m + 1)2) ≡ 0 (mod q) that 2 ≤ q < x
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According to lemma 2.4, if we substitute the above results into equation:

2(m + 1)x − (m + 1)2 − j′ + j2 = 2xq − q2 + A1q − p

Then
j′′ − j′ ≡ 2xq − q2 + A1q − p (mod q) that 2 ≤ q < x

But we should have j′ , j′′ + qt, otherwise q | p, and this is a contradiction unless q = 1, but we determine m such that
p > x, so q , p.

We mention again that j′ . j′′ (mod q) and j′ = 1, 2, ..., 2x− 2 since j2 is a number between (x−m− 2)2 and (x−m− 1)2,
then, 1 ≤ j2 ≤ 2x − 2m − 4.

If x is even, we put m = x
2 ;

If x is odd, we put m = x+1
2 .

So in j′′ = − j2+h, that −b ≤ h ≤ a, we determine a, b such that j′′ is all numbers between 1 to 2x−2, or j′′ = 1, 2, ..., 2x−2.
But from j′′ − j′ ≡ 2xq − q2 + A1q − p (mod q), we have x2 − j′′ ≡ p (mod q), that j′ = 1, 2, ..., 2x − 2 and j′ . j′′

(mod q), since x2 − p is between two squares and according to induction, there is a positive integer like k, such that,
x2 − p − k = p2 ≡ o (mod qu), so qu | p2, Pei’s Prime and this is a contradiction unless q = 1. If for a j′′, |qlts| is a
prime, for example |qlts| = p1, so for a j′′, x2 − j′′ = p + p1, then for all j′′, that 1 ≤ j′′ ≤ 2x − 2, x2 − j′′ = p + p1 or
x2 − j′′ = p + qt.

Now we use the above results to reach a contradiction, we use odd statements so:

(x2 − 1or2)...(x2 − (2x − 3) or(2x − 2)) = (p + 3t1)(p + 5t2)...(p + qt1)(p + p1)(p + p′1)...

but (x−m− 1)2 − j2 = p, we assume that m = x/2 so 1 ≤ j2 ≤ x− 4, if x is even and m = (x+ 1)/2 so 1 ≤ j2 ≤ x− 5, if x
is odd.

Hence p > (x − 3)2/4, but x2 − j′′ = p + qt > 4p and also x2 − j′′ = p + p1 > 4p.

According to lemmas 2.5 and 2.6, we have:

(x2 − 1or2)...(x2 − (2x − 3)or(2x − 2)) < 3
x−1

3 × . . . × q
x−1
qa

a × x2

3

x−1
9

× x2

5

(x−1)(1−1/9)
3×5

× . . .

We continue to reach 1 − 1/9 − 1/15 − ... − 1/qa = 0 that qa < w ≪ x, w is a positive large integer and qa is a prime
number. Hence we have:

(x − 1)log(4p) < log(x2 − 1or2) + ... + log(x2 − (2x − 3)or(2x − 2)) <

(x − 1)
∑

3≤q<w

logq
q
+ (x − 1)(1/9 + (1 − 1/9)/3 × 5 + (1 − 1/9 − 1/15)/3 × 7 + ... + 0)logx2

So by refer to (Hardy & Wright, 1964),
∑

3≤q<w
logq

q < logw + c, that c is positive constant number, so:

(x − 1)log(4p) < (x − 1)logw + (x − 1)c + 0.8(x − 1)logx2

Then for a large x, (x − 1)log(4p) < 1.7(x − 1)logx or p < x1.7/4 and this is a contradiction, because p > (x − 3)2/4.

For example, assume that x = 10, then m = 5, so (10 − 5)2 − 2 = 23 and (10 − 5 − 1)2 − 3 = 13, so j1 = 2, p = 13, j2 = 3,
since − j1 + j2 − A′ + p = 0, thenA′ = 14. But − j2 + h − ( j2 + 2(m + 1)x − (m + 1)2) ≡ 0 (mod q j), since j′′ = − j2 + h,
then j′′ = −3 + h, so, if we put h = 4, 5, ..., 21, we have all numbers between 102 and 92.
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