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ABSTRACT 
 
      The ever-increasing demand for high-performance microelectronic devices has 
motivated the semiconductor industry to design and manufacture Ultra-Large-Scale 
Integrated (ULSI) circuits with smaller feature size, higher resolution, denser packing, and 
multi-layer interconnects.  The ULSI technology places stringent demands on global 
planarity of the Interlevel Dielectric (ILD) layers.  Compared with other planarization 
techniques, the Chemical Mechanical Polishing (CMP) process produces excellent local and 
global planarization at low cost.  It is thus widely adopted for planarizing inter-level dielectric 
(silicon dioxide) layers.  Moreover, CMP is a critical process for fabricating the Cu 
damascene patterns, low-k dielectrics, and shallow isolated trenches.  The wide range of 
materials to be polished concurrently or sequentially, however, increases the complexity of 
CMP and necessitates an understanding of the process fundamentals for optimal process 
design.   
 
      This thesis establishes a theoretical framework to relate the process parameters to the 
different wafer/pad contact modes to study the behavior of wafer-scale polishing.  Several 
models of polishing - microcutting, brittle fracture, surface melting and burnishing - are 
reviewed.  Blanket wafers coated with a wide range of materials are polished to verify the 
models.  Plastic deformation is identified as the dominant mechanism of material removal in 
fine abrasive polishing.  Additionally, contact mechanics models, which relate the pressure 
distribution to the pattern geometry and pad elastic properties, explain the die-scale variation 
of material removal rate (MRR) on pattern geometry.  The pad displacement into low 
features of submicron lines is less than 0.1 nm.  Hence the applied load is only carried by the 
high features, and the pressure on high features increases with the area fraction of 
interconnects.  Experiments study the effects of pattern geometry on the rates of pattern 
planarization, oxide overpolishing and Cu dishing.  It was observed that Cu dishing of 
submicron features is less than 20 nm and contributes less to surface non-uniformity than 
does oxide overpolishing.  Finally, a novel in situ detection technique, based on the change 
of the reflectance of the patterned surface at different polishing stages, is developed to detect 
the process endpoint and minimize overpolishing.  Models that employ light scattering theory 
and statistical treatment correlate the sampled reflectance with the surface topography and 
Cu area fraction for detecting the process regime and endpoint.  The experimental results 
agree well with the endpoint detection schemes predicted by the models. 
 
Thesis Supervisor: Dr. Nannaji Saka 
Title: Principal Research Scientist, Mechanical Engineering 
 
Thesis Supervisor: Dr. Jung-Hoon Chun 
Title: Associate Professor of Mechanical Engineering 
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