
Why and Where:

A Characterization of Data Provenance?

Peter Buneman, Sanjeev Khanna??, and Wang-Chiew Tan

University of Pennsylvania
Department of Computer and Information Science
200 South 33rd Street, Philadelphia, PA 19104, USA

fpeter,sanjeev,wctang@saul.cis.upenn.edu

Abstract. With the proliferation of database views and curated databases,
the issue of data provenance { where a piece of data came from and the
process by which it arrived in the database { is becoming increasingly
important, especially in scienti�c databases where understanding prove-
nance is crucial to the accuracy and currency of data. In this paper we
describe an approach to computing provenance when the data of interest
has been created by a database query. We adopt a syntactic approach
and present results for a general data model that applies to relational
databases as well as to hierarchical data such as XML. A novel aspect of
our work is a distinction between \why" provenance (refers to the source
data that had some in
uence on the existence of the data) and \where"
provenance (refers to the location(s) in the source databases from which
the data was extracted).

1 Introduction

Data provenance | sometimes called \lineage" or \pedigree" | is the descrip-
tion of the origins of a piece of data and the process by which it arrived in a
database. The �eld of molecular biology, for example, supports some 500 public
databases [1], but only a handful of these are \source" data in the sense that
they receive experimental data. All the other databases are in some sense views
either of the source data or of other views. In fact, some of them are views of
each other, which sounds nonsensical until one understands that the individual
databases are not simply computed by queries, but also have added value in the
form of corrections and annotations by experts (they are \curated"). A serious
problem confronting the user of one of these databases is knowing the prove-
nance of a given piece of data. This information is essential to anyone interested
in the accuracy and timeliness of the data.

Understanding provenance and the process by which one records it is a com-
plex issue. In this paper we address an important part of the general problem.
Suppose a database (a view) V = Q(D) is constructed by a query Q applied to

? This work was partly supported by a Digital Libraries 2 grant DL-2 IIS 98-17444
?? Supported in part by an Alfred P. Sloan Research Fellowship.

2 Peter Buneman, Sanjeev Khanna, Wang-Chiew Tan

databases D and we ask for the provenance of some piece of data d in Q(D):
what parts of the database D contributed to d? The problem has been addressed
by [7, 2] for relational databases. In particular [7] considers the question : given
a tuple in Q(D) what tuples in D contributed to it. The crucial question here is
what is meant by \contributed to". By examining provenance in a more general
setting we draw a distinction between \where-provenance" { where does a given
piece of data come from and { \why-provenance" { why is it in the database.
Consider the following example:

SELECT name, telephone

FROM employee

WHERE salary > SELECT AVERAGE salary FROM employee

If one sees the tuple ("John Doe",1234) in the output one could argue that
every tuple in contributed to it, for modifying any tuple in the employee relation
could a�ect the presence of ("John Doe",1234) in the result. This is the why-
provenance and it is what is studied in [7] as the set of contributing tuples. On
the other hand, suppose one asks where the telephone number 1234 in the tuple
("John Doe",1234) comes from, the answer is apparently much simpler: from
the telephone �eld \John Doe" tuple in the input. This statement presupposes
that name is a key for the employee relation; if it is not we need some other means
of identifying the tuple in the source, for SQL does not eliminate duplicates. (Had
we used SELECT UNIQUE the answer would be a set of locations.) The point
is that where-provenance requires us to identify locations in the source data.
Where-provenance is important for understanding the source of errors in data
(what source data should John Doe investigate if he discovers that his telephone
number is incorrect in the view.) It is also important for carrying annotations
through database queries. Therefore as a basis for describing where-provenance,
we use the data model proposed in [6] in which there is an explicit notion of
location. The model has the advantage that it allows us to study provenance in
a more general context than the relational model. Existing work on provenance
considers only the relational model.

Outline. In the next section we describe the deterministic model in [6]. We then
give a syntactic characterization of why-provenance and show that it is invariant
under query rewriting. To this end, in Section 3 we describe a natural normal
form for queries and give a strong normalization result for query rewriting. The
normal form is useful because it also gives us a reasonable basis for de�ning
where-provenance which turns out to be problematic and cannot, in general be
expected to be invariant under query rewriting. We discuss a possible restriction
for which where-provenance has a satisfactory characterization.

Related work. Why-provenance has been studied for relations in [2, 7]. To our
knowledge no-one has studied where-provenance. A de�nition of why-provenance
for relational views is given in [7], which also shows how to compute why-
provenance for queries in the relational algebra. There, a semantic character-
ization of provenance is given which, when restricted to SPJU, has the expected
properties such as invariance under query rewriting. In fact, the syntactic tech-
niques developed in this paper, when restricted to a natural interpretation of the
relational model, yield identical results to those in [7]. We do not know whether

Why and Where: A Characterization of Data Provenance 3

there is semantic characterization for where-provenance nor do we know whether
there is a semantic characterization of why-provenance that is well behaved on
anything beyond than SPJU queries.

Expressing the why-provenance for a query is loosely related to the view
maintenance problem [17]. It is apparently simpler in (a) that in why-provenance
we are not interested in what is not in the view (view maintenance needs to
account for additions to the database) and (b) that we are not asking how to
reconstruct a view under a change to the source. Conversely, there is a loose
connection between where-provenance and the view update problem. (If I want
to update a data element in the output, what elements in the input need to be
changed.) Recently, [10] has proposed using the deterministic model described
here for view maintenance in scienti�c databases.

2 A Deterministic Model

We describe the data model in [6] where the location of any piece of data can
be uniquely described by a path. This model uses a variation of existing edge-
labeled tree models for semistructured data [14, 13]. It is more restrictive in that
the out-edges of each node have distinct labels; it is less restrictive because these
labels may themselves be pieces of semistructured data1. Figure 1 shows how
certain common data structures can be expressed in this \deterministic" model
of semistructured data. Here, any node in the deterministic tree is uniquely
determined by a path of edge labels from root node to that node. These paths
are analogous to l-values in programming language terminology. We will describe
shortly how relations can be cast in this model by using the keys as edge labels.
Any object-oriented or semistructured database with persistent object identi�ers
for all structures can also be expressed. There is also a variety of hierarchical data
formats that implicitly conform to this model. Notably ACeDB [9], a lightweight
DBMS originally developed as a database for genetic data conforms rather closely
to this model and also supports certain operations such as \deep union" which
are essential to the techniques developed in this paper.

2.1 Syntax and Operations

Values. We use the notation x:y to denote a pair whose label is x and value is
y. We can think of x as the edge label and y as the subtree under it. We use
the notation fx1:y1,...,xn:yng to denote a set of such pairs. Since the edge-labels
x1; :::; xn are distinct, this notation describes a �nite partial function from values
to values. A set of values fs1; :::; sng can always be described in our model by
mapping each element in the set to some standard constant (c in Figure 1). The
last example shows how edge labels can be themselves pieces of semi-structured
data. Value equality can be computed inductively.

1 For the purposes of normal forms, these pieces of semistructured data are required
to be \linear".

4 Peter Buneman, Sanjeev Khanna, Wang-Chiew Tan

2

Id

{Id:2}{Id:1}

{Name:"Bruce", Height:6.2}

A record

1 2 4

c

{1:c, 2:c, 4:c}

A set

1

c

3

c"c"

2

{1:"a", 2:"b", 3:"c"}

An array

Name Rate

"Kim" 50

Name Rate

"Bob" 75

Name

"a"6.2 "b"

A relation
{ {Id:1} : {Name:"Kim", Rate:50},
 {Id:2} : {Name:"Bob", Rate:75} }

"Bruce"

Height

Fig. 1. Examples of data structures represented in our syntax.

Paths. We use the notation x1:x2: : : : :xn for paths. In the last example of
Figure 1, the path fId:1g identi�es the value fName:"Kim", Rate:50g and the
path fId:1g.Rate identi�es the value 50.

Abbreviation. We use e1:e2:::::en�1:en as a shorthand for fe1:fe2:
f...fen�1:eng...ggg. We can think of e1:e2:::::en�1 as the path leading to the value
en. For example, fId:1g.Name:Kim is an abbreviation for ffId:1g:fName:Kimgg.

Traversal. We use v(p) to denote the subtree identi�ed by a path p in value v.
If path p does not occur in v, then v(p) is unde�ned. For example: fa:1,b:2g(c)
is unde�ned while ffc:3g:1,b:2g(fc:3g) is 1.

Path representation. Observe that any value in our model can be described
by specifying the set of all paths to the constants at the terminal nodes. We
call this the path representation of v. For example, the path representation of
fa:f1:c,3:dgg is f(a.1,c),(a.3,d)g.

De�nition 1. (Substructure) w is a substructure of v, denoted as w v v, if
the path representation of w is a subset of the path representation of v. ut

Example. a:f1:c,3:dgv a:f1:c,2:b,3:dgbut a:f1:c,3:dg 6v b.a:f1:c,3:dg.
It is easy to see that since our model is deterministic, if w v v then w occurs as
a part of v in a unique way.

De�nition 2. (Deep Union) The deep union of v1 with v2, written as v1 t v2
is the value whose path representation is the union of the path representations
of v1 and v2. Note that the result may not be a partial function in which case
the deep union is unde�ned. ut

Example. The deep union of fa:1,b.c:2g and fb.d:4,e:5g is fa:1,b:fc:2,
d:4g,e:5g while the deep union of fa:1,b.c:2g and fb.c:3,e:5g is unde�ned.

2.2 An Encoding of Relations

We can encode relations as follows. Each relation name forms the label of an
outgoing edge from the root node which is in turn mapped to the set of keys
from that relation. Each key of a relation is then mapped to the corresponding
tuple it identi�es in the relation. If there is no key, the tuples are modeled as a

Why and Where: A Characterization of Data Provenance 5

where p1 2 e1;
:
pn 2 en;
condition

collect e

(a)

where sp1 2 D1;

:
spn 2 Dn

condition

collect se

(b)

where Composers.x.born:u 2 D,
u < 1700

collect fyear:ug:C

(c)

Fig. 2. (a) General form and (b) normal form of a query fragment. (c) An example.

set, that is, the entire tuple becomes an edge label. As an example, suppose we
have two relations Composers and Works as shown below. The key for Composers

is name and Works has a compound key (name, opus). The �gure below also
shows the encoding of the relations into our model. We see that keys of a tuple
are placed on an edge in our model. If a tuple contains a compound key, we
could model the entire compound key as a \linear" piece of semistructured data
on the edge. That is, each key is placed one after another on the same edge. It
does not matter which order we serialize the keys so long as this is done in a
consistent manner.
Composers

name born period

"J.S. Bach" 1685 "baroque"
"G.F Handel" 1685 "baroque"
"W.A Mozart" 1756 "classical"

Works
name opus title

"J.S. Bach" "BMV82" "I have enough."
"J.S. Bach" "BMV552" NULL
"G.F Handel" "HMV19" "Art thou troubled?"

{ Composers:
{{name:"J.S. Bach"}: {born:1685, period:"baroque"},
{name:"G.F. Handel"}: {born:1685, period:"baroque"},
{name:"W.A. Mozart"}: {born:1756, period:"classical"}},

Works: {{{name:"J.S. Bach"}.opus:"BMV82"}:
{ title: "I have enough." },

{{name:"J.S. Bach"}.opus:"BMV552"}:
{ title: "-" },

{{name:"G.F Handel"}.opus:"HMV19"}:
{ title: "Art thou troubled?" }} }

2.3 XML

At �rst sight, XML does not conform to a deterministic model. Insofar as some
formal model for XML has been developed in the Document Object Model
(DOM) [15] it is that of a node-labeled graph in which child labels may be
repeated. The fact that it is node labeled is a minor irritant. Uniqueness is more
serious. However, in the absence of any system of keys (see [16]) we can still fall
back on the property, speci�ed by the DOM, that child nodes can be uniquely
identi�ed by their positions and attribute nodes by their names. We defer the
details of the translation of XML and a query language such as XML-QL [8] into
our deterministic model and query language to the full version of this paper.

3 A Query Language

Query languages for semistructured data [3] are based on a general syntactic
form shown in Figure 2(a). The pis are patterns whose syntax follows the syntax
for data (as de�ned in the previous section) augmented with variables2. Expres-
sions e; e1; :::; en are essentially the same as patterns but may contain \where ...

2 In semistructured query languages, patterns can also include regular expressions on
the edge labels. We will not deal with such patterns in this paper.

6 Peter Buneman, Sanjeev Khanna, Wang-Chiew Tan

collect..." expressions (nested queries). condition is simply a boolean predicate
on the variables of the query.

The interpretation of a \where ... collect..." expression is as follows: consider
each assignment of the variables in the expression that makes each pattern pi
a substructure of the corresponding expression ei. For each such assignment,
evaluate the condition. If it is true, add the (instantiated) value of e to the
output. Finally \union" together the output values. This interpretation is quite
general, but to make it precise we must (a) de�ne what we mean by \union" and
(b) say what values a variable can bind to (a constant, an arbitrary value, or
something in between). Languages, see [13, 5] vary in their choice of the \union"
operation. In our case, we use the deep union operation. Thus the output of the
query in Figure 2(c) is fyear:1685g:C even though this value is emitted twice.
A consequence of this is that the result of a query maybe unde�ned.

We add the deep union operation to our language, and the general syntax
can be summarized by the following grammar:

e ::=where p 2 e; : : : ; p 2 e; condition collect e j e t e j fe : eg j c j x
where c ranges over constants, x over variables, p over patterns and condition

over conditions. Note that fe1 : e01; : : : ; en : e0ng is in fact a shorthand for
fe1 : e01g t : : : t fen : e0ng. We refer to this query language, for want of a
better term, as DQL (Deterministic QL). The syntax of the query language is
quite general, but its interpretation is limited by the model. In order to set up
the machinery to analyze provenance, we will make some restrictions both on
the syntax and interpretation of queries for the soundness of our rewrite rules.
First, we impose some syntactic restrictions.

De�nition 3. (Well-Formed Query) A query Q is said to be well-formed if
(a) no pattern pi is a single variable, (b) each expression ei is either a (nested)
query or an expression that does not involve a query, and (c) each comparison
is between variables or between variables and constants only. ut

Conditions (a) and (b) are required for the soundness of our rewrite rules.
Condition (c) restricts our queries to the \conjunctive" fragment for which con-
tainment of queries can be easily determined. In addition to well-formedness, we
say a query is well-de�ned if it is not unde�ned on any input. For the rest of the
paper, we consider only queries that are both well-formed and well-de�ned. The
next restriction we place is on the interpretation of a query. For this, we need
the notion of a singular expression, which consists of a single path terminated
by a constant or variable.

De�nition 4. (Singular expression) A expression e is singular if e 6= (e1te2)
for any non-empty and distinct expressions e1 and e2. ut

Our restriction on the interpretation is that variables may only bind to sin-
gular values. At �rst sight, this seems very restrictive and the interpretation of
a query is unusual. Consider the query (a) in Figure 3. It binds singular val-
ues to y, and the output is ffname:"J.S. Bach"g.born:1685, fname:"G.F.
Handel"g.born:1685g. This is probably not the expected output for someone

Why and Where: A Characterization of Data Provenance 7

where Composers.x : y 2 D,
born.u 2 y,
u < 1700

collect x : y
(a)

where Composers.x : y 2 D,
born.u 2 y,
Composers.x : z 2 D,
u < 1700

collect x : z
(b)

Fig. 3. More example DQL queries. C denotes some constant.

familiar with, say, XML-QL in which variables bind to complete subtrees. How-
ever there is an easy translation, illustrated in query (b) from the XML-QL
interpretation3 into DQL. Note that the deep union reconstructs the subtree.

Restrictive as it may seem, DQL can capture positive (SPJU) relational
queries and positive nested relational algebra ([12]). It is less expressive than
XML-QL in that (a) it cannot express path patterns involving a Kleene-star(*),
(b) it works only on hierarchical structures, and (c) the forms of Skolem function
and nested query forms in XML-QL that can be simulated are limited. We omit
the details in this paper.

De�nition 5. (Normal Form) A query Q is said to be in normal form if Q
has the form Q1 t ::: t Qm where each Qi is as shown in Figure 2(b). spi and
se is a singular pattern and singular expression respectively. Di is a database
constant and condition is a boolean predicate on the variables of the query. ut

Our main result in this section is that every well-formed query has an equiv-
alent normal form which can be determined from our rewrite system R. We
omit the details of R and state the strong normalization result which says that
starting from any well-formed query, any sequence of application of rewrite rules
leads to a normal form in a �nite number of steps.

Theorem 1. (Strong Normalization) The rewrite system R is strongly nor-
malizing.

4 Two Meanings of Provenance

Equipped with a data model and query language, we are now in a position
to formulate two meanings of provenance and to compute the provenance of a
component d in a view V = Q(D) where Q is as query and D is the source
data. We will formulate the provenance of d as a query Q0 that is completely
determined by Q, D and d.

where

Composers.fname:xg.fborn:u,period:vg 2 D,

Works.ffname:xg.opus:wg:y 2 D

collect

fname:xg.fborn:u, fopus:wg:yg

{ {name:"J.S. Bach"}:
{born:1685,

{opus:"BMV82"}:{title:"I have enough."},
{opus:"BMV552"}:{title:"-"} },

{name:"G.F. Handel"}:
{born:1685,

{opus:"HMV19"}:{title:"Art thou troubled?"}
} }

3 We assume that the XML-QL interpretation contains a skolem function that groups
by composer names.

8 Peter Buneman, Sanjeev Khanna, Wang-Chiew Tan

The above query, say Q1 expresses a join on components of the database de-
scribed in Section 2.2. Consider the value referenced by fname:"G.F Handel"g.
born. This value was generated by Q1 as any instance of the \collect" expression
in which the variable x was bound to "G.F Handel" and u to 1685. We now look
at the patterns in the \where" clause to �nd what (simultaneous) matches of
these patterns caused these bindings. In this case there is only one such match
consisting of the patterns (after instantiating the variables):
Composers.fname:"G.F.Handel"g.fborn:1685,period:"baroque"g

Works.ffname:"G.F. Handel"g.opus:"HMV19"g.title:"Art thou troubled?"

Moreover if we apply Q1 to any database that contains these structures, we
will obtain an output that contains fname:"G.F. Handel"g.born:1685. This is
the rationale for calling these structures the why-provenance of the value ref-
erenced by fname:"G.F Handel"g.born. However, if we are interested in the
where-provenance of fname:"G.F Handel"g.born, we only need to look at the
pattern(s) that bind the variable u to determine that it came from the path
Composers.fname:"G.F Handel"g.born.

Our example suggests that one natural approach to compute provenance is
via syntactic analysis of the query and this is the approach that we take.

5 Why-Provenance

In the model-theoretic approach to datalog programs described in [4], these pro-
grams are viewed as a set of �rst-order sentences describing the desired answer.
For example, if we have a datalog rule R(u) : �R1(u1); :::; Rn(un), we could as-
sociate the logical sentence: 8x1; :::; xm

V
i2[1::n]Ri(ui)! R(u) where x1; :::; xm

are variables occuring the in the rule. A DQL query fe j p1 2 D; :::; pn 2
D; conditiong could be viewed as the following logical sentence: 8x1; :::; xm
(
V
i2[1::n] pi 2 D and condition) ! e is in the output. x1; :::; xm are variables

which occurs in the query. Therefore a value v is provable if there exists a valu-
ation that will make the premise true and puts v in the output.

As discussed earlier, the structures in the why-provenance example corre-
spond to a proof for fname:"G.F Handel"g.born:1685. We call the collection
of values taken from D that proves an output, a witness for the output. More
speci�cally, we say a value s is a witness for a value t with respect to a query Q
and a database D, if t v Q(s) and s v D. The value shown below is a witness
for fname:"G.F Handel"g.born:1685.

{ Composers.{name:"G.F. Handel"}.{born:1685, period:"baroque"},

Works.{{name:"G.F. Handel"}.opus:"HMV19"}.title:"Art thou troubled?" }

5.1 Witness Basis

We now re�ne the notion of witness as introduced above to be explicitly tied to
the structure of a given query as well as an input database. Speci�cally, for a
singular value t, we only consider witnesses that correspond to the deep union
of values taken from D (at the leaves of a proof tree for t) with respect to

Why and Where: A Characterization of Data Provenance 9

a query Q. For Q1 and output fname:"G.F Handel"g.born:1685, the witness
above corresponds to values at the leaves of the proof tree taken from D. The
following is also a witness for the same value but it is not the result of deep
union of values at the end of any proof tree for that value.

{ Composers.{{name:"G.F. Handel"}.{born:1685, period:"baroque"},

{name:"W.A Mozart"}.{born:1756, period:"classical"}},

Works.{{name:"G.F. Handel"}.opus:"HMV19"}.title:"Art thou troubled?" }

We describe next our notion of a witness basis which captures the set of all
witnesses of the former type for any value t in Q(D). Our de�nition closely
follows the syntax of the query.

De�nition 6. (Witness Basis) Consider a normal form query Q. The witness
basis for a singular value t with respect to Q and D, denoted as WQ;D(t), is:

(1) If Q is of the form Q1 t ::: tQn then WQ;D(t) =WQ1;D(t) [::: [WQn;D(t).
(2) If Q is of the form fe j p0 2 e0; :::; pn 2 en; conditiong, let 	 be the set of all

valuations on the variables of Q such that \where" clause of Q holds under
each valuation in 	 . Then, WQ;D(t) = f[[p0]] t :::t [[pn]] j 2 	; t = [[e]] g.
Note that ei (0 � i � n) is a database constant since Q is in normal form.

(3) Otherwise, WQ;D(t) = fg.

More generally, for any well-formed query Q, we can de�ne the witness basis
by extending (2) as follows. We partition the set of pi 2 ei in the \where"
clause of Q into two parts: S1 = fpi j ei is the database constant Dg and
S2 = f(pi; ei) j pi is a pattern matched against a query eig. We use p10; :::; p

1
k

to denote the members of S1 and (p20; e
2
0); :::; (p

2
m; e

2
m) to denote the members of

S2. Let 	 be the set of all valuations on the variables of Q such that for each
valuation in 	 , \where" clause of Q holds. ThenWQ;D(t) = fP1tP2 j 2 	; t v
[[e]] ; P1 = [[p10]] t ::: t [[p1k]] ; P2 = w1 t ::: t wm where wi 2 W (e2

i
);D([[p

2
i]])g.

For a compound value t, the witness basis is the product of individual witness
basis of singular values making up t. That is, consider t = t1 t ::: t tm where
each ti is singular. Then WQ;D(t) = fw1 t ::: t wm j wi 2 WQ;D(ti)g. ut

The general de�nition above looks for patterns which are matched against
the database constant D and patterns which match against queries. The former
is collected together as part of the witness under P . If the generator is a nested
query, we inductively look for the witness basis of these patterns under the
valuation and later combine the results together by taking the product. Next,
we show that the witness basis of a well-formed query is in fact the same as the
witness basis of its normal form.

Lemma 1. If Q ; Q0 via the rewrite system R, then for any value t in the
output of Q(D), WQ;D(t) =WQ0;D(t).

Computing a Witness Basis. We next show a procedure for �nding WQ;D(t)
where t is a singular value and Q is a query in normal form. That is, Q =
Q1 t ::: tQn and each Qi = fei j pi1 2 D; :::; piki 2 D; conditionig. To look for
members of the witness basis of t, we need to search for valuations on variables in

10 Peter Buneman, Sanjeev Khanna, Wang-Chiew Tan

each Qi that will produce t. For those valuations that produce t, the deep union
of pi1 to piki under each valuation is returned as a result. However, instead of
searching the witness basis directly, we produce a query Q0

i, which when evalu-
ated, will generate the witness basis. The \where" clause of Q0

i is the same as Qi
and the \collect" clause contains an output expression which is the deep union
of all patterns in the \where" clause of Qi placed on an edge. This is to prevent
inter-mixing with other members of the witness basis. The algorithm for gener-
ating Q0

i from Qi is described below. Why(t; Q;D) is simply Why(t; Q1; D)t:::t
Why(t; Qn; D). is a valuation from ei to t such that (ei) = t. This technique
is sound and complete in the sense that the set of witnesses in WQ;D(t) is the
same as the set of witnesses returned by Why(t; Q;D)(D).

Algorithm: Why(t; Qi; D)

Let � denote the \where" clause of Qi.
Let �0 denote the deep union of patterns in �.
if there is a valuation from ei to t then
Return the query \where (�) collect (�0):C"
(For simplicity, we did not serialize the output expression on the edge.)

else

No query is returned
end if

Theorem 2. (Soundness and Completeness) Let Q be a query in nor-
mal form and t be any singular value in the output of Q(D). Then WQ;D(t)
= Why(t; Q;D)(D).

A Comparison. We point out here that our notion of witness basis coincides
with the derivation of a tuple in [7] for SPJU queries where the general case of
theta-join is considered. The details are deferred to the full version.

5.2 Minimal Witness Basis

Observe that a witness for a value is invariant under all equivalent queries but
the witness basis is not. We show next that a subset of the witness basis, called
minimal witness basis, is in fact invariant under queries with only equalities.

De�nition 7. (Minimal Witness, Minimal Witness Basis) A value s is
a minimal witness for a value t with respect to Q if 8s0 @ s t 6v Q(s0). The
minimal witness basis for a value t with respect to a query Q and database D,
denoted as MQ;D(t), is a maximal subset of WQ;D(t) such that 8m 2 MQ;D(t)
6 9w 2WQ;D(t) such that w @ m. ut

Example: According to the query Q1, introduced earlier, the witness shown in
Section 5 is a minimal witness for {name:"G.F. Handel"}.born:1685while the
witness shown in Section 5.1 is not.

Theorem 3. (Invariance of Minimal Witness Basis under Equivalent
queries) If Q and Q0 are two equivalent well-formed queries with only equality
conditions and t is contained in Q(D) and Q0(D), then MQ;D(t) =MQ0;D(t).

Why and Where: A Characterization of Data Provenance 11

The proof of this theorem is based on a homomorphism theorem which shows
that for the class of well-formed and well-de�ned queries (with equality condi-
tions), query containment is equivalent to the existence of a homomorphism
between the queries. Based on the ideas in [11], we can also extend this theorem
to certain subclasses of queries with inequalities. Thus the invariance property
of minimal witness basis in fact holds across this larger class of queries.

5.3 Cascaded Witnesses (Query Composition)

Suppose we have some data sources { a mixture of materialized views (V) and
actual databases (D) { and a query written against these sources. We may choose
to �nd the witness basis for a value with respect to these sources (our witnesses
will therefore consist of values from both V and D) and subsequently �nding
the witness basis of those components taken from the views so that eventually,
witnesses in the witness basis consist of only values from D. We show next that
the witness basis obtained in this manner is the same as �rst \composing out"
the views in the query using the composition rule in our rewrite system R and
obtaining the witness basis according to the rewritten query. In fact, this result
is an important special case of Lemma 1 where views are nested queries not
sharing any variables with the outer query block.

Theorem 4. (Unnesting of Witnesses) Let D be a set of databases, V be a
query written against D and Q be a query written against D and V . Then for
a value t in Q(D;V), WQ0;D(t) = fw t w0 j (w t v0) 2 WQ;fD;V (D)g(t); v

0 is the
value taken from view V (D), w0 2 WV;D(v

0)g where Q0 is the rewritten query
via our rewrite system R in which view V has been \composed out".

6 Where-Provenance

So far we have explored the issue of what pieces of input data validate the
existence of an output value, for a given query. We now focus on identifying
what pieces of input data helped create various values that appear in the output.
The where-provenance of a speci�c value in the output is closely connected to
the witnesses for the output in that only some parts of any witness are used
to construct a speci�c output value. For instance, in the example described
in Section 4, the output value \1685" in fname:"G.F. Handel"g.born:1685
depends only on Composers.fname:"G.F. Handel"g.born:1685 in the input.
We refer to the path Composers.fname:"G.F. Handel"g.born in the input as
the where-provenance of this output value. This informal description already
suggests an intuitive procedure for determining the where-provenance of any
speci�c value in the output: determine which output variable was bound to this
speci�c value, and then identify the pieces of input data that were bound to this
output variable. However, this intuition is fragile and there are many di�culties
involved in formalizing this intuition as illustrated by the sequence of examples
below. Consider the following two equivalent queries that look for employees
with a salary of $50K :

12 Peter Buneman, Sanjeev Khanna, Wang-Chiew Tan

Q1 = where Emps.fId:xg.salary:$50K 2 D,
collect fId:xg.salary:$50K

Q2 = where Emps.fId:xg.salary:y 2 D,
y = $50K

collect fId:xg.salary:y

Suppose we wish to determine the where-provenance of $50K in an output
tuple. In case of query Q1, there is no variable in the collect clause which the
value $50K can be identi�ed with. The where-provenance of this value in Q1

is the query itself since the value is hard-wired into the query output. For Q2,
the output variable y can be associated with the value $50K and can be used
to identify what contributed to this value. By convention, we will consider the
where-provenance of a speci�c value in the output to be de�ned only if it can
be associated with one or more variables in the output expression of a query.
Otherwise, we will ascribe the where-provenance of a value to the query itself.
This example illustrates that the notion of where-provenance is hard to keep
invariant over equivalent queries in general.

Our next example shows that when multiple pieces of data may simultane-
ously contribute to a speci�c value in the output, it may be di�cult to identify
all the pieces.

Q3 = where Emps.fId:xg.salary:y 2 D,
Emps.fId:xg.bonus:y 2 D

collect fId:xg.new salary:y

Q4 = where Emps.fId:xg.salary:y 2 D,
Emps.fId:xg.salary:z 2 D,
Emps.fId:xg.bonus:z 2 D

collect fId:xg.new salary:y

In case of Q3, the value associated with any new salary component in the out-
put originated from both the salary and bonus components of the corresponding
employee. This is easily identi�ed by tracking the output variable y through the
query. But in Q4, which is equivalent to Q3, on any input data where salary and
bonus are atomic values, one needs to recognize that z is always forced to agree
with y and hence where-provenance is determined by y and z together. This
suggests that in general the syntactic structure of a query may not su�ce for
identifying the where-provenance. Even in cases where syntactic analysis alone
may work, this issue becomes rather di�cult to handle once we consider nested
queries. Consider the following two equivalent queries:

Q5 = where R.x:y : z 2 D,
S.x:y : z 2 D

collect x:y : z

Q6 = where R.x:y : z 2 D,
S.t:u 2 D,

t : u 2 (
where R.x:y : z 2 D
collect x:y : z

),

collect fx:y : z; t : ug

When applied to an input database fR.1.2:3,S.1.2:3g, these queries pro-
duce as output 1.2:3. The where-provenance of value 3 in the output is fR.1:2,
S.1:2g in case of queryQ5. In contrast, where-provenance of the same value with
respect to Q6 requires one to identify that u binds to y : z via the nested query.
Then, the where-provenance is given by fR.1:2,S.1:2g in this case as well.

A Syntactic Approach. The examples above highlight that for general queries,
where-provenance is not invariant over the space of equivalent queries, and that

Why and Where: A Characterization of Data Provenance 13

a purely syntactic characterization of where-provenance is unlikely to yield a
complete description of the where-provenance. However, we use the syntactic
approach and identify a restricted class of queries referred to as traceable queries,
for which where-provenance is preserved under rewriting. Our approach is based
on formalizing our initial intuition of using variables in the output expression of
a query as a means of identifying the where-provenance of a value. Speci�cally,
for each successful valuation of the query, we systematically explore the pieces
of input data contributing to the identi�ed output variable; and we refer to this
as the derivation basis of the output value. To determine where-provenance of a
value resulting from a traceable query, it su�ces to work with the normal form
of the query. Once a query is in normal form, a straightforward procedure can
be used to compute the derivation basis of a given value.

Paths. To identify the where-provenance of a value in our tree of values, we need
to extend our notion of paths. We augment our syntax for paths with \%". For
example, to refer to the value fname:"J.S. Bach"g which is a value on the edge
of Composers relation, we could use the path Composers.fname:"J.S. Bach"g%.
To refer to the value "J.S. Bach", we could use the path Composers.

fname:"J.S. Bach"g%name.

We show next the de�nition of derivation basis (where-provenance) for queries
in normal form. Informally, the derivation basis for l:v �nds a variable x in the
output expression that will generate v. This can be done by partially matching
l:v against the output expression e. All the paths to x in the patterns of Q are
then determined. Then, for any valuation that satis�es the \where" clause, the
valuation of the patterns in the \where" clause will form the witness, and the
valuation of the paths that point to x will be the where-provenance of l:v with
respect to this witness. Altogether, they form the derivation basis of l:v. We refer
to the procedure that computes the derivation basis of l:v as Where(l:v,Q,D).
It is similar to Why(t; Q;D) in that we generate a query which when applied to
D will produce the derivation basis. The \where" clause of the generated query
is the \where" clause of Q and the \collect" clause of the generated query emits
two things: the patterns and the paths pointing to x in the \where" clause of Q.

De�nition 8. (Derivation Basis) Consider a normal form queryQ. The deriva-
tion basis for l:v where v is an atomic value, denoted as �Q;D(l : v) with respect
to Q and D, is de�ned as below:
(1) If Q = Q1 t ::: tQn then �Q;D(l : v) = �Q1;D(l : v) [::: [�Qn;D(l : v).
(2) If Q has the form fe j p0 2 e0; :::; pn 2 en; conditiong, let 	 be the set of

valuations on the variables of Q such that the \where" clause of Q holds
under each valuation and (e) contains l:v. For each 2 	 , let px denote
the path in e that points to a variable x such that there exists p0 and p00

so that l = p0:p00 and (px) = p0 and (x)(p
00) = v. Then, �Q;D(l : v) =

f([[p0]] t :::t [[pn]] ; S) j 2 	; S = f (p0i):p
00 j p0i is the path that points to

variable x in pattern pi, 0 � i � ngg.
(3) Otherwise, �Q;D(l : v) = fg.

More generally, the derivation basis of l:v where v is a compound value is
de�ned to be the derivation basis of all possible (path,value) pairs p0:v0 such that

14 Peter Buneman, Sanjeev Khanna, Wang-Chiew Tan

p0:v0 points to a value in v. The derivation basis for multiple (path,value) pairs is
de�ned to be the product of the derivation basis of individual (path,value) pairs.
That is, �Q;D(p1:v1; p2:v2) = �Q;D(p1:v1) � �Q;D(p2:v2) = f(w1 t w2; P1 [P2) j
(w1; P1) 2 �Q;D(p1:v1); (w2; P2) 2 �Q;D(p2:v2)g. ut

We omit the de�nition for queries in the general form and remark that the
main di�erence is that it looks for the derviation basis inductively for patterns
matched against nested queries. We show next that in dealing with the derivation
basis for the class of traceable queries, we can restrict our attention to the
derivation basis corresponding to their normal forms.

De�nition 9. (Traceable Queries) A well-de�ned query Q is traceable if (a)
each pattern in the query matches either against some database constant or
against a subquery, (b) every subquery in Q is a view which does not share any
variables with the outer scope (c) only a singular pattern is allowed to match
against a subquery and (d) this pattern and output expression of the subquery
consist of a sequence of distinct variables (variables do not repeat) and have the
same length. ut

Example: The �rst query below is not traceable because the variable u is being
used in the inner query (this violates condition (b)). The second query is not
traceable because an expression fy:wg is used in the pattern sequence (this vio-
lates condition (d) where each expression in the sequence can only be a variable).

where x : u 2 D;

y : z 2

�
where u : v 2 D
collect u : v

�
;

collect x : z

where x : y 2 D;

fy : wg : z 2

�
where u : v 2 D
collect u : v

�
;

collect x : y

Proposition 1. If Q is a traceable query and Q ; Q0 via rewrite system R,
then Q0 is a traceable query.

Proposition 2. For the class of traceable queries, if Q; Q0 via rewrite system
R, then for any l:v in the output of Q(D), �Q;D(l : v) = �Q0;D(l : v).

7 Conclusions

We have described a framework for both describing and understanding prove-
nance of data in the context of SPJU queries and views. Data provenance is
examined from two perspectives, namely (1) Why is a piece of data in the out-
put?, and (2) Where did a piece of data come from?

We have taken a syntactic approach to understanding both notions of prove-
nance, and we have described a system of rewrite rules in which why-provenance
is preserved over the class of well-de�ned queries and where-provenance is pre-
served over the class of traceable queries.

One interesting direction for future work is to identify necessary and su�cient
conditions for the class of well-de�ned queries. Another interesting direction

Why and Where: A Characterization of Data Provenance 15

is to study how additional constraints on the input instances, e.g., functional
dependencies, can help us obtain a more complete description of the where-
provenance of a piece of data.

Acknowledgements.We thank Victor Vianu, Susan Davidson, Val Tannen and
the Penn Database Group students for many useful exchanges; and the paper
reviewers for many useful comments.

References

1. INFOBIOGEN. DBCAT, The Public Catalog of Databases.
http://www.infobiogen.fr/services/dbcat/, cited 5 June 2000.

2. A. Woodru� and M. Stonebraker. Supporting �ne-grained data lineage in a
database visualization environment. In ICDE, pages 91{102, 1997.

3. S. Abiteboul, P. Buneman, and D. Suciu. Data on the Web. From Relations to
Semistructured Data and XML. Morgan Kaufman, 2000.

4. S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison Wesley
Publishing Co, 1995.

5. S. Abiteboul, D. Quass, J. McHugh, J. Widom, and J. Wiener. The lorel query
language for semistructured data. Journal on Digital Libraries, 1(1), 1996.

6. P. Buneman, A. Deutsch, and W. Tan. A Deterministic Model for
Semistructured Data. In Proc. of the Workshop On Query Processing for
Semistructured Data and Non-standard Data Formats, pages 14{19, 1999.

7. Y. Cui and J. Widom. Practical lineage tracing in data warehouses. In ICDE,
pages 367{378, 2000.

8. A. Deutsch, M. Fernandez, D. Florescu, A. Levy, and D. Suciu. XML-QL: A
Query Language for XML, 1998. http://www.w3.org/TR/NOTE-xml-ql.

9. R. Durbin and J. T. Mieg. ACeDB { A C. elegans Database: Syntactic de�nitions
for the ACeDB data base manager, 1992.
http://probe.nalusda.gov:8000/acedocs/syntax.html.

10. H. Liefke and S. Davidson. E�cient View Maintenance in XML Data
Warehouses. Technical Report MS-CIS-99-27, University of Pennsylvania, 1999.

11. A. Klug. On conjuncitve queries containing inequalities. Journal of the ACM,
1(1):146{160, 1988.

12. L. Wong. Normal Forms and Conservative Properties for Query Languages over
Collection Types. In PODS, Washington, D.C., May 1993.

13. P. Buneman and S. Davidson and G. Hillebrand and D. Suciu. A Query
Language and Optimization Techniques for Unstructured Data. In SIGMOD,
pages 505{516, 1996.

14. Y. Papakonstantinou, H. Garcia-Molina, and J. Widom. Object exchange across
heterogeneous information sources. In ICDE, 1996.

15. World Wide Web Consortium (W3C). Document Object Model (DOM) Level 1
Speci�cation, 2000. http://www.w3.org/TR/REC-DOM-Level-1.

16. World Wide Web Consortium (W3C). XML Schema Part 0: Primer, 2000.
http://www.w3.org/TR/xmlschema-0/.

17. Y. Zhuge, H. Garcia-Molina, J. Hammer, and J. Widom. View maintenance in a
warehousing environment. In SIGMOD, pages 316{327, 1995.

