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Abstract

For over four years, our colleagues at the University of
Pennsylvania1and we have been developing an experimen-
tal 3D tele-immersion testbed with the goal of provid-
ing high-fidelity scene reconstruction coupled with life-
size, view-dependent stereo display. The UPenn team has
focused on stereo reconstruction algorithms, while UNC
has worked on system architecture, network transport, and
stereo rendering and display issues. This paper provides an
overview of our testbed architecture and details the trans-
port and rendering challenges and solutions we have ex-
plored.

1. Introduction
In 1999, we began our tele-immersion research focused on
recreating the most compelling 3D visual experience pos-
sible. Removing the requirement for live scene reconstruc-
tion, our initial goal was to create a 3D portal into a dis-
tant office [2]. We first captured range and image data of
a real office scene with mannequin using a scanning laser
rangefinder, which we processed into a single static geo-
metric model with high-fidelity textures. Using a life-size,
head-tracked stereo projective display, we demonstrated an
accurate, very compelling continuum between the local and
remote offices as shown in Figure 1a.

Building on this display architecture, we began working
in early 2000 with our colleagues at UPenn and Advanced
Networks to develop a tele-immersion testbed that incor-
porated real-time acquisition and ran over Abilene between
Philadelphia, Armonk, NY, and Chapel Hill [11]. Using a
trinocular stereo algorithm [7, 8], the team developed a3D
camerabuilt around three 1394-digital color cameras and
a quad-processor workstation running highly tuned, multi-
threaded stereo reconstruction code. This first 3D camera
output320× 240 resolution depth maps with color textures
at frame rates of 1-3 Hz. To achieve these performance lev-
els, background segmentation is used to reduce the number
of active pixels to an average of approximately 20,000 per
frame, and the disparity search range is limited to an ef-
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Figure 1: (a) Portal to a static office. (b) Demonstration at UNC of
dual 3D tele-immersion sessions from Armonk, NY and Philadel-
phia.

fective reconstruction volume of approximately one cubic
meter. This is enough volume to capture a single person in
our ’across the desk’ one-on-one teleconferencing scenario.
At the display site, this reconstructed person (devoid of their
actual local background) is 3D composited into one of sev-
eral high-fidelity background scenes acquired off-line using
the laser scanning system previously referenced. Figure 1b
shows dual 3D tele-immersion sessions at the UNC display
site.

With a single 3D camera and stereo display system,
this capture-display model is not unlike the 1-camera to
1-display paradigm of traditional conferencing systems.
However, the major difference is that this data stream con-
tains view-independent data (3D structure) and not just a 2D
image from a fixed viewpoint. This 3D scene definition al-
lows the remote display system to generate new novel views
based on the local viewer’s eye position with respect to the
3D display portal.

The scene description from a single 3D camera is gen-
erally inadequate unless the viewer’s position matches that
of the virtual camera position. Therefore, our initial testbed
implementation was built with an array of five 3D cameras
arranged at or near (seated) eye-height in a 120 degree arc.
Today, we are working with our UPenn colleagues to ex-
pand this to fifteen 3D cameras operating at640× 480 res-
olution that are positioned to capture not only our collabo-
rators, but the complete surrounding environment.

In practice, our tele-immersion testbed has an N-camera
to 1-display architecture (Figure 2), where N cameras gen-
erate 3D image descriptions transported via N network
flows to a single rendering-display node. This model has the
advantage that it is straight forward to replicate or scale the
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Figure 2: Tele-immersion framework with multiple view-
independent streams mapped to the rendering-display node.

number of independently-operating, reconstruction cam-
eras. However, this advantage is illusionary since scaling
the performance of the single rendering node is a more sig-
nificant challenge. The remainder of this paper will detail
the transport and rendering challenges associated with in-
creasing the number of 3D cameras in our testbed, and the
solutions we have explored.

2. Transport Challenges
In our research, we have explored two variations on multi-
stream, end-to-end data flow. The first is the simplest, and
involves the model previously described with depth maps
and RGB images flowing over independent TCP/IP streams
from N acquisition/reconstruction nodes to a single render-
ing/display node. The three stages in this pipeline are shown
in Figure 3a. The second case involves two transport stages
as shown in Figure 3b. In this operational mode, image ac-
quisition and 3D-scene reconstruction are separate stages
with N distinct 2D-image streams connecting the two. This
second operational mode was created when we modified
our testbed to apply the 3000-processor Terascale Comput-
ing System at the Pittsburgh Supercomputing Center to the
compute-intensive task of high-resolution, full-scene, stereo
reconstruction [5].

In both 3D tele-immersion cases, the demand for band-
width is considerable. Exact requirements for the system
depend upon several factors: image resolution, encoding,
frame rate, and the number of 3D cameras used. Table 1
describes the bandwidth for transporting raw video frames

Figure 3: (a) 1-transport stage pipeline. (b) 2-transport stage
pipeline where 3D camera functionality is split between two sites.

Figure 4: Difference in frame arrival times across two different
size flows.

and 3D depth images given several configurations. Raw 2D
images are always encoded at 8-bits per pixel for black and
white cameras or color cameras (Bayer pattern color), and
3D reconstructed depth images are encoded at 40-bits per
pixel (16-bit of 1/z range and 24-bits of color). In our initial
testbed configuration operating with 5 streams at320× 240
resolution at 2 fps requires 31 Mbps of 3D image band-
width. In terascale testing, we ran 9 full-resolution streams
at 8 fps generating up to 880 Mbps of TCP/IP traffic to the
rendering node.

No. Cameras 2D Bandwidth 3D Bandwidth
& Resolution Mbps Mbps
5@320x240 18.4 30.8
5@640x480 73.8 122.8
9@640x480 132.8 221.4

Table 1: Uncompressed Bandwidth Requirements at 2 fps.

In general, the bandwidth requirements can easily ex-
ceed the link capacity of Abilene implying that data trans-
port is a critical issue to this application. This means that
compression of data over the link is key to decreasing over-
all throughput. In addition, our goal is to support the reli-
able transport of this data with as little latency as possible.
Furthermore, we would likeframearrivals of the multiple
streams to be highly synchronized since the rendering up-
date cannot occur without a complete data set. Figure 4
shows that despite mechanisms insuring synchronized send
initiation, frame arrivals are highly unsynchronized. The
problem is most severe for the larger data frame sizes.

A closer analysis of frame synchronization reveals that
lack of transport-level protocol coordination is the cause.
Application flows use TCP because it offers in-order, reli-
able delivery of data. Because each data flow operates inde-
pendently, bandwidth probe and backoff mechanisms lead
to competition among flows. Figure 5 illustrates this prob-
lem. While flows receive roughly the same average band-
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Figure 5: TCP flows competing for bandwidth.

width over a large time interval, small time intervals show a
stark variation in throughput levels leading to vastly unsyn-
chronized frame arrival times. Mechanisms for coordinat-
ing transport-level protocols are needed to distribute avail-
able bandwidth evenly across flows of the same application
while still maintaining congestion responsiveness. This will
improve the overall level of synchronization in frame trans-
port.

The following sections will discuss our transport re-
search related to compression of multi-stream data and the
development of a new network coordination protocol.

2.1 Data Compression

Increasing the number of independently operating 3D cam-
eras obviously increases the demand for both network band-
width and rendering system performance. One way to alle-
viate this increased demand is to exploit spatial and tempo-
ral coherence in the multiple depth streams.

Using temporal coherence to compress each depth
stream will reduce the required network bandwidth. How-
ever, it does not reduce the rendering load since the amount
of data after decode is the same.Spatialcoherence between
depth streams can be used to reduce both the network band-
width and rendering load requirements. It is this dual bene-
fit that led us to initially focus on spatial compression meth-
ods for reducing the redundancy in data from multiple 3D
cameras with overlapping views.

Driven by the need for real-time performance, scalability
with the number of 3D cameras, good data reduction, and
tunable network bandwidth (which is necessary in order to
limit the bandwidth used as the total number of depth stream
increases), a newgroup-based, real-time compression al-
gorithm has been developed [6]. The key to compression
performance and limiting inter-stream (camera) networking
requirements in this algorithm is to compare each stream
with only a singlereference streamto create a new lower-
bandwidthdifferential streamfor transmission.

The algorithm works as follows. All depth streams are
statically partitioned into disjoint groups, and a reference
stream called thecenter streamis designated for each group.

The master reference stream for all differential encoding,
designated themain stream, is the 3D camera stream which
most closely matches the user’s viewpoint. All points of the
main stream are transmitted to the rendering process. The
group that contains the main stream is designated themain
group, and the center stream of all other groups is differen-
tially compared with the center stream of the main group;
while the center stream of the main group is compared with
the main stream. All remaining streams of each group are
differentially encoded with their respective group’s center
stream. You are referred to [6] for complete details.

Group partitioning is defined in a pre-process step and
remains static. In practice, the main stream designation can
change dynamically as the viewer’s position moves, pos-
sibly even changing which group is designated the main
group.

Testing to date has involved synthetic 3D camera views
of a real-world scene - the office environment of our early
tele-immersion experiments [2]. In these tests, a 5 to 1 com-
pression for 22 depth streams was achieved. Since much of
any scene is static background, huge bandwidth reductions
should be possible by compressing the reference streams
and the differential streams using temporal coherence. This
could significantly reduce the network bandwidth, thus en-
abling an increase in the number of camera groups which
leads to even better spatial compression.

2.2 Coordination Protocol and Reliable-UDP

As mentioned previously, the synchronization of frame ar-
rivals is important to improve processing efficiency and thus
providing an increase in overall frame rate. Synchroniza-
tion at the sender-side does not achieve this goal because
of network competition among our several TCP/IP flows.
Our solution to this problem is a TCP-friendly UDP pro-
tocol that aggregately acts like N TCP flows, but provides
bandwidth coordination and thus synchronization among N
UDP flows.

To provide this synchronization and coordination, we de-
veloped a Reliable-UDP (RUDP) protocol that utilizes the
Coordination Protocol (CP) described in [9]. The resulting
CP-RUDP protocol gives individual bandwidth allocations
to each of our N streams based on their individual progress
in sending each frame. The aggregate bandwidth for all N
streams does not exceed that of N TCP streams maintaining
TCP-friendliness over Abilene.

The CP part of CP-RUDP provides congestion control
across the link using the Aggregation Points (AP) described
in [9]. RUDP determines the rate for each flow by locally
calculating its proportion of the N-flows bandwidth using
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link information provided by CP. This rate is calculated by
the formula:

rsend = NR(bL/bA) (1)

Wherersend is the send rate for an individual flow, N
is the number of flows, R is the bandwidth available for an
equivalent TCP flow,bL is the number of bytes remaining
in the frame being sent by this flow, andbA is the number
of bytes remaining for all frames being sent by all flows.
Updated values for N, R, andbA are all provided by the AP
each time an RUDP acknowledgement (ACK) is received.
Each CP-RUDP data packet sent by the sender contains the
bL value for this flow and is used by the AP to calculate the
bA value.

The result is that flows that get ahead are given less
bandwidth and flows that get behind are given more band-
width. In the end, the bandwidth is targeted such that each
frame arrives at approximately the same time. Moreover,
the congestion control provided by CP prevents the send
rates from exceeding the network capacity at any given
time. CP-RUDP provides the in-order streaming interface,
with congestion-control, that TCP does, but adds the net-
work flow synchronization that TCP cannot provide.

3. Rendering Challenges
The task of our tele-immersion rendering system is to create
an interactive, view-dependent, stereo presentation of the
remote scene description. Our design goals are simple:

• High-performance, Interactive Architecture.
Tracking and rendering performance are paramount in
creating a convincing sense of interactive presence.

• Quality Surface Representation. The reconstructed
scene must be high-fidelity.

• Scalable Performance.Ideally the rendering system
should scale with the acquisition/reconstruction sys-
tem.

The following sections discusses many of the challenges
and issues associated with achieving these goals.

3.1 High-Performance Architecture

To create a view-dependent presentation that is pleasing to
the user, the rendering system must generate new frames at
a minimum 20-30 Hz rate using the latest estimate of the
local user’s eye positions. Since the remote scene descrip-
tions are updated independently at a slower rate (less than
10Hz today), our renderer is designed to buffer the scenes
asynchronously and present the user with the latest com-
plete scene available in the buffer upon receiving a redraw

Figure 6: Tele-Immersion 3-PC Rendering Architecture.

request. This is accomplished with a multi-threaded imple-
mentation, which in its simplest form has one thread asyn-
chronously receiving incoming 3D scene descriptions while
a second thread is re-rendering the last complete scene us-
ing the latest estimate of the viewer’s eye positions.

Rendering Cluster - Our stereo renderer is imple-
mented using OpenGL on high-performance Linux PCs
with NVIDIA graphics hardware. We have developed two
configurations - a 1-PC rendering system and a 3-PC cluster
architecture. The 1-PC system uses a dual-channel graphics
card to drive the stereo projector pair in parallel. In the 3-PC
architecture, two of the machines act as rendering machines,
each implementing a left or right-eye renderer connected to
one projector. With the approximately 2x performance ad-
vantage offered by the cluster configuration, the 3-PC archi-
tecture is our preferred renderer. Figure 6 shows the basic
block diagram of this system.

In this configuration, the third machine serves as the
rendering aggregation point (RAP) for the data broadcast
from the remote reconstruction node. After frame re-
synchronization and some data pre-processing this RAP
node UDP multicasts the incoming scene description to the
two rendering machines over a LAN.

Frame Re-Synchronization - On the acquisition end,
the exposure of all cameras is guaranteed to be synchronous
through the use of an external trigger signal at each camera.
This is not only necessary for accurate stereo correlation
between the multiple images of each 3D camera when there
is motion in the scene, but is also important at the rendering
node to avoid simultaneously presenting 3D depth data from
different camera views that represent moving surfaces from
different points in time. Therefore, the first processing step
of the receive thread of the RAP node is to re-synchronize
the data from all 3D camera streams based on a timestamp
included with each data frame. This seems trivial, but in
practice we have observed TCP streams falling one or more
frames behind other streams even though the exposure of all
cameras is synchronized.
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We currently solve this by using a 5-frame ring buffer,
but in the future a conditional transport-level protocol such
as discussed in Section 2.2 is expected to better balance
multi-stream throughput, which will reduce the buffering
requirement and further decrease end-to-end latency.

Maximizing Refresh and Update Rates- The amount
of data to render is formidable, but an equally daunting task
is feeding the graphics pipeline.

Our tele-immersion experiments in 2000 using 5 cam-
era streams at320 × 240 resolution with foreground-
background segmentation generated approximately 100,000
surface points per frame (or 20K per camera) to render. By
2002, our terascale computing experiments [5] were gen-
erating on average 230,000 surface points per camera per
frame or as many as 2.1M surface points from a 9 camera
array.

Our earliest implementation built a new OpenGL display
list in host memory for each new incoming 3D frame. This
process is inherently so slow that we amortized the build
cost over as many as 6 frames to avoid a disturbingstutter
or break in presence for the head-tracked viewer. A much
better solution to this frame update issue, which also affords
us a rendering performance increase, is to use Vertex Arrays
and load data directly into AGP or graphics card memory.

No. Streams No. Surface Refresh Update
& Resolution Pts x1000 Rate, Hz Rate, Hz
3@320x240 55 380 8.9
5@320x240 100 200 6.3
1@640x480 232 110 5.3
3@640x480 720 42 2.7
5@640x480 1,160 24 1.8
9@640x480 2,100 16 1.0

Table 2: 3-PC Rendering Performance using Vertex Arrays.

Table 2 summarizes our current performance levels with
the multi-threaded architecture of Figure 6 with 2.4 GHz
PCs and GeForce4 graphics. We are able to maintain a
very interactive refresh rate of 24 fps for over 1.1M surface
points from 5 full-resolution streams. Much less satisfy-
ing is the 1.8 fps limitation on scene update rate, which is
well below that maximum 8 fps reconstruction rate demon-
strated using the Pittsburgh Supercomputing Center’s Teras-
cale Computing System.

We currently are discussing a re-architecture of the RAP
node to include a receive and multicast re-transmit thread
per incoming stream, moving all stream parsing and data
conversion into the rendering PC to be processed on the
dual-processor host or directly by a Cg vertex program.

3.2 Quality Surface Representation

For each frame, the renderer receives multiple depth maps -
one from each 3D camera. For each valid pixel in these im-
ages, there is an encoded range value and RGB color. Using
the camera-specific projection matrix, each range value is
converted into a surface point definition in a common Eu-
clidian world coordinate system.

We initially explored techniques for triangulating these
depth maps in real-time, but performance issues and dis-
turbing visual artifacts such asskinningbetween disjoint
surfaces orpyramidal spikingcaused by temporally noisy
data precluded using this solution. Instead, we have focused
on rendering the multiple depth maps as a massive 3D point
cloud. Each point from each depth map is rendered with
its respective color as an opaque GLPOINT of size2 × 2.
While very fast, there is need for improved visual fidelity as
all point splats arescreen-orientedand drawn at a constant
size regardless of depth in the scene. This latter character-
istic can also result in a stippled transparency effect if the
viewing geometry is such that adjacent surface points are
rendered more than 4 pixels apart in screen coordinates.

The surface splatting work of [14, 10] offers some
interesting alternatives that we have explored. The
GL POINT SPRITENV extension renders splats that are
automatically sized based on scene depth, which helps alle-
viate the stippling problem mentioned above. Point sprites
always draw a quad in screen space, but by modulating the
shape of the sprite’s texture it is possible to create a sense of
object-space orientation. Rather than computing this shape
texture in real-time, a pre-computed set of textures repre-
senting different splat orientations can be de-referenced us-
ing the surface normal of the point.

This technique embodied in a Cg vertex program is being
actively researched by our team.

3.3 Scalable Performance

Significant rendering performance gains over the last two
years have come from simple hardware upgrades as we have
replaced 933 MHz PCs and GeForce2 QuadroPro graph-
ics with 2.4 GHz dual-processor machines and GeForce4
ti4600 graphics. At the same time, our rendering network
adapters have been upgraded from 100 Mbps to GigE. And
of course, the 3-PC architecture offers approximately a 2x
performance advantage over the 1-PC renderer.

As the number of 3D cameras have scaled, we have dis-
cussed options for scaling the rendering hardware beyond
two rendering PCs. Screen-space partitioning would cer-
tainly gain us primitive rendering performance, but would
not scale linearly and does nothing to solve the equivalent
performance gains needed for the RAP node or the local
network used for UDP multicast. A more promising ap-
proach may be a data partitioning architecture that simply
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divides the incoming data into equal parts to be rendered
on separate PCs, and then uses a depth compositing solu-
tion such as Lightning-2 [12] or Hewlett-Packard’s Sepia
project [1].

In either case, scaling rendering software and hardware
to keep pace with the simple replication of 3D cameras is a
most difficult task. The best system solution will undoubt-
edly combine rendering performance gains with a reduction
in data either through new compression techniques as out-
lined in Section 2.1 or more advanced algorithms that will
compress the full-scene 3D description to more optimally
match that defined by the rendered view position.

4. Conclusions and Future Work
The technical challenges in developing an effective 3D tele-
immersion system are many, yet we and others worldwide
[3, 4] continue to make good progress in identifying and
resolving new issues. We are mutually buoyed by our col-
lective success and the dream that one day we will create a
truly convincing sense of tele-presence.

As our own tele-immersion research continues, we are
actively exploring several new areas that show promise for
improving both our rendering quality and rendering system
scalability. On the quality front, we are investigating the use
of object-oriented, surface splats with transparency mod-
ulation based on a new reconstruction algorithm (and 3D
stream definition) that now provides a surface normal and
confidence estimate per 3D surface point. On the scalabil-
ity/performance side, we continue to research new methods
of spatial and temporal, multi-stream data compression that
are guided by view-dependency feedback. In addition, we
are preparing to test the effectiveness of our new network
coordination protocol (CP-RUDP) in balancing the needs
for maximum bandwidth utilization against the network us-
age needs of competing TCP network streams.
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