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Abstract. Processing large volumes of RDF data requires sophisticated
tools. In recent years, much effort was spent on optimizing native RDF
stores and on repurposing relational query engines for large-scale RDF
processing. Concurrently, a number of new data management systems—
regrouped under the NoSQL (for “not only SQL”) umbrella—rapidly
rose to prominence and represent today a popular alternative to classi-
cal databases. Though NoSQL systems are increasingly used to manage
RDF data, it is still difficult to grasp their key advantages and draw-
backs in this context. This work is, to the best of our knowledge, the
first systematic attempt at characterizing and comparing NoSQL stores
for RDF processing. In the following, we describe four different NoSQL
stores and compare their key characteristics when running standard RDF
benchmarks on a popular cloud infrastructure using both single-machine
and distributed deployments.

1 Introduction

A number of RDF data management and data analysis problems merit the use of
big data infrastructure. These for example include: large-scale caching of linked
open data, entity name servers, and the application of data mining techniques
to automatically create linked data mappings.

NoSQL data management systems have emerged as a commonly used infras-
tructure for handling big data outside the RDF space. We view the NoSQL
moniker broadly to refer to non-relational databases that generally sacrifice
query complexity and/or ACID properties for performance. Given the success of
NoSQL systems [14], a number of authors have developed RDF data manage-
ment systems based on these technologies (e.g. [5, 13,18,21]). However, to date,
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there has not been a systematic comparative evaluation of the use of NoSQL
systems for RDF.

This work tries to address this gap by measuring the performance of four ap-
proaches to adapting NoSQL systems to RDF. This adaptation takes the form
of storing RDF and implementing SPARQL over NoSQL databases including
HBase5, Couchbase6 and Cassandra7. To act as a reference point, we also mea-
sure the performance of 4store, a native triple store. The goal of this evaluation
is not to define which approach is “best”, as all the implementations described
here are still in their infancy, but instead to understand the current state of these
systems. In particular, we are interested in: (i) determining if there are common-
alities across the performance profiles of these systems in multiple configurations
(data size, cluster size, query characteristics, etc.), (ii) characterizing the differ-
ence between NoSQL systems and native triple stores, (iii) providing guidance
on where researchers and developers interested in RDF and NoSQL should focus
their efforts, and (iv) providing an environment for replicable evaluation.

To ensure that the evaluation is indeed replicable, two openly available bench-
marks were used (Berlin SPARQL Benchmark and DBpedia SPARQL Bench-
mark). All measurements were made on the Amazon EC2 cloud platform. More
details of the environment are given in Section 3. We note that the results pre-
sented here are the product of a cooperation between four separate research
groups spread internationally, thus helping to ensure that the described environ-
ment is indeed reusable. In addition, all systems, parameters, and results have
been published online.

The remainder of this paper is organized as follows. We begin with a presen-
tation of each of the implemented systems in Section 2. In Section 3, we describe
the evaluation environment. We then present the results of the evaluation it-
self in Section 4, looking at multiple classes of queries, different data sizes, and
different cluster configurations. Section 4, then discusses the lessons we learned
during this process and identifies commonalities across the systems. Finally, we
briefly review related work before concluding in Sections 5 and 6.

2 Systems

We now turn to brief descriptions of the five systems used in our tests, focusing on
the modifications and additions needed to support RDF. Our choice of systems
was based on two factors: (i) Developing and optimizing a full-fledged RDF data
management layer on top of a NoSQL system is a very time-consuming task.
For our work, we selected systems that were already in development; and (ii)
we chose systems that represent a variety of NoSQL system types: document
databases (CouchDB), key-value/column stores (Cassandra, HBase), and query
compilation for Hadoop (Hive). In addition, we also provide results for 4store,
which is a well-known and native RDF store. We use the notation (spo) or SPO

5 http://hbase.apache.org/
6 http://www.couchbase.com/
7 http://cassandra.apache.org/



to refer to the subject, predicate, and object of the RDF data model. Question
marks denote variables.

2.1 4store

We use 4store8 as a baseline, native, and distributed RDF DBMS. 4store stores
RDF data as quads of (model, subject, predicate, object), where a model is
analogous to a SPARQL graph. URIs, literals, and blank nodes are all encoded
using a cryptographic hash function. The system defines two types of computa-
tional nodes in a distributed setting: (i) storage nodes, which store the actual
data, and (ii) processing nodes, which are responsible for parsing the incoming
queries and handling all distributed communications with the storage nodes dur-
ing query processing. 4store partitions the data into non-overlapping segments
and distributes the quads based on a hash-partitioning of their subject.

Schema Data in 4store is organized as property tables [7]. Two radix-tree indices
(called P indices) are created for each predicate: one based on the subject of the
quad and one based on the object. These indices can be used to efficiently select
all quads having a given predicate and subject/object (they hence can be seen
as traditional P:OS and P:SO indices). In case the predicate is unknown, the
system defaults to looking up all predicate indices for a given subject/object.

4store considers two auxiliary indices in addition to P indices: the lexical
index, called R index, stores for each encoded hash value its corresponding lexical
(string) representation, while the M index gives the list of triples corresponding
to each model. Further details can be found in [7].

Querying 4store’s query tool (4s-query) was used to run the benchmark queries.

2.2 Jena+HBase

Apache HBase9 is an open source, horizontally scalable, row consistent, low la-
tency, random access data store inspired by Google’s BigTable [3]. It relies on the
Hadoop Filesystem (HDFS)10 as a storage back-end and on Apache Zookeeper11

to provide support for coordination tasks and fault tolerance. Its data model is
a column oriented, sparse, multi-dimensional sorted map. Columns are grouped
into column families and timestamps add an additional dimension to each cell.
A key distinction is that column families have to be specified at schema design
time, while columns can be dynamically added.

There are a number of benefits in using HBase for storing RDF. First, HBase
has a proven track-record for scaling out to clusters containing roughly 1000
nodes.12 Second, it provides considerable flexibility in schema design. Finally,

8 http://4store.org/
9 http://hbase.apache.org/

10 http://hadoop.apache.org/hdfs
11 http://zookeeper.apache.org/
12 see e.g.,http://www.youtube.com/watch?v=byXGqhz2N5M



HBase is well integrated with Hadoop, a large scale MapReduce computational
framework. This can be leveraged for efficiently bulk-loading data into the system
and for running large-scale inference algorithms [20].

Schema The HBase schema employed is based on the optimized index structure
for quads presented by Harth et al. [8] and is described in detail in [4]. In this
evaluation, we use only triples so we build 3 index tables: SPO, POS and OSP.
We map RDF URIs and most literals to 8-byte ids and use the same table
structure for all indices: the row key is built from the concatenation of the 8-byte
ids, while column qualifiers and cell values are left empty. This schema leverages
lexicographical sorting of the row keys, covering multiple triple patterns with
the same table. For example, the table SPO can be used to cover the two triple
patterns: subject position bound i.e. (s ? ?), subject and predicate positions
bound i.e. (s p ?). Additionally, this compact representation reduces network
and disk I/O, so it has the potential for fast joins. As an optimization, we
do not map numerical literals, instead we use a number’s Java representation
directly in the index. This can be leveraged by pushing down SPARQL filters
and reading only the targeted information from the index. Two dictionary tables
are used to keep the mappings to and from 8-byte ids.

Querying We use Jena as the SPARQL query engine over HBase. Jena represents
a query plan through a tree of iterators. The iterators, corresponding to the tree’s
leafs, use our HBase data layer for resolving triple patterns e.g. (s ? ?), which
make up a Basic Graph Pattern (BGP). For joins, we use the strategy provided
by Jena, which is indexed nested loop joins. As optimizations, we pushed down
simple numerical SPARQL filters i.e. filters which compare a variable with a
number, translating them into HBase prefix filters on the index tables. We used
these filters, together with selectivity heuristics [19], to reorder subqueries within
a BGP. In addition, we enabled joins based on ids, leaving the materialization of
ids after the evaluation of a BGP. Finally, we added a mini LRU cache in Jena’s
engine, to prevent the problem of redundantly resolving the same triple pattern
against HBase. We were careful to disable this mini-cache in benchmarks with
fixed queries i.e. DBpedia, so that HBase is accessed even after the warmup runs.

2.3 Hive+HBase

The second HBase implementation uses Apache Hive13, a SQL-like data ware-
housing tool that allows for querying using MapReduce.

Schema A property table is employed as the HBase schema. For each row, the
RDF subject is compressed and used as the row key. Each column is a predicate
and all columns reside in a single HBase column family. The RDF object value
is stored in the matching row and column. Property tables are known to have
several issues when storing RDF data [1]. However, these issues do not arise
in our HBase implementation. We distinguish multi-valued attributes from one

13 http://hive.apache.org/query



another by their HBase timestamp. These multi-valued attributes are accessed
via Hive’s array data type.

Querying At the query layer, we use Jena ARQ to parse and convert a SPARQL
query into HiveQL. The process consists of four steps. Firstly, an initial pass of
the SPARQL query identifies unique subjects in the query’s BGP. Each unique
subject is then mapped onto its requested predicates. For each unique subject, a
Hive table is temporarily created. It is important to note that an additional Hive
table does not duplicate the data on disk. It simply provides a mapping from
Hive to HBase columns. Then, the join conditions are identified. A join condition
is defined by two triple patterns in the SPARQL WHERE clause, (s1 p1 s2) and
(s2 p2 s3), where s1 6= s2. This requires two Hive tables to be joined. Finally, the
SPARQL query is converted into a Hive query based on the subject-predicate
mapping from the first step and executed using MapReduce.

2.4 CumulusRDF: Cassandra+Sesame

CumulusRDF14 is an RDF store which provides triple pattern lookups, a linked
data server and proxy capabilities, bulk loading, and querying via SPARQL.
The storage back-end of CumulusRDF is Apache Cassandra, a NoSQL database
management system originally developed by Facebook [10]. Cassandra provides
decentralized data storage and failure tolerance based on replication and failover.

Schema Cassandra’s data model consists of nestable distributed hash tables.
Each hash in the table is the hashed key of a row and every node in a Cassan-
dra cluster is responsible for the storage of rows in a particular range of hash
keys. The data model provides two more features used by CumulusRDF: super
columns, which act as a layer between row keys and column keys, and secondary
indices that provide value-key mappings for columns.

The index schema of CumulusRDF consists of four indices (SPO, PSO, OSP,
CSPO) to support a complete index on triples and lookups on named graphs
(contexts). Only the three triple indices are used for the benchmarks. The in-
dices provide fast lockup for all variants of RDF triple patterns. The indices are
stored in a “flat layout” utilizing the standard key-value model of Cassandra [9].
CumulusRDF does not use dictionaries to map RDF terms but instead stores
the original data as column keys and values. Thereby, each index provides a hash
based lookup of the row key, a sorted lookup on column keys and values, thus
enabling prefix lookups.

Querying CumulusRDF uses the Sesame query processor15 to provide SPARQL
query functionality. A stock Sesame query processor translates SPARQL queries
to index lookups on the distributed Cassandra indices; Sesame processes joins
and filter operations on a dedicated query node.

14 http://code.google.com/p/cumulusrdf/
15 http://www.openrdf.org/



2.5 Couchbase

Couchbase is a document-oriented, schema-less distributed NoSQL database sys-
tem, with native support for JSON documents. Couchbase is intended to run
in-memory mostly, and on as many nodes as needed to hold the whole dataset
in RAM. It has a built-in object-managed cache to speed-up random reads and
writes. Updates to documents are first made in the in-memory cache, and are
only later persisted to disk using an eventual consistency paradigm.

Schema We tried to follow the document-oriented philosophy of Couchbase when
implementing our approach. To load RDF data into the system, we map RDF
triples onto JSON documents. For the primary copy of the data, we put all triples
sharing the same subject in one document (i.e., creating RDF molecules), and
use the subject as the key of that document. The document consists of two
JSON arrays containing the predicates and objects. To load RDF data, we parse
the incoming triples one by one and create new documents or append triples to
existing documents based on the triples’ subject.

Querying For distributed querying, Couchbase provides MapReduce views on
top of the stored JSON documents. The JavaScript Map function runs for every
stored document and produces 0, 1 or more key-value pairs, where the values
can be null (if there is no need for further aggregation). The reduce function
aggregates the values provided by the Map function to produce results. Our
query execution implementation is based on the Jena SPARQL engine to create
triple indices similar to the HBase approach described above. We implement
Jena’s Graph interface to execute queries and hence provide methods to retrieve
results based on triple patterns. We cover all triple pattern possibilities with
only three Couchbase views, on (?p?) (??o) and (?po). For every pattern that
includes the subject, we retrieve the entire JSON document (molecule), parse
it, and provide results at the Java layer. For query optimization, similar to the
HBase approach above, selectivity heuristics are used.

3 Experimental Setting

We now describe the benchmarks, computational environment, and system set-
ting used in our evaluation.

3.1 Benchmarks

Berlin SPARQL Benchmark (BSBM) The Berlin SPARQL Benchmark [2]
is built around an e-commerce use-case in which a set of products is offered
by different vendors and consumers are posting reviews about products. The
benchmark query mix emulates the search and navigation patterns of a consumer
looking for a given product. Three datasets were generated for this benchmark:

• 10 million: 10,225,034 triples (Scale Factor: 28,850)
• 100 million: 100,000,748 triples (Scale Factor: 284,826)
• 1 billion: 1,008,396,956 triples (Scale Factor: 2,878,260)



DBpedia SPARQL Benchmark (DBPSB) The DBpedia SPARQL Bench-
mark [11] is based on queries that were actually issued by humans and applica-
tions against DBpedia. We used an existing dataset provided on the benchmark
website.16 The dataset was generated from the original DBpedia 3.5.1 with a
scale factor of 100% and consisted of 153,737,783 triples.

3.2 Computational Environment

All experiments were performed on the Amazon EC2 Elastic Compute Cloud
infrastructure17. For the instance type, we used m1.large instances with 7.5 GiB
of memory, 4 EC2 Compute Units (2 virtual cores with 2 EC2 Compute Units
each), 850 GB of local instance storage, and 64-bit platforms.

To aid in reproducibility and comparability, we ran Hadoop’s TeraSort [12]
on a cluster consisting of 16 m1.large EC2 nodes (17 including the master). Using
TeraGen, 1 TB of data was generated in 3,933 seconds (1.09 hours). The data
consisted of 10 billion, 100 byte records. The TeraSort benchmark completed in
11,234 seconds (3.12 hours).

Our basic scenario was to test each system against benchmarks on environ-
ments composed of 1, 2, 4, 8 and 16 nodes. In addition, one master node was set
up as a zookeeper/coordinator to run the benchmark. The loading timeout was
set to 24 hours and the individual query execution timeout was set to 1 hour.
Systems that were unable to load data within the 24 hour timeout limit were
not allowed to run the benchmark on that cluster configuration.

For each test, we performed two warm-up runs and ten workload runs. We
considered two key metrics: the arithmetic mean and the geometric mean. The
former is sensitive to outliers whereas the effect of outliers is dampened in the
latter.

3.3 System Settings

4store We used 4store revision v1.1.4. To set the number of segments, we fol-
lowed the rule of thumb proposed by the authors, i.e., power of 2 close to twice
as many segments as there are physical CPU cores on the system. This led to
four segments per node. To benchmark against BSBM, we used the SPARQL
endpoint server provided by 4store, and disabled its soft limit. For the DBpedia
benchmark, we used the standard 4store client (4s-query), also with the soft limit
disabled. 4store uses an Avahi daemon to discover nodes, which requires network
multicasting. As multicasts is not supported in EC2, we built a virtual network
between the nodes by running an openvpn infrastructure for node discovery.

HBase We used Hadoop 1.0.3, HBase 0.92, and Hive 0.8.1. One zookeeper
instance was running on the master for all cases. We provided 5GB of RAM for
the region servers, while the rest was given to Hadoop. All nodes were located
in the North Virginia and North Oregon region. The parameters used for HBase
are available on our website which is listed in Section 4.
16 http://aksw.org/Projects/DBPSB.html
17 http://aws.amazon.com/



Jena+HBase When configuring each HBase table, we took into account the
access patterns. As a result, for the two dictionary tables with random reads,
we used an 8 KB block size so that lookups are faster. For indices, we use the
default 64 KB block size such that range scans are more efficient. We enable block
caching for all tables, but we favor caching of the Id2Value table by enabling the
in-memory option. We also enable compression for the Id2Value table in order
to reduce I/O when transferring the verbose RDF data.

For loading data into this system, we first run two MapReduce jobs which
generate the 8-byte ids and convert numerical literals to binary representations.
Then, for each table, we run a MapReduce job which sorts the elements by
row key and outputs files in the format expected by HBase. Finally, we run the
HBase bulk-loader tool which actually adopts the previously generated files into
the store.

Hive+HBase Before creating the HBase table, we identify the split keys such
that the dataset is roughly balanced when stored across the cluster. This is done
using Hadoop’s InputSampler.RandomSampler. We use a frequency of 0.1, the
number of samples as 1 million, and the maximum sampled splits as 50% the
number of original dataset partitions on HDFS. Once the HBase table has been
generated, we run a MapReduce job to convert the input file into the HFile
format. We likewise run the HBase bulk-loader to load the data in the store.
Jena 2.7.4 was used for the query layer.

CumulusRDF (Cassandra+Sesame) For CumulusRDF, we ran Ubuntu
13.04 loaded from Amazon’s Official Machine Image. The cluster consisted of
one node running Apache Tomcat with CumulusRDF and a set of nodes with
Cassandra instances that were configured as one distributed Cassandra clus-
ter. Depending on the particular benchmark settings, the size of the Cassandra
cluster varied.

Cassandra nodes were equipped with Apache Cassandra 1.2.4 and a slightly
modified configuration: a uniform cluster name and appropriate IP configuration
were set per node, the location of directories for data, commit logs, and caches
were moved to the local instance storage. All Cassandra instances equally held
the maximum of 256 index tokens since all nodes ran on the same hardware con-
figuration. The configuration of CumulusRDF was adjusted to fit the Cassandra
cluster and keyspace depending on the particular benchmark settings. Cumu-
lusRDF’s bulk loader was used to load the benchmark data into the system.
A SPARQL endpoint of the local CumulusRDF instances was used to run the
benchmark.

Couchbase Couchbase Enterprise Edition 64 bit 2.0.1 was used with default
settings and 6.28 GB allocated per node. The Couchbase java client version was
1.1.0. The NxParser version 1.2.3 was used to parse N-Triples and json-simple
1.1 to parse JSON. The Jena ARQ version was 2.9.4.



4 Performance Evaluation

Figure 1 and 2 show a selected set of evaluation results for the various systems.
Query execution times were computed using a geometric average. For a more
detailed list of all cluster, dataset, and system configurations, we refer the reader
to our website.18 This website contains all results, as well as our source code,
how-to guides, and EC2 images to rerun our experiments. We now discuss the
results with respect to each system and then make broader statements about
the overall experiment in the conclusion.

Table 1 shows a comparison between the total costs incurred on Amazon
for loading and running the benchmark for the BSBM 100 million, 8 nodes
configuration. The costs are computed using the formula:

(1 + 8)nodes ∗ $0.240/hour ∗ (loading time + benchmark time)

where the loading and benchmark time are in hours. All values are in U.S. dollars
and prices are listed as of May 2013. Exact costs may vary due to hourly pricing
of the EC2 instances.

Table 1. Total Cost – BSBM 100 million on 8 nodes

4store Jena+HBase Hive+Hbase CumulusRDF Couchbase

$1.16 $35.80 $81.55 $105.15 $86.44

4.1 4store

4store achieved sub-second response times for BSBM queries on 4, 8, and 16
nodes with 10 and 100 million triples. The notable exception is Q5, which touches
a lot of data and contains a complex FILTER clause. Results for BSBM 1 billion
are close to 1 second, except again for Q5 which takes between 6 seconds (16
nodes) and 53 seconds (4 nodes). Overall, the system scales for BSBM as query
response times steadily decrease as the number of machines grow. Loading takes
a few minutes, except for the 1 billion dataset which took 5.5 hours on 16 nodes
and 14.9 hours on 8 nodes. Note: 4store actually times out when loading 1 billion
for 4 nodes but we still include the results to have a coherent baseline.

Results for the DBpedia SPARQL Benchmark are all in the same ballpark,
with a median around 11 seconds when running on 4 nodes, 19 seconds when
running on 8, and 32 seconds when running on 16 nodes. We observe that the
system is not scalable in this case, probably due to the high complexity of the
dataset and an increase in network delays caused by the excessive fragmentation
of DBpedia data stored as property tables on multiple machines.

18 http://ribs.csres.utexas.edu/nosqlrdf
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Fig. 1. Results for BSBM showing 100 million and 1 billion triple datasets run on a
16 node cluster. Results for the 100 million dataset on a single node are also shown to
illustrate the effect of the cluster size.
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Fig. 2. Results for the DBpedia SPARQL Benchmark and loading times.

4.2 Jena+HBase

This implementation achieves sub-second query response times up to a billion
triples on a majority of the highly selective query mixes for BSBM (Q2, Q8, Q9,
Q11, and Q12). This includes those queries that contain a variable predicate. It
is not relevant whether we have an inner or an outer join, instead results are
greatly influenced by selectivity. For low selectivity queries (Q1, Q3, Q10), we see
that leveraging HBase features is critical to even answer queries. For Q1 and Q3,



we provide results for all dataset sizes. These two queries make use of numerical
SPARQL filters which are pushed down as HBase prefix filters, whereas with
Q10 we are unable to return results as it contains a date comparison filter which
has not been pushed down. The importance of optimizing filters is also shown
when a query touches a lot of data such as Q5, Q7 – both of which contain
complex or date specific filters.

In terms of the DBpedia SPARQL Benchmark, we see sub-second response
times for almost all queries. One reason is that our loading process eliminates
duplicates, which resulted in 60 million triples from the initial dataset being
stored. In addition, the queries tend to be much simpler than the BSBM queries.
The one slower query (Q17) is again due to SPARQL filters on strings that
could were not implemented as HBase filters. With filters pushed into HBase,
the system approaches the performance of specially designed triple stores on a
majority of queries. Still, we believe there is space for improvement in the join
strategies as currently the “off-the-shelf” Jena strategy is used.

4.3 Hive+HBase

The implementation of Hive atop HBase introduces various sources of overhead
for query execution. As a result, query execution times are in the minute range.
However, as more nodes are added to the cluster, query times are reduced.
Additionally, initial load times tend to be fast.

For most queries, the MapReduce shuffle stage dominates the running time.
Q7 is the slowest because it contains a 5-way join and requires 4 MapReduce
passes from Hive. Currently, the system does not implement a query optimizer
and it uses the naive Hive join algorithm19. For the DBpedia SPARQL Bench-
mark, we observed faster query execution times than on BSBM. The dataset
itself is more sparse than BSBM and the DBpedia queries are simpler; most
queries do not involve a join. Due to the sparse nature of the dataset, bloom
filters allow us to scan less HDFS blocks. The simplicity of the queries reduce
network traffic and also reduce time spent in the shuffle and reduce phases. How-
ever, queries with language filters (e.g., Q3, Q9, Q11) perform slower since Hive
performs a substring search for the requested SPARQL language identifier).

4.4 CumulusRDF: Cassandra+Sesame

For this implementation, the BSBM 1 billion dataset was only run on a 16
node cluster. The loading time was 22 hours. All other cluster configurations
exceeded the loading timeout. For the 100 million dataset, the 2 node cluster
began throwing exceptions midway in the benchmark. We observed that the
system not only slowed down as more data was added but also as the cluster
size increased. This could be attributed to the increased network communication
required by Cassandra in larger clusters. With parameter tuning, it may be
possible to reduce this. As expected, the loading time decreased as the cluster
size increased.

19 https://cwiki.apache.org/Hive/languagemanual-joins.html



BSBM queries 1, 3, 4, and 5 were challenging for the system. Some queries
exceeded the one hour time limit. For the 1 billion dataset, these same queries
timed out while most other queries executed in the sub-second range.

The DBpedia SPARQL Benchmark revealed three outliers: Q2, Q3, and Q20.
Query 3 timed out for all cluster sizes. As the cluster size increased, the execution
time of query 2 and 20 increased as well. All other queries executed in the lower
millisecond range with minor increases in execution time as the cluster size
increased.

One hypothesis for the slow performance of the above queries is that, as
opposed to other systems, CumulusRDF does not use a dictionary encoding for
RDF constants. Therefore, joins require equality comparisons which are more
expensive than numerical identifiers.

4.5 Couchbase

Couchbase encountered problems while loading the largest dataset, BSBM 1
billion, which timed out on all cluster sizes. While the loading time for 8 and 16
nodes is close to 24 hours, index generation in this case is very slow, hampered
by frequent node failures. Generating indices during loading was considerably
slower with smaller cluster sizes, where only part of the data can be held in
main memory (the index generation process took from less than an hour up to
more than 10 hours). The other two BSBM data sets, 10 million and 100 million,
were loaded on every cluster configuration with times ranging from 12 minutes
(BSBM 10 million, 8 nodes) to over 3.5 hours (100 million, 1 node). In the case
of DBpedia, there are many duplicate triples spread across the data set, which
cause many read operations and thus slower loading times. Also, the uneven size
of molecules and triples caused frequent node failures during index creation. For
this reason, we only report results with 4 clusters and more, where the loading
times range from 74 min for 8 nodes to 4.5 hours for 4 nodes.

Overall, query execution is relatively fast. Queries take between 4 ms (Q9)
and 104 seconds (Q5) for BSBM 100 million. As noted above, Q5 touches a lot of
data and contains a complex FILTER clause, which leads to a very high number
of database accesses in our case, since none of the triple patterns of the query is
very restrictive. As the cluster size increases, the query execution times remain
relatively constant. Results for DBpedia benchmark exhibit similar trends.

5 Related Work

Benchmarking has been a core topic of RDF data management research. In
addition to BSBM and the DBpedia benchmark, SP2Bench [16] and LUBM
[6] are widely used benchmarks. Our paper aims to use these benchmarks to
investigate NoSQL stores that were not originally intended for RDF. Indexing
and storage schemas have a large impact on the performance of a database.
Sidirourgos et al. [17] use a single system to evaluate the performance impact
of different approaches. Again, our paper looks at multiple, widely used, and
currently deployed NoSQL systems.



Of the NoSQL systems available, HBase has been the most widely used.
Jianling Sun [18] adopted the Hexastore [23] schema for HBase by storing verbose
RDF data. Papailiou et. al. [13] developed H2RDF, a distributed triple-store
also based on HBase. Khadilkar et al. [22] developed several versions of a triple
store that combines the Jena framework with the storage provided by HBase.
Przyjaciel-Zablocki et al. [15] created a scalable technique for doing indexed
nested loop joins which combines the power of the MapReduce paradigm with
the random access pattern provided by HBase.

Another important category for NoSQL RDF storage is the concept of graph
databases. Most triple stores (i.e. 4store) can be seen as an implementation of a
graph database. Popular products include Virtuoso20, Neo4j21, AllegroGraph22,
and Bigdata23.

An interesting direction forward for NoSQL stores is presented by Tsialia-
manis et. al [19]. Using the MonetDB column-store, they show heuristics for
efficient SPARQL query planning without using statistics which add overhead
in terms of maintainability, storage space, and query execution.

6 Conclusions

This paper represents, to the best of our knowledge, the first systematic attempt
at characterizing and comparing NoSQL stores for RDF processing. The systems
we have evaluated above all exhibit their own strengths and weaknesses. Overall,
we can make a number of key observations:

1. Distributed NoSQL systems can be competitive against distributed and na-
tive RDF stores (such as 4store) with respect to query times. Relatively
simple SPARQL queries such as distributed lookups, in particular, can be ex-
ecuted very efficiently on such systems, even for larger clusters and datasets.
For example, on BSBM 1 billion triples, 16 nodes, Q9, Q11, and Q12 are
processed more efficiently on Cassandra and Jena+HBase than on 4store.

2. Loading times for RDF data varies depending on the NoSQL system and
indexing approach used. However, we observe that most of the NoSQL sys-
tems scale more gracefully than the native RDF store when loading data in
parallel.

3. More complex SPARQL queries involving several joins, touching a lot of
data, or containing complex filters perform, generally-speaking, poorly on
NoSQL systems. Take the following queries for example: BSBM Q3 contains
a negation, Q4 contains a union, and Q5 touches a lot of data and has a
complex filter. These queries run considerably slower on NoSQL systems
than on 4store.

4. Following the comment above, we observe that classical query optimization
techniques borrowed from relational databases generally work well on NoSQL

20 http://virtuoso.openlinksw.com/
21 http://www.neo4j.org/
22 http://www.franz.com/agraph/allegrograph/
23 http://www.systap.com/bigdata.htm



RDF systems. Jena+HBase, for example, performs better than other systems
on many join and filter queries since it reorders the joins, pushes down the
selections and filters in its query plans.

5. MapReduce-like operations introduce a higher latency for distributed view
maintenance and query execution times. For instance, Hive+HBase and
Couchbase (on larger clusters) introduce large amounts of overhead resulting
in slower runtimes.

In conclusion, NoSQL systems represent a compelling alternative to distributed
and native RDF stores for simple workloads. Considering the encouraging results
from this study, the very large user base of NoSQL systems, and the fact that
there is still ample room for query optimization techniques, we are confident that
NoSQL databases will present an ever growing opportunity to store and manage
RDF data in the cloud.
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