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Preface

IBM® SPSS® Statistics is a comprehensive system for analyzing data. The Regression optional
add-on module provides the additional analytic techniques described in this manual. The
Regression add-on module must be used with the SPSS Statistics Core system and is completely
integrated into that system.

About IBM Business Analytics

IBM Business Analytics software delivers complete, consistent and accurate information that
decision-makers trust to improve business performance. A comprehensive portfolio of business
intelligence, predictive analytics, financial performance and strategy management, and analytic
applications provides clear, immediate and actionable insights into current performance and the
ability to predict future outcomes. Combined with rich industry solutions, proven practices and
professional services, organizations of every size can drive the highest productivity, confidently
automate decisions and deliver better results.

As part of this portfolio, IBM SPSS Predictive Analytics software helps organizations predict
future events and proactively act upon that insight to drive better business outcomes. Commercial,
government and academic customers worldwide rely on IBM SPSS technology as a competitive
advantage in attracting, retaining and growing customers, while reducing fraud and mitigating
risk. By incorporating IBM SPSS software into their daily operations, organizations become
predictive enterprises — able to direct and automate decisions to meet business goals and achieve
measurable competitive advantage. For further information or to reach a representative visit
http://www.ibm.com/spss.

Technical support

Technical support is available to maintenance customers. Customers may contact Technical
Support for assistance in using IBM Corp. products or for installation help for one of the
supported hardware environments. To reach Technical Support, see the IBM Corp. web site
at http://www.ibm.com/support. Be prepared to identify yourself, your organization, and your
support agreement when requesting assistance.

Technical Support for Students

If you’re a student using a student, academic or grad pack version of any IBM

SPSS software product, please see our special online Solutions for Education
(http://www.ibm.com/spss/rd/students/) pages for students. If you’re a student using a
university-supplied copy of the IBM SPSS software, please contact the IBM SPSS product
coordinator at your university.

Customer Service

If you have any questions concerning your shipment or account, contact your local office. Please
have your serial number ready for identification.
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Training Seminars

IBM Corp. provides both public and onsite training seminars. All seminars feature hands-on
workshops. Seminars will be offered in major cities on a regular basis. For more information on
these seminars, go to http://www.ibm.com/software/analytics/spss/training.

Additional Publications

The SPSS Statistics: Guide to Data Analysis, SPSS Statistics: Statistical Procedures Companion,
and SPSS Statistics: Advanced Statistical Procedures Companion, written by Marija Norusis and
published by Prentice Hall, are available as suggested supplemental material. These publications
cover statistical procedures in the SPSS Statistics Base module, Advanced Statistics module
and Regression module. Whether you are just getting starting in data analysis or are ready for
advanced applications, these books will help you make best use of the capabilities found within
the IBM® SPSS® Statistics offering. For additional information including publication contents
and sample chapters, please see the author’s website: http.//www.norusis.com
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Chapter

Choosing a Procedure for Binary
Logistic Regression

Binary logistic regression models can be fitted using either the Logistic Regression procedure or
the Multinomial Logistic Regression procedure. Each procedure has options not available in the
other. An important theoretical distinction is that the Logistic Regression procedure produces all
predictions, residuals, influence statistics, and goodness-of-fit tests using data at the individual
case level, regardless of how the data are entered and whether or not the number of covariate
patterns is smaller than the total number of cases, while the Multinomial Logistic Regression
procedure internally aggregates cases to form subpopulations with identical covariate patterns
for the predictors, producing predictions, residuals, and goodness-of-fit tests based on these
subpopulations. If all predictors are categorical or any continuous predictors take on only a
limited number of values—so that there are several cases at each distinct covariate pattern—the
subpopulation approach can produce valid goodness-of-fit tests and informative residuals, while
the individual case level approach cannot.

Logistic Regression provides the following unique features:
Hosmer-Lemeshow test of goodness of fit for the model
Stepwise analyses

Contrasts to define model parameterization

Alternative cut points for classification

Classification plots

Model fitted on one set of cases to a held-out set of cases

Saves predictions, residuals, and influence statistics

Multinomial Logistic Regression provides the following unique features:

Pearson and deviance chi-square tests for goodness of fit of the model
Specification of subpopulations for grouping of data for goodness-of-fit tests
Listing of counts, predicted counts, and residuals by subpopulations
Correction of variance estimates for over-dispersion

Covariance matrix of the parameter estimates

Tests of linear combinations of parameters

Explicit specification of nested models

Fit 1-1 matched conditional logistic regression models using differenced variables

© Copyright IBM Corporation 1989, 2011. 1



Chapter

Logistic Regression

Logistic regression is useful for situations in which you want to be able to predict the presence or
absence of a characteristic or outcome based on values of a set of predictor variables. It is similar
to a linear regression model but is suited to models where the dependent variable is dichotomous.
Logistic regression coefficients can be used to estimate odds ratios for each of the independent
variables in the model. Logistic regression is applicable to a broader range of research situations
than discriminant analysis.

Example. What lifestyle characteristics are risk factors for coronary heart disease (CHD)? Given
a sample of patients measured on smoking status, diet, exercise, alcohol use, and CHD status,
you could build a model using the four lifestyle variables to predict the presence or absence of
CHD in a sample of patients. The model can then be used to derive estimates of the odds ratios
for each factor to tell you, for example, how much more likely smokers are to develop CHD
than nonsmokers.

Statistics. For each analysis: total cases, selected cases, valid cases. For each categorical
variable: parameter coding. For each step: variable(s) entered or removed, iteration history, —2
log-likelihood, goodness of fit, Hosmer-Lemeshow goodness-of-fit statistic, model chi-square,
improvement chi-square, classification table, correlations between variables, observed groups and
predicted probabilities chart, residual chi-square. For each variable in the equation: coefficient
(B), standard error of B, Wald statistic, estimated odds ratio (exp(B)), confidence interval for
exp(B), log-likelihood if term removed from model. For each variable not in the equation:

score statistic. For each case: observed group, predicted probability, predicted group, residual,
standardized residual.

Methods. You can estimate models using block entry of variables or any of the following stepwise
methods: forward conditional, forward LR, forward Wald, backward conditional, backward
LR, or backward Wald.

Data. The dependent variable should be dichotomous. Independent variables can be interval level
or categorical; if categorical, they should be dummy or indicator coded (there is an option in the
procedure to recode categorical variables automatically).

Assumptions. Logistic regression does not rely on distributional assumptions in the same sense that
discriminant analysis does. However, your solution may be more stable if your predictors have a
multivariate normal distribution. Additionally, as with other forms of regression, multicollinearity
among the predictors can lead to biased estimates and inflated standard errors. The procedure

is most effective when group membership is a truly categorical variable; if group membership

is based on values of a continuous variable (for example, “high 1Q” versus “low 1Q”), you
should consider using linear regression to take advantage of the richer information offered by the
continuous variable itself.

Related procedures. Use the Scatterplot procedure to screen your data for multicollinearity. If
assumptions of multivariate normality and equal variance-covariance matrices are met, you may
be able to get a quicker solution using the Discriminant Analysis procedure. If all of your predictor
variables are categorical, you can also use the Loglinear procedure. If your dependent variable

© Copyright IBM Corporation 1989, 2011. 2
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Logistic Regression

is continuous, use the Linear Regression procedure. You can use the ROC Curve procedure to
plot probabilities saved with the Logistic Regression procedure.

Obtaining a Logistic Regression Analysis
» From the menus choose:
Analyze > Regression > Binary Logistic...

Figure 2-1
Logistic Regression dialog box
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» Select one dichotomous dependent variable. This variable may be numeric or string.

» Select one or more covariates. To include interaction terms, select all of the variables involved in
the interaction and then seclect >a*b>.

To enter variables in groups (blocks), select the covariates for a block, and click Next to specify a
new block. Repeat until all blocks have been specified.

Optionally, you can select cases for analysis. Choose a selection variable, and click Rule.

Logistic Regression Set Rule

Figure 2-2
Logistic Regression Set Rule dialog box

3] Logistic Regression: Set Rule

Define Selection Rule
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[Continue][ Cancel ][ Help ]
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Cases defined by the selection rule are included in model estimation. For example, if you selected
a variable and equals and specified a value of 5, then only the cases for which the selected variable
has a value equal to 5 are included in estimating the model.

Statistics and classification results are generated for both selected and unselected cases.
This provides a mechanism for classifying new cases based on previously existing data, or for
partitioning your data into training and testing subsets, to perform validation on the model
generated.

Logistic Regression Variable Selection Methods

Method selection allows you to specify how independent variables are entered into the analysis.
Using different methods, you can construct a variety of regression models from the same set of
variables.

m Enter. A procedure for variable selection in which all variables in a block are entered in a
single step.
m  Forward Selection (Conditional). Stepwise selection method with entry testing based on

the significance of the score statistic, and removal testing based on the probability of a
likelihood-ratio statistic based on conditional parameter estimates.

m  Forward Selection (Likelihood Ratio). Stepwise selection method with entry testing based
on the significance of the score statistic, and removal testing based on the probability of a
likelihood-ratio statistic based on the maximum partial likelihood estimates.

m  Forward Selection (Wald). Stepwise selection method with entry testing based on the
significance of the score statistic, and removal testing based on the probability of the Wald
statistic.

m Backward Elimination (Conditional). Backward stepwise selection. Removal testing is based on
the probability of the likelihood-ratio statistic based on conditional parameter estimates.

m  Backward Elimination (Likelihood Ratio). Backward stepwise selection. Removal testing
is based on the probability of the likelihood-ratio statistic based on the maximum partial
likelihood estimates.

®  Backward Elimination (Wald). Backward stepwise selection. Removal testing is based on the
probability of the Wald statistic.

The significance values in your output are based on fitting a single model. Therefore, the
significance values are generally invalid when a stepwise method is used.

All independent variables selected are added to a single regression model. However, you can
specify different entry methods for different subsets of variables. For example, you can enter one
block of variables into the regression model using stepwise selection and a second block using
forward selection. To add a second block of variables to the regression model, click Next.
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Logistic Regression Define Categorical Variables

Figure 2-3
Logistic Regression Define Categorical Variables dialog box
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You can specify details of how the Logistic Regression procedure will handle categorical variables:

Covariates. Contains a list of all of the covariates specified in the main dialog box, either by
themselves or as part of an interaction, in any layer. If some of these are string variables or are
categorical, you can use them only as categorical covariates.

Categorical Covariates. Lists variables identified as categorical. Each variable includes a notation
in parentheses indicating the contrast coding to be used. String variables (denoted by the symbol <
following their names) are already present in the Categorical Covariates list. Select any other
categorical covariates from the Covariates list and move them into the Categorical Covariates list.

Change Contrast. Allows you to change the contrast method. Available contrast methods are:

m Indicator. Contrasts indicate the presence or absence of category membership. The reference
category is represented in the contrast matrix as a row of zeros.

m  Simple. Each category of the predictor variable (except the reference category) is compared
to the reference category.

m Difference. Each category of the predictor variable except the first category is compared to the
average effect of previous categories. Also known as reverse Helmert contrasts.

m  Helmert. Each category of the predictor variable except the last category is compared to
the average effect of subsequent categories.

m Repeated. Each category of the predictor variable except the first category is compared to the
category that precedes it.

®  Polynomial. Orthogonal polynomial contrasts. Categories are assumed to be equally spaced.
Polynomial contrasts are available for numeric variables only.

m Deviation. Each category of the predictor variable except the reference category is compared
to the overall effect.

If you select Deviation, Simple, or Indicator, select either First or Last as the reference category.
Note that the method is not actually changed until you click Change.
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String covariates must be categorical covariates. To remove a string variable from the
Categorical Covariates list, you must remove all terms containing the variable from the Covariates
list in the main dialog box.

Logistic Regression Save New Variables

Figure 2-4
Logistic Regression Save New Variables dialog box
53] Logistic Regression: Save
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[Continue][ Cancel ][ Help ]

You can save results of the logistic regression as new variables in the active dataset:

Predicted Values. Saves values predicted by the model. Available options are Probabilities and
Group membership.

®m Probabilities. For each case, saves the predicted probability of occurrence of the event. A table
in the output displays name and contents of any new variables. The “event” is the category of
the dependent variable with the higher value; for example, if the dependent variable takes
values 0 and 1, the predicted probability of category 1 is saved.

®  Predicted Group Membership. The group with the largest posterior probability, based on
discriminant scores. The group the model predicts the case belongs to.

Influence. Saves values from statistics that measure the influence of cases on predicted values.
Available options are Cook’s, Leverage values, and DfBeta(s).

m  Cook’s. The logistic regression analog of Cook’s influence statistic. A measure of how much
the residuals of all cases would change if a particular case were excluded from the calculation
of the regression coefficients.

m Leverage Value. The relative influence of each observation on the model’s fit.

m DfBeta(s). The difference in beta value is the change in the regression coefficient that results
from the exclusion of a particular case. A value is computed for each term in the model,
including the constant.

Residuals. Saves residuals. Available options are Unstandardized, Logit, Studentized,
Standardized, and Deviance.



7

Logistic Regression

Unstandardized Residuals. The difference between an observed value and the value predicted
by the model.

Logit Residual. The residual for the case if it is predicted in the logit scale. The logit residual is
the residual divided by the predicted probability times 1 minus the predicted probability.

Studentized Residual. The change in the model deviance if a case is excluded.

Standardized Residuals. The residual divided by an estimate of its standard deviation.
Standardized residuals, which are also known as Pearson residuals, have a mean of 0 and
a standard deviation of 1.

Deviance. Residuals based on the model deviance.

Export model information to XML file. Parameter estimates and (optionally) their covariances are
exported to the specified file in XML (PMML) format. You can use this model file to apply the
model information to other data files for scoring purposes.

Logistic Regression Options

Figure 2-5
Logistic Regression Options dialog box
Logistic Regression: Options
Statistics and Plats
¥ Classification plots [T] correlations of estimstes
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Maximum fterations:
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You can specify options for your logistic regression analysis:

Statistics and Plots. Allows you to request statistics and plots. Available options are Classification
plots, Hosmer-Lemeshow goodness-of-fit, Casewise listing of residuals, Correlations of estimates,
Iteration history, and CI for exp(B). Select one of the alternatives in the Display group to display
statistics and plots either At each step or, only for the final model, At last step.

Hosmer-Lemeshow goodness-of-fit statistic. This goodness-of-fit statistic is more robust than
the traditional goodness-of-fit statistic used in logistic regression, particularly for models with
continuous covariates and studies with small sample sizes. It is based on grouping cases

into deciles of risk and comparing the observed probability with the expected probability
within each decile.
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Probability for Stepwise. Allows you to control the criteria by which variables are entered into and
removed from the equation. You can specify criteria for Entry or Removal of variables.

®m  Probability for Stepwise. A variable is entered into the model if the probability of its score
statistic is less than the Entry value and is removed if the probability is greater than the
Removal value. To override the default settings, enter positive values for Entry and Removal.
Entry must be less than Removal.

Classification cutoff. Allows you to determine the cut point for classifying cases. Cases with
predicted values that exceed the classification cutoff are classified as positive, while those with
predicted values smaller than the cutoff are classified as negative. To change the default, enter a
value between 0.01 and 0.99.

Maximum lterations. Allows you to change the maximum number of times that the model iterates
before terminating.

Include constant in model. Allows you to indicate whether the model should include a constant
term. If disabled, the constant term will equal 0.

LOGISTIC REGRESSION Command Additional Features

The command syntax language also allows you to:
m  Identify casewise output by the values or variable labels of a variable.

m  Control the spacing of iteration reports. Rather than printing parameter estimates after every
iteration, you can request parameter estimates after every nth iteration.

Change the criteria for terminating iteration and checking for redundancy.
Specify a variable list for casewise listings.

Conserve memory by holding the data for each split file group in an external scratch file
during processing.

See the Command Syntax Reference for complete syntax information.
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Multinomial Logistic Regression

Multinomial Logistic Regression is useful for situations in which you want to be able to classify
subjects based on values of a set of predictor variables. This type of regression is similar to logistic
regression, but it is more general because the dependent variable is not restricted to two categories.

Example. In order to market films more effectively, movie studios want to predict what type of
film a moviegoer is likely to see. By performing a Multinomial Logistic Regression, the studio
can determine the strength of influence a person’s age, gender, and dating status has upon the type
of film they prefer. The studio can then slant the advertising campaign of a particular movie
toward a group of people likely to go see it.

Statistics. Iteration history, parameter coefficients, asymptotic covariance and correlation matrices,
likelihood-ratio tests for model and partial effects, —2 log-likelihood. Pearson and deviance
chi-square goodness of fit. Cox and Snell, Nagelkerke, and McFadden R2. Classification:
observed versus predicted frequencies by response category. Crosstabulation: observed and
predicted frequencies (with residuals) and proportions by covariate pattern and response category.

Methods. A multinomial logit model is fit for the full factorial model or a user-specified model.
Parameter estimation is performed through an iterative maximum-likelihood algorithm.

Data. The dependent variable should be categorical. Independent variables can be factors or
covariates. In general, factors should be categorical variables and covariates should be continuous
variables.

Assumptions. It is assumed that the odds ratio of any two categories are independent of all other
response categories. For example, if a new product is introduced to a market, this assumption
states that the market shares of all other products are affected proportionally equally. Also, given a
covariate pattern, the responses are assumed to be independent multinomial variables.

Obtaining a Multinomial Logistic Regression

» From the menus choose:
Analyze > Regression > Multinomial Logistic...

© Copyright IBM Corporation 1989, 2011. 9



10

Chapter 3

Figure 3-1
Multinomial Logistic Regression dialog box
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» Select one dependent variable.

» Factors are optional and can be either numeric or categorical.

» Covariates are optional but must be numeric if specified.
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Figure 3-2

Multinomial Logistic Regression Model dialog box
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By default, the Multinomial Logistic Regression procedure produces a model with the factor and
covariate main effects, but you can specify a custom model or request stepwise model selection

with this dialog box.

Specify Model. A main-effects model contains the covariate and factor main effects but no
interaction effects. A full factorial model contains all main effects and all factor-by-factor
interactions. It does not contain covariate interactions. You can create a custom model to specify
subsets of factor interactions or covariate interactions, or request stepwise selection of model

terms.

Factors & Covariates. The factors and covariates are listed.

Forced Entry Terms. Terms added to the forced entry list are always included in the model.

Stepwise Terms. Terms added to the stepwise list are included in the model according to one of the
following user-selected Stepwise Methods:

m  Forward entry. This method begins with no stepwise terms in the model. At each step, the most
significant term is added to the model until none of the stepwise terms left out of the model
would have a statistically significant contribution if added to the model.
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m  Backward elimination. This method begins by entering all terms specified on the stepwise list
into the model. At each step, the least significant stepwise term is removed from the model
until all of the remaining stepwise terms have a statistically significant contribution to the
model.

®  Forward stepwise. This method begins with the model that would be selected by the forward
entry method. From there, the algorithm alternates between backward elimination on the
stepwise terms in the model and forward entry on the terms left out of the model. This
continues until no terms meet the entry or removal criteria.

m  Backward stepwise. This method begins with the model that would be selected by the
backward elimination method. From there, the algorithm alternates between forward entry on
the terms left out of the model and backward elimination on the stepwise terms in the model.
This continues until no terms meet the entry or removal criteria.

Include intercept in model. Allows you to include or exclude an intercept term for the model.

Build Terms

For the selected factors and covariates:

Interaction. Creates the highest-level interaction term of all selected variables.
Main effects. Creates a main-effects term for each variable selected.

All 2-way. Creates all possible two-way interactions of the selected variables.
All 3-way. Creates all possible three-way interactions of the selected variables.
All 4-way. Creates all possible four-way interactions of the selected variables.

All 5-way. Creates all possible five-way interactions of the selected variables.

Multinomial Logistic Regression Reference Category

Figure 3-3
Multinomial Logistic Regression Reference Category dialog box
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By default, the Multinomial Logistic Regression procedure makes the last category the reference
category. This dialog box gives you control of the reference category and the way in which
categories are ordered.

Reference Category. Specify the first, last, or a custom category.

Category Order. In ascending order, the lowest value defines the first category and the highest
value defines the last. In descending order, the highest value defines the first category and the
lowest value defines the last.

Multinomial Logistic Regression Statistics

Figure 3-4
Multinomial Logistic Regression Statistics dialog box
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You can specify the following statistics for your Multinomial Logistic Regression:

Case processing summary. This table contains information about the specified categorical variables.
Model. Statistics for the overall model.

m  Pseudo R-square. Prints the Cox and Snell, Nagelkerke, and McFadden R? statistics.

m  Step summary. This table summarizes the effects entered or removed at each step in a stepwise
method. It is not produced unless a stepwise model is specified in the Model dialog box.
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®  Model fitting information. This table compares the fitted and intercept-only or null models.

m Information criteria. This table prints Akaike’s information criterion (AIC) and Schwarz’s
Bayesian information criterion (BIC).

m  Cell probabilities. Prints a table of the observed and expected frequencies (with residual) and
proportions by covariate pattern and response category.

m Classification table. Prints a table of the observed versus predicted responses.

m  Goodness of fit chi-square statistics. Prints Pearson and likelihood-ratio chi-square statistics.
Statistics are computed for the covariate patterns determined by all factors and covariates or
by a user-defined subset of the factors and covariates.

®  Monotinicity measures. Displays a table with information on the number of concordant pairs,
discordant pairs, and tied pairs. The Somers’ D, Goodman and Kruskal’s Gamma, Kendall’s
tau-a, and Concordance Index C are also displayed in this table.

Parameters. Statistics related to the model parameters.
m Estimates. Prints estimates of the model parameters, with a user-specified level of confidence.

m Likelihood ratio test. Prints likelihood-ratio tests for the model partial effects. The test for
the overall model is printed automatically.

m  Asymptotic correlations. Prints matrix of parameter estimate correlations.

®  Asymptotic covariances. Prints matrix of parameter estimate covariances.

Define Subpopulations. Allows you to select a subset of the factors and covariates in order to
define the covariate patterns used by cell probabilities and the goodness-of-fit tests.

Multinomial Logistic Regression Criteria

Figure 3-5
Multinomial Logistic Regression Convergence Criteria dialog box
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[Continue][ Cancel ][ Help ]
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You can specify the following criteria for your Multinomial Logistic Regression:

Iterations. Allows you to specify the maximum number of times you want to cycle through the
algorithm, the maximum number of steps in the step-halving, the convergence tolerances for
changes in the log-likelihood and parameters, how often the progress of the iterative algorithm is
printed, and at what iteration the procedure should begin checking for complete or quasi-complete
separation of the data.

m Log-likelihood convergence. Convergence is assumed if the absolute change in the
log-likelihood function is less than the specified value. The criterion is not used if the value is
0. Specify a non-negative value.

m Parameter convergence. Convergence is assumed if the absolute change in the parameter
estimates is less than this value. The criterion is not used if the value is 0.

Delta. Allows you to specify a non-negative value less than 1. This value is added to each empty
cell of the crosstabulation of response category by covariate pattern. This helps to stabilize the
algorithm and prevent bias in the estimates.

Singularity tolerance. Allows you to specify the tolerance used in checking for singularities.

Multinomial Logistic Regression Options

Figure 3-6
Multinomial Logistic Regression Options dialog box
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[Cominue][ Cancel ][ Hela ]

You can specify the following options for your Multinomial Logistic Regression:

Dispersion Scale. Allows you to specify the dispersion scaling value that will be used to correct
the estimate of the parameter covariance matrix. Deviance estimates the scaling value using the
deviance function (likelihood-ratio chi-square) statistic. Pearson estimates the scaling value
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using the Pearson chi-square statistic. You can also specify your own scaling value. It must be
a positive numeric value.

Stepwise Options. These options give you control of the statistical criteria when stepwise methods
are used to build a model. They are ignored unless a stepwise model is specified in the Model
dialog box.

m  Entry Probability. This is the probability of the likelihood-ratio statistic for variable entry. The
larger the specified probability, the easier it is for a variable to enter the model. This criterion is
ignored unless the forward entry, forward stepwise, or backward stepwise method is selected.

m  Entry test. This is the method for entering terms in stepwise methods. Choose between the
likelihood-ratio test and score test. This criterion is ignored unless the forward entry, forward
stepwise, or backward stepwise method is selected.

m  Removal Probability. This is the probability of the likelihood-ratio statistic for variable
removal. The larger the specified probability, the easier it is for a variable to remain in
the model. This criterion is ignored unless the backward elimination, forward stepwise,
or backward stepwise method is selected.

®  Removal Test. This is the method for removing terms in stepwise methods. Choose between the
likelihood-ratio test and Wald test. This criterion is ignored unless the backward elimination,
forward stepwise, or backward stepwise method is selected.

®  Minimum Stepped Effects in Model. When using the backward elimination or backward
stepwise methods, this specifies the minimum number of terms to include in the model.
The intercept is not counted as a model term.

m  Maximum Stepped Effects in Model. When using the forward entry or forward stepwise
methods, this specifies the maximum number of terms to include in the model. The intercept
is not counted as a model term.

m Hierarchically constrain entry and removal of terms. This option allows you to choose whether
to place restrictions on the inclusion of model terms. Hierarchy requires that for any term to be
included, all lower order terms that are a part of the term to be included must be in the model
first. For example, if the hierarchy requirement is in effect, the factors Marital status and
Gender must both be in the model before the Marital status*Gender interaction can be added.
The three radio button options determine the role of covariates in determining hierarchy.
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Multinomial Logistic Regression Save

Figure 3-7
Multinomial Logistic Regression Save dialog box
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The Save dialog box allows you to save variables to the working file and export model information
to an external file.

Saved variables:

m Estimated response probabilities. These are the estimated probabilities of classifying a
factor/covariate pattern into the response categories. There are as many estimated probabilities
as there are categories of the response variable; up to 25 will be saved.

m Predicted category. This is the response category with the largest expected probability for
a factor/covariate pattern.

m Predicted category probabilities. This is the maximum of the estimated response probabilities.

m Actual category probability. This is the estimated probability of classifying a factor/covariate
pattern into the observed category.

Export model information to XML file. Parameter estimates and (optionally) their covariances are
exported to the specified file in XML (PMML) format. You can use this model file to apply the
model information to other data files for scoring purposes.

NOMREG Command Additional Features

The command syntax language also allows you to:
m  Specify the reference category of the dependent variable.
® Include cases with user-missing values.

m  Customize hypothesis tests by specifying null hypotheses as linear combinations of parameters.

See the Command Syntax Reference for complete syntax information.
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This procedure measures the relationship between the strength of a stimulus and the proportion
of cases exhibiting a certain response to the stimulus. It is useful for situations where you have
a dichotomous output that is thought to be influenced or caused by levels of some independent
variable(s) and is particularly well suited to experimental data. This procedure will allow you to
estimate the strength of a stimulus required to induce a certain proportion of responses, such as
the median effective dose.

Example. How effective is a new pesticide at killing ants, and what is an appropriate concentration
to use? You might perform an experiment in which you expose samples of ants to different
concentrations of the pesticide and then record the number of ants killed and the number of ants
exposed. Applying probit analysis to these data, you can determine the strength of the relationship
between concentration and killing, and you can determine what the appropriate concentration of
pesticide would be if you wanted to be sure to kill, say, 95% of exposed ants.

Statistics. Regression coefficients and standard errors, intercept and standard error, Pearson
goodness-of-fit chi-square, observed and expected frequencies, and confidence intervals for
effective levels of independent variable(s). Plots: transformed response plots.

This procedure uses the algorithms proposed and implemented in NPSOL® by Gill, Murray,
Saunders & Wright to estimate the model parameters.

Data. For each value of the independent variable (or each combination of values for multiple
independent variables), your response variable should be a count of the number of cases with
those values that show the response of interest, and the total observed variable should be a count
of the total number of cases with those values for the independent variable. The factor variable
should be categorical, coded as integers.

Assumptions. Observations should be independent. If you have a large number of values for the
independent variables relative to the number of observations, as you might in an observational
study, the chi-square and goodness-of-fit statistics may not be valid.

Related procedures. Probit analysis is closely related to logistic regression; in fact, if you choose
the logit transformation, this procedure will essentially compute a logistic regression. In general,
probit analysis is appropriate for designed experiments, whereas logistic regression is more
appropriate for observational studies. The differences in output reflect these different emphases.
The probit analysis procedure reports estimates of effective values for various rates of response
(including median effective dose), while the logistic regression procedure reports estimates of
odds ratios for independent variables.

Obtaining a Probit Analysis

» From the menus choose:
Analyze > Regression > Probit...

© Copyright IBM Corporation 1989, 2011. 18
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Figure 4-1
Probit Analysis dialog box
ﬁ Probit Analysis
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Select a response frequency variable. This variable indicates the number of cases exhibiting a
response to the test stimulus. The values of this variable cannot be negative.

Select a total observed variable. This variable indicates the number of cases to which the stimulus
was applied. The values of this variable cannot be negative and cannot be less than the values of
the response frequency variable for each case.

Optionally, you can select a Factor variable. If you do, click Define Range to define the groups.

Select one or more covariate(s). This variable contains the level of the stimulus applied to each
observation. If you want to transform the covariate, select a transformation from the Transform
drop-down list. If no transformation is applied and there is a control group, then the control group
is included in the analysis.

Select either the Probit or Logit model.

m  Probit Model. Applies the probit transformation (the inverse of the cumulative standard normal
distribution function) to the response proportions.

m Logit Model. Applies the logit (log odds) transformation to the response proportions.
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Probit Analysis Define Range

Figure 4-2
Probit Analysis Define Range dialog box

HH Probit Analysis: Define Range
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|Cont|nue][ Cancel ][ Help ]

This allows you to specify the levels of the factor variable that will be analyzed. The factor levels
must be coded as consecutive integers, and all levels in the range that you specify will be analyzed.

Probit Analysis Options

Figure 4-3
Probit Analysis Options dialog box
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You can specify options for your probit analysis:

Statistics. Allows you to request the following optional statistics: Frequencies, Relative median
potency, Parallelism test, and Fiducial confidence intervals.

m Relative Median Potency. Displays the ratio of median potencies for each pair of factor levels.
Also shows 95% confidence limits for each relative median potency. Relative median

potencies are not available if you do not have a factor variable or if you have more than
one covariate.
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m  Parallelism Test. A test of the hypothesis that all factor levels have a common slope.

m  Fiducial Confidence Intervals. Confidence intervals for the dosage of agent required to produce
a certain probability of response.

Fiducial confidence intervals and Relative median potency are unavailable if you have selected
more than one covariate. Relative median potency and Parallelism test are available only if
you have selected a factor variable.

Natural Response Rate. Allows you to indicate a natural response rate even in the absence of the
stimulus. Available alternatives are None, Calculate from data, or Value.

m  Calculate from Data. Estimate the natural response rate from the sample data. Your data should
contain a case representing the control level, for which the value of the covariate(s) is 0.
Probit estimates the natural response rate using the proportion of responses for the control
level as an initial value.

m  Value. Sets the natural response rate in the model (select this item when you know the natural
response rate in advance). Enter the natural response proportion (the proportion must be less
than 1). For example, if the response occurs 10% of the time when the stimulus is 0, enter 0.10.

Criteria. Allows you to control parameters of the iterative parameter-estimation algorithm. You
can override the defaults for Maximum iterations, Step limit, and Optimality tolerance.

PROBIT Command Additional Features

The command syntax language also allows you to:
m  Request an analysis on both the probit and logit models.
m  Control the treatment of missing values.

m  Transform the covariates by bases other than base 10 or natural log.

See the Command Syntax Reference for complete syntax information.
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Nonlinear Regression

Nonlinear regression is a method of finding a nonlinear model of the relationship between the
dependent variable and a set of independent variables. Unlike traditional linear regression, which
is restricted to estimating linear models, nonlinear regression can estimate models with arbitrary
relationships between independent and dependent variables. This is accomplished using iterative
estimation algorithms. Note that this procedure is not necessary for simple polynomial models of
the form Y = A + BX**2. By defining W = X**2, we get a simple linear model, Y = A + BW,
which can be estimated using traditional methods such as the Linear Regression procedure.

Example. Can population be predicted based on time? A scatterplot shows that there seems to be a
strong relationship between population and time, but the relationship is nonlinear, so it requires the
special estimation methods of the Nonlinear Regression procedure. By setting up an appropriate
equation, such as a logistic population growth model, we can get a good estimate of the model,
allowing us to make predictions about population for times that were not actually measured.

Statistics. For each iteration: parameter estimates and residual sum of squares. For each model:
sum of squares for regression, residual, uncorrected total and corrected total, parameter estimates,
asymptotic standard errors, and asymptotic correlation matrix of parameter estimates.

Note: Constrained nonlinear regression uses the algorithms proposed and implemented in
NPSOL® by Gill, Murray, Saunders, and Wright to estimate the model parameters.

Data. The dependent and independent variables should be quantitative. Categorical variables,
such as religion, major, or region of residence, need to be recoded to binary (dummy) variables
or other types of contrast variables.

Assumptions. Results are valid only if you have specified a function that accurately describes the
relationship between dependent and independent variables. Additionally, the choice of good
starting values is very important. Even if you’ve specified the correct functional form of the
model, if you use poor starting values, your model may fail to converge or you may get a locally
optimal solution rather than one that is globally optimal.

Related procedures. Many models that appear nonlinear at first can be transformed to a linear
model, which can be analyzed using the Linear Regression procedure. If you are uncertain what
the proper model should be, the Curve Estimation procedure can help to identify useful functional
relations in your data.

Obtaining a Nonlinear Regression Analysis

» From the menus choose:
Analyze > Regression > Nonlinear...

© Copyright IBM Corporation 1989, 2011. 22
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Figure 5-1
Nonlinear Regression dialog box
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» Select one numeric dependent variable from the list of variables in your active dataset.

» To build a model expression, enter the expression in the Model field or paste components
(variables, parameters, functions) into the field.
» Identify parameters in your model by clicking Parameters.

A segmented model (one that takes different forms in different parts of its domain) must be
specified by using conditional logic within the single model statement.

Conditional Logic (Nonlinear Regression)

You can specify a segmented model using conditional logic. To use conditional logic within a
model expression or a loss function, you form the sum of a series of terms, one for each condition.
Each term consists of a logical expression (in parentheses) multiplied by the expression that
should result when that logical expression is true.

For example, consider a segmented model that equals 0 for X<=0, X for 0<X<I1, and 1 for X>=1.
The expression for this is:

(X<=0)*0 + (X>0 & X<1)*X + (X>=1)*1.



24

Chapter 5

The logical expressions in parentheses all evaluate to 1 (true) or 0 (false). Therefore:
If X<=0, the above reduces to 1*0 + 0*X + 0*1 = 0.

If 0<X<1, it reduces to 0*0 + 1*X + 0*1 = X.

If X>=1, it reduces to 0*0 + 0*X + 1*1 = 1.

More complicated examples can be easily built by substituting different logical expressions and
outcome expressions. Remember that double inequalities, such as 0<X<1, must be written as
compound expressions, such as (X>0 & X<1).

String variables can be used within logical expressions:
(city="New York’)*costliv + (city="Des Moines’)*0.59*costliv

This yields one expression (the value of the variable cost/iv) for New Yorkers and another (59% of
that value) for Des Moines residents. String constants must be enclosed in quotation marks or
apostrophes, as shown here.

Nonlinear Regression Parameters

Figure 5-2
Nonlinear Regression Parameters dialog box
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Parameters are the parts of your model that the Nonlinear Regression procedure estimates.
Parameters can be additive constants, multiplicative coefficients, exponents, or values used in
evaluating functions. All parameters that you have defined will appear (with their initial values)
on the Parameters list in the main dialog box.

Name. You must specify a name for each parameter. This name must be a valid variable name and
must be the name used in the model expression in the main dialog box.

Starting Value. Allows you to specify a starting value for the parameter, preferably as close as
possible to the expected final solution. Poor starting values can result in failure to converge or in
convergence on a solution that is local (rather than global) or is physically impossible.

Use starting values from previous analysis. If you have already run a nonlinear regression from this
dialog box, you can select this option to obtain the initial values of parameters from their values in
the previous run. This permits you to continue searching when the algorithm is converging slowly.
(The initial starting values will still appear on the Parameters list in the main dialog box.)
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Note: This selection persists in this dialog box for the rest of your session. If you change the

model, be sure to deselect it.

Nonlinear Regression Common Models

The table below provides example model syntax for many published nonlinear regression models.
A model selected at random is not likely to fit your data well. Appropriate starting values for the
parameters are necessary, and some models require constraints in order to converge.

Table 5-1
Example model syntax

Name

Asymptotic Regression
Asymptotic Regression
Density

Gauss

Gompertz
Johnson-Schumacher
Log-Modified
Log-Logistic

Metcherlich Law of Diminishing
Returns

Michaelis Menten
Morgan-Mercer-Florin
Peal-Reed

Ratio of Cubics

Ratio of Quadratics
Richards

Verhulst

Von Bertalanffy
Weibull

Yield Density

Model expression

bl + b2 * exp(b3 * x)

bl — (b2 * (b3 ** x))

(bl + b2 * x) ** (-1 / b3)

bl * (1 —b3 * exp(-b2 * x ** 2))
bl * exp(-b2 * exp(-b3 * x))

bl * exp(-b2 / (x + b3))

(bl + b3 * x) ** b2

bl —In(1 + b2 * exp(-b3 * x))
bl + b2 * exp(-b3 * x)

bl *x/(x +b2)

(b1 * b2 + b3 * x ** bd) / (b2 + x ** b4)

bl /(1+ b2 * exp(—(b3 * x + b4 * x **2 + b5 * x ** 3)))
(b1 +b2 *x+b3 *x **¥ 2+ b4 * x *¥* 3) /(b5 * x ** 3)
(b1 +b2 * x+b3 *x **2)/ (b4 * x ** 2)

bl /((1 +b3 * exp(-b2 * x)) ** (1 /b4))

bl /(1 +b3 * exp(-b2 * x))

(b1 ** (1 —b4) — b2 * exp(-b3 * x)) ** (1 /(1 — b4))
bl — b2 * exp(—b3 * x ** b4)

(b1 + b2 * x + b3 * x ** 2) ** (-])
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Nonlinear Regression Loss Function

Figure 5-3
Nonlinear Regression Loss Function dialog box
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The loss function in nonlinear regression is the function that is minimized by the algorithm.
Select either Sum of squared residuals to minimize the sum of the squared residuals or User-defined
loss function to minimize a different function.

If you select User-defined loss function, you must define the loss function whose sum (across all
cases) should be minimized by the choice of parameter values.

B Most loss functions involve the special variable RESID , which represents the residual. (The
default Sum of squared residuals loss function could be entered explicitly as RESID_**2.)
If you need to use the predicted value in your loss function, it is equal to the dependent
variable minus the residual.

m [t is possible to specify a conditional loss function using conditional logic.
You can either type an expression in the User-defined loss function field or paste components of

the expression into the field. String constants must be enclosed in quotation marks or apostrophes,
and numeric constants must be typed in American format, with the dot as a decimal delimiter.
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Nonlinear Regression Parameter Constraints

Figure 5-4
Nonlinear Regression Parameter Constraints dialog box
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A constraint is a restriction on the allowable values for a parameter during the iterative search
for a solution. Linear expressions are evaluated before a step is taken, so you can use linear
constraints to prevent steps that might result in overflows. Nonlinear expressions are evaluated
after a step is taken.

Each equation or inequality requires the following elements:

B An expression involving at least one parameter in the model. Type the expression or use the
keypad, which allows you to paste numbers, operators, or parentheses into the expression.
You can either type in the required parameter(s) along with the rest of the expression or paste
from the Parameters list at the left. You cannot use ordinary variables in a constraint.

B One of the three logical operators <=, =, or >=.

B A numeric constant, to which the expression is compared using the logical operator. Type the
constant. Numeric constants must be typed in American format, with the dot as a decimal
delimiter.

Nonlinear Regression Save New Variables

Figure 5-5
Nonlinear Regression Save New Variables dialog box
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You can save a number of new variables to your active data file. Available options are Residuals,
Predicted values, Derivatives, and Loss function values. These variables can be used in subsequent
analyses to test the fit of the model or to identify problem cases.

m Residuals. Saves residuals with the variable name resid.
m Predicted Values. Saves predicted values with the variable name pred .

m  Derivatives. One derivative is saved for each model parameter. Derivative names are created
by prefixing ’d.” to the first six characters of parameter names.

m Loss Function Values. This option is available if you specify your own loss function. The
variable name loss_ is assigned to the values of the loss function.

Nonlinear Regression Options

Figure 5-6
Nonlinear Regression Options dialog box
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Options allow you to control various aspects of your nonlinear regression analysis:

Bootstrap Estimates. A method of estimating the standard error of a statistic using repeated samples
from the original data set. This is done by sampling (with replacement) to get many samples of the
same size as the original data set. The nonlinear equation is estimated for each of these samples.
The standard error of each parameter estimate is then calculated as the standard deviation of the
bootstrapped estimates. Parameter values from the original data are used as starting values for
each bootstrap sample. This requires the sequential quadratic programming algorithm.

Estimation Method. Allows you to select an estimation method, if possible. (Certain choices in
this or other dialog boxes require the sequential quadratic programming algorithm.) Available
alternatives include Sequential quadratic programming and Levenberg-Marquardt.

m  Sequential Quadratic Programming. This method is available for constrained and unconstrained
models. Sequential quadratic programming is used automatically if you specify a constrained
model, a user-defined loss function, or bootstrapping. You can enter new values for Maximum
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iterations and Step limit, and you can change the selection in the drop-down lists for
Optimality tolerance, Function precision, and Infinite step size.

Levenberg-Marquardt. This is the default algorithm for unconstrained models. The
Levenberg-Marquardt method is not available if you specify a constrained model, a
user-defined loss function, or bootstrapping. You can enter new values for Maximum
iterations, and you can change the selection in the drop-down lists for Sum-of-squares
convergence and Parameter convergence.

Interpreting Nonlinear Regression Results

Nonlinear regression problems often present computational difficulties:

The choice of initial values for the parameters influences convergence. Try to choose initial
values that are reasonable and, if possible, close to the expected final solution.

Sometimes one algorithm performs better than the other on a particular problem. In the
Options dialog box, select the other algorithm if it is available. (If you specify a loss function
or certain types of constraints, you cannot use the Levenberg-Marquardt algorithm.)

When iteration stops only because the maximum number of iterations has occurred, the “final”
model is probably not a good solution. Select Use starting values from previous analysis in the
Parameters dialog box to continue the iteration or, better yet, choose different initial values.

Models that require exponentiation of or by large data values can cause overflows or
underflows (numbers too large or too small for the computer to represent). Sometimes you can
avoid these by suitable choice of initial values or by imposing constraints on the parameters.

NLR Command Additional Features

The command syntax language also allows you to:

Name a file from which to read initial values for parameter estimates.

Specify more than one model statement and loss function. This makes it easier to specify
a segmented model.

Supply your own derivatives rather than use those calculated by the program.
Specify the number of bootstrap samples to generate.

Specify additional iteration criteria, including setting a critical value for derivative checking
and defining a convergence criterion for the correlation between the residuals and the
derivatives.

Additional criteria for the CNLR (constrained nonlinear regression) command allow you to:

Specify the maximum number of minor iterations allowed within each major iteration.
Set a critical value for derivative checking.
Set a step limit.

Specify a crash tolerance to determine if initial values are within their specified bounds.

See the Command Syntax Reference for complete syntax information.
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Weight Estimation

Standard linear regression models assume that variance is constant within the population under
study. When this is not the case—for example, when cases that are high on some attribute show
more variability than cases that are low on that attribute—Ilinear regression using ordinary least
squares (OLS) no longer provides optimal model estimates. If the differences in variability can be
predicted from another variable, the Weight Estimation procedure can compute the coefficients
of a linear regression model using weighted least squares (WLS), such that the more precise
observations (that is, those with less variability) are given greater weight in determining the
regression coefficients. The Weight Estimation procedure tests a range of weight transformations
and indicates which will give the best fit to the data.

Example. What are the effects of inflation and unemployment on changes in stock prices? Because
stocks with higher share values often show more variability than those with low share values,
ordinary least squares will not produce optimal estimates. Weight estimation allows you to account
for the effect of share price on the variability of price changes in calculating the linear model.

Statistics. Log-likelihood values for each power of the weight source variable tested, multiple R,
R-squared, adjusted R-squared, ANOVA table for WLS model, unstandardized and standardized
parameter estimates, and log-likelihood for the WLS model.

Data. The dependent and independent variables should be quantitative. Categorical variables,
such as religion, major, or region of residence, need to be recoded to binary (dummy) variables or
other types of contrast variables. The weight variable should be quantitative and should be related
to the variability in the dependent variable.

Assumptions. For each value of the independent variable, the distribution of the dependent
variable must be normal. The relationship between the dependent variable and each independent
variable should be linear, and all observations should be independent. The variance of the
dependent variable can vary across levels of the independent variable(s), but the differences must
be predictable based on the weight variable.

Related procedures. The Explore procedure can be used to screen your data. Explore provides
tests for normality and homogeneity of variance, as well as graphical displays. If your dependent
variable seems to have equal variance across levels of independent variables, you can use the
Linear Regression procedure. If your data appear to violate an assumption (such as normality),
try transforming them. If your data are not related linearly and a transformation does not
help, use an alternate model in the Curve Estimation procedure. If your dependent variable

is dichotomous—for example, whether a particular sale is completed or whether an item is
defective—use the Logistic Regression procedure. If your dependent variable is censored—for
example, survival time after surgery—use Life Tables, Kaplan-Meier, or Cox Regression,
available in the Advanced Statistics option. If your data are not independent—for example, if
you observe the same person under several conditions—use the Repeated Measures procedure,
available in the Advanced Statistics option.

© Copyright IBM Corporation 1989, 2011. 30
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Obtaining a Weight Estimation Analysis

» From the menus choose:
Analyze > Regression > Weight Estimation...

Figure 6-1

Weight Estimation dialog box
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» Select one dependent variable.
» Select one or more independent variables.

» Select the variable that is the source of heteroscedasticity as the weight variable.

m  Weight Variable. The data are weighted by the reciprocal of this variable raised to a power. The
regression equation is calculated for each of a specified range of power values and indicates
the power that maximizes the log-likelihood function.

m  Power Range. This is used in conjunction with the weight variable to compute weights.
Several regression equations will be fit, one for each value in the power range. The values
entered in the Power range test box and the through text box must be between -6.5 and 7.5,
inclusive. The power values range from the low to high value, in increments determined by
the value specified. The total number of values in the power range is limited to 150.
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Weight Estimation Options

Figure 6-2
Weight Estimation Options dialog box

Weight Estimation: Options

Q’. Save hest weight as newvy variable
Display ANMOY A and Estimates
@ For hest power

@ Far each power value

[Cormnuel[ Cancel ][ Help ]

You can specify options for your weight estimation analysis:

Save best weight as new variable. Adds the weight variable to the active file. This variable is
called WGT _n, where n is a number chosen to give the variable a unique name.

Display ANOVA and Estimates. Allows you to control how statistics are displayed in the output.
Available alternatives are For best power and For each power value.

WLS Command Additional Features

The command syntax language also allows you to:
m  Provide a single value for the power.
m  Specify a list of power values, or mix a range of values with a list of values for the power.

See the Command Syntax Reference for complete syntax information.
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7

Two-Stage Least-Squares Regression

Standard linear regression models assume that errors in the dependent variable are uncorrelated
with the independent variable(s). When this is not the case (for example, when relationships
between variables are bidirectional), linear regression using ordinary least squares (OLS) no
longer provides optimal model estimates. Two-stage least-squares regression uses instrumental
variables that are uncorrelated with the error terms to compute estimated values of the problematic
predictor(s) (the first stage), and then uses those computed values to estimate a linear regression
model of the dependent variable (the second stage). Since the computed values are based on
variables that are uncorrelated with the errors, the results of the two-stage model are optimal.

Example. Is the demand for a commodity related to its price and consumers’ incomes? The
difficulty in this model is that price and demand have a reciprocal effect on each other. That is,
price can influence demand and demand can also influence price. A two-stage least-squares
regression model might use consumers’ incomes and lagged price to calculate a proxy for price
that is uncorrelated with the measurement errors in demand. This proxy is substituted for price
itself in the originally specified model, which is then estimated.

Statistics. For each model: standardized and unstandardized regression coefficients, multiple R,
R2, adjusted R2, standard error of the estimate, analysis-of-variance table, predicted values, and
residuals. Also, 95% confidence intervals for each regression coefficient, and correlation and
covariance matrices of parameter estimates.

Data. The dependent and independent variables should be quantitative. Categorical variables,
such as religion, major, or region of residence, need to be recoded to binary (dummy) variables
or other types of contrast variables. Endogenous explanatory variables should be quantitative
(not categorical).

Assumptions. For each value of the independent variable, the distribution of the dependent variable
must be normal. The variance of the distribution of the dependent variable should be constant
for all values of the independent variable. The relationship between the dependent variable and
each independent variable should be linear.

Related procedures. If you believe that none of your predictor variables is correlated with the
errors in your dependent variable, you can use the Linear Regression procedure. If your data
appear to violate one of the assumptions (such as normality or constant variance), try transforming
them. If your data are not related linearly and a transformation does not help, use an alternate
model in the Curve Estimation procedure. If your dependent variable is dichotomous, such as
whether a particular sale is completed or not, use the Logistic Regression procedure. If your data
are not independent—for example, if you observe the same person under several conditions—use
the Repeated Measures procedure, available in the Advanced Models option.

Obtaining a Two-Stage Least-Squares Regression Analysis

» From the menus choose:
Analyze > Regression > 2-Stage Least Squares...

© Copyright IBM Corporation 1989, 2011. 33
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Figure 7-1
2-Stage Least Squares dialog box
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» Select one dependent variable.
» Select one or more explanatory (predictor) variables.

» Select one or more instrumental variables.

m Instrumental. These are the variables used to compute the predicted values for the endogenous
variables in the first stage of two-stage least squares analysis. The same variables may
appear in both the Explanatory and Instrumental list boxes. The number of instrumental
variables must be at least as many as the number of explanatory variables. If all explanatory
and instrumental variables listed are the same, the results are the same as results from the
Linear Regression procedure.

Explanatory variables not specified as instrumental are considered endogenous. Normally, all of
the exogenous variables in the Explanatory list are also specified as instrumental variables.

Two-Stage Least-Squares Regression Options

Figure 7-2
2-Stage Least Squares Options dialog box

5| 2-5tage Least Squares: Options

Save Mew YWariables

EI Residuals
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[Continue][ Cancel ][ Helga ]

You can select the following options for your analysis:

Save New Variables. Allows you to add new variables to your active file. Available options
are Predicted and Residuals.
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Display covariance of parameters. Allows you to print the covariance matrix of the parameter
estimates.

2SLS Command Additional Features

The command syntax language also allows you to estimate multiple equations simultaneously.
See the Command Syntax Reference for complete syntax information.
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Categorical Variable Coding Schemes

In many procedures, you can request automatic replacement of a categorical independent variable
with a set of contrast variables, which will then be entered or removed from an equation as a
block. You can specify how the set of contrast variables is to be coded, usually on the CONTRAST
subcommand. This appendix explains and illustrates how different contrast types requested on
CONTRAST actually work.

Deviation

Deviation from the grand mean. In matrix terms, these contrasts have the form:

mean ( Uk 1/k 1/k 1/k )
af(1)  (1-1/k 1k Uk —lk)
df(2) (-Uk  1-lk Uk —lk)
df(k—1) (~1/k 1k Uk —1/k)

where £ is the number of categories for the independent variable and the last category is omitted
by default. For example, the deviation contrasts for an independent variable with three categories
are as follows:

(1/3 1/3 173)
(2/3 -1/3 -1/3)
(-1/3 213 -1/3)

To omit a category other than the last, specify the number of the omitted category in parentheses
after the DEVIATION keyword. For example, the following subcommand obtains the deviations
for the first and third categories and omits the second:

/CONTRAST (FACTOR) =DEVIATION(2)

Suppose that factor has three categories. The resulting contrast matrix will be

(1/3 1/3 173)
(2/3 -1/3 -1/3)
(-1/3 -1/3 2/3)
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Simple contrasts. Compares each level of a factor to the last. The general matrix form is

mean  ( 1/k 1k Uk k)
df(1) (1 0 0 -1)
df(2) (0 1 0 -1)
df(k—lﬁ (0 0 1 1)

where £ is the number of categories for the independent variable. For example, the simple
contrasts for an independent variable with four categories are as follows:

(1/4 1/4 1/4 1/4)
(1 0 0 1)
(0 1 0 -1)
(0 0 1 1)

To use another category instead of the last as a reference category, specify in parentheses after the
SIMPLE keyword the sequence number of the reference category, which is not necessarily the
value associated with that category. For example, the following CONTRAST subcommand obtains
a contrast matrix that omits the second category:

/CONTRAST (FACTOR) = SIMPLE(2)

Suppose that factor has four categories. The resulting contrast matrix will be

(1/4 1/4 1/4 1/4 )
(1 -1 0 0)
(0 -1 1 0)
(0 -1 0 1)

Helmert

Helmert contrasts. Compares categories of an independent variable with the mean of the
subsequent categories. The general matrix form is

mean  ( 1/k 1k 1/k k)
df(1) (1 —1(k-1) “Uk-1)  —1/(k-1))
df(2) (0 1 “Uk-2)  -1/(k-2))

df(k—2). (0 0 1 -12 -12

df(k-1) (0 0 1 1)



38

Appendix A

where k is the number of categories of the independent variable. For example, an independent
variable with four categories has a Helmert contrast matrix of the following form:

(1/4 1/4 1/4 1/4)
(1 -1/3 -1/3 -1/3)
(0 1 -1/2 -1/2)
(0 0 1 -1)
Difference

Difference or reverse Helmert contrasts. Compares categories of an independent variable with the
mean of the previous categories of the variable. The general matrix form is

mean ( 1k 1k 1k 1k )
df(1) (-1 1 0 0)
df(2) (-12 -1/2 1 0)
df(kfl). (~1/(k-1) 71/(/(71)' ~1(k-1) 1)

where k is the number of categories for the independent variable. For example, the difference
contrasts for an independent variable with four categories are as follows:

(1/4 1/4 1/4 1/4)

(-1 1 0 0)

(-172 -1/2 1 0)

(-173 ~1/3 ~1/3 1)
Polynomial

Orthogonal polynomial contrasts. The first degree of freedom contains the linear effect across all
categories; the second degree of freedom, the quadratic effect; the third degree of freedom, the
cubic; and so on, for the higher-order effects.

You can specify the spacing between levels of the treatment measured by the given categorical
variable. Equal spacing, which is the default if you omit the metric, can be specified as
consecutive integers from 1 to &, where £ is the number of categories. If the variable drug has
three categories, the subcommand

/CONTRAST (DRUG) =POLYNOMIAL

is the same as

/CONTRAST (DRUG) =POLYNOMIAL (1,2, 3)

Equal spacing is not always necessary, however. For example, suppose that drug represents
different dosages of a drug given to three groups. If the dosage administered to the second group
is twice that given to the first group and the dosage administered to the third group is three times
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that given to the first group, the treatment categories are equally spaced, and an appropriate metric
for this situation consists of consecutive integers:

/CONTRAST (DRUG) =POLYNOMIAL (1,2, 3)

If, however, the dosage administered to the second group is four times that given to the first group,
and the dosage administered to the third group is seven times that given to the first group, an
appropriate metric is

/CONTRAST (DRUG) =POLYNOMIAL(1,4,7)

In either case, the result of the contrast specification is that the first degree of freedom for
drug contains the linear effect of the dosage levels and the second degree of freedom contains
the quadratic effect.

Polynomial contrasts are especially useful in tests of trends and for investigating the nature
of response surfaces. You can also use polynomial contrasts to perform nonlinear curve fitting,
such as curvilinear regression.

Repeated

Compares adjacent levels of an independent variable. The general matrix form is

mean  (lk Uk Uk Vk k)
df(1) (1 -1 0 0 0)
df(2) (0 1 -1 0 0)
df(k-1) (0 0 0 1 1)

where £ is the number of categories for the independent variable. For example, the repeated
contrasts for an independent variable with four categories are as follows:

(U4 14 U4 14)

(1 -1 0 0)
(0 1 -1 0)
(0 0 1 1)

These contrasts are useful in profile analysis and wherever difference scores are needed.

Special

A user-defined contrast. Allows entry of special contrasts in the form of square matrices with as
many rows and columns as there are categories of the given independent variable. For MANOVA
and LOGLINEAR, the first row entered is always the mean, or constant, effect and represents the
set of weights indicating how to average other independent variables, if any, over the given
variable. Generally, this contrast is a vector of ones.
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The remaining rows of the matrix contain the special contrasts indicating the desired
comparisons between categories of the variable. Usually, orthogonal contrasts are the most
useful. Orthogonal contrasts are statistically independent and are nonredundant. Contrasts are
orthogonal if:

m  For each row, contrast coefficients sum to 0.

®  The products of corresponding coefficients for all pairs of disjoint rows also sum to 0.

For example, suppose that treatment has four levels and that you want to compare the various
levels of treatment with each other. An appropriate special contrast is

(1 1 1 1) weights for mean calculation

(3 -1 -1 -1) compare 18t with 20d through 4th
(0 2 -1 -1) compare 204 with 31d and 4th

(0 0 1 -1) compare 314 with 4th

which you specify by means of the following CONTRAST subcommand for MANOVA, LOGISTIC
REGRESSION, and COXREG:

/CONTRAST (TREATMNT)=SPECIAL( 1 1 1 1
3 -1 -1 -1
0 2 -1 -1
0 0 1 -1)

For LOGLINEAR, you need to specify:

/CONTRAST (TREATMNT) =BASIS SPECIAL( 1 1 1 1
3 -1 -1 -1
0 2 -1 -1
0 0 1 -1)

Each row except the means row sums to 0. Products of each pair of disjoint rows sum to 0 as well:

Rows 2 and 3: 3)O0)+ D)2+ (DD + (D= =0
Rows 2 and 4: 3)(0) + D) + =1)(1) + (=D (=1)=0
Rows 3 and 4: ©)(0)+2)O0) + ) () + (-)-1)=0

The special contrasts need not be orthogonal. However, they must not be linear combinations
of each other. If they are, the procedure reports the linear dependency and ceases processing.
Helmert, difference, and polynomial contrasts are all orthogonal contrasts.

Indicator

Indicator variable coding. Also known as dummy coding, this is not available in LOGLINEAR or
MANOVA. The number of new variables coded is k—1. Cases in the reference category are coded
0 for all k-1 variables. A case in the ith category is coded 0 for all indicator variables except
the ith, which is coded 1.
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Notices

This information was developed for products and services offered worldwide.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently
available in your area. Any reference to an IBM product, program, or service is not intended to
state or imply that only that IBM product, program, or service may be used. Any functionally
equivalent product, program, or service that does not infringe any IBM intellectual property right
may be used instead. However, it is the user’s responsibility to evaluate and verify the operation
of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents.
You can send license inquiries, in writing, to:

IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785,
US.A.

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing, Legal and Intellectual Property Law, IBM Japan Ltd., 1623-14,
Shimotsuruma, Yamato-shi, Kanagawa 242-8502 Japan.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES
PROVIDES THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied warranties
in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are
periodically made to the information herein; these changes will be incorporated in new editions
of the publication. IBM may make improvements and/or changes in the product(s) and/or the
program(s) described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and
do not in any manner serve as an endorsement of those Web sites. The materials at those Web sites
are not part of the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate
without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including
this one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Software Group, Attention: Licensing, 233 S. Wacker Dr., Chicago, IL 60606, USA.

© Copyright IBM Corporation 1989, 2011. a1
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Such information may be available, subject to appropriate terms and conditions, including in
some cases, payment of a fee.

The licensed program described in this document and all licensed material available for it are
provided by IBM under terms of the IBM Customer Agreement, IBM International Program
License Agreement or any equivalent agreement between us.

Information concerning non-IBM products was obtained from the suppliers of those products,
their published announcements or other publicly available sources. IBM has not tested those
products and cannot confirm the accuracy of performance, compatibility or any other claims
related to non-IBM products. Questions on the capabilities of non-IBM products should be
addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations.

To illustrate them as completely as possible, the examples include the names of individuals,
companies, brands, and products. All of these names are fictitious and any similarity to the names
and addresses used by an actual business enterprise is entirely coincidental.

If you are viewing this information softcopy, the photographs and color illustrations may not
appear.

Trademarks

IBM, the IBM logo, ibm.com, and SPSS are trademarks of IBM Corporation, registered in
many jurisdictions worldwide. A current list of IBM trademarks is available on the Web at
http://www.ibm.com/legal/copytrade.shtml.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or
trademarks of Adobe Systems Incorporated in the United States, and/or other countries.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo, Celeron, Intel
Xeon, Intel SpeedStep, Itanium, and Pentium are trademarks or registered trademarks of Intel
Corporation or its subsidiaries in the United States and other countries.

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems, Inc. in the
United States, other countries, or both.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft
Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

This product uses WinWrap Basic, Copyright 1993-2007, Polar Engineering and Consulting,
http://www.winwrap.com.

Other product and service names might be trademarks of IBM or other companies.

Adobe product screenshot(s) reprinted with permission from Adobe Systems Incorporated.
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Microsoft product screenshot(s) reprinted with permission from Microsoft Corporation.
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asymptotic regression
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backward elimination
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categorical covariates, 5
cell probabilities tables
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cells with zero observations
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classification

in Multinomial Logistic Regression, 9
classification tables
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density model
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deviance function
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dispersion scaling value
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full factorial models
in Multinomial Logistic Regression, 11

Gauss model
in Nonlinear Regression, 25
Gompertz model
in Nonlinear Regression, 25
goodness of fit
in Multinomial Logistic Regression, 13

Hosmer-Lemeshow goodness-of-fit statistic
in Logistic Regression, 7

intercept
include or exclude, 11
iteration history
in Multinomial Logistic Regression, 14
iterations
in Logistic Regression, 7
in Multinomial Logistic Regression, 14
in Probit Analysis, 20

Johnson-Schumacher model
in Nonlinear Regression, 25

legal notices, 41
leverage values
in Logistic Regression, 6
likelihood ratio
for estimating dispersion scaling value, 15
goodness of fit, 13
Linear Regression
Two-Stage Least-Squares Regression, 33
weight estimation, 30
log-likelihood
in Multinomial Logistic Regression, 13
in Weight Estimation, 30
log-modified model
in Nonlinear Regression, 25
Logistic Regression, 2
binary, 1
categorical covariates, 5
classification cutoff, 7
coefficients, 2
command additional features, 8
constant term, 7
contrasts, 5
define selection rule, 3
display options, 7
example, 2
Hosmer-Lemeshow goodness-of-fit statistic, 7
influence measures, 6
iterations, 7
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predicted values, 6
probability for stepwise, 7
residuals, 6

saving new variables, 6

set rule, 3

statistics, 2

statistics and plots, 7

string covariates, 5

variable selection methods, 4

main-effects models

in Multinomial Logistic Regression, 11
McFadden R-square

in Multinomial Logistic Regression, 13
Metcherlich law of diminishing returns

in Nonlinear Regression, 25
Michaelis Menten model

in Nonlinear Regression, 25
Morgan-Mercer-Florin model

in Nonlinear Regression, 25
Multinomial Logistic Regression, 9, 13

command additional features, 17

criteria, 14

exporting model information, 17

models, 11

reference category, 12

save, 17

statistics, 13

Nagelkerke R-square

in Multinomial Logistic Regression, 13
nonlinear models

in Nonlinear Regression, 25
Nonlinear Regression, 22

bootstrap estimates, 28

command additional features, 29

common nonlinear models, 25

conditional logic, 23

derivatives, 27

estimation methods, 28

example, 22

interpretation of results, 29

Levenberg-Marquardt algorithm, 28

loss function, 26

parameter constraints, 27

parameters, 24

predicted values, 27

residuals, 27

save new variables, 27

segmented model, 23

sequential quadratic programming, 28

starting values, 24

statistics, 22

parallelism test
in Probit Analysis, 20
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parameter constraints
in Nonlinear Regression, 27
parameter estimates
in Multinomial Logistic Regression, 13
Peal-Reed model
in Nonlinear Regression, 25
Pearson chi-square
for estimating dispersion scaling value, 15
goodness of fit, 13
Probit Analysis
command additional features, 21
criteria, 20
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example, 18
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iterations, 20
natural response rate, 20
parallelism test, 20
relative median potency, 20
statistics, 18, 20

ratio of cubics model
in Nonlinear Regression, 25
ratio of quadratics model
in Nonlinear Regression, 25
reference category
in Multinomial Logistic Regression, 12
relative median potency
in Probit Analysis, 20
Richards model
in Nonlinear Regression, 25

separation

in Multinomial Logistic Regression, 14
singularity

in Multinomial Logistic Regression, 14
step-halving

in Multinomial Logistic Regression, 14
stepwise selection

in Logistic Regression, 4

in Multinomial Logistic Regression, 11
string covariates

in Logistic Regression, 5

trademarks, 42

Two-Stage Least-Squares Regression, 33
command additional features, 35
covariance of parameters, 34
example, 33
instrumental variables, 33
saving new variables, 34
statistics, 33

Verhulst model
in Nonlinear Regression, 25
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Von Bertalanffy model
in Nonlinear Regression, 25

Weibull model
in Nonlinear Regression, 25

Weight Estimation, 30
command additional features, 32
display ANOVA and estimates, 32
example, 30
iteration history, 32
log-likelihood, 30
save best weights as new variable, 32
statistics, 30

yield density model
in Nonlinear Regression, 25
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