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Reverse engineering methods are typically first tested on simulated data from in silico networks, for systematic

and efficient performance assessment, before an application to real biological networks.

In this paper we

present a method for generating biologically plausible in silico networks, which allow realistic performance
assessment of network inference algorithms. Instead of using random graph models, which are known to only
partly capture the structural properties of biological networks, we generate network structures by extracting
modules from known biological interaction networks. Using the yeast transcriptional regulatory network as a
test case, we show that extracted modules have a biologically plausible connectivity because they preserve
functional and structural properties of the original network. Our method was selected to generate the “gold
standard” networks for the gene network reverse engineering challenge of the third DREAM conference
(Dialogue on Reverse Engineering Assessment and Methods, Cambridge, MA, 2008).
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Introduction

Reverse engineering algorithms hold the promise to unravel
unknown gene regulatory networks from high-throughput
data in an automated manner. Advances in experimental
technologies have spurred the development of a wide range
of methods for this purpose: for example statistical methods
(Basso et al., 2005; Anastassiou, 2007), Bayesian networks
(Friedman, 2004; Ferrazzi et al., 2007; Mukherjee and Speed,
2008), and methods based on dynamical models (de la Fuente
et al., 2002; Kholodenko et al., 2002; Gardner et al., 2003;
Brazhnik, 2005; Perkins et al., 2006; Marbach et al., 2009).
However, the strengths, weaknesses and relative performance
of different methods remain poorly understood (Stolovitzky
et al., 2007).

This can be explained by an inherent difficulty in eval-
uating the performance of gene network inference methods,
because it is seldom possible to systematically validate the
predictions of unknown interactions in vivo (Fig. 1A). Con-
sequently, simulated data from in silico gene networks is of-
ten the only possibility for systematic performance assessment
(Fig. 1B). In simulation, all aspects of the networks and ex-
periments are under full control. This allows characterization
of reverse engineering methods for different types of data and
levels of noise. In addition to performance assessment, in sil-
ico studies are of great relevance for optimal experimental de-
sign for subsequent real biological applications (Tegner et al.,
2003).

However, results are only meaningful if the in silico bench-
marks are biologically plausible. Creating such benchmarks
involves: (1) generating realistic gene network structures, and
(2) generating realistic data from these networks using ade-

quate dynamical models. In this paper, we consider the first
problem, that is, how to generate network topologies with the
same structural properties as real gene networks.

Apart from manual design of small benchmark networks
(Zak et al., 2003; Tegner et al., 2003; Kremling et al., 2004),
Erdos—Rényi and scale-free (Albert—Barabdsi) random graph
models are currently the predominant approaches for gener-
ating in silico gene network structures (Mendes et al., 2003;
Wildenhain and Crampin, 2006). However, random graphs
capture only few of the structural properties of real biolog-
ical gene networks (den Bulcke et al., 2006). For example,
scale-free random graphs approximate the power-law degree
distribution of biological gene regulatory networks, but do not
model other important properties such as modularity (Ravasz
et al., 2002) or the occurence of network motifs, which are
statistically overrepresented circuit elements (Shen-Orr et al.,
2002). Instead of constructing more complex random graph
models, which would be difficult to justify and might wrongly
favor some reverse engineering algorithms over others, we be-
lieve that the fairest way to compare reverse engineering meth-
ods is based on real biological network structures. Nowadays,
rough drafts of the complete gene regulatory network of model
organisms are available in dedicated databases (we call such
networks global interaction networks). Global interaction net-
works can be used as “templates” for generating realistic net-
work structures. Rice et al. (2005) have generated a single
in silico network from the structure of the global E.coli tran-
scription network. In order to generate multiple networks,
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Fig. 1 Validation strategies for network inference methods. (A) The ‘true’
network structure of biological gene networks is in general unknown or only
partly known, which hinders systematic performance evaluation. (B) Since
the structures of in silico networks are known, predictions can be validated

which is necessary for collecting statistics on the performance
of reverse engineering methods, den Bulcke et al. (2006) ex-
tract random subnets from global interaction networks.

We argue that global interaction networks should be sam-
pled in a biologically meaningful way for generating plausible
benchmarks. The approach introduced in this article is based
on the extraction of modules, i.e., groups of genes that are
more highly connected than expected in a random network.
We show that topological modules extracted with the method
described here correlate with functional modules of the global
interaction network. Thus, the obtained network structures
are realistic targets for reverse engineering, given that in a
real application, one typically tries to reverse engineer the
topology of a set of functionally related (and not randomly
selected) genes.

Results

Module extraction from global interaction networks. We have
devised a method to generate in silico network structures by
extracting modules from a given global interaction network
(the so-called source network). Module extraction starts from
a seed node that is selected randomly among the nodes of the
source network. From this seed, a subnetwork is grown by
iteratively adding nodes to it until a desired size is reached.
At each step, from all neighbors of the subnetwork, we select
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Fig. 2 Module extraction vs random sampling of a hierarchical scale-free
network. Starting from the central hub (the seed node), subnetworks of
size 10 and 25 are extracted. Module extraction leads to subnetworks of
high modularity Q). Most importantly, these subnetworks have the same
functional building blocks and structural properties as the source network.
This is not the case for randomly sampled subnetworks

the node that leads to the highest modularity @, where
Q@ = (no. of edges within the subnetwork)

— (expected no. of such edges in a randomized graph).

The method outlined above, and described in detail in the
Methods Section, can be applied repeatedly to extract differ-
ent subnetworks of a desired size M from a source network of
size N > M by selecting different seed nodes.

Before applying the module extraction method to real bi-
ological networks, we demonstrate it on the hierarchical scale-
free network model of Ravasz et al. (2002), which has a scale-
free topology with embedded modularity similar to many bi-
ological networks. The network consists of a repeated four-
node-motif, which is hierarchically grouped into clusters. As
shown in Figure 2, the module extraction method tends to
first add nodes from the four-node-motif of the seed, then it
expands to other four-node-motifs of the same cluster, and
only if the desired size has not yet been reached it will start
to include nodes from another cluster.
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Fig. 4 Statistically overrepresented functional annotations (GO terms) in subnetworks obtained with module extraction
and random subnetwork extraction from the yeast gene network. Left column: histograms with the total number of GO
terms of 20 subnets of sizes 25, 100, and 400. Module extraction leads to a higher number of overrepresented GO terms,
and they tend to be more statistically significant (lower p-values). Right column: boxplots (see Figure 3 for legend) of the
number of overrepresented GO terms per subnetwork. The median number of overrepresented terms is significantly higher
with module extraction, except for small subnetworks of size 25
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The example in Figure 2 illustrates how subnetworks ob-
tained with module extraction are more representative sam-
ples of the source network structure than randomly extracted
subnetworks (random subnetwork extraction is described in
the Methods Section). Similar to the source network, the
subnetworks resulting from module extraction are built from
four-node-motifs that are organized in a hierarchical modular
structure. In contrast, the randomly sampled subnetworks do
not share these structural properties with the source network.

It has been suggested that network motifs correspond to
functional units of biological networks (Alon, 2007). Assum-
ing that the four-node-motifs in the artificial source network
considered here also correspond to functional units (orga-
nized hierarchically into higher-level functional modules), the
method described above allows the extraction of different com-
binations of such functional units and modules. In the follow-
ing sections, we show that module extraction indeed permits
sampling of functional units and modules in real gene regula-
tory networks.

Topological modules correlate with functional modules in the
yeast gene network. As a test source network, we used the
transcriptional regulatory network of the yeast Saccharomyces
cerevisiae as described by Balaji et al. (2006). With 4441
genes and 12873 interactions, this network is one of the best
global approximations of a eukaryotic transcriptional regula-
tory network so far.

We used module extraction and random subnetwork ex-
traction to generate subnetworks of sizes 25, 100, and 400
from the yeast gene network. For each size, 20 subnetworks
were generated starting from different randomly chosen seed
nodes. We confirmed that the subnetworks obtained with the
module extraction method described here indeed correspond
to topological modules (densely interconnected subnetworks)
of the gene network, as their modularity @ is positive and
significantly higher than for randomly extracted subnetworks
(Figure 3). For small networks of size 25 the difference of the
mean modularity @) compared to randomly extracted subnet-
works is smaller than for large subnetworks, but it is still
statistically significant (p-value < 107 using the Wilcoxon-
Mann-Whitney rank-sum test).

To check whether these topological modules also corre-
spond to functional modules, i.e., groups of genes that have a
related function, we considered the Gene Ontology (GO) func-
tional annotation of the genes in the Saccharomyces Genome
Database (Hong et al., 2008). For a given subset of genes
(a subnetwork), we identified all GO terms that are statis-
tically overrepresented, i.e., that occur more frequently than
expected compared to their background frequency in the com-
plete set of all genes (see the Methods Section).

With module extraction, the total number of overrepre-
sented GO terms is 111, 282, and 444 for the 20 subnetworks
of sizes 25, 100, and 400, respectively. For random subnet-
work extraction, the total number of terms is only 10, 9, and
112 for the same three network sizes. As can be seen in Fig-
ure 4 (left column) from the distribution of the p-values of
these GO terms, module extraction leads not only to a higher
number of overrepresented GO terms, but they also tend to
be more statistically significant.

In the previous paragraph we have looked at the total
number of overrepresented GO terms of the 20 subnetworks for
the three sizes. Let’s now consider the number of such terms
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per subnetwork. The median number of terms per subnetwork
is significantly higher for module extraction than for random
subnetwork extraction (p-value < 1072 using the Wilcoxon-
Mann-Whitney rank-sum test), except for subnetworks of size
25, where both medians are zero (Figure 4, right column). Re-
member that for small subnetworks of size 25 the modularities
@ obtained with module extraction are not very high and only
slightly superior to those of random subnetworks (Figure 3).
Thus, it is not surprising that for this network size there are
also fewer overrepresented GO terms than for larger subnet-
works.

In summary, our results demonstrate that module extrac-
tion is a more biologically meaningful way of sampling gene
networks than random subnetwork extraction (especially for
medium and large subnetworks). Moreover, they confirm the
hypothesis that topological modules correspond to functional
entities of gene regulatory networks, as treated in more detail
in the Discussion Section. As an example, Figure 5 shows the
structure and function of two extracted modules.

Module extraction preserves structural properties of the
yeast gene network. After having studied the functionality of
extracted subnetworks, we turned our attention to their struc-
tural properties. First, we considered the degree distribu-
tions'. We found that both extracted modules and randomly
extracted subnetworks have a very similar degree distribution
as the complete yeast gene network: the Pearson correlation
between the degree distribution of the complete network and
the mean degree distribution of the 20 subnetworks of size
400 is 0.92 for module extraction, and it is 0.93 for random
subnetwork extraction (Figure 6). Thus, both strategies yield
network structures with a biologically plausible degree distri-
bution.

In the previous section we have shown that subnetworks
obtained with module extraction correlate with functional
modules, whereas randomly extracted subnetworks do not. It
has been hypothesized that network motifs (statistically over-
represented sub-circuits) are functional building blocks of gene
networks (Alon, 2007). Thus, we would expect to find these
motifs in the subnetworks obtained with module extraction,
and not in the randomly sampled subnetworks.

To verify this, we compared the subnetworks based on
their triad significance profile (Milo et al., 2004), which in-
dicates for each three-node-motif the degree to which it is
statistically over or underrepresented (see the Methods Sec-
tion). As shown in Figure 7, the significance profile of the
complete gene network is indeed very similar to the mean sig-
nificance profile of extracted modules (it falls within the range
of one standard deviation). In contrast, randomly extracted
subnetworks have a completely different profile.

In summary, we have confirmed that subnetworks ob-
tained with module extraction have a biologically plausible
connectivity because they preserve functional and structural
properties of gene networks such as degree distribution and
network motifs. Incidentally, our finding that functional mod-
ules preserve network motifs, whereas non-functional subnet-
works (random subnetworks) do not, supports the hypothesis
that network motifs are functional building blocks of modules
in gene regulatory networks.

1 The degree distribution P (k) is defined as the fraction of genes that have k connections
(degree k).
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Fig. 5 Two example subnetworks of size 100 obtained with module extraction from the yeast gene network. We have zoomed in on two
groups of functionally related genes (colored circles), illustrating two different types of modules. The functional annotation of genes is taken
from the Saccharomyces Genome Database (Hong et al., 2008) and p-values are calculated as described in the Methods Section. (A) In the
first subnetwork, genes related to mitochondrial electron transport are statistically overrepresented with a p-value < 10710, The structure of
this module can be described as a set of co-regulated genes. (B) The module of the second subnetwork is a more complex regulatory circuit
related to amino acid metabolism (p-value < 10~?). Note that in both subnetworks there are additional functional modules, which are not
shown here
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(r is the Pearson correlation)

Discussion

We have presented a method that permits the generation of
biologically meaningful network structures for performance
assessment of reverse engineering methods. The method is
based on the extraction of topological modules from global
interaction networks. In this paper we have focused on gene
regulatory networks, but the same approach could be used for
other types of cellular networks.

Using the yeast transcriptional regulatory network as a
test case, we have shown that topological modules extracted
with the method described here have a high number of statis-
tically overrepresented functional annotations, indicating that
they correlate with functional modules of this network. Fur-
thermore, extracted modules preserve structural properties of
the original network such as degree distribution and network
motifs. We conclude that subnetwork extraction is a biologi-
cally meaningful way of sampling gene networks both from a
functional and structural point of view.

The approach described in this article was originally mo-
tivated by the hypothesis that topological modules in gene
networks coincide with functional modules. Such a separa-
tion of functions into more or less structurally isolated mod-
ules is thought to favor network evolvability and robustness
(Hartwell et al., 1999). Indeed, it has been shown that topo-
logical modules in the FE.coli transcriptional regulatory net-
work can be assigned specific functions (Resendis-Antonio
et al., 2005; Ma et al., 2004). Our results from the yeast
network indicate that this may also be true for eukaryotic
transcriptional regulatory networks, which have an increased
number of interconnections and cannot be as clearly decom-
posed into distinct topological modules.
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Fig. 7 The significance profile (SP) of the complete yeast gene network
compared to the mean SP of 20 subnetworks of size 400 obtained with
module extraction and random subnetwork extraction. The error bars indi-
cate the standard deviation. The SP of the complete network falls within
the range of one standard deviation from the mean SP of modules. In
contrast, the SP of randomly extracted subnetworks is opposite to the SP
of the complete network

An example application of module extraction is the gener-
ation of realistic gold standard networks for the DREAM chal-
lenges (the international cellular network reverse engineering
competition; Stolovitzky et al., 2007). For the DREAM2 In-
Silico-Network Challenges (New York, 2007), Mendes et al.
(2003) provided one gold standard network with a random
Erdés—Rényi structure and one with a random scale-free struc-
ture. The goal of the challenge was to infer the structure of
these networks (which was not disclosed to the participants)
from simulated gene expression data. Interestingly, the win-
ning method of this challenge (Gardner et al., 2003) had a
much better performance on the Erdos-Rényi network than
on the scale-free network. Indeed, the performance of reverse
engineering methods can be very sensitive to the type of net-
work structure that they are applied to (Rice et al., 2005;
Wildenhain and Crampin, 2006; Mukherjee and Speed, 2008).
Thus, for a fair comparison of methods in the DREAM chal-
lenge, it is crucial that the gold standard networks have a
realistic structure.

Our method has been selected for the In-Silico-Network
Challenges of DREAM3 (Cambridge, MA, 2008). We provide
three challenges corresponding to networks of size 10, 50, and
100. For each size, we generated two gold standard networks
using a FEscherichia coli transcriptional regulatory network
(Shen-Orr et al., 2002) as source, and three gold standard net-
works from a yeast genetic interaction network (Reguly et al.,
2006). The three challenges had 28, 26, and 21 participants
each, making them by far the most widely used gene network
reverse engineering benchmarks so far. A detailed description
of the challenges will be reported elsewhere. Additional in-
formation is available on the websites of DREAMS3 and our
institution?.

2DREAM website: http://wiki.c2b2.columbia.edu/dream
Our website: http://lis.epfl.ch/grn



In this paper, we have focused on the generation of realistic
gene network structures. The design of dynamical models and
initialization of numerical parameters to obtain biologically
plausible network dynamics are equally important challenges
(Nykter et al., 2006; Roy et al., 2008). We have developed a
framework for this purpose (manuscript in preparation), but
module extraction can be employed with any dynamical mod-
eling approach of choice. Note that the structure of biological
networks often confers robustness towards perturbations and
variations in kinetic parameters (von Dassow et al., 2000).
Thus, network structures obtained with module extraction
may actually facilitate the initialization of models with bi-
ologically plausible network dynamics and enable the design
of truly realistic in silico reverse engineering benchmarks.

Methods

Subnetwork extraction. The module extraction method grows
a subnetwork of desired size M starting from a seed node,
which can be selected randomly or manually from the source
network. The procedure starts with a subnetwork containing
only the seed node. Additional nodes are added iteratively
until the subnetwork reaches the desired size.

Nodes are selected for addition as follows. First, the set of
all neighbors of the subnetwork is constructed (a neighbor is a
node of the source network that is connected by a direct link
to at least one node of the subnetwork). Second, we compute
for each neighbor the modularity @ of the subnetwork after
adding only this neighbor to the subnetwork. Finally, we se-
lect the neighbor that obtained the highest modularity @ for
addition to the subnetwork (if several neighbors obtained the
same modularity, we randomly choose one of them).

The modularity @ is defined as the number of edges within
the subnetwork minus the expected number of such edges in
a randomized network with the same degree sequence (see
Newman [2006] for details)

Q=1-s"Bs, (1)

where m is the total number of edges in the network, s is the
index vector defining the subnetwork (s; = 1 if node 4 is part
of the subnetwork, s; = —1 if not), and B is the so-called mod-
ularity matriz with elements B;; = A;j — P;;. Ajj is the actual
number of edges between node i and j and P;; = k;k;/2m is
the expected number of edges in a randomized network (k;
being the degree of node ).

There exist methods to find a globally optimal decompo-
sition of a complex network into a set of modules (Newman,
2006). Here, our goal is not the identification of optimal mod-
ules, but the extraction of diverse subnetworks of prespecified
size and reasonably high (not necessarily globally optimal)
modularity Q. Classical modularity detection algorithms are
not well suited for this purpose.

Note that neighboring seeds may converge to identical or
very similar (overlapping) subnetworks. The diversity of sub-
networks can be increased by adding some randomness to the
module extraction: instead of always selecting the neighbor
that leads to the highest modularity @, one can randomly se-
lect among the top k percent of all neighbors. For k = 100%,
this amounts to the random neighbor addition strategy used
by den Bulcke et al. (2006). Varying k between 0% and 100%
allows for tuning of the sampling strategy from pure module

extraction to random subnetwork extraction.

Apart from the case of neighboring seeds mentioned in the
previous paragraph, module extraction from different random
seed nodes typically leads to very diverse subnetworks. In
principle, every extracted subnetwork may be considered a re-
alistic network structure for a reverse engineering benchmark
because they all correspond to modules of a real biological
network. In practice, one may have additional criteria and
discard certain types of modules. For example, for the gold
standard networks of DREAMS3 we did not include subnet-
works that only contained a global regulator and its direct
targets, because this is not a very challenging network struc-
ture for a reverse engineering benchmark.

Identification of statistically overrepresented functional an-
notations. We identify statistically overrepresented functional
annotations in a subset of genes (a subnetwork) using the
GO::TermFinder tool (Boyle et al., 2004). GO:TermFinder
calculates p-values to determine whether any GO term oc-
curs more frequently in the subset of genes than expected by
chance. The p-value of a term corresponds to the probability
of obtaining an equal or greater frequency of this term when
randomly selecting genes from the background set of genes (in
our case, the background set is the set of all genes of the net-
work). Bonferroni correction is used for multiple hypothesis
testing.

Network motif significance profiles.The triad significance
profile (SP) indicates for each type of three-node-subgraph
whether it is over or underrepresented in a given network.
The statistical significance of triad i is measured by its Z

score
__ Nreal; — (Nrand,)

* 7 7 std(Nrand;) 2)

where Nreal; is the number of times the triad occurs in the
network. (Nrand;) and std(Nrand;) are the mean and stan-
dard deviation of its occurrences in an ensemble of randomized
networks with the same degree sequence. The SP corresponds
to the normalized Z vector. For details, refer to Milo et al.
(2004).
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