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Introduction

Purpose of This Book

This book is intended to be a supplement for The Handbook of Biological Statistics by John H.
McDonald. It provides code for the R statistical language for some of the examples given in the
Handbook. It does not describe the uses of, explanations for, or cautions pertaining to the
analyses. For that information, you should consult the Handbook before using the analyses
presented here.

The Handbook for Biological Statistics

This Companion follows the .pdf version of the third edition of the Handbook of Biological
Statistics.

The Handbook provides clear explanations and examples of some the most common statistical
tests used in the analysis of experiments. While the examples are taken from biology, the
analyses are applicable to a variety of fields.

The Handbook provides examples primarily with the SAS statistical package, and with online
calculators or spreadsheets for some analyses. Since SAS is a commercial package that students
or researchers may not have access to, this Companion aims to extend the applicability of the
Handbook by providing the examples in R, which is a free statistical package.

The .pdf version of the third edition is available at
www.biostathandbook.com/HandbookBioStatThird.pdf.

Also, the Handbook can be accessed without cost at www.biostathandbook.com/. However, the
reader should be aware that the online version may be updated since the third edition of the
book.

Or, a printed copy can be purchased from http://www.lulu.com/shop/john-
mcdonald /handbook-of-biological-statistics /paperback/product-22063985.html.

About the Author of this Companion

[ have tried in this book to give the reader examples that are both as simple as possible, and that
show some of the options available for the analysis. My goal for most examples is to make things
comprehensible for the user without extensive R experience. The reader should realize that
these goals may be partially frustrated either by the peculiarities in the R language or by the
complexity required for the example.
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[ am neither a statistician nor an R programmer, so all advice and code in the book comes
without guarantee. I'm happy to accept suggestions or corrections. Send correspondence to
mangiafico@njaes.rutgers.edu.

About R

Ris a free, open source, and cross-platform programming language that is well suited for
statistical analyses. This means you can download R to your Windows, Mac OS, or Linux
computer for free. It also means that you can look at the code behind any of the analyses it
performs to better understand the process, or to modify the code for your own purposes.

R is being used more and more in educational, academic, and commercial settings. A few
advantages of working with R as a student, teacher, or researcher include:

¢ R functions return limited output. This helps prevent students from sorting through a lot
of output they may not understand, and in essence requires the user to know what output

they're asking R to produce.

e Since all functions are open source, the user has access to see how pre-defined functions
are written.

e There are powerful packages written for specific type of analyses.
e There are lots of free resources available online.
e Itcan also be used online without installing software.

For a brief summary of some the advantages of R from the perspective of a graduate student, see
https://thetarzan.wordpress.com/2011/07 /15 /why-use-r-a-grad-students-2-cents/.

It is also worth mentioning a few drawbacks with using R. New users are likely to find the code
difficult to understand. Also, I think that while there are a plethora of examples for various
analyses available online, it may be difficult as a beginner to adapt these examples to her own
data. One goal of this book is to help alleviate these difficulties for beginners. [ have some
further thoughts below on avoiding pitfalls in R.

Obtaining R

Standard installation
To download and install R, visit cran.r-project.org/. There you will find links for installation on
Linux, Mac OS, and Windows operating systems.
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R Studio

[ also recommend using R Studio. This software is a development environment for R that makes
it easier to see code, output, datasets, plots, and help files together on one screen.
www.rstudio.com/products/rstudio/. Itis also possible to install R Studio as a portable
application.

Portable application

R can be installed as a portable application. This is useful in cases where you don’t want to
install R on a computer, but wish to run it from a portable drive. See
portableapps.com/node/32898 or sourceforge.net/projects/rportable/. My portable
installation of R with a handful of added packages is about 250 MB. The version on R Studio |
have is about 400 MB. So, 1 GB of space on a usb drive is probably sufficient for the software
along with additional installed packages and projects.

R Online: R Fiddle

It is also possible to access R online, without needing to install software. One example of this is R
Fiddle: www.r-fiddle.org/. R Fiddle also works with common add-on packages, though I have
had it refuse to use a couple of less common ones.

A Few Notes to Get Started with R

A cookbook approach

The examples in this book follow a “cookbook” approach as much as possible. The reader should
be able to modify the examples with her own data, and change the options and variable names as
needed. This is more obvious with some examples than others, depending on the complexity of
the code.

Color coding in this book

The text in blue in this book is R code that can be copied, pasted, and run in R. The text in red is
the expected result, and should not be run. In most cases I have truncated the results and
included only the most relevant parts. Comments are in green. It is fine to run comments, but
they have no effect on the results.

Copying and pasting code

From the website

Copying the R code pieces from the website version of this book should work flawlessly. Code
can be copied from the webpages and pasted into the R console, the R Studio console, the R
Studio editor, or a plain text file. All line breaks and formatting spaces should be preserved.

The only issue you may encounter is that if you paste code into the R Studio editor, leading
spaces may be added to some lines. This is not usually a problem, but a way to avoid this is to
paste the code into a plain text editor, save that file as a .R file, and open it from R Studio.
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From the pdf
Copying the R code from the pdf version of this book may work less perfectly. Formatting spaces
and even line breaks may be lost. Different pdf readers may behave differently.

It may help to paste the copied code in to a plain text editor to clean it up before pasting into R or
saving it as a .R file. Also, if your pdf reader has a select tool that allows you to select text in a
rectangle, that works better in some readers.

A sample program
The following is an example of code for R that creates a vector called x and a vector called y,
performs a correlation test between x and y, and then plots y vs. x.

This code can copied and pasted into the console area of R or R Studio, or into the editor area of
R Studio or R Fiddle and run. You should get the output from the correlation test and the
graphical output of the plot.

x = c(1,2,3,4,5,6,7,8,9) # create a vector of values and call it x
y= C(9’7’8,6!7!5’4’3’1)

cor.test(x,y) # perform correlation test

plot(x,y) # plot y vs. x

You can run fairly large chunks of code with R, though it is probably better to run smaller pieces,
examining the output before proceeding to the next piece.

This kind of code can be saved as a file in the editor section of R Studio, or can be stored
separately as a plain text file. By convention files for R code are saved as .R files. These files can
be opened and edited with either a plain text editor or with the R Studio editor.

Assignment operators
In my examples I will use an equal sign, =, to assign a value to a variable.

height = 127.5

In examples you find elsewhere, you will more likely see a left arrow, <-, used as the assignment
operator.

height <- 127.5
These are essentially equivalent, but I think the equal sign is more readable for a beginner.
Comments

Comments are indicated with a number sign, #. Comments are for human readers, and are not
processed by R.
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Installing and loading packages

Some of the packages used in this book do not come with R automatically, but need to be
installed as add-on packages. For example, if you wanted to use a function in the psych package
to calculate the geometric mean of x in the sample program above:

x =c¢(1,2,3,4,5,6,7,8,9)

First you would need to the install the package psych:

install.packages("psych")

Then load the package:

Tibrary(psych)

You may then use the functions included in the package:
geometric.mean(x)

[1] 4.147166

In future sessions, you will need only to load the package; it should still be in the library from the
initial installation.

If you see an error like the following, you may have misspelled the name of the package, or the
package has not been installed.

Tibrary(psych)

Error in Tibrary(psych) : there is no package called ‘psych’

Installing FSA and NCStats

Packages which are hosted on RForge aren’t installed with the method described above.

For installation of the FSA package, visit https://fishr.wordpress.com/fsa/, or use:

source("http://www.rforge.net/FSA/InstallFSA.R")

For installation of the NCStats package, visit https://rforge.net/NCStats/Installation.html, or use:

source("http://www.rforge.net/NCStats/InstalINCStats.R")

Data types
There are several data types in R. Most commonly, the functions we are using will ask for input
data to be a vector, a matrix, or a data frame. Data types won’t be discussed extensively here, but
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the examples in this book will read the data as the appropriate data type for the selected
analysis.

Creating data frames from a text string of data

For certain analyses you will want to select a variable from within a data frame. In most
examples using data frames, I'll create the data frame from a text string that allows us to arrange
the data in columns and rows, as we normally visualize data.

Here, Input is just a text string that will be converted to a data frame with the read.table function.
Note that the text for the table is enclosed in simple double quotes and parentheses.

read.table is pretty tolerant of extra spaces or blank lines. But if we convert a data frame to a
matrix—which we will later—with as.matrix—I've had errors from trailing spaces at the ends of
lines.

Values in the table that will have spaces or special characters can be enclosed in simple single
quotes (e.g. 'Spongebob & Patrick').

Input =(

"Sex Height
male 175
male 176
female 162
female 165

")

D1 = read.table(textConnection(Input),header=TRUE)

D1

Sex Height
1 male 175
2 male 176
3 female 162
4 female 165

Reading data from a file
R can also read data from a separate file. For longer data sets or complex analyses, it is helpful to
keep data files and r code files separate. For example,

D2 = read.table("male-female.dat", header=TRUE)

would read in data from a file called male-female.dat found in the working directory. In this case
the file could be a space-delimited text file:

Sex Height
male 175
male 176
female 162
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female 165

Or
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D2 = read.table("male-female.csv", header=TRUE, sep=",")

for a comma-separated file.

Sex,Height

male,175

male,176

female, 162

female, 165

D2

Sex Height

1 male 175
2 male 176
3 female 162
4 female 165

R Studio also has an easy interface in the Tools menu to import data from a file.

The getwd function will show the location of the working directory, and setwd can be used to set
the working directory.

getwd()

[1] "c:/users/salvatore/Documents"

setwd("C:/Users/Salvatore/Desktop")

Alternatively, file paths or URLs can be designated directly in the read.table function.

Variables within data frames

For the data frame DI1created above, to look at just the variable Sex in this data frame:

D1$ Sex

[1] male
Levels:

Note that D1$Height is a vector of numbers.

D1$ Height

[1] 175 176 162 165

male
female male

female female

# Note: the space is optional
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So if you wanted the mean for this variable:
mean(D1$ Height)

[1] 169.5
Using dplyr to create new variables in data frames

The standard method to define new variables in data frames is to use the data.frame$ variable
syntax. So if we wanted to add a variable to the D1 data frame above which would double Height:

D1$ Double = D1$ Height * 2 # Spaces are optional
D1

Sex Height Double
1 male 175 350
2 male 176 352
3 female 162 324
4 female 165 330

Another method is to use the mutate function in the dplyr package:

# If you don’t have this package installed:
# install.packages("dplyr")

Tibrary(dplyr)

D1l =

mutate(D1,
Triple = Height*3,
Quadruple = Height*4

)
D1
Sex Height Double Triple Quadruple
1 male 175 350 525 700
2 male 176 352 528 704
3 female 162 324 486 648
4 female 165 330 495 660

The dplyr package also has functions to select only certain columns in a data frame (select
function) or to filter a data frame by the value of some variable (filter function). It can be helpful
for manipulating data frames.

In the examples in this book, I will use either the $ syntax or the mutate function in dplyr,
depending on which I think makes the example more comprehensible.
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Extracting elements from the output of a function
Sometimes it is useful to extract certain elements from the output of an analysis. For example,
we can assign the output from a binomial test to a variable we’ll call Test.

Test = binom.test(7, 12, 3/4,

alternative="1less",
conf.level=0.95)

To see the value of Test:
Test
Exact binomial test
number of successes = 7, number of trials = 12, p-value = 0.1576

95 percent confidence interval:
0.0000000 0.8189752

To see what elements are included in Test:

names (Test)
[1] "statistic" "parameter" "p.value" "conf.int" "estimate"
"null.value" "alternative"
[8] "method" "data.name"

Or with more details:

str(Test)

To view the p-value from Test:
Test$ p.value

[1] 0.1576437

To view the confidence interval from Test:
Test$ conf.int
[1] 0.0000000 0.8189752

[1] 0.95

To view the upper confidence limit from Test:

Test$ conf.int[2]

[1] 0.8189752
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Exporting graphics

R has the ability to produce a variety of plots. Simple plots can be produced with just a few lines
of code. These are useful to get a quick visualization of your data or to check on the distribution
of residuals from an analysis. More in-depth coding can produce publication-quality plots.

In the Rstudio Plots window, there is an Export icon which can be used to save the plot as image
or pdf file. A method I use is to export the plot as pdf and then open this pdf with either Adobe
Photoshop or the free alternative, GIMP (www.gimp.org/). These programs allow you to import
the pdf at whatever resolution you need, and then crop out extra white space.

The appearance of exported plots will change depending on the size and scale of exported file. If
there are elements missing from a plot, it may be because the size is not ideal. Changing the
export size is also an easy way to adjust the size of the text of a plot relative to the other
elements.

An additional trick in Rstudio is to change the size of the plot window after the plot is produced,
but before it is exported. Sometimes this can get rid of problems where, for example, words in a
plot legend are cut off.

Finally, if you export a plot as a pdf, but still need to edit it further, you can open it in Inkscape,
ungroup the plot elements, adjust some plot elements, and then export as a high-resolution
bitmap image. Just be sure you don’t change anything important, like how the data line up with
the axes.

Avoiding Pitfalls in R

Grammar, spelling, and capitalization count
Probably the most common problems in programming in any language are syntax errors, for
example, forgetting a comma or misspelling the name of a variable or function.

Be sure to include quotes around names requiring them; also be sure to use straight quotes (")
and not the smart quotes that some word processors use automatically. It is helpful to write
your R code in a plain text editor or in the editor window in R Studio.

Data types in functions

Probably the biggest cause of problems [ had when I first started working with R was trying to
feed functions the wrong data type. For example, if a function asks for the data as a matrix, and
you give it a data frame, it won’t work.

A more subtle error I've encountered is when a function is expecting a variable to be a factor
vector, and it’s really a character (“chr”) vector.
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For instance if we create a variable in the global environment with the same values as Sex and
call it Gender, it will be a character vector.

Gender = c("male", "male", "female", "female")
str(Gender) # what is the structure of this variable?

chr [1:4] "male" "male" "female" "female"

While in the data frame, Sex was read in as a factor vector by default:

str(pl$ sex)

Factor w/ 2 levels "female","male": 2 2 1 1

One of the nice things about using R Studio is that it allows you to look at the structure of data
frames and other objects in the Environment window.

Data types can be converted from one data type to another, but it may not be obvious how to do
some conversions. Functions to convert data types include as.factor, as.numeric, and
as.character.

Style

There isn’t an established style for programming in R in many respects, such as if variable names
should be capitalized. But there is a Google R Users Style Guide, for those who are interested.
google-styleguide.googlecode.com/svn/trunk/Rguide.xml.

Help with R

It's always a good idea to check the help information for a function before using it. Don’t
necessarily assume a function will perform a test as you think it will. The help information will
give the options available for that function, and often those options make a difference with how
the test is carried out.

Helpin R
In order to see the help file for the chisg.test function:

?chisq.test

In order to specify the chisq.test function in the stats package, you would use:

?stats::chisq.test

or

help(chisq.test, package=stats)

11
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In order to search all installed packages for a term:

??"chi-square"

In order to view the help for a package

help(package=psych)

CRAN documentation

Documentation for packages are also available in a .pdf format, which may be more convenient
than using the help within R. Also very helpful, some packages include vignettes, which describe
how a package might be used.

For a list of available packages, visit cran.r-
project.org/web /packages/available packages by name.html.

And clicking on the link for the psych package, will bring up a page with a link for the .pdf
documentation, two .pdf vignettes, and other information.

Other online resources

Since there are many good resources for R online, an internet search for your question or
analysis including the term “r” will often lead to a solution. The reader is cautioned, however, to
always check the original R documentation on functions to be sure it will perform an analysis as
the user desires.

A convenient tool is the RSiteSearch function, which will open a browser window and search for
a term in functions and vignettes across a variety of sources:

RSiteSearch("chi-square test")

This tool can also be accessed from: http://search.r-project.org/nmz.html.

R Tutorials

The descriptions of importing and manipulating data and results in this section of this book don’t
even scratch the surface of what is possible with R. Going beyond this very brief introduction,
however, is beyond the scope of this book. I have tried to provide only enough information so
that the reader unfamiliar with R will find the examples in the rest of the book comprehensible.

Luckily, there are many resources available for users wishing to better understand how to
program in R, manipulate data, and perform more varied statistical analyses.

One free online resource I've found helpful is Quick-R (www.statmethods.net/).
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CRAN hosts a collection of R manuals (http://cran.r-project.org/manuals.html). One that might
be helpful is An Introduction to R by Venables.

CRAN also hosts a collection of contributed documentation (http://cran.r-project.org/other-
docs.html), in several languages, which may prove helpful.

If readers wish to purchase a more-comprehensive and well-written textbook, The R Book by
Michael Crawley is one option.

Formal Statistics Books

When describing a particular statistical analysis—especially one that your readers may not be
familiar with—it’s a good idea to cite an authoritative statistical source. A few that may be useful
for this purpose:

e Biostatistical Analysis by Jerrold Zar

e Introduction to Biostatistics by Sokal and Rohlf

e C(Categorical Data Analysis by Alan Agresti

e Mixed-Effects Models in S and S-Plus by José Pinheiro and Douglas Bates
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Tests for Nominal Variables

Exact Test of Goodness-of-Fit

The exact test goodness-of-fit can be performed with the binom.test function in the native stats
package. The arguments passed to the function are: the number of successes, the number of
trials, and the hypothesized probability of success. The probability can be entered as a decimal
or a fraction. Other options include the confidence level for the confidence interval about the
proportion, and whether the function performs a one-sided or two-sided (two-tailed) test. In
most circumstances, the two-sided test is used.

Introduction
When to use it
Null hypothesis

See the Handbook for information on these topics.

How the test works
Binomial test examples

##t ------ - -\ - m - _—_—_——.— —_—————————— -
### Cat paw example, exact binomial test, pp. 30-31
##t ------ - -\ - m - _—_—_——.— —_—————————— -
### In this example:
### 2 is the number of successes
### 10 is the number of trials
### 0.5 is the hypothesized probability of success
dbinom(2, 10, 0.5) # Probability of single event only!

# Not binomial test!
[1] 0.04394531

binom.test(2, 10, 0.5,
alternative="1less", # One-sided test
conf.level=0.95)

p-value = 0.05469

binom.test(2, 10, 0.5,
alternative="two.sided", # Two-sided test
conf.level=0.95)

p-value = 0.1094

Probability density plot
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B —m -
### Probability density plot, binomial distribution, p. 31
B —m -
# In this example:
# You can change the values for trials and prob
# You can change the values for xlab and ylab
trials = 10
prob = 0.5
x = seq(0, trials) # x is a sequence, 1 to trials
y = dbinom(x, size=trials, p=prob) # y is the vector of heights

barplot (height=y,
names.arg=x,
x1lab="Number of uses of right paw",
ylab="Probability under null hypothesis")

# # #

0.20
|

0.10
]

Probabilty under null hypothesis

l
l

o 1 2 3 4 5 6 7 8 9 10

Number of uses of right paw

Comparing doubling a one-sided test and using a two-sided test

B —m -
### Cat hair example, exact binomial test, p. 31-32

### Compares performing a one-sided test and doubling the

#H## probability, and performing a two-sided test

B —m -

binom.test(7, 12, 3/4,

alternative="1less",
conf.level=0.95)
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p-value = 0.1576

Test = binom.test(7, 12, 3/4, # Create an object called
alternative="Tless", # Test with the test
conf.level=0.95) # results.

2 * Test$ p.value # This extracts the p-value from the

# test result, we called Test
# and multiplies it by 2
[1] 0.3152874

binom.test(7, 12, 3/4, alternative="two.sided", conf.level=0.95)

p-value = 0.1893 # Equal to the "small p values" method in the Handbook

# # #

Sign test
The sign test is described in the Wilcoxon Signed-rank Test chapter.

Exact multinomial test
See example below in the “Examples” section.

Post-hoc test

Post-hoc example with manual pairwise tests

A multinomial test can be conducted with the xmulti function in the package XNomial. This can
be followed with the individual binomial tests for each proportion, as post-hoc tests.

BHH -
### Post-hoc example, multinomial and binomial test, p. 33

BHH - -
observed = c(72, 38, 20, 18)

expected = c(9, 3, 3, 1D

Tibrary(XNomial) # Remember to install the package first!

# install.packages("XNomial")
xmulti(observed,
expected,
detail = 2) # 2: Reports three types of p-value

P value (LLR)
P value (Prob)
P value (cChisq)

0.003404 # log-likelihood ratio
0.002255 # exact probability
0.001608 # Chi-square probability

### Note last p-value below agrees with Handbook
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successes =72
total = 148
numerator =9

denominator = 16

binom.test(successes, total, numerator/denominator,
alternative="two.sided", conf.level=0.95)

p-value = 0.06822

successes = 38
total = 148
numerator =3

denominator = 16

binom.test(successes, total, numerator/denominator,
alternative="two.sided", conf.level=0.95)

p-value = 0.03504

successes = 20
total = 148
numerator =3

denominator = 16

binom.test(successes, total, numerator/denominator,
alternative="two.sided", conf.level=0.95)

p-value = 0.1139

successes = 18
total = 148
numerator =1

denominator = 16

binom.test(successes, total, numerator/denominator,
alternative="two.sided", conf.level=0.95)

p-value = 0.006057

Post-hoc test alternate method with custom function

When you need to do multiple similar tests, however, it is often possible to use the programming
capabilities in R to do the tests more efficiently. The following example may be somewhat
difficult to follow for a beginner. It creates a data frame and then adds a column called p.Value
that contains the p-value from the binom.test performed on each row of the data frame.

BHH - — -
### Post-hoc example, multinomial and binomial test, p. 33
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#H## Alternate method for multiple tests
B —m -

Input =(

"Successes Total Numerator Denominator

72 148 9 16
38 148 3 16
20 148 3 16
18 148 1 16
"

D1 = read.table(textConnection(Input),header=TRUE)

Fun = function (x){
binom.test(x["Successes"],x["Total"],
x["Numerator"]/x["Denominator"])$ p.value

}

D1$ p.value = apply(pl, 1, Fun)

D1
Successes Total Numerator Denominator p.value
1 72 148 9 16 0.068224131
2 38 148 3 16 0.035040215
3 20 148 3 16 0.113911643
4 18 148 1 16 0.006057012

# # #

Intrinsic hypothesis
Assumptions
See the Handbook for information on these topics.

Examples
Binomial test examples

B e

### Parasitoid examples, exact binomial test, p. 34
BHH - — -

binom.test(10, (17+10), 0.5,
alternative="two.sided",
conf.level=0.95)

p-value = 0.2478

binom.test(36, (7+36), 0.5,
alternative="two.sided",
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conf.level=0.95)

p-value = 8.963e-06

# # #
B —m -
### Drosophila example, exact binomial test, p. 34
B —m -

binom.test(140, (106+140), 0.5,
alternative="two.sided",
conf.level=0.95)

p-value = 0.03516

# # #
BHH -
### First Mendel example, exact binomial test, p. 35
BHH - -

binom.test(428, (428+152), 0.75, alternative="two.sided",
conf.level=0.95)

p-value = 0.5022 # value is different than in the Handbook
# See next example
# # #
B —m -
### First Mendel example, exact binomial test, p. 35
### Alternate method with XNomial package
B —m -
observed = c(428, 152)
expected = c(3, 1)

Tibrary(XNomial)

xmulti(observed,
expected,
detail = 2) # 2: reports three types of p-value

P value (LLR)
P value (Prob)
P value (cChisq)

0.5331  # Tog-likelihood ratio
0.5022 # exact probability
0.5331  # chi-square probability

### Note last p-value below agrees with Handbook

# # #
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Multinomial test example

BHH -
### Second Mendel example, multinomial exact test, p. 35-36

#i#t# and SAS example, p. 38

BHH -
observed = c(315, 108, 101, 32)

expected = c(9, 3, 3, 1

Tibrary(XNomial)

xmulti(observed,
expected,
detail = 2) # reports three types of p-value

P value (LLR)
P value (Prob)
P value (Chisq)

0.9261 # log-1likelihood ratio
0.9382 # exact probability
0.9272 # Chi-square probability

### Note last p-value below agrees with Handbook,
###  and agrees with SAS Exact Pr>=ChisSq

# # #

Graphing the results
Graphing is shown in the “Chi-square Goodness-of-Fit” section.

Similar tests
The G-test goodness-of-fit and chi-square goodness-of-fit are presented elsewhere in this book.

How to do the test
Binomial test example where individual responses are counted

e
### Cat paw example from SAS, exact binomial test, pp. 36-37

#H## when responses need to be counted
B~

Input =(

"Paw
right
Teft
right
right
right
right
Teft
right
right
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right
ll)

Gus = read.table(textConnection(Input),header=TRUE)

sum(Gus$ pPaw == "Teft") # Note the == operator
sum(Gus$ Paw == "right")

successes
Failures

Total = Successes + Failures
Expected = 0.5
binom.test(Successes, Total, Expected,

alternative="1less", # One-sided test!
conf.level=0.95)

p-value = 0.05469

binom.test(Successes, Total, Expected,
alternative="two.sided", # Two-sided test
conf.level=0.95)

p-value = 0.1094

Other SAS examples
R code for the other SAS example is shown in the examples in previous sections.

Power analysis
Power analysis for binomial test

BHH -
### Power analysis, binomial test, cat paw, p. 38

BHH - —
PO = 0.50

PL = 0.40

H = ES.h(PO,P1) # This calculates effect size
Tibrary(pwr) # Remember to install package first

pwr.p.test(

h=H,
n=NULL, # NULL tells the function to
sig.level=0.05, # calculate this value
power=0. 80, # 1 minus Type II probability
alternative="two.sided"
)

n = 193.5839 # Slightly different than in Handbook
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Power Analysis

Introduction
Parameters

How it works
See the Handbook for information on these topics.

Examples
Power analysis for binomial test

#H# -
### Power analysis, binomial test, pea color, p. 43
#H# -
PO = 0.75
PL =0.78
H = ES.h(PO,Pl) # This calculates effect size
Tibrary(pwr) # Remember to install package first
pwr.p.test(
h=H,
n=NULL, # NULL tells the function to
sig.level=0.05, # calculate this
power=0.90, # 1 minus Type II probability
alternative="two.sided"
)
n = 2096.953 # Somewhat different than in Handbook
# # #
Power analysis for unpaired t-test
#H# -
### Power analysis, t-test, student height, pp. 43-44
#H#t -
Ml = 66.6 # Mean for sample 1
M2 = 64.6 # Mean for sample 2
S1 = 4.8 # std dev for sample 1
S2 = 3.6 # std dev for sample 2

Cohen.d = (M1 - M2)/sqrt(((S1A2) + (S2A2))/2)

Tibrary(pwr)
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pwr.t.test(
n = NULL, # Observations in _each_ group
d = cohen.d,
sig.level = 0.05, # Type I probability
power = 0.80, # 1 minus Type II probability
type = "two.sample", # Change for one- or two-sample
alternative = "two.sided"
)

Two-sample t test power calculation
n=71.61288

NOTE: n is number in *each* group 71.61288

# # #

How to do power analyses
Methods are shown in the previous examples.

Chi-square Test of Goodness-of-Fit

When to use it
Null hypothesis

See the Handbook for information on these topics.

How the test works
Chi-square goodness-of-fit example

e
### Drosophila example, Chi-square goodness-of-fit, p. 46

B~ oo
observed = c(770, 230) # observed frequencies

expected = c(0.75, 0.25) # expected proportions

chisg.test(
X = observed,
p = expected,
)
X-squared = 2.1333, df = 1, p-value = 0.1441

# # #

Post-hoc test
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Assumptions
See the Handbook for information on these topics.

Examples: extrinsic hypothesis

B —— o -
### Crossbill example, Chi-square goodness-of-fit, p. 47

B —— -
observed = c(1752, 1895) # observed frequencies

expected = c(0.5, 0.5) # expected proportions

chisqg.test(
X = observed,
p = expected,
)

X-squared = 5.6071, df = 1, p-value = 0.01789

# # #
B e e o
### Rice example, Chi-square goodness-of-fit, p. 47
B~ m e e e o
observed = c(772, 1611, 737)
expected = c(0.25, 0.50, 0.25)

chisqg.test(

X = observed,
p = expected,
)

X-squared = 4.1199, df = 2, p-value = 0.1275

# # #
B~ m e el
### Bird foraging example, Chi-square goodness-of-fit, pp. 47-48
B e e o
observed = c(70, 79, 3, 4)

expected = c(0.54, 0.40, 0.05, 0.01)

chisqg.test(
X = observed,
p = expected

)
X-squared = 13.5934, df = 3, p-value = 0.0035

# # #
24



CHI-SQUARE TEST OF GOODNESS-OF-FIT AN R COMPANION FOR THE HANDBOOK OF BIOLOGICAL STATISTICS

Example: intrinsic hypothesis

BB~ mmm e e o
### Intrinsic example, Chi-square goodness-of-fit, p. 48

B~ m e e e e o
observed c(1203, 2919, 1678)

expected.prop c(0.211, 0.497, 0.293)

expected.count sum(observed) *expected. prop

chi2 = sum((observed- expected.count)A2/ expected.count)
chi?2

[1] 1.082646

pchisq(chi2,
df=1,
Tower.tail=FALSE)

[1] 0.2981064

Graphing the results

The first example below will use the barplot function in the native graphics package to produce a
simple plot. First we will calculate the observed proportions and then copy those results into a
matrix format for plotting. We’ll call this matrix Matriz. See the “Chi-square Test of
Independence” section for a few notes on creating matrices.

The second example uses the package ggplot2, and uses a data frame instead of a matrix. The
data frame is named Forage. For this example, the code calculates confidence intervals and adds
them to the data frame. This code could be skipped if those values were determined manually
and put into a data frame from which the plot could be generated.

Sometimes factors will need to have the order of their levels specified for ggplot2 to put them in
the correct order on the plot, as in the second example. Otherwise R will alphabetize levels.

Simple bar plot with barplot

BHH — o
### Simple bar plot of proportions, p. 49

#H## Uses data in a matrix format

BHH — o
observed = c(70, 79, 3, 4)

expected = c(0.54, 0.40, 0.05, 0.01)
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total = sum(observed)
observed.prop = observed / total
observed.prop

[1] 0.44871795 0.50641026 0.01923077 0.02564103

### Re-enter data as a matrix

Input =(

"value Douglas.fir Ponderosa.pine Grand.fir western.larch
Observed 0.4487179 0.5064103 0.01923077 0.02564103
Expected 0.5400000 0.4000000 0.05000000 0.01000000

ll)

Matriz = as.matrix(read.table(textConnection(Input),
header=TRUE,
row.names=1))

Matriz
Douglas fir Ponderosa pine Grand fir western Tlarch
Observed 0.4487179 0.5064103 0.01923077 0.02564103
Expected 0.5400000 0.4000000 0.05000000 0.01000000
barplot(Matriz,

beside=TRUE,

Tegend=TRUE,

ylim=c(0, 0.6),

xlab="Tree species",
ylab="Foraging proportion"

)
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Bar plot with confidence intervals with ggplot2

The plot below is a bar char with confidence intervals. The code calculates confidence intervals.
This code could be skipped if those values were determined manually and put in to a data frame
from which the plot could be generated.

Sometimes factors will need to have the order of their levels specified for ggplot2 to put them in
the correct order on the plot. Otherwise R will alphabetize levels.

B~ .
### Graph example, Chi-square goodness-of-fit, p. 49

#it# Using ggplot2

#H## Plot adapted from:

#H## shinyapps.stat.ubc.ca/r-graph-catalog/

#Ht ----——----—-— -

Input =(

"Tree value Count  Total Proportion Expected
'Douglas fir' Observed 70 156  0.4487 0.54
'Douglas fir' Expected 54 100 0.54 0.54
'Ponderosa pine' Observed 79 156 0.50064 0.40
'Ponderosa pine' Expected 40 100 0.40 0.40
'Grand fir' Observed 3 156 0.0192 0.05
'Grand fir' Expected 5 100 0.05 0.05
'wWestern Tarch' Observed 4 156 0.0256 0.01
'Western Tarch' Expected 1 100 0.01 0.01

")

Forage = read.table(textConnection(Input),header=TRUE)
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### Specify the order of factor levels. Otherwise R will alphabetize them.
Tibrary(dplyr)

Forage =

mutate(Forage,
Tree = factor(Tree, levels=unique(Tree)),
value = factor(value, Tevels=unique(value))

)

### Add confidence intervals

Forage =
mutate(Forage,
Tow.ci = apply(Forage[c("Count", "Total", "Expected")],
1,
function(x)
binom.test(x["Count"], x["Total"], x["Expected"]
)$ conf.int[1]),
upper.ci = apply(Forage[c("Count", "Total", "Expected")],
1,
function(x)
binom.test(x["Count"], x["Total"], x["Expected"]
)$ conf.int[2])
)
Forage$ Tow.ci [Forage$ value == "Expected"] = 0
Forage$ upper.ci [Forage$ value == "Expected"] = 0
Forage
Tree value Count Total Proportion Expected Tow.ci upper.ci
1 Douglas fir oObserved 70 156 0.4487 0.54 0.369115906 0.53030534
2 Douglas fir Expected 54 100 0.5400 0.54 0.000000000 0.00000000
3 Ponderosa pine Observed 79 156 0.5064 0.40 0.425290653 0.58728175
4 pPonderosa pine Expected 40 100 0.4000 0.40 0.000000000 0.00000000
5 Grand fir Observed 3 156 0.0192 0.05 0.003983542 0.05516994
6 Grand fir Expected 5 100 0.0500 0.05 0.000000000 0.00000000
7 Wwestern Tarch observed 4 156 0.0256 0.01 0.007029546 0.06434776
8 Wwestern larch Expected 1 100 0.0100 0.01 0.000000000 0.00000000

### Plot adapted from:
###  shinyapps.stat.ubc.ca/r-graph-catalog/

Tibrary(ggplot2)
Tibrary(grid)

ggplot(Forage,
aes(x = Tree, y = Proportion, fill = value,
ymax=upper.ci, ymin=low.ci)) +
geom_bar(stat="1identity", position
geom_bar(stat="1identity", position
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Foraging proportion

Tabs (x
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colour = "black", width = 0.7,
show_guide = FALSE) +
scale_y_continuous(breaks = seq(0, 0.60, 0.1),

Timits = c(0, O

.60),

expand = c(0, 0)) +
scale_fill_manual(name =
values = c('grey80', 'grey30'),

Tabels

"Count type" ,

c("observed value",

"Expected value™)) +
geom_errorbar(position=position_dodge(width=0.7),

## ggtitle("Main title™)
theme_bw() +
theme(panel.grid.major.x

0.6

panel.grid.major.y

width=0.0, size=0.5, color="black") +
= "Tree species",
y = "Foraging proportion") +

+

= element_blank(),
= element_Tine(colour = "grey50"),

plot.title = element_text(size = rel(1.5),
face = "bold", vjust = 1.5),
axis.title = element_text(face = "bold"),

Tegend.position =

"tOp" ,

Tegend.title = element_blank(),

Tegend.key.size =

unit(0.4, "cm"),

Tegend.key = element_rect(fill = "black™),
axis.title.y = element_text(vjust= 1.8),
axis.title.x = element_text(vjust= -0.5)

# # #

Observed value [l Expected value

0.5

0.4 -

0.3

0.2

0.1+

0.0

Douglas fir

Ponderosa pine Grand fir Western larch
Tree species
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Bar plot of proportions vs. categories. Error bars indicate 95% confidence intervals for
each observed proportion.

Similar tests
Chi-square vs. G-test

See the Handbook for information on these topics. The exact test of goodness-of-fit, the G-test of
goodness-of-fit, and the exact test of goodness-of-fit tests are described elsewhere in this book.

How to do the test
Chi-square goodness-of-fit example

B —— -
### Pea color example, Chi-square goodness-of-fit, pp. 50-51
B —m -
observed = c(423, 133)
expected = c(0.75, 0.25)
chisqg.test(x = observed,
p = expected)
X-squared = 0.3453, df = 1, p-value = 0.5568

# # #

Power analysis
Power analysis for chi-square goodness-of-fit

B —m -
### Power analysis, Chi-square goodness-of-fit, snapdragons, p. 51
B —m -
Tibrary(pwr)

PO = c(0.25, 0.50, 0.25)

Pl = c(0.225, 0.55, 0.225)

effect.size = ES.w1l(PO, P1)
degrees = Tength(P0) - 1

pwr.chisq.test(
w=effect.size,

N=NULL, # Total number of observations
df=degrees,
power=0. 80, # 1 minus Type II probability
sig.level=0.05 # Type I probability
)

N = 963.4689

30



G-TEST OF GOODNESS-OF-FIT AN R COMPANION FOR THE HANDBOOK OF BIOLOGICAL STATISTICS

G-test of Goodness-of-Fit

The G-test goodness-of-fit test can be performed with the G.test function in the package
RVAideMemoire, the GTest function in DescTools, or you can import a function written by Pete
Hurd. As another alternative, you can use R to calculate the statistic and p-value manually.

When to use it

Null hypothesis

How the test works

Post-hoc test

Assumptions

See the Handbook for information on these topics.

Examples: extrinsic hypothesis
G-test goodness-of-fit test with DescTools, RVAideMemoire, and Pete Hurd'’s function

BHH —
### Crossbill example, G-test goodness-of-fit, p. 55

2
observed = c(1752, 1895) # observed frequencies

expected = c(0.5, 0.5) # expected proportions

Tibrary(DescTools)

GTest(x=observed,

p=expected,
correct="none", # "none" "williams" "yates"
)

Log likelihood ratio (G-test) goodness of fit test

G = 5.6085, X-squared df = 1, p-value = 0.01787

Tibrary(RVAideMemoire)

G.test(x=observed,
p=expected)

G-test for given probabilities
G = 5.6085, df = 1, p-value = 0.01787

source("http://www.psych.ualberta.ca/~phurd/cruft/g.test.r")
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g.test(
x=observed,
p=expected,
correct="none", # "none" "williams" "yates"
simulate.p.value=FALSE
)

Log likelihood ratio statistic (G) = 5.6085,
X-squared df = 1, p-value = 0.01787

# # #

G-test goodness-of-fit test by manual calculation

e
### Crossbill example, G-test goodness-of-fit, p. 55
### Manual calculation

e
observed = c(1752, 1895) # observed frequencies
expected.prop = c(0.5, 0.5) # expected proportions

degrees = 1 # degrees of freedom

expected.count = sum(observed)*expected.prop
G = 2 * sum(observed * Tog(observed / expected.count))

G
[1] 5.608512

pchisq(G,
df=degrees,
Tower.tail=FALSE)

[1] 0.01787343

Examples of G-test goodness-of-fit test with DescTools, RVAideMemoire, and Pete Hurd’s

function
e
### Rice example, G-test goodness-of-fit, p. 55
e
observed = c(772, 1611, 737)
expected = c(0.25, 0.50, 0.25)

Tibrary(DescTools)
GTest(x=observed,
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p=expected,
correct="none", # "none" "williams™ "yates"
)

Log likelihood ratio (G-test) goodness of fit test

G = 4.1471, X-squared df = 2, p-value = 0.1257

Tibrary(RVAideMemoire)

G.test(x=observed,
p=expected)

G-test for given probabilities
G = 4.1471, df = 2, p-value = 0.1257

source("http://www.psych.ualberta.ca/~phurd/cruft/g.test.r")

g.test(
x=observed,
p=expected,
correct="none", # "none" "williams" "yates"
simulate.p.value=FALSE

)

Log 1likeTlihood ratio statistic (G) = 4.1471,
X-squared df = 2, p-value = 0.1257

# # #
e
### Foraging example, G-test goodness-of-fit, pp. 55-56
B~
observed = c(70, 79, 3, 4)
expected = c(0.54, 0.40, 0.05, 0.01)

Tibrary(DescTools)

GTest(x=observed,

p=expected,
correct="none", # "none" "williams"™ "yates"
)

Log likeTlihood ratio (G-test) goodness of fit test

G = 13.145, X-squared df = 3, p-value = 0.004334

Tibrary(RVAideMemoire)
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G.test(x=observed,
p=expected)

G-test for given probabilities
G = 13.1448, df = 3, p-value = 0.004334

source("http://www.psych.ualberta.ca/~phurd/cruft/g.test.r")

g.test(
x=observed,
p=expected,
correct="none", # "none" "williams" "yates"
simulate.p.value=FALSE

)

Log likelihood ratio statistic (G) = 13.1448,
X-squared df = 3, p-value = 0.004334

# # #
Example: intrinsic hypothesis
Bl —mmmm e e e o
### Intrinsic example, G-test goodness-of-fit, amphipod, p. 56
e T T
observed c(1203, 2919, 1678)

expected.prop c(.21073, 0.49665, 0.29262)

### Note: These are recalculated for more precision
### In this case, Tow precision probabilities
### change the results

expected.count = sum(observed)*expected.prop

G = 2 * sum(observed * Tog(observed / expected.count))

G
[1] 1.032653
pchisq(G,
df=1,
Tower.tail=FALSE)
[1] 0.3095363
# # #
Graphing the results

Graphing would be the same as in the “Chi-square Test of Goodness-of-Fit” section.
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Similar tests

Chi-square vs. G-test
See the Handbook for information on these topics. The exact test of goodness-of-fit and the chi-
square test of goodness-of-fit tests are described elsewhere in this book.

How to do the test
These examples are shown above.

Power analysis
Power analysis would be the same as in the “Chi-square Test of Goodness-of-Fit” section.

Chi-square Test of Independence

The Chi-square test of independence can be performed with the chisq.test function in the native
stats package in R. For this test, the function requires the contingency table to be in the form of
matrix. Depending on the form of the data to begin with, this can require an extra step, either
combing vectors into a matrix, or cross-tabulating the counts among factors in a data frame.
None of this is too difficult, but it requires following the correct example depending on the initial
form of the data.

When using read.table and as.matrix to read a table directly as a matrix, be careful of extra spaces
at the end of lines or extraneous characters in the table, as these can cause errors.

When to use it
Example of chi-square test with matrix created with read.table

B —m -
### vaccination example, Chi-square independence, pp. 59-60

### Example directly reading a table as a matrix

B —m -
Input =(

"Injection.area No.severe Severe

Thigh 4788 30
Arm 8916 76
ll)

Matriz = as.matrix(read.table(textConnection(Input),
header=TRUE,
row.names=1))

Matriz

NO.severe Severe
Thigh 4788 30
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Arm 8916 76

chisqg.test(Matriz,
correct=TRUE) # Continuity correction for 2 x 2
# table

Pearson's Chi-squared test with Yates' continuity correction
X-squared = 1.7579, df = 1, p-value = 0.1849
chisq.test(Matriz,
correct=FALSE) # No continuity correction for 2 x 2

# table

Pearson's Chi-squared test
X-squared = 2.0396, df = 1, p-value = 0.1533

# # #

Example of chi-square test with matrix created by combining vectors

e
### vaccination example, Chi-square independence, pp. 59-60

#it# Example creating a matrix from vectors

B~ .
R1 = c(4788, 30)

R2 = c(8916, 76)

rows =2

Matriz = matrix(c(R1l, R2),

nrow=rows,
byrow=TRUE)

rownames (Matriz) = c("Thigh", "Arm") # Naming the rows and
colnames(Matriz) = c("No.severe", "Severe") # columns is optional.
Matriz
No.severe Severe
Thigh 4788 30
Arm 8916 76

chisqg.test(Matriz,
correct=TRUE) # Continuity correction for 2 x 2
# table

Pearson's Chi-squared test with Yates' continuity correction
X-squared = 1.7579, df = 1, p-value = 0.1849
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chisq.test(Matriz,
correct=FALSE) # No continuity correction for 2 x 2
# table

Pearson's Chi-squared test
X-squared = 2.0396, df = 1, p-value = 0.1533

# # #

Null hypothesis

How the test works
See the Handbook for information on these topics.

Post-hoc tests

For the following example of post-hoc pairwise testing, we'll use the chisqPostHoc function from
the package NCStats to make the task easier. Then we’ll use pairwise.table in the native stats
package as an alternative.

Post-hoc pairwise chi-square tests with NCStats

##t ------ - -\ - m - _—_—_——.— —_—————————— -
### Post-hoc example, Chi-square independence, pp. 60-61
#Ht ------ - - o _——_—_——_—_———_———————————— -
Input =(
"Supplement No.cancer Cancer

'Selenium' 8177 575

'Vitamin E' 8117 620

'Selenium+E’ 8147 555

'Placebo’ 8167 529
ll)

Matriz = as.matrix(read.table(textConnection(Input),
header=TRUE,
row.names=1))

Matriz

chisg.test(Matriz)

X-squared = 7.7832, df = 3, p-value = 0.05071
### Install NCStats package:
#i#t# source("http://www.rforge.net/NCStats/InstalINCStats.R")

Tibrary(NCStats)

chi2 = chisqg.test(Matriz)
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chisqPostHoc(chi2, # Compares rows
control = "fdr") # p-values adjusted with fdr method;
# for other adjustments,
# see ?p.adjust for options

Adjusted p-values used the fdr method.

comparison raw.p adj.p

1 Selenium vs. vitamin E 0.1772 0.2960
2 Selenium vs. Selenium+E 0.6278 0.6278
3 Selenium vs. Placebo 0.1973 0.2960
4 vitamin E vs. Selenium+E 0.0626 0.1878
5 Vitamin E vs. Placebo 0.0077 0.0462
6 Selenium+E vs. Placebo 0.4399 0.5278

Post-hoc pairwise chi-square tests with pairwise.table

#H# -----—- -
### Post-hoc example, Chi-square independence, pp. 60-61

### As is, this code works on a matrix with two columns,

### and compares rows

et
Input =(
"Supplement No.cancer Cancer
'Selenium' 8177 575
'"Vitamin E' 8117 620
'Selenium+E' 8147 555
'Placebo’ 8167 529
ll)

Matriz = as.matrix(read.table(textConnection(Input),
header=TRUE,
row.names=1))

Matriz
chisqg.test(Matriz)

X-squared = 7.7832, df = 3, p-value = 0.05071

FUN = function(i,j){
chisq.test(matrix(c(Matriz[i,1], Matriz[i,2],
Matriz[j,1], Matriz[j,2]),
nrow=2,
byrow=TRUE))$ p.value
ks

pairwise.table(FUN,
rownames (Matriz),
p.adjust.method="none")
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# Can adjust p-values;
# see ?p.adjust for options

Selenium Vitamin.E Selenium.and.E

Vitamin.E 0.1772113 NA NA
Selenium.and.E 0.6277621 0.062588260 NA
Placebo 0.1973435 0.007705529 0.4398677
# # #
Assumptions

See the Handbook for information on this topic.

Examples
Chi-square test of independence with continuity correction and without correction

e
### Helmet example, Chi-square independence, p. 63
g
Input =(

"PSE Head.injury Other.injury

Helemt 372 4715

No.helmet 267 1391

" )

Matriz = as.matrix(read.table(textConnection(Input),
header=TRUE,
row.names=1))

Matriz
chisqg.test(Matriz,

correct=TRUE) # Continuity correction for 2 x 2
# table

Pearson's Chi-squared test with Yates' continuity correction
X-squared = 111.6569, df = 1, p-value < 2.2e-16

chisqg.test(Matriz,
correct=FALSE) # No continuity correction for 2 x 2
# table

Pearson's Chi-squared test
X-squared = 112.6796, df = 1, p-value < 2.2e-16

# # #
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Chi-square test of independence
Bl mmmm e e e e o
### Gardemann apolipoprotein example, Chi-square independence,
###  p. 63
Bl mmmmm e e e o
Input =(

"Genotype No.disease Coronary.disease

'ins/ins' 268 807

"ins/del’ 199 759

'del/del"’ 42 184
ll)

Matriz = as.matrix(read.table(textConnection(Input),
header=TRUE,
row.names=1))

Matriz
chisqg.test(Matriz)

Pearson's Chi-squared test
X-squared = 7.2594, df = 2, p-value = 0.02652

# # #

Graphing the results
The first plot below is a bar char with confidence intervals, with a style typical of the ggplot2
package. The second plot is somewhat more similar to the style of the plot in the Handbook.

For each example, the code calculates proportions or confidence intervals. This code could be
skipped if those values were determined manually and put in to a data frame from which the plot
could be generated.

Sometimes factors will need to have the order of their levels specified for ggplot2 to put them in
the correct order on the plot. Otherwise R will alphabetize levels.

Simple bar plot with error bars showing confidence intervals

BHH — o
### Plot example, herons and egrets, Chi-square test of association,
### pp. 63-64

2
Input =(
"Supplement No.cancer Cancer

'Selenium' 8177 575

'Vitamin E' 8117 620
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'Selenium+E’ 8147 555
'Placebo’ 8167 529
ll)

Prostate = read.table(textConnection(Input),header=TRUE)

### Add sums and confidence intervals
Tibrary(dplyr)

Prostate =
mutate(Prostate,
sum = No.cancer + Cancer)

Prostate =
mutate(Prostate,
Prop = Cancer / Sum,
Tow.ci = apply(Prostate[c("cCancer", "sum")], 1,
function(y) binom.test(y['Cancer'], y['Ssum'])$ conf.int[1]),
high.ci = apply(Prostate[c("Cancer", "sum")], 1,
function(y) binom.test(y['Cancer'], y['sum'])$ conf.int[2])

)
Prostate
Supplement No.cancer Cancer Sum Prop Tow.ci high.ci
1 selenium 8177 575 8752 0.06569927 0.06059677 0.07109314
2 Vitamin E 8117 620 8737 0.07096257 0.06566518 0.07654816
3 Selenium+E 8147 555 8702 0.06377844 0.05873360 0.06911770
4 Placebo 8167 529 8696 0.06083257 0.05589912 0.06606271

### Plot (Bar chart plot)

Tibrary(ggplot2)
ggplot(Prostate,
aes(x=Supplement, y=Prop)) +
geom_bar(stat="1identity", fill="gray40",
colour="bTlack", size=0.5,
width=0.7) +
geom_errorbar(aes(ymax=high.ci, ymin=low.ci),
width=0.2, size=0.5, color="black") +
xTab("supplement") +
ylab("Prostate cancer proportion") +
scale_x_discrete(labels=c("selenium", "vitamin E",
"Selenium+E","Placebo")) +
## ggtitle("Main title™) +
theme(axis.title=element_text(size=14, color="black",
face="bold", vjust=3)) +
theme(axis.text = element_text(size=12, color = "gray25",
face="bold")) +
element_text(vjust= 1.8)) +
element_text(vjust= -0.5))

theme(axis.title.y
theme(axis.title.x
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# # #
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Selenium Vitamin E Selenium+E Placebo

Supplement

Bar plot of proportions vs. categories. Error bars indicate 95% confidence intervals for
observed proportion.

Bar plot with categories and no error bars

#H# -----—- -
### Plot example, herons and egrets, Chi-square independence,
### p. 64
#H# -----—-— -
Input =(

"Habitat Bird Count

Vegetation Heron 15

Shoreline Heron 20

water Heron 14

Structures Heron 6

Vegetation  Egret 8

Shoreline Egret 5

water Egret 7

Structures Egret 1

")

Birds = read.table(textConnection(Input),hheader=TRUE)

### specify the order of factor levels
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Tibrary(dplyr)

Birds=
mutate(Birds,

AN R COMPANION FOR THE HANDBOOK OF BIOLOGICAL STATISTICS

Habitat = factor(Habitat,levels=unique(Habitat)),
Bird = factor(Bird,levels=unique(Bird))

)

### Add sums and proportions

Birds$ sum[Birds$ Bird == 'Heron'] =

sum(Birds$ Count[Birds$ Bird == 'Heron'])
Birds$ sum[Birds$ Bird == 'Egret'] =

sum(Birds$ Count[Birds$ Bird == 'Egret'])
Birds=

mutate(Birds,

prop = Count / Sum

)

Birds

Habitat
Vegetation
Shoreline
water
Structures
Vegetation
Shoreline
water
Structures

coNOUVIT A WN R

Bird Count Sum

Heron 15
Heron 20
Heron 14
Heron 6
Egret 8
Egret 5
Egret 7
Egret 1

### Plot adapted from:
### shinyapps.stat.ubc.ca/r-graph-catalog/

Tibrary(ggplot2)

Tibrary(grid)

ggplot(Birds,

55
55
55
55
21
21
21
21

prop
.27272727
.36363636
. 25454545
.10909091
.38095238
.23809524
.33333333
.04761905

QOO OO OOOO0o

aes(x = Habitat, y = prop, fill = Bird, ymax=0.40, ymin=0)) +
geom_bar(stat="1identity", position = "dodge", width = 0.7) +
geom_bar(stat="1identity", position = "dodge", colour = "black",
width = 0.7, show
scale_y_continuous (breaks

Timits
expand

scale_fill_manual(name =

values
Tabels

_guide = FALSE) +

= seq(0, 0.40, 0.05),

= c(0, 0.40),

= c(0, 0)) +

"Bird type" ,
c('grey80', 'grey30'),

c(

"Heron (all types)",
"Egret (all types)™)) +

## geom_errorbar(position=position_dodge(width=0.7),
width=0.0, size=0.5, color="black") +

##
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Tabs(x = "Habitat Location", y = "Landing site proportion") +
## ggtitle("Main title") +
theme_bw() +
theme(panel.grid.major.x = element_blank(),
panel.grid.major.y = element_line(colour = "grey50"),
plot.title = element_text(size = rel(1.5),
face = "bold", vjust = 1.5),
axis.title = element_text(face "bol1d"),
Tegend.position = "top",
Tegend.title = element_blank(),
Tegend.key.size = unit(0.4, "cm"™),
Tegend.key = element_rect(fill = "black™),
axis.title.y = element_text(vjust= 1.8),
axis.title.x = element_text(vjust= -0.5)

# # #

Heron (all types) [l Egret (all types)

0.40

0.35

0.30

0.25

0.20

0.15+

0.10

Landing site proportion

0.05

Vegetation Shoreline Water Structures

Habitat Location

Similar tests

Chi-square vs. G-test
See the Handbook for information on these topics. Fisher’s exact test, G-test, and McNemar’s test
are discussed elsewhere in this book.

44




CHI-SQUARE TEST OF INDEPENDENCE AN R COMPANION FOR THE HANDBOOK OF BIOLOGICAL STATISTICS

How to do the test

Chi-square test of independence with data as a data frame

In the following example for the chi-square test of independence, the data is read in as a data
frame, not as a matrix as in previous examples. This allows more flexibility with how data are
entered. For example you could have counts for same genotype and health distributed among
several lines, or have a count of 1 for each row, with a separate row for each individual
observation. The xtabs function is used to tabulate the data and convert them to a contingency

table.
B —— -
### Gardemann apolipoprotein example, Chi-square independence,
#it# SAS example, pp. 65-66
#it# Example using cross-tabulation
B —— -
Input =(
"Genotype Health Count
ins-ins no_disease 268
ins-ins disease 807
ins-del no_disease 199
ins-del disease 759
del-del no_disease 42
del-del disease 184
")

Data.frame = read.table(textConnection(Input),header=TRUE)

### Cross-tabulate the data

Data.xtabs = xtabs(Count ~ Genotype + Health,
data=Data.frame)

Data.xtabs

Health
Genotype disease no_disease
del-del 184 42
ins-del 759 199
ins-ins 807 268
summary(Data.xtabs) # includes N and factors

Number of cases in table: 2259
Number of factors: 2

### Chi-square test of independence

chisq.test(bata.xtabs)
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X-squared = 7.2594, df = 2, p-value = 0.02652

# # #

Power analysis
Power analysis for chi-square test of independence

B —— o -
### Power analysis, chi-square independence, pp. 66-67

B —— o -
# This example assumes you are using a Chi-square test of

# independence. The example in the Handbook appears to use

# a Chi-square goodness-of-fit test

# In the pwr package, for the chi-square test of independence,
# the table probabilities should sum to 1

Input =(

"Genotype No.cancer Cancer

GG 0.18 0.165
GA 0.24 0.225
AA 0.08 0.110
ll)

P = as.matrix(read.table(textConnection(Input),
header=TRUE,
row.names=1))

P
No.cancer Cancer
GG 0.18 0.165
GA 0.24 0.225
AA 0.08 0.110
sum(P) # sum of values in the P matrix
[1] 1
Tibrary(pwr)

effect.size = ES.w2(P)
degrees = (nrow(P)-1)*(ncol(P)-1) # calculate degrees of freedom

pwr.chisq.test(
w=effect.size,

N=NULL, # Total number of observations
df=degrees,
power=0. 80, # 1 minus Type II probability
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sig.level=0.05 # Type I probability

)
w = 0.07663476 # Answer differs significantly
N = 1640.537 #  from Handbook
df = 2 # Total observations
sig.level = 0.05
power = 0.8

G-test of Independence

There are a few different options for performing G-tests of independence in R. One is the G.test
function in the package RVAideMemoire. Another is the GTest function in the package DescTools.
Finally, the function by Pete Hurd that we used for G-test goodness-of-fit can be used for the test
of independence as well.

When to use it
G-test example with functions in DescTools, RVAideMemoire, and by Pete Hurd

BHH —
### vaccination example, G-test of independence, pp. 68-69

BHH — o
Input =(

"Injection.area No.severe Severe

Thigh 4788 30
Arm 8916 76
ll)

Matriz = as.matrix(read.table(textConnection(Input),
header=TRUE,
row.names=1))

Matriz

Tibrary(DescTools)
GTest(Matriz,
correct="none", # "none

)

williams yates"

Log likeTihood ratio (G-test) test of independence without correction

G = 2.1087, X-squared df = 1, p-value = 0.1465

Tibrary(RVAideMemoire)
G.test(Matriz)
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G = 2.1087, df = 1, p-value = 0.1465 # Note values differ from
# the Handbook
# for this example

source("http://www.psych.ualberta.ca/~phurd/cruft/g.test.r")
g.test(Matriz,

correct="none", # "none" "williams yates"
simulate.p.value=FALSE
)

Log 1likeTlihood ratio statistic (G) = 2.1087,
X-squared df = 1, p-value = 0.1465

# # #

Null hypothesis

How the test works
See the Handbook for information on these topics.

Post-hoc tests

For the following example of post-hoc pairwise testing, we'll use the pairwise.G.test function from
the package RVAideMemoire to make the task easier. Then we’ll use pairwise.table in the native
stats package as an alternative.

Post-hoc pairwise G-tests with RVAideMemoire

##Ht ------ - - -o- - ———_——-— ————————————————— -
### Post-hoc example, G-test of independence, pp. 69-70
##Ht ------ - - -o- - ———_——-— ————————————————— -
Input =(
"Supplement No.cancer Cancer

'Selenium' 8177 575

'Vitamin E' 8117 620

'Selenium+E’ 8147 555

'Placebo’ 8167 529
ll)

Matriz = as.matrix(read.table(textConnection(Input),
header=TRUE,
row.names=1))

Matriz

Tibrary(RVAideMemoire)
G.test(Matriz)

G = 7.7325, df = 3, p-value = 0.05188
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Tibrary(RVAideMemoire)
pairwise.G.test(Matriz,
p.method = "none") # Can adjust p-values;
# see ?p.adjust for options

Selenium Vvitamin E Selenium+E
vitamin E 0.168 - -
Selenium+E 0.606 0.058 -

Placebo 0.187 0.007 0.422

Post-hoc pairwise G-tests with pairwise.table
As is, this function works on a matrix with two columns, and compares rows.

#t ------ - n-oo- - oo o-—_———————— -
### Post-hoc example, G-test of independence, pp. 69-70
#Ht -------—----o- - -—_——_—_—E————————————— -
Input =(
"Supplement No.cancer Cancer

'Selenium' 8177 575

'Vitamin E' 8117 620

'Selenium+E’ 8147 555

'Placebo’ 8167 529
ll)

Matriz = as.matrix(read.table(textConnection(Input),
header=TRUE,
row.names=1))

Matriz
Tibrary(DescTools)

GTest(Matriz,
correct="none")

Log 1likeTihood ratio (G-test) test of independence without correction
G = 7.7325, X-squared df = 3, p-value = 0.05188

FUN = function(i,j){
GTest(matrix(c(Matriz[i,1], Matriz[i,2],
Matriz[j,1], Matriz[j,2]),
nrow=2,
byrow=TRUE) ,
correct="none")$ p.value # "none

}

wilTliams yates"

pairwise.table(FUN,
rownames (Matriz),
p.adjust.method="none") # Can adjust p-values
# See ?p.adjust for options

49



G-TEST OF INDEPENDENCE AN R COMPANION FOR THE HANDBOOK OF BIOLOGICAL STATISTICS

Selenium Vitamin E Selenium+E
Vitamin E 0.1677388 NA NA
Selenium+E 0.6060951 0.058385135 NA
Placebo 0.1866826 0.007004601 0.4215013

# # #

Assumptions
See the Handbook for information on this topic.

Examples
G-tests with DescTools, RVAideMemoire, or Pete Hurd
Bl —mmmm e e e
### Helmet example, G-test of independence, p. 72
Bl —mmmm e e e o
Input =(
"PSE Head.injury Other.injury
Helemt 372 4715
No.helmet 267 1391
ll)

Matriz = as.matrix(read.table(textConnection(Input),
header=TRUE,
row.names=1))

Matriz

Tibrary(DescTools)
GTest(Matriz,
correct="none", # "none" "williams" "yates"

)

Log 1likeTihood ratio (G-test) test of independence without correction

G = 101.54, X-squared df = 1, p-value < 2.2e-16

Tibrary(RVAideMemoire)
G.test(Matriz)

G = 101.5437, df = 1, p-value < 2.2e-16

source("http://www.psych.ualberta.ca/~phurd/cruft/g.test.r")
g.test(Matriz,

correct="none", # "none" "williams" "yates"
simulate.p.value=FALSE

)

Log TikeTihood ratio statistic (G) = 101.5437,
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X-squared df = 1, p-value < 2.2e-16

# # #
B .
### Gardemann apolipoprotein example, G-test of independence,
#H# p. 72
B~ .
Input =(

"Genotype No.disease Coronary.disease

ins.ins 268 807
ins.del 199 759
del.del 4?2 184
ll)

Matriz = as.matrix(read.table(textConnection(Input),
header=TRUE,
row.names=1))

Matriz

Tibrary(DescTools)
GTest(Matriz,
correct="none", # "none

)

williams yates"

Log 1likeTihood ratio (G-test) test of independence without correction
G = 7.3008, X-squared df = 2, p-value = 0.02598
Tibrary(RVAideMemoire)
G.test(Matriz)
G = 7.3008, df = 2, p-value = 0.02598

source("http://www.psych.ualberta.ca/~phurd/cruft/g.test.r")
g.test(Matriz,

correct="none", # "none" "williams yates"
simulate.p.value=FALSE
)

Log likelihood ratio statistic (G) = 7.3008,
X-squared df = 2, p-value = 0.02598

# # #

Graphing the results
Graphing is discussed above in the “Chi-square Test of Independence” section.
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Similar tests

Chi-square vs. G-test
See the Handbook for information on these topics. Fisher’s exact test, chi-square test, and
McNemar’s test are discussed elsewhere in this book.

How to do the test

G-test of independence with data as a data frame

In the following example, the data is read in as a data frame, and the xtabs function is used to
tabulate the data and convert them to a contingency table.

#t ------—-— oo o o_—_—_——————————— -
### Gardemann apolipoprotein example, G-test of independence,
#i## SAS example, pp. 74-75
#it# Example using cross-tabulation
##t ------ - -o- - _—_——.——_———————————— -
Input =(
"Genotype Health Count
ins-ins no_disease 268
ins-ins disease 807
ins-del no_disease 199
ins-del disease 759
del-del no_disease 42
del-del disease 184
")

Data.frame = read.table(textConnection(Input),header=TRUE)

### Cross-tabulate the data

Data.xtabs = xtabs(Count ~ Genotype + Health,
data=Data.frame)

Data.xtabs

Health
Genotype disease no_disease
del-del 184 42
ins-del 759 199
ins-ins 807 268
summary(Data.xtabs) # includes N and factors

Number of cases in table: 2259
Number of factors: 2

### G-tests
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Tibrary(DescTools)
GTest(Data.xtabs,
correct="none", # "none

)

williams" "yates"

Log TikeTihood ratio (G-test) test of independence without correction
G = 7.3008, X-squared df = 2, p-value = 0.02598
Tibrary(RVAideMemoire)
G.test(Data.xtabs)
G = 7.3008, df = 2, p-value = 0.02598

source("http://www.psych.ualberta.ca/~phurd/cruft/g.test.r")
g.test(Data.xtabs,

correct="none", # "none" "williams" "yates"
simulate.p.value=FALSE
)

Log likelihood ratio statistic (G) = 7.3008,
X-squared df = 2, p-value = 0.02598

# # #

Power analysis
To calculate power or required samples, follow examples in the “Chi-square Test of
Independence” section.

Fisher’s Exact Test of Independence

When to use it
Null hypothesis

How the test works
See the Handbook for information on these topics.

Post-hoc tests

For the following example of post-hoc pairwise testing, we’'ll use the fisher.multcomp function
from the package RVAideMemoire to make the task easier. Then we’ll use pairwise.table in the
native stats package as an alternative.

Post-hoc pairwise Fisher’s exact tests with RVAideMemoire

BHH - —— e
### Post-hoc example, Fisher’s exact test, p. 79
BHH - —— e
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Input =(

"Frequency Damaged Undamaged

Daily 1 24
weekly 5 20
Monthly 14 11
Quarterly 11 14
")

Matriz = as.matrix(read.table(textConnection(Input),
header=TRUE,
row.names=1))

Matriz

fisher.test(Matriz,
alternative="two.sided")

p-value = 0.0001228

alternative hypothesis: two.sided

Tibrary(RVAideMemoire)
fisher.multcomp(Matriz,

p.method = "none")
# Can adjust p-values;
# See ?p.adjust for options

Damaged:Undamaged

Daily:weekly 0.1894630
Daily:Monthly 0.0001019
Daily:Quarterly 0.0019215
weekly:Monthly 0.0186284
weekly:Quarterly 0.1283538
Monthly:Quarterly 0.5721384

Post-hoc pairwise Fisher’s exact tests with pairwise.table
As is, this works on a matrix with two columns, and compares rows.

BHH - -
### Post-hoc example, Fisher’s exact test, p. 79

BHH - — -
Input =(

"Frequency Damaged Undamaged

Daily 1 24
weekly 5 20
MonthTy 14 11
Quarterly 11 14
")
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Matriz = as.matrix(read.table(textConnection(Input),
header=TRUE,
row.names=1))

Matriz

fisher.test(Matriz,
alternative="two.sided")

p-value = 0.0001228
alternative hypothesis: two.sided

FUN = function(i,j){
fisher.test(matrix(c(Matriz[i,1l], Matriz[i,2],
Matriz[j,1l], Matriz[j,2]),
nrow=2,
byrow=TRUE))$ p.value
}

pairwise.table(FUN,
rownames (Matriz),
p.adjust.method="none")

# Can adjust p-values;

# See ?p.adjust for options

Daily weekly  Monthly
weekly 0.1894630193 NA NA
Monthly  0.0001019213 0.0186284 NA
Quarterly 0.0019215096 0.1283538 0.5721384

# # #

Assumptions
See the Handbook for information on this topic.

Examples
Examples of Fisher’s exact test with data in a matrix

B —m -
### Chipmunk example, Fisher’s exact test, p. 80

B —m -
Input =(

"Distance Trill No.trill

10m 16 8
100m 3 18
ll)

Matriz = as.matrix(read.table(textConnection(Input),
55



FISHER’S EXACT TEST OF INDEPENDENCE AN R COMPANION FOR THE HANDBOOK OF BIOLOGICAL STATISTICS

header=TRUE,
row.names=1))

Matriz

fisher.test(Matriz,
alternative="two.sided")

p-value = 0.0006862

# # #

B ——— o
### Drosophila example, Fisher’s exact test, p. 81
B ——— o
Input =(
"variation Synonymous Replacement

'"Polymorphisms' 43 2

'Fixed differences' 17 7
ll)

Matriz = as.matrix(read.table(textConnection(Input),
header=TRUE,
row.names=1))
Matriz
fisher.test(Matriz,
alternative="two.sided")

p-value = 0.006653

# # #

BHH — .
### King penguin example, Fisher’s exact test, p. 81
B~ m .
Input =(

"Site Alive Dead

Lower 43 7

Middle 44 6

Upper 49 1
" )

Matriz = as.matrix(read.table(textConnection(Input),
header=TRUE,
row.names=1))
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Matriz

fisher.test(Matriz,
alternative="two.sided")

p-value = 0.08963
alternative hypothesis: two.sided

# # #

B ——— o
### Moray eel example, Fisher’s exact test, pp. 81-82
B ——— o
Input =(

"Site G.moringa G.vicinus

Grass 127 116

Sand 99 67

Border 264 161

ll)

Matriz = as.matrix(read.table(textConnection(Input),
header=TRUE,
row.names=1))

Matriz

fisher.test(Matriz,
alternative="two.sided")

p-value = 0.04438
alternative hypothesis: two.sided

# # #

#Ht ----——----—-— -
### Herons example, Fisher’s exact test, p. 82
#Ht ----——----—-— -
Input =(

"Site Heron Egret

Vegetation 15 8

Shoreline 20 5

water 14 7

Structures 6 1

Il)

Matriz = as.matrix(read.table(textConnection(Input),
header=TRUE,
row.names=1))
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Matriz

fisher.test(Matriz,
alternative="two.sided")

p-value = 0.5491
alternative hypothesis: two.sided

# # #

Graphing the results
Graphing is discussed above in the “Chi-square Test of Independence” section.

Similar tests - McNemar's test

Care is needed in setting up the data for McNemar’s test. For a before-and-after test, the
contingency table is set-up as before and after as row and column headings, or vice-versa. Note
that the total observations in the contingency table is equal to the number of experimental units.
That is, in the following example there are 62 men, and the sum of the counts in the contingency
table is 62. If you set up the table incorrectly, you might end with double this number, and this
will not yield the correct results.

McNemar's test with data in a matrix

Bl —mm e e e e e o
### Dysfunction example, McNemar test, pp. 82-83
Bl —mm e e e e o
Input =(

"Row After.no After.yes

Before.no 46 10

Before.yes 0 6

" )

Matriz = as.matrix(read.table(textConnection(Input),
header=TRUE,
row.names=1))

Matriz

mcnemar.test(Matriz, correct=FALSE)

McNemar's chi-squared = 10, df = 1, p-value = 0.001565

# # #

McNemar's test with data in a data frame

e
### Dysfunction example, McNemar test, pp. 82-83
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#H## Example using cross-tabulation
B —m -
Input =(

"ED.before ED.after Count

no no 46
no yes 10
yes no 0
yes yes 6
")

Data = read.table(textConnection(Input),header=TRUE)
Data.xtabs = xtabs(Count ~ ED.before + ED.after, data=Data)
Data.xtabs
ED.after
ED.before no yes
no 46 10
yes 0 6
mcnemar.test(Data.xtabs, correct=FALSE)

McNemar's chi-squared = 10, df = 1, p-value = 0.001565

# # #

How to do the test
Fisher’s exact test with data as a data frame

B —m -
### Chipmunk example, Fisher’s exact test, SAS example, p. 83

### Example using cross-tabulation

B —m -
Input =(

"Distance Sound Count

10m trill 16
10m notrill 8
100m trill 3
100m notrill 18
")

Data = read.table(textConnection(Input), header=TRUE)
Data.xtabs = xtabs(Count ~ Distance + Sound, data=Data)
Data.xtabs

Sound
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Distance notrill trill
100m 18 3
10m 8 16

summary(Data.xtabs)

### Fisher’s exact test of independence

fisher.test(Data.xtabs,
alternative="two.sided")

p-value = 0.0006862

# # #
2 T T T
### Bird example, Fisher’s exact test, SAS example, p. 84
#it# Example using cross-tabulation
FHE —mmm e e e e
Input =

"Bird Substrate Count
heron vegetation 15
heron shoreline 20
heron water 14

heron structures 6

egret vegetation 8

egret shoreline 5

egret water 7

egret structures 1

")
Data = read.table(textConnection(Input), header=TRUE)

Data.xtabs = xtabs(Count ~ Bird + Substrate, data=Data)

Data.xtabs

Substrate
Bird shoreline structures vegetation water
egret 5 1 8 7
heron 20 6 15 14

summary(Data.xtabs)

### Fisher’s exact test of independence

fisher.test(Data.xtabs,
alternative="two.sided")

p-value = 0.5491
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alternative hypothesis: two.sided

# # #

Power analysis
To calculate power or required samples, follow examples in the “Chi-square Test of
Independence” section.

There, the result was

N = 1640.537 # Total observations

compared with the value in the Handbook of Nital = 1523 for this section.

Small Numbers in Chi-square and G-tests

The problem with small numbers
See the Handbook for information on these topics.

Yates’ and William’s corrections in R
The following table lists the continuity corrections available for the Chi-square tests and G-tests
discussed in this book.

Test Function Package Correction | Option Default | Notes
Chi-square | chisq.test stats Yates correct=TRUE | TRUE 2x2
table
only
G g.test Pete Hurd Yates correct= “none”
"yates"
Williams correct=
"williams"
G G.test RVAide (none)
Memoire
G GTest DescTools Yates correct= “none”
llyatesll
Williams correct=
"williams"
Pooling
Recommendation

See the Handbook for information on these topics.
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Repeated G-tests of Goodness-of-Fit

These examples use the G.test function in the RVAideMemoire package, but the GTest function in
the DescTools package or Pete Hurd'’s g.test function could be used in the same manner.

When to use it
Null hypothesis

See the Handbook for information on these topics.

How to do the test
Repeated G-tests of goodness-of-fit example

#H# -
### Arm crossing example, Repeated G-tests of goodness-of-fit,
#i## pp. 91-93
#H# -
Input =(

"Ethnic.group R L

Yemen 168 174

Djerba 132 195

Kurdistan 167 204

Libya 162 212

Berber 143 194

Cochin 153 174

")

Data = read.table(textConnection(Input),header=TRUE)

Individual G-tests

Tibrary(RVAideMemoire)

Fun.G = function (Q{ # Functions
G.test(x=c(Q["R"], Q["L"D), # to calculate
p=c(0.5, 0.5) # individual G’s,
)$statistic # df’s, and p-values

}

Fun.df = function (Q{

G.test(x=c(Q["R"], Q["L"1),
p=c(0.5, 0.5)
)S$parameter

}

Fun.p = function (Q){

G.test(x=c(Q["R"], Q["L"]),
p=c(0.5, 0.5)
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)$p.value
}
Tibrary(dplyr)
Data=
mutate(Data,
Prop.R = R / (R + L), # calculate proportion
# of right arms
G = apply(patalc("R", "L")], 1, Fun.G),
df = apply(pata[c("R", "L"™)], 1, Fun.df),
p.value = apply(pata[c("R", "L")], 1, Fun.p)
)
Data
Ethnic.group R L Prop.R G df p.value
1 Yemen 168 174 0.4912281 0.1052686 1 0.745596489
2 Djerba 132 195 0.4036697 12.2138397 1 0.000474363
3 Kurdistan 167 204 0.4501348 3.6961684 1 0.054537574
4 Libya 162 212 0.4331551 6.7045477 1 0.009616732
5 Berber 143 194 0.4243323 7.7478346 1 0.005377698
6 Cochin 153 174 0.4678899 1.3495524 1 0.245356383
Heterogeneity G-test
Data.matrix = as.matrix(pata[c("R", "L")]) # We need a data matrix
# to run G-test
Data.matrix # for heterogeneity
R L
[1,] 168 174
[2,] 132 195
[3,] 167 204
[4,] 162 212
[5,] 143 194
[6,] 153 174
G.test(Data.matrix) # Heterogeneity
G-test
G = 6.7504, df = 5, p-value = 0.2399
Pooled G-test
Total.R = sum(Data$r) # Set up data for pooled
Total.L = sum(Data$L) # G-test
observed = c(Total.R, Total.L)
expected = c(0.5, 0.5)
G.test(
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x=observed,
p=expected

)

G-test for given probabilities
G = 25.0668, df = 1, p-value = 5.538e-07

Total G-test

Total.G = sum(Data$G) # Set up data for total
# G-test

Total.df = sum(pata$df)

Total.G # Total

[1] 31.81721

Total.df

[1] 6

pchisq(Total.G,

df= Total.df,
Tower.tail=FALSE
)

[1] 1.768815e-05

Example
Repeated G-tests of goodness-of-fit example
e
### Drosophila example, Repeated G-tests of goodness-of-fit,
#it# p. 93
B~ m .
Input =(
"Trial D S
'"Trial 1' 296 366
'"Trial 2' 78 72
'"Trial 3' 417 467
ll)

Data = read.table(textConnection(Input),header=TRUE)
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Individual G-tests

Tibrary(RvVAideMemoire)

Functions
to calculate
individual G’s and
p-values

Fun.G = function (Q){ #
G.test(x=c(Q["D"], Q["s"]), #
p=c(0.5, 0.5) #
)$statistic #
h

Fun.df = function (Q{
G.test(x=c(Q["D"], Q["s"1),
p=c(0.5, 0.5)
)$parameter

}

Fun.p = function (Q){
G.test(x=c(Q["D"], Q["s"]),
p=c(0.5, 0.5)
)$p.value
ks

Tibrary(dplyr)

Data =

mutate(Data,
G = apply(patalc("D", "S"™)], 1, Fun.G),
df = apply(pata[c("D", "S")], 1, Fun.df),
p.value = apply(pata[c("D", "S")], 1, Fun.p)
)

Data

Trial D S G df p.value
1 Trial 1 296 366 7.415668 1 0.00646583
2 Trial 2 78 72 0.240064 1 0.62415986
3 Trial 3 417 467 2.829564 1 0.09254347

Heterogeneity G-test

Data.matrix = as.matrix(patal[c("D", "S")]1) # We need a data matrix
# to run G-test
Data.matrix # for heterogeneity

D S
[1,] 296 366
[2,] 78 72
[3,]1 417 467

G.test(Data.matrix) # Heterogeneity

G-test
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G = 2.8168, df = 2, p-value = 0.2445

Pooled G-test

Total.D = sum(Data$p) # Set up data for pooled
Total.S = sum(Data$s) # G-test
observed = c(Total.D, Total.S)
expected = c(0.5, 0.5)
G.test( # Pooled
x=0observed,
p=expected
)

G-test for given probabilities
G = 7.6685, df = 1, p-value = 0.005619

Total G-test

Total.G = sum(Data$G) # Set up data for total
# G-test
degrees = 3
Total.G = sum(Data$G) # Set up data for total
# G-test
Total.df = sum(pata$df)
Total.G # Total
[1] 10.4853
Total.df
[1] 3

pchisq(Total.G,
df=Total.df,
Tower.tail=FALSE

)
[1] 0.01486097

Similar tests
See the Handbook for information on these topics.
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Cochran-Mantel-Haenszel Test for Repeated
Tests of Independence

The Cochran-Mantel-Haenszel test can be performed in R with the mantelhaen.test function in
the native stats package. A few other useful functions come from the package vcd. One is

woolf test, which performs the Woolf test for homogeneity of the odds ratio across strata levels.
This has a similar function to the Breslow-Day test mentioned in the Handbook. If this test is
significant, the C-M-H test may not be appropriate. The Breslow-Day test itself can be performed
with a function in the package DescTools. For cautions about using this test, see the
documentation for this function, or other appropriate sources.

Tibrary(DescTools); ?BreslowbDayTest

There are a couple of different ways to generate the three-way contingency table. The table can
be read in with the read.ftable function. Note that the columns are the stratum variable.

Caution should be used with the formatting, since read.ftable can be fussy. I've noticed that it
doesn’t like leading spaces in the rows. Certain editors, such as the one in R Studio, may add
leading spaces when this code is pasted in. To alleviate this, delete those spaces manually, or
paste the code into a plain text editor, save the file as a .R file, and then open that file with R
Studio.

Another way to generate the contingency table is beginning with a data frame and tabulating the
data using the xtabs function. The second example uses this method.

When to use it

Null hypothesis

How the test works

Assumptions

See the Handbook for information on these topics.

Examples
Cochran-Mantel-Haenszel Test with data read by read.ftable

e
### Handedness example, Cochran-mantel-Haenszel test, p. 97-98
#i#t# Example using read.ftable

BHH — o

# Note no spaces on lines before row names.
# read.ftable can be fussy about Teading spaces.

Input =(

Group W.Child B.adult PA.white wW.men G.soldier
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whor Handed

Clockwise Right 708 136 106 109 801
Left 50 24 32 22 102

CounterCl Right 169 73 17 16 180
Left 13 14 4 26 25

")

Tabla = as.table(read.ftable(textConnection(Input)))

ftable(Tabla) # Display a flattened table

Cochran-Mantel-Haenszel test

mantelhaen.test(Tabla)

Mantel-Haenszel X-squared = 5.9421, df = 1, p-value = 0.01478

Woolf test
Tibrary(vcd)
oddsratio(Tabla, Tog=TRUE) # Show log odds for each 2x2
w.child B.adult PA.white w.men G.soldier

0.08547173 0.08319894 -0.24921579 2.08581324 0.08680711

Tibrary(vecd)
woolf_test(Tabla) # wWoolf test for homogeneity of
# odds ratios across strata.
# If significant, C-M-H test
# s not appropriate

woolf-test on Homogeneity of 0dds Ratios (no 3-Way assoc.)

X-squared = 22.8165, df = 4, p-value = 0.0001378

Breslow-Day test

Tibrary(DescTools)
BreslowDayTest(Tabla)

Breslow-Day Test for Homogeneity of the 0dds Ratios

X-squared = 24.7309, df = 4, p-value = 5.698e-05

Individual Fisher exact tests
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n = dim(Tabla) [3]

for(i in 1:n){
Name = dimnames(Tabla)[3]$Group[i]
P.value = fisher.test(Tabla[,,i])$p.value
cat(Name, "\n")
cat("Fisher test p-value: ",
cat("\n")
}

"\n")

P.value,

### Note: "Group" must be the name of the stratum variable

W.Child
Fisher test p-value: 0.7435918
B.adult
Fisher test p-value: 0.8545009
PA.white
Fisher test p-value: 0.7859788
W.men
Fisher test p-value: 6.225227e-08
G.soldier
Fisher test p-value: 0.7160507

# # #

Cochran-Mantel-Haenszel Test with data entered as a data frame

#it#
### Mussel example, Cochran-mMantel-Haenszel test, pp. 98-99

69

#it# Example using cross-tabulation of a data frame
#Ht ----——----—-— -
Input =(

"Location Habitat Allele count

Tillamook marine 94 56

Tillamook estuarine 94 69

Tillamook marine non-94 40

Tillamook estuarine non-94 77

Yaquina marine 94 61

Yaquina estuarine 94 257

Yaquina marine non-94 57

Yaquina estuarine non-94 301

Alsea marine 94 73

Alsea estuarine 94 65

Alsea marine non-94 71

Alsea estuarine non-94 79

Umpqua marine 94 71

Umpqua estuarine 94 48
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Umpqua marine non-94 55
Umpqua estuarine non-94 48
ll)

Data = read.table(textConnection(Input),header=TRUE)

### Specify the order of factor levels
### Otherwise, R will alphabetize them

Tibrary(dplyr)

Data =

mutate(Data,
Location = factor(Location, levels=unique(Location)),
Habitat = factor(Habitat, levels=unique(Habitat)),
Allele = factor(Allele, levels=unique(Allele))

)

### Cross-tabulate the data
### Note here, Location is stratum variable (is Tlast)
### Habitat x Allele are 2 x 2 tables

Data.xtabs = xtabs(Count ~ Allele + Habitat + Location,
data=Data)
ftable(Data.xtabs) # Display a flattened table

Location Tillamook Yaquina Alsea Umpqua
Allele Habitat

94 marine 56 61 73 71
estuarine 69 257 65 48
non-94 marine 40 57 71 55
estuarine 77 301 79 48

Cochran-Mantel-Haenszel test

mantelhaen.test(Data.xtabs)

Mantel-Haenszel X-squared = 5.0497, df = 1, p-value = 0.02463

Woolf test
Tibrary(vcd)
oddsratio(Dbata.xtabs, Tog=TRUE) # Show log odds for each 2x2
Tillamook  Yaquina Alsea Umpqua

0.4461712 0.2258568 0.2228401 0.2553467
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Tibrary(vcd)
woolf_test(Data.xtabs) # woolf test for homogeneity of
# odds ratios across strata.
# If significant, C-M-H test
#

is not appropriate
woolf-test on Homogeneity of 0dds Ratios (no 3-Way assoc.)

X-squared = 0.5292, df = 3, p-value = 0.9124

Breslow-Day test

Tibrary(DescTools)
BreslowDayTest(Data.xtabs)

Breslow-Day Test for Homogeneity of the 0dds Ratios

X-squared = 0.5295, df = 3, p-value = 0.9124

Individual Fisher exact tests

n = dim(bata.xtabs)[3]

for(i in 1:n){
Name = dimnames(Data.xtabs)[3]$Location[i]
P.value = fisher.test(Data.xtabs[,,i])$p.value
cat(Name, "\n")
cat("Fisher test p-value: ", P.value, "\n")
cat("\n")
3

### Note: "Location" must be the name of the stratum variable

Tillamook
Fisher test p-value: 0.1145223

Yaquina
Fisher test p-value: 0.2665712

Alsea
Fisher test p-value: 0.4090355

Umpqua
Fisher test p-value: 0.4151874

# # #

Cochran-Mantel-Haenszel Test with data read by read.ftable
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B ——— o -
### Niacin example, Cochran-Mantel-Haenszel test, p. 99

#i#t# Example using read.ftable

B ——— o

# Note no spaces on lines before row names.
# read.ftable can be fussy about Teading spaces.

Input =(

Study FATS AFREGS ARBITER.Z2 HATS CLAS.1
Supplement Revasc

Niacin Yes 2 4 1 1 2
No 46 67 86 37 92
Placebo Yes 11 12 4 6 1
No 41 60 76 32 93
")

Tabla = as.table(read.ftable(textConnection(Input)))

ftable(Tabla) # Display a flattened table

Cochran-Mantel-Haenszel test

mantelhaen.test(Tabla)

Mantel-Haenszel X-squared = 12.7457, df = 1, p-value = 0.0003568

Woolf test
Tibrary(vecd)
oddsratio(Tabla, Tog=TRUE) # Show log odds for each 2x2

FATS AFREGS ARBITER.?Z2 HATS CLAS.1
-1.8198174 -1.2089603 -1.5099083 -1.9369415 0.7039581

Tibrary(vecd)
woolf_test(Tabla) # wWoolf test for homogeneity of
# odds ratios across strata.
# If significant, C-M-H test
# 1is not appropriate

woolf-test on Homogeneity of 0dds Ratios (no 3-Way assoc.)

X-squared = 3.4512, df = 4, p-value = 0.4853

Breslow-Day test

Tibrary(DescTools)
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BreslowDayTest(Tabla)
Breslow-Day Test for Homogeneity of the 0Odds Ratios

X-squared = 4.4517, df = 4, p-value = 0.3483

Individual Fisher exact tests

n = dim(Tabla) [3]

for(i in 1:n){
Name = dimnames(Tabla)[3]$Study[i]
P.value = fisher.test(Tabla[,,i])$p.value
cat(Name, "\n")
cat("Fisher test p-value: ", P.value, "\n")
cat("\n")
b

### Note: "Study" must be the name of the stratum variable

FATS
Fisher test p-value: 0.01581505

AFREGS
Fisher test p-value: 0.0607213
ARBITER.?2
Fisher test p-value: 0.1948915
HATS
Fisher test p-value: 0.1075169
CLAS.1
Fisher test p-value: 1
# # #

Graphing the results

Simple bar plot with categories and no error bars
e
### Simple bar plot of proportions, p. 99
#it# Uses data in a matrix format
e
Input =(

"Habitat Tillamook Yaquina Alsea  Umpqua

Marine 0.5833 0.5169 0.5069 0.5635
Estuarine 0.4726 0.4606 0.4514 0.5000
ll)
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Matriz = as.matrix(read.table(textConnection(Input),
header=TRUE,
row.names=1))

Matriz

barplot(Matriz,
beside=TRUE,
Tegend=TRUE,
ylim=c(0, 0.9),
xTlab="Location",
ylab="Lap94 proportion"
)

. B Marine
0 Estuarine

0.8

0.6

Lap94 proportion
0.4

0.2

Tillamook Yaquina Alsea Umpqua

Location

Bar plot with categories and error bars

This example includes code to calculate the confidence intervals for the error bars and add them
to the data frame. This code could be excluded if these values were calculated manually and
added to the data frame.

B —m -
### Graph example, bar plot of proportions, p. 99

#H## Using ggplot2

#H## Plot adapted from:

#H## shinyapps.stat.ubc.ca/r-graph-catalog/

B —m -

Input =(

"Location Habitat Allele Count Total Lap.94.Proportion
Tillamook Marine 94 56 96 0.5833
Tillamook Estuarine 94 69 146 0.4726
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Yaquina Marine 94 61 118 0.5169
Yaquina  Estuarine 94 257 558 0.4606
Alsea Marine 94 73 144 0.5069
Alsea Estuarine 94 65 144 0.4514
Umpqua Marine 94 71 126 0.5635
Umpqua Estuarine 94 48 96 0.5000
")

Data = read.table(textConnection(Input),header=TRUE)

### Specify the order of factor levels
### Otherwise, R will alphabetize them

Tibrary(dplyr)

Data =

mutate(Data,
Location = factor(Location, levels=unique(Location)),
Habitat = factor(Habitat, levels=unique(Habitat)),
Allele = factor(Allele, levels=unique(Data$ Allele))
)

### Add confidence intervals

Fun.low = function (x){
binom.test(x["Count"], x["Total"],
0.5)% conf.int[1]
3

Fun.up = function (x){
binom.test(x["Count"], x["Total"],
0.5)% conf.int[2]

3
Data =
mutate(Data,
Tow.ci = apply(patal[c("Count", "Total")], 1, Fun.low),
upper.ci = apply(patalc("Count", "Total")], 1, Fun.up)
)
Data
Location Habitat Allele Count Total Lap.94.Proportion Tow.ci upper.ci
1 Tillamook Marine 94 56 96 0.5833 0.4782322 0.6831506
2 Tillamook Estuarine 94 69 146 0.4726 0.3894970 0.5568427
3 Yaquina Marine 94 61 118 0.5169 0.4231343 0.6098931
4 Yaquina Estuarine 94 257 558 0.4606 0.4186243 0.5029422
5 Alsea Marine 94 73 144 0.5069 0.4224208 0.5911766
6 Alsea Estuarine 94 65 144 0.4514 0.3684040 0.5364149
7 Umpqua Marine 94 71 126 0.5635 0.4723096 0.6516209
8 Umpqua Estuarine 94 48 96 0.5000 0.3961779 0.6038221
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### Plot adapted from:
###  shinyapps.stat.ubc.ca/r-graph-catalog/

Tibrary(ggplot2)
Tibrary(grid)

ggplot(Data,
aes(x = Location, y = Lap.94.Proportion, fill = Habitat,
ymax=upper.ci, ymin=low.ci)) +

geom_bar(stat="identity", position "dodge", width = 0.7) +

geom_bar(stat="identity", position = "dodge",
colour = "black", width = 0.7,
show_guide = FALSE) +

scale_y_continuous(breaks = seq(0, 0.80, 0.1),

Timits = c(0, 0.80),
expand = c(0, 0)) +
scale_fill_manual(name = "Count type" ,
values = c('grey80', 'grey30'),
labels = c("Marine",
"Estuarine")) +
geom_errorbar(position=position_dodge(width=0.7),
width=0.0, size=0.5, color="black") +
Tabs(x = "Location",
y = "Lap94 proportion") +
## ggtitle("mMain title") +
theme_bw() +
theme(panel.grid.major.x = element_blank(),
panel.grid.major.y = element_line(colour = "grey50"),
plot.title = element_text(size = rel(1.5),
face = "bold", vjust = 1.5),
axis.title = element_text(face = "bold"),
Tegend.position = "top",
Tegend.title = element_blank(),
Tegend.key.size = unit(0.4, "cm"),
Tegend.key = element_rect(fill = "black™),
axis.title.y = element_text(vjust= 1.8),
axis.title.x = element_text(vjust= -0.5)
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Tillamook Yaquina Alsea Umpqua
Location
Bar plot of proportions vs. categories. Error bars indicate 95% confidence intervals for
proportion.
Similar tests

See the Handbook for information on this topic.

How to do the test
R code for the SAS example is shown in the “Examples” section above.
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Descriptive Statistics

Statistics of Central Tendency

Most common statistics of central tendency can be calculated with functions in the native stats
package. The psych and DescTools packages add functions for the geometric mean and the
harmonic mean. The describe function in the psych package includes the mean, median, and
trimmed mean along with other common statistics. In the native stats package, summary is a
quick way to see the mean, median, and quantiles for numeric variables in a data frame. The
mode is not commonly calculated, but can be found in DescTools.

Many functions which determine common statistics of central tendency or dispersion will return
an NA if there are any missing values (NA’s) in the analyzed data. In most cases this behavior can
be changed with the na.rm=TRUE option, which will simply exclude any NA’s in the data. The
functions shown here either exclude NA’s by default or use the na.rm=TRUE option.

Introduction

The normal distribution
See the Handbook for information on these topics.

Different measures of central tendency
Methods are described in the “Example” section below.

Example
B —m -
### Central tendency example, pp. 105-106
B —m -
Input =(
"Stream Fish
Mill_Creek_1 76
Mill_Creek_2 102

North_Branch_Rock_cCreek_1 12
North_Branch_Rock_Creek_2 39

Rock_cCreek_1 55
Rock_Creek_2 93
Rock_Creek_3 98
Rock_Creek_4 53
Turkey_Branch 102
")

Data = read.table(textConnection(Input),header=TRUE)

Arithmetic mean

mean(Data$ Fish, na.rm=TRUE)
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[1] 70

Geometric mean

Tibrary(psych)
geometric.mean(Data$ Fish)

[1] 59.83515

Tibrary(DescTools)
Gmean(Data$ Fish)

[1] 59.83515

Harmonic mean

Tibrary(psych)
harmonic.mean(pata$ Fish)

[1] 45.05709

Tibrary(DescTools)
Hmean(Data$ Fish)

[1] 45.05709

Median
median(Data$ Fish, na.rm=TRUE)

[1] 76

Mode

Tibrary(DescTools)
Mode (Data$ Fish)

[1] 102

Summary and describe functions for means, medians, and other statistics
The interquartile range (IQR) is 3¢ Qu. minus 15t Qu.

summary(Data$ Fish) # Also works on whole data frames
# will also report count of NA’s

Min. 1st Qu. Median Mean 3rd Qu. Max .
12 53 76 70 98 10
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Tibrary(psych)
describe(pata$ Fish, # Also works on whole data frames
type=2) # Type of skew and kurtosis
vars n mean sd median trimmed mad min max range skew kurtosis se
1 19 70 32.09 76 70 34.1 12 102 90 -0.65 -0.69 10.7
Histogram

hist(pata$ Fish,
col="gray",
main="Maryland Biological Stream Survey",
x1ab="Fish count")

# # #

Maryland Biological Stream Survey

o
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0 20 40 60 80 100 120
Fish count

DescTools to produce summary statistics and plots
The Desc function in the package DescTools produces summary information for individual
variables or whole data frames. It has custom output for factor, numeric, integer, and date

variables.
BHH ——m e
### Central tendency example, pp. 105-106
B ——m -
Input =(
"Stream Fish
Mill_cCreek_1 76
Mill_Creek_2 102

North_Branch_Rock_cCreek_1 12
North_Branch_Rock_Creek_2 39
Rock_cCreek_1 55
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Rock_Creek_2 93
Rock_cCreek_3 98
Rock_Creek_4 53
Turkey_Branch 102
")

Data = read.table(textConnection(Input),header=TRUE)

### Add a numeric variable with the same values as Fish

Data$Fish.num = as.numeric(Data$Fish)

### Produce summary statistics and plots
Tibrary(DescTools)
Desc(Data,

plotit=TRUE)

1 - Stream (factor)

Tength n NAs levels unique dupes
9 9 0 9 9 n

Tevel freq perc cumfreq cumperc

1 MilTl_Creek_1 1 .111 1 L111
2 MilTl_Creek_2 1 .111 2 .222
3 North_Branch_Rock_cCreek_1 1 .111 3 .333
4 North_Branch_Rock_Creek_2 1 .111 4 .444
5 Rock_cCreek_1 1 .111 5 .556
6 Rock_Creek_2 1 .111 6 .667
7 Rock_cCreek_3 1 .111 7 .778
8 Rock_Creek_4 1 .111 8 .889
9 Turkey_Branch 1 .111 9 1.000
< results snipped >
3 - Fish.num (numeric)
Tength n NAsS unique 0s mean meanSE
9 9 0 8 0 70 10.695
.05 .10 .25 median .75 .90 .95
22.800 33.600 53 76 98 102 102
rng sd vcoef mad IQR skew kurt
90 32.086 0.458 34.100 45 -0.448 -1.389

Towest : 12, 39, 53, 55, 76
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highest: 55, 76, 93, 98, 102 (2)

Shapiro-wilks normality test p.value : 0.23393

1 — Stream (factor)

Mill_Creek_1

Mill_Creek 2
North_Branch_Rock”_Creek”1
North_Branch_Rock_Creek”2
Rock Creek 1
Rock”Creek”2

Rock” Creek”3

Rock” Creek” 4

Turkey Branch

00 04 08 00 04 08

frequency percent
3 = Fish.num (numeric)
0.20
0.15
0.10 ~
0.05 A
0.00
 GLGREETTEER T LS | F-4
1.00 - -
754
.50 A
.25
OO - f T T T T T 1
0 20 40 60 80 100 120
DescTools with grouped data
e
### Summary statistics with grouped data, hypothetical data
g
Input =(
"Stream Animal Count
Mill_Creek_1 Fish 76
MiTll_Creek_2 Fish 102
North_Branch_Rock_Creek_1 Fish 12
North_Branch_Rock_Creek_2 Fish 39
Rock_Creek_1 Fish 55
Rock_Creek_2 Fish 93
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Rock_cCreek_3 Fish 98
Rock_Creek_4 Fish 53
Turkey_Branch Fish 102
Mill_Creek_1 Insect 28
Mill_Creek_2 Insect 85

North_Branch_Rock_Creek_1 Insect 17
North_Branch_Rock_Creek_2 1Insect 20

Rock_Creek_1 Insect 33
Rock_Creek_2 Insect 75
Rock_cCreek_3 Insect 78
Rock_Creek_4 Insect 25
Turkey_Branch Insect 87
")

D2 = read.table(textConnection(Input) ,header=TRUE)

Tibrary(DescTools)
Desc(Count ~ Animal,
D2,
digits=1,
plotit=TRUE)

Count ~ Animal

summary:
n pairs: 18, valid: 18 (100%), missings: 0 (0%), groups: 2

Fish Insect

mean 70.0" 49.8'
median 76.0" 33.0"
sd 32.1 30.4
IQR 45.0 53.0
n 9 9
np 0.500 0.500
NAS 0 0
Os 0 0
""min, " max

Kruskal-wallis rank sum test:
Kruskal-wallis chi-squared = 2.125, df = 1, p-value = 0.1449
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n=9

Count ~ Animal

n=9
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20 40 60 80

Fish

T
Insect

How to calculate the statistics

Methods are described in the “Example” section above.

50 55 60 65 70

means

Fisht

Insect~

arp

Statistics of Dispersion

Measures of dispersion—such as range, variance, standard deviation, and coefficient of
variation—can be calculated with standard functions in the native stats package. In addition, a
function, here called summary.list, can be defined to output whichever statistics are of interest.

Introduction

See the Handbook for information on this topic.

Example

Statistics of dispersion example

BB — oo
### Statistics of dispersion example, p. 111
BB —mm mm oo

Input =(

"Stream
Mill_Creek_1
Mill_Creek_2

Fish
76
102

North_Branch_Rock_cCreek_1 12
North_Branch_Rock_Creek_2 39

Rock_Creek_1
Rock_Creek_2
Rock_Creek_3
Rock_Creek_4
Turkey_Branch

"

55
93
98
53
102
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Data = read.table(textConnection(Input),header=TRUE)

Range
range(bata$ Fish, na.rm=TRUE)

[1] 12 102 # Min and max

max(Data$ Fish, na.rm=TRUE) - min(Data$ Fish, na.rm=TRUE)

[1] 90

Sum of squares
Not included here.

Parametric variance
Not included here.

Sample variance
var(bata$ Fish, na.rm=TRUE)

[1] 1029.5

Standard deviation
sd(pata$ Fish, na.rm=TRUE)

[1] 32.08582

Coefficient of variation, as percent

sd(pata$ Fish, na.rm=TRUE)/
mean(Data$ Fish, na.rm=TRUE)*100

[1] 45.83689

Custom function of desired measures of central tendency and dispersion

### Note NA’s removed in the following function

summary.list = function(x)1ist(
N.with.NA.removed= length(x[!is.na(x)]),
Count.of.NA= length(x[is.na(x)1),
Mean=mean(x, na.rm=TRUE),
Median=median(x, na.rm=TRUE),
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)

Max.Min=range(x, na.rm=TRUE),

Range=max(Data$ Fish, na.rm=TRUE) - min(Data$ Fish, na.rm=TRUE),
variance=var(x, na.rm=TRUE),

Std.Dev=sd(x, na.rm=TRUE),
Coeff.variation.Prcnt=sd(x, na.rm=TRUE)/mean(x, na.rm=TRUE)*100,
Std.Error=sd(x, na.rm=TRUE)/sqrt(length(x[!is.na(x)1)),
Quantile=quantile(x, na.rm=TRUE)

summary.list(Dpata$ Fish)

How to calculate the statistics

$N.with.NA.removed
[1] 9

$Count.of.NA
[1] ©O

$Mean
[1] 70

$Median
[1] 76

$Range
[1] 12 102

$variance
[1] 1029.5

$std.Dev
[1] 32.08582

$Ccoeff.variation.Prcnt
[1] 45.83689

$std.Error
[1] 10.69527

$Quantile
0% 25% 50% 75% 100%
12 53 76 98 102

AN R COMPANION FOR THE HANDBOOK OF BIOLOGICAL STATISTICS

Methods are described in the “Example” section above.

Standard Error of the Mean
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The standard error of the mean can be calculated with standard functions in the native stats
package. The describe function in the psych package includes the standard error of the mean
along with other descriptive statistics. This function is useful to summarize multiple variables in
a data frame.

Introduction

Similar statistics
See the Handbook for information on these topics.

Example
Standard error example

B ——— o
### Standard error example, p. 115
B —— -

Input =(

"Stream Fish
Mill_Creek_1 76
Mill_Creek_2 102
North_Branch_Rock_Creek_1 12
North_Branch_Rock_Creek_2 39

Rock_Creek_1 55
Rock_Creek_2 93
Rock_cCreek_3 98
Rock_Creek_4 53
Turkey_Branch 102
")

Data = read.table(textConnection(Input),header=TRUE)

### Calculate standard error manually

sd(pata$ Fish, na.rm=TRUE) /
sqrt(length(pata$Fish[!is.na(bata$ Fish)])) # Standard error

[1] 10.69527

### Use describe function from psych package for standard error
### Also works on whole data frames

Tibrary(psych)
describe(pata$ Fish,
type=2) # Type of skew and kurtosis
vars n mean sd median trimmed mad min max range skew kurtosis se
1 19 70 32.09 76 70 34.1 12 102 90 -0.65 -0.69 10.7
# # #
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How to calculate the standard error
Methods are described in the “Example” section above.

Confidence Limits

Introduction
See the Handbook for information on this topic.

Confidence limits for measurement variables
Methods are described in the “How to calculate confidence limits” section below.

Confidence limits for nominal variables
Examples are given in the “How to calculate confidence limits” section below.

Statistical testing with confidence intervals
Similar statistics

Examples
See the Handbook for information on these topics.

How to calculate confidence limits

The confidence limits about the mean—calculated using the t-value discussed in the Handbook—
can be determined with variety of functions. One is t.test in the native stats package. Another is
the CI function in the Rmisc package, which also has the function summarySE that presents the
mean, standard deviation, standard error, and confidence interval for data designated as groups.

The bootstrap method noted in the Handbook can be achieved with the boot and boot.ci functions
in the boot package.

Confidence intervals for mean with t.test, Rmisc, and DescTools

B - m e -
### Cconfidence interval for measurement data, blacknose fish , p. 120
B - -
Input =(

"Stream Fish

Mill_Creek_1 76

Mill_Creek_2 102

North_Branch_Rock_cCreek_1 12
North_Branch_Rock_Creek_2 39

Rock_Creek_1 55
Rock_Creek_2 93
Rock_Creek_3 98
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Rock_Creek_4 53
Turkey_Branch 102
ll)

Data = read.table(textConnection(Input),header=TRUE)

### Use t.test to produce confidence interval

t.test(Data$ Fish,
conf.level=0.95) # Confidence interval of the mean

95 percent confidence interval:

45.33665 94.66335
### Use CI in Rmisc package to produce confidence interval
Tibrary(Rmisc)

ci(pata$ Fish,
ci=0.95) # Confidence interval of the mean

upper mean Tower
94.66335 70.00000 45.33665
### Use MeanCI in DescTools package to produce confidence interval
Tibrary(DescTools)

MeanCI(Data$ Fish,
conf.level=0.95) # confidence interval of the mean

mean Twr.ci upr.ci
70.00000 45.33665 94.66335

Confidence intervals for means for grouped data

#Ht ---—-—---- oo -—_-—.—  —_—————————————————— -
### Confidence interval for grouped data, hypothetical data
#Ht ----——----—-— -
Input =(

"Stream Animal Count

Mill_Creek_1 Fish 76

Mill_Creek_2 Fish 102

North_Branch_Rock_Creek_1 Fish 12

North_Branch_Rock_Creek_2 Fish 39

Rock_cCreek_1 Fish 55

Rock_cCreek_2 Fish 93

Rock_cCreek_3 Fish 98

Rock_Creek_4 Fish 53
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Turkey_Branch Fish 102
Mill_Creek_1 Insect 76
Mill_Creek_2 Insect 102

North_Branch_Rock_Creek_1 Insect 12
North_Branch_Rock_Creek_2 1Insect 39
ll)

D2 = read.table(textConnection(Input),header=TRUE)

Tibrary(Rmisc)

summarySE (data=D2, # wWill produce confidence intervals
measurevar="Count", # for groups defined by a variable
groupvars="Animal",
conf.interval = 0.95)

Animal N Count sd se ci
1 Fish 9 70.00 32.08582 10.69527 24.66335
2 Insect 4 57.25 39.72719 19.86360 63.21483

# # #

Confidence intervals for mean by bootstrap

###t -------—-——— -
### Confidence interval for measurement data, blacknose fish , p. 120
###t ----——----—-
Input =(

"Stream Fish

Mill_Creek_1 76

Mill_Creek_2 102

North_Branch_Rock_cCreek_1 12
North_Branch_Rock_Creek_2 39

Rock_cCreek_1 55
Rock_Creek_2 93
Rock_Creek_3 98
Rock_Creek_4 53
Turkey_Branch 102
")

Data = read.table(textConnection(Input),header=TRUE)

Confidence intervals for mean by bootstrap with DescTools

MeanCI(Data$Fish, method="boot", type="norm", R=10000)

mean Twr.ci upr.ci
70.00000 50.17986 89.84836

# May be different for different iterations
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MeanCI(Data$Fish, method="boot", type="basic", R=10000)

mean Twr.ci upr.ci
70.00000 51.44444 90.66667

# May be different for different iterations

Confidence intervals for mean by bootstrap with boot package

Tibrary(boot)

Fun = function(x, index) {
return(c(mean(x[index]),
var(x[index]) / Tength(index)))
}

Boot = boot(data=Data$Fish,
statistic=Fun,
R=10000)

mean (Boot$t[,1])

[1] 70.01229 # Mean by bootstrap
# May be different for different iterations

boot.ci(Boot,
conf=0.95)

Intervals :
Level Norma’l Basic Studentized
95% (50.22, 89.76 ) (51.11, 90.44 ) (38.85, 91.72 )

Level Percentile BCa
95% (49.56, 88.89 ) (47.44, 87.22 )
Calculations and Intervals on Original Scale

# Note that the bootstrapped confidence limits vary from
# the calculated ones above because the original data set has
# few values and is not necessarily normally distributed.

# # #

Confidence interval for proportions

The confidence interval for a proportion can be determined with the binom.test function, and
more options are available in the BinomCI function and MultinomCI function in the DescTools
package. More advanced techniques for confidence intervals on proportions and differences in
proportions can be found in the PropCls package.

B —m -
### Confidence interval for nominal data, colorblind example, p. 118
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binom.test(2, 20, 0.5,
alternative="two.sided",
conf.level=0.95)

95 percent confidence interval:
0.01234853 0.31698271

B~ m e o
### Confidence interval for nominal data, Gus data, p. 121
B~ m e e o

Input =(

"Paw
right
Teft
right
right
right
right
Teft
right
right
right

")

Gus = read.table(textConnection(Input),bheader=TRUE)

successes
Failures

sum(Gus$ Paw == "Teft") # Note the == operator
sum(Gus$ Paw == "right")

Total = Successes + Failures

Expected = 0.5

binom.test(Successes, Total, Expected,
alternative="two.sided",

conf.level=0.95)

95 percent confidence interval:
0.02521073 0.55609546

### Agrees with exact confidence interval from SAS

# # #

Confidence interval for proportions using DescTools
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Confidence interval for single proportion

BHH -
### Confidence intervals for nominal data, colorblind example, p. 118

B —— -
Tibrary(DescTools)

BinomCI(2, 20,
conf.level = 0.95,

method = "modified wilson")

### other methods: "wilson", "wald", "agresti-coull", "jeffreys",
### "modified wilson", "modified jeffreys",

### '"clopper-pearson", "arcsine", "logit", "witting"

est Twr.ci upr.ci

[1,] 0.1 0.01776808 0.3010336

# # #
Confidence interval for multinomial proportion

BHH —
### Confidence intervals for multinomial proportions, p. 33

BHH —
observed = c(35,74,22,69)

Tibrary(DescTools)

MultinomCI(observed, conf.level=0.95, method="goodman")

### other methods: "sisonglaz", "cplusl”

est Twr.ci upr.ci
[1,] 0.175 0.11253215 0.2619106
[2,] 0.370 0.28113643 0.4686407
[3,] 0.110 0.06224338 0.1870880
[4,] 0.345 0.25846198 0.4431954

# # #

Tests for One Measurement Variable

Student’s t-test for One Sample

Introduction
When to use it

Null hypothesis
How the test works
Assumptions
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See the Handbook for information on these topics.

Example

One sample t-test with observations as vector
B mmm e e o
### One-sample t-test, transferrin example, pp. 124
Bl mmm e e o
observed = c(0.52, 0.20, 0.59, 0.62, 0.60)

theoretical 0

t.test(observed,
mu = theoretical,
conf.int = 0.95)
One Sample t-test
t = 6.4596, df = 4, p-value = 0.002958

# # #

Graphing the results
See the Handbook for information on this topic.

Similar tests
The paired t-test and two-sample t-test are presented elsewhere in this book.

How to do the test
One sample t-test with observations in data frame

e
### One-sample t-test, SAS example, pp. 125
B~ .

Input =(

'_\

'_\

N
QUORFRFWORRENA~OD

Data = read.table(textConnection(Input),header=TRUE)
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observed
theoretical =

Data$ Angle
50

t.test(observed,
mu theoretical,
conf.int=0.95)

One Sample t-test

AN R COMPANION FOR THE HANDBOOK OF BIOLOGICAL STATISTICS

t = 87.3166, df = 9, p-value = 1.718e-14

### Does not agree with Handbook. The Handbook results are incorrect.
### The SAS code produces the following result.

T-Tests
variable DF t value
angle 9 87.32
Histogram

hist(pata$ Angle,
col="gray",
main="Histogram of values",
xTab="Angle")

Histogram of values

Frequency

Pr > |t]

<.0001

112 114 116 118
Angle

120

122

Histogram of data in a single population from a one-sample t-test. Distribution of
these values should be approximately normal.

#
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Power analysis
Power analysis for one-sample t-test

e
### Power analysis, t-test, one-sample,
### hip joint example, pp. 125-126

B e
ML = 70 # Theoretical mean

M2 =71 # Mean to detect

sl = 2.4 # Standard deviation

S2 = 2.4 # Standard deviation

Cohen.d = (ML - M2)/sqrt(((S1A2) + (S2A2))/2)

Tibrary(pwr)
pwr.t.test(
n = NULL, # Observations
d = cohen.d,
sig.level = 0.05, # Type I probability
power = 0.90, # 1 minus Type II probability
type = "one.sample", # Change for one- or two-sample
alternative = "two.sided"
)

One-sample t test power calculation

n = 62.47518

Student’s t-test for Two Samples

Introduction

When to use it

Null hypothesis
How the test works

Assumptions
See the Handbook for information on these topics.

Example
Two-sample t-test, independent (unpaired) observations

BHH — o
### Two-sample t-test, biological data analysis class, pp. 128-129
e

Input =(
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"Group Value

2pm 69
2pm 70
2pm 66
2pm 63
2pm 68
2pm 70
2pm 69
2pm 67
2pm 62
2pm 63
2pm 76
2pm 59
2pm 62
2pm 62
2pm 75
2pm 62
2pm 72
2pm 63
5pm 68
Spm 62
Spm 67
5pm 68
5pm 69
Spm 67
Spm 61
5pm 59
Spm 62
Spm 61
5pm 69
5pm 66
Spm 62
Spm 62
Spm 61
S5pm 70
")

Data = read.table(textConnection(Input),header=TRUE)
bartlett.test(value ~ Group, data=Data)
### 1f p-value >= 0.05, use var.equal=TRUE below
Bartlett's K-squared = 1.2465, df = 1, p-value = 0.2642
t.test(value ~ Group, data=Data,
var.equal=TRUE,
conf.level=0.95)

Two Sample t-test

t = 1.2888, df = 32, p-value = 0.2067
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t.test(value ~ Group, data=Data,
var.equal=FALSE,
conf.level=0.95)
welch Two Sample t-test

t = 1.3109, df = 31.175, p-value = 0.1995

Plot of histograms
Tibrary(lattice)
histogram(~ value | Group,
data=Data,
Tayout=c(1,2) # columns and rows of individual plots
)
| | | |
S5pm
- - 40
— — 30
- - 20
= 7 - 10
©
% - )
— 2pm
G 40 . -
o
3]
o 30 —
20 — -
10 =
0 — -
I I I [
60 65 70 75
Value

Histograms for each population in a two-sample t-test. For the t-test to be valid, the
data in each population should be approximately normal. If the distributions are
different, minimally Welch’s t-test should be used. If the data are not normal or the
distributions are different, a non-parametric test like Mann-Whitney U-test or
permutation test may be appropriate.

Box plots

boxplot(value ~ Group,
data = Data,
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names=c("2 pm","5 pm"),
ylab="value™)

19

Value

65

60

2 pm 5pm

Box plots of two populations from a two-sample t-test.

# # #

Similar tests
Welch’s t-test is discussed below. The paired t-test and signed-rank test are discussed in this book
in their own chapters. Analysis of variance (anova) is discussed in several subsequent chapters.

As non-parametric alternatives, the Mann-Whitney U-test and the permutation test for two
independent samples are discussed in the chapter Mann-Whitney and Two-sample Permutation
Test.

Welch'’s t-test
Welch’s t-test is shown above in the “Example” section (“Two sample unpaired t-test”). Itis
invoked with the var.equal=FALSE option in the t.test function.

How to do the test
The SAS example from the Handbook is shown above in the “Example” section.

Power analysis
Power analysis for t-test

#HH# ---—— - —_———_————— -
### Power analysis, t-test, wide feet, p. 131

#HH# ---—— - —_———_————— -
M1 = 100.6 # Mean for sample 1

M2 = 103.6 # Mean for sample 2

sl = 5.26 # std dev for sample 1

S2 = 5.26 # std dev for sample 2

Cohen.d = (M1 - M2)/sqrt(((S1A2) + (S2A2))/2)
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Tibrary(pwr)

pwr.t.test(
n = NULL, # Observations in _each_ group
d = cohen.d,
sig.level = 0.05, # Type I probability
power = 0.90, # 1 minus Type II probability
type = "two.sample", # Change for one- or two-sample
alternative = "two.sided"
)

Two-sample t test power calculation

n

65.57875 # Number for each group

# # #

Mann-Whitney and Two-sample
Permutation Test

The Mann-Whitney U-test is a nonparametric test, also called the Mann-Whitney-Wilcoxon test.
It tests for a difference in central tendency of two groups, or, with certain assumptions, for the
difference in medians. It is conducted with the wilcox.test function in the native stats package. It
can be used with continuous or ordinal measurements.

As another non-parametric alternative to t-tests, a permutation test can be used. An example is
shown in the “Permutation test for independent samples” section of this chapter.

Mann-Whitney U-test

e
### Mann-whitney U-test, biological data analysis class, pp. 128-129
B~ .
Input =(

"Group VvValue

2pm 69
2pm 70
2pm 66
2pm 63
2pm 68
2pm 70
2pm 69
2pm 67
2pm 62
2pm 63
2pm 76
2pm 59
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2pm 62
2pm 62
2pm 75
2pm 62
2pm 72
2pm 63
S5pm 68
Spm 62
Spm 67
S5pm 68
S5pm 69
Spm 67
Spm 61
S5pm 59
Spm 62
Spm 61
5pm 69
5pm 66
Spm 62
Spm 62
Spm 61
S5pm 70
")

Data = read.table(textConnection(Input),header=TRUE)

Box plots

boxplot(value ~ Group,
data = Data,
names=c("2 pm","5 pm"),
ylab="value")

Value
60 65 70 75

|
—_— —_—

2 pm 5pm

wilcox.test(value ~ Group, data=Data)
wilcoxon rank sum test with continuity correction

w = 186, p-value = 0.1485
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Permutation test for independent samples

Permutation tests are nonparametric tests, and can be performed with the coin package. The
permutation test compares means across groups, but can also be used to compare ranks or
counts. This test is analogous to a nonparametric t-test. Normality is not assumed but the test
may require that distributions have similar variance or shape.

B~
### Two-sample permutation test, biological data analysis class,
### pp. 128-129
B~

Input =(

"Group Value

2pm 69
2pm 70
2pm 66
2pm 63
2pm 68
2pm 70
2pm 69
2pm 67
2pm 62
2pm 63
2pm 76
2pm 59
2pm 62
2pm 62
2pm 75
2pm 62
2pm 72
2pm 63
5pm 68
Spm 62
Spm 67
5pm 68
5pm 69
Spm 67
Spm 61
Spm 59
Spm 62
Spm 61
Spm 69
Spm 66
Spm 62
Spm 62
Spm 61
S5pm 70
")

Data = read.table(textConnection(Input),header=TRUE)
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Tibrary(coin)
independence_test(value ~ Group, data = Data,
teststat="max",
distribution = "asymptotic"

)

Asymptotic General Independence Test

Z = 1.2761, p-value = 0.2019

Chapters Not Covered in This Book

Introduction

Step-by-step analysis of biological data
Types of biological variables
Probability

Basic concepts of hypothesis testing
Confounding variables

Independence

Normality

Data transformations
See the Handbook for information on these topics.

Homoscedasticity and heteroscedasticity

Bartlett’s test is performed with the bartlett.test function. Levene's test can be invoked with the
leveneTest function in the car package. This test can also be used for a model with two
independent variables. They are used in the chapter on One-way anova.

Type I, 11, and III Sums of Squares

An in-depth discussion of Type |, II, and III sum of squares is beyond the scope of this book, but
readers should at least be aware of them. They come into play in analysis of variance (anova)
tables, when calculating sum of squares, F-values, and p-values.

Perhaps most salient point for beginners is that SAS tends to use Type III by default whereas R
will use Type I with the anova function. In R, Type Il and Type III tests are accessed through
Anova in the car package, as well as through some other functions for other types of analyses.
However, for Type III tests to be correct, the way R codes factors has to be changed from its
default with the options(contrasts =... ) function. Changing this will not affect Type I or Type II
tests.
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options(contrasts = c("contr.sum", "contr.poly"))
### needed for type III tests

### Default is: options(contrasts = c("contr.treatment", "contr.poly"))

Type I sum of squares are “sequential.” In essence the factors are tested in the order they are
listed in the model. Type III are “partial.” In essence, every term in the model is tested in light of
every other term in the model. That means that main effects are tested in light of interaction
terms as well as in light of other main effects. Type II are similar to Type III, except that they
preserve the principle of marginality. This means that main factors are tested in light of one
another, but not in light of the interaction term.

When data are balanced and the design is simple, types I, II, and III will give the same results.
But readers should be aware that results will differ for unbalanced data or more complex
designs. The code below gives an example of this.

There are disagreements as to which type should be used routinely in analysis of variance. In
reality, the user should understand what hypothesis she wants to test, and then choose the
appropriate tests. As general advice, | would recommend not using Type [ except in cases where
you intend to have the effects assessed sequentially. Beyond that, probably a majority of those in
the R community recommend Type II tests, while SAS users are more likely to consider Type III
tests.

Some experimental designs will call for using a specified type of sum of squares, for example
when you see “/ §51” or “HTYPE=1" in SAS code.

A couple of online resources may provide some more clarity:

Falk Scholer. ANOVA (and R). goanna.cs.rmit.edu.au/~fscholer/anova.php.

Daniel Wollschlager. Sum of Squares Type [, II, III: the underlying hypotheses, model
comparisons, and their calculation in R. www.uni-
kiel.de/psychologie/dwoll/r/ssTypes.php.

As a final note, readers should not confuse these sums of squares with “Type I error”, which
refers to rejecting a null hypothesis when it is actually true (a false positive), and “Type Il error”,
which is failing to reject null hypothesis when it actually false (a false negative).

BHH — o
### Example of different results for Type I, II, III SS
S
options(contrasts = c("contr.sum", "contr.poly"))

### needed for type III tests

>

C("a", nw_n llall’ nw_n "b", ”b", "b", ”b", "b”, "b", "b", "b")

a", a",
C("X"’ Ilyll, "X"’ Ilyll’ "X", Ilyll’ IIXII, Ilyll’ IIXII, IIXII’ IIXII, IIXII)
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C
response

C(ll'lll, II'III’ llmll’ Ilmll’ II'III’ II'III’ llmll’ llmll’ II'III’ II'IH’ II'III’ II'III)
c( 14, 30, 15, 35, 50, 51, 30, 32, 51, 55, 53, 55)

model = Im(response ~ A + B + C + A:B + A:C + B:C)
anova(modeT) # Type I tests

Tibrary(car)
Anova(model, type="II") # Type II tests

Anova(model, type="III") # Type III tests

# # #

Effects and p-values from a hypothetical linear model. While in this
example the p-values are relatively similar, the B effect would not
be significant with Type I sum of squares at the alpha = 0.05 level,
while it would be with Type Il or Type III tests.

Effect Type I p-value Type Il p-value Type III p-value

A <0.0001 <0.0001 <0.0001
B 0.09 0.002 0.001
C 0.0002 0.0004 0.001
A:B 0.0004 0.001 0.001
A:C 0.0003 0.0003 0.0003
B:C 0.2 0.2 0.2
One-way Anova

When to use it
Analysis for this example is described below in the “How to do the test” section below.

Null hypothesis
How the test works
Assumptions

Additional analyses
See the Handbook for information on these topics.

Tukey-Kramer test
The Tukey mean separation tests and others are shown below in the “How to do the test” section.

Partitioning variance
This topic is not covered here.

Example
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Code for this example is not included here. An example is covered below in the “How to do the
test” section.

Graphing the results
Graphing of the results is shown below in the “How to do the test” section.

Similar tests
Two-sample t-test, Two-way anova, Nested anova, Welch’s anova, and Kruskal-Wallis are
presented elsewhere in this book.

A permutation test, presented in the One-way Analysis with Permutation Test chapter, can also be
employed as a nonparametric alternative.

How to do the test

The Im function in the native stats package fits a linear model by least squares, and can be used
for a variety of analyses such as regression, analysis of variance, and analysis of covariance. The
analysis of variance is then conducted either with the Anova function in the car package for Type
Il or Type III sum of squares, or with the anova function in the native stats package for Type I
sum of squares.

If the analysis of variance indicates a significant effect of the independent variable, multiple
comparisons among the levels of this factor can be conducted using Tukey or Least Significant
Difference (LSD) procedures. The problem of inflating the Type I Error Rate when making
multiple comparisons is discussed in the Multiple Comparisons chapter in the Handbook. R
functions which make multiple comparisons usually allow for adjusting p-values. In R, the “BH”,
or “fdr”, procedure is the Benjamini-Hochberg procedure discussed in the Handbook. See
?p.adjust for more information.

One-way anova example
e
### One-way anova, SAS example, pp. 155-156
e
Input =(

"Location Aam
Tillamook 0.0571

TilTlamook 0.0813
Tillamook 0.0831
Tillamook 0.0976
Tillamook 0.0817
Tillamook 0.0859
TilTlamook 0.0735
Tillamook 0.0659
TilTlamook 0.0923
Tillamook 0.0836
Newport 0.0873
Newport 0.0662
Newport 0.0672
Newport 0.0819
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Newport 0.0749
Newport 0.0649
Newport 0.0835
Newport 0.0725
Petersburg 0.0974
Petersburg 0.1352
Petersburg 0.0817
Petersburg 0.1016
Petersburg 0.0968
Petersburg 0.1064
Petersburg 0.1050
Magadan 0.1033
Magadan 0.0915
Magadan 0.0781
Magadan 0.0685
Magadan 0.0677
Magadan 0.0697
Magadan 0.0764
Magadan 0.0689
Tvarminne 0.0703
Tvarminne 0.1026
Tvarminne 0.0956
Tvarminne 0.0973
Tvarminne 0.1039
Tvarminne 0.1045
")

Data = read.table(textConnection(Input),header=TRUE)

If yvou will be using Type III tests, vou'll have to change the way R does the contrasts for factors

options(contrasts = c("contr.sum", "contr.poly"))

### needed for type III tests

Specify the order of factor levels for plots and Dunnett comparison

Tibrary(dplyr)
Data =
mutate(Data,
Location = factor(Location, Tevels=unique(Location))

)

Produce summary statistics

Tibrary(Rmisc)

summarySE(data=Data,
llAamll ,
groupvars="Location",

conf.interval = 0.95)
Location N Aam sd se ci
1 Tillamook 10 0.0802000 0.011963277 0.003783120 0.008558013
2 Newport 8 0.0748000 0.008597176 0.003039561 0.007187419
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3 Petersburg 7 0.1034429 0.016209448 0.006126595 0.014991239
4 Magadan 8 0.0780125 0.012944656 0.004576627 0.010822003
5 Tvarminne 6 0.0957000 0.012961636 0.005291566 0.013602402

Fit the linear model and conduct ANOVA

model = Tm(Aam ~ Location,
data=Data)

Tibrary(car)
Anova(model, type="II") # Can use type="III"

sum Sq Df F value Pr(>F)
Location 0.0045197 4 7.121 0.0002812 **=*
Residuals 0.0053949 34

anova(modeT) # Produces type I sum of squares

Df Sum Sq Mean Sq F value Pr(>F)
Location 4 0.0045197 0.00112992 7.121 0.0002812 ***
Residuals 34 0.0053949 0.00015867

summary (model) # Produces r-square, overall p-value, parameter estimates

Multiple R-squared: 0.4559, Adjusted R-squared: 0.3918
F-statistic: 7.121 on 4 and 34 DF, p-value: 0.0002812

Checking assumptions of the model

hist(residuals(model),
col="darkgray")

Histogram of residuals(model)

15

Frequency

o -

[ I I
-0.03 -0.02 -0.01 000 001 002 003 0.04
residuals(model)
A histogram of residuals from a linear model. The distribution of these residuals
should be approximately normal.
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plot(fitted(model),
residuals(model)
)
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A plot of residuals vs. predicted values. The residuals should be unbiased and
homoscedastic. For an illustration of these properties, see this diagram by Steve Jost
at DePaul University: condor.depaul.edu/sjost/it223/documents/resid-plots.gif.

### additional model checking plots with: plot(model)
### alternative: library(FSA); residPlot(model)

Tukey and Least Significant Difference mean separation tests (pairwise comparisons)
Tukey and other multiple comparison tests can be performed with a handful of functions. The
functions TukeyHSD, HSD.test, and LSD.test are probably not appropriate for cases where there
are unbalanced data or unequal variances among levels of the factor, though TukeyHSD does
make an adjustment for mildly unbalanced data. It is my understanding that the multcomp and
Ismeans packages are more appropriate for unbalanced data. Another alternative is the DTK
package that performs mean separation tests on data with unequal sample sizes and no
assumption of equal variances.

Tukey comparisons in agricolae package

Tibrary(agricolae)

(HSD.test(model, "Location')) # outer parentheses print result
trt means M
1 petersburg 0.1034429 a
2 Tvarminne 0.0957000 ab
3 Tillamook 0.0802000 bc
4 Magadan 0.0780125 bc
5 Newport 0.0748000 c
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# Means sharing the same Tetter are not significantly different

LSD comparisons in agricolae package

Tibrary(agricolae)

(LsSD.test(model, "Location", # outer parentheses print result
alpha = 0.05,
p.adj="none")) # see ?p.adjust for options

trt means
Petersburg 0.1034429
Tvarminne 0.0957000
Tillamook 0.0802000
Magadan 0.0780125
Newport 0.0748000

U WN R
oo o=

3+

Means sharing the same Tetter are not significantly different

Multiple comparisons in multcomp package
Note that “Tukey” here does not mean Tukey-adjusted comparisons. It just sets up a matrix to
compare each mean to each other mean.

Tibrary(multcomp)

mc = glht(model,
mcp(Location = "Tukey")
)

mcs = summary(mc, test=adjusted('single-step"))

mcs
### Adjustment options: "none", "single-step", "Shaffer",
#H## "westfall", "free", "holm", "hochberg",
#H## "hommel"™, "bonferroni", "BH", "BY", "fdr"

Linear Hypotheses:
Estimate Std. Error t value Pr(>|t])

Newport - Tillamook == -0.005400 0.005975 -0.904 0.89303
Petersburg - Tillamook == 0 0.023243 0.006208 3.744 0.00555 **
Magadan - Tillamook == -0.002188 0.005975 -0.366 0.99596
Tvarminne - Tillamook == 0.015500 0.006505 2.383 0.14413
Petersburg - Newport == 0.028643 0.006519 4.394 < 0.001 **=
Magadan - Newport == 0.003213 0.006298 0.510 0.98573
Tvarminne - Newport == 0 0.020900 0.006803 3.072 0.03153 *
Magadan - Petersburg == -0.025430 0.006519 -3.901 0.00376 **
Tvarminne - Petersburg == 0 -0.007743 0.007008 -1.105 0.80211
Tvarminne - Magadan == 0.017688 0.006803 2.600 0.09254 .
cld(mcs,

Tevel=0.05,

decreasing=TRUE)
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Tillamook Newport Petersburg Magadan Tvarminne
llbcll IICII Ilall Ilbcll llabll

### Means sharing a letter are not significantly different

Multiple comparisons to a control in multcomp package

### Control is the first Tevel of the factor
Tibrary(multcomp)

mc = glht(model,
mcp(Location = "Dunnett')

)
summary(mc, test=adjusted("single-step"))
### Adjustment options: "none", "single-step", "sShaffer",
#H## "westfall", "free", "holm", "hochberg",
#H## "hommel"™, "bonferroni", "BH", "BY", "fdr"

Linear Hypotheses:
Estimate Std. Error t value Pr(>|t])

Newport - Tillamook == 0 -0.005400 0.005975 -0.904 0.79587
Petersburg - Tillamook == 0 0.023243 0.006208 3.744 0.00252 =**
Magadan - Tillamook == 0 -0.002188 0.005975 -0.366 0.98989
Tvarminne - Tillamook == 0.015500 0.006505 2.383 0.07794 .

Multiple comparisons to a control with Dunnett Test

### The control group can be specified with the control option,
### or will be the first level of the factor

Tibrary(DescTools)
DunnettTest(Aam ~ Location,
data = Data)

Dunnett's test for comparing several treatments with a control
95% family-wise confidence level

diff Twr.ci upr.ci pval
Newport-Tillamook -0.00540000 -0.020830113 0.01003011 0.7958
Petersburg-Tillamook 0.02324286 0.007212127 0.03927359 0.0026 **
Magadan-TiTTlamook -0.00218750 -0.017617613 0.01324261 0.9899

Tvarminne-TilTlamook 0.01550000 -0.001298180 0.03229818 0.0778 .

Graphing the results

Simple box plots of values across groups
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boxpTlot(Aam ~ Location,
data = Data,
ylab="aam / height",
xTab="Location")
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Location

Box plots of values for each level of the independent variable for a one-way analysis of
variance (ANOVA).

Simple bar plot of means across groups
### Summarize the data frame (Data) into a table

Tibrary(Rmisc)

Data2 = summarySE(data=Data,
llAamll ,
groupvars="Location",

conf.interval = 0.95)

Tabla = as.table(bData2$Aam)
rownames(Tabla) = Data2$Location

Tabla

Tillamook Newport Petersburg Magadan Tvarminne
0.0802000 0.0748000 0.1034429 0.0780125 0.0957000
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barplot(Tabla,
ylab="aam / height",
xTab="Location")

0.08
!

0.06
!

aam / height

0.04
!

0.02
!

0.00

Tillamook Newport Petersburg Magadan Tvarminne
Location

Bar plot of means for each level of the independent variable for a one-way analysis of
variance (ANOVA).

Bar plot of means with error bars across groups

Tibrary(ggplot2)

-3 # offsets for mean letters
0.5

offset.v
offset.h

ggplot(bataz2,
aes(x = Location, y = Aam,
ymax=0.12, ymin=0.0)) +
geom_bar(stat="1identity", fill="gray50",
colour = "bTack", width = 0.7) +
geom_errorbar(aes(ymax=Aam+se, ymin=Aam-se),
width=0.0, size=0.5, color="black") +
geom_text(aes(label=c("bc","c","a","bc","ab"),
hjust=offset.h, vjust=offset.v)) +
Tabs (x "Sample Tocation",
y "aam / height") +
## ggtitle("Main title")
theme_bw() +
theme(panel.grid.major.x element_blank(),
panel.grid.major.y = element_line(colour = "grey80"),
plot.title = element_text(size = rel(1.5),
face = "bold", vjust = 1.5),
axis.title = element_text(face = "bold"),
axis.title.y element_text(vjust= 1.8),
axis.title.x element_text(vjust= -0.5),
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panel.border = element_rect(colour="black")
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Tillamook Newport Petersburg Magadan Tvarminne

Sample location

Bar plot of means for each level of the independent variable of a one-way analysis of
variance (ANOVA). Error indicates standard error of the mean. Bars sharing the same
letter are not significantly different according to Tukey’s HSD test.

Welch’s anova

Bartlett’s test and Levene’s test can be used to check the homoscedasticity of groups from a one-
way anova. A significant result for these tests (p < 0.05) suggests that groups are
heteroscedastic. One approach with heteroscedastic data in a one way anova is to use the Welch
correction with the oneway.test function in the native stats package. A more versatile approach
is to use the white.adjust=TRUE option in the Anova function from the car package.

### Bartlett test for homogeneity of variance

bartlett.test(Aam ~ Location,
data = Data)

Bartlett test of homogeneity of variances

Bartlett's K-squared = 2.4341, df = 4, p-value = 0.6565
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### Levene test for homogeneity of variance

Tibrary(car)
TeveneTest(Aam ~ Location,
data = Data)

Levene's Test for Homogeneity of variance (center = median)

Df F value Pr(>F)
group 4 0.12 0.9744
34

### welch’s anova for unequal variances

oneway.test(Aam ~ Location,
data=Data,
var.equal=FALSE)

One-way analysis of means (not assuming equal variances)

F = 5.6645, num df = 4.000, denom df = 15.695, p-value = 0.00508

### white-adjusted anova for heteroscedasticity

model = Tm(Aam ~ Location,
data=Data)

Tibrary(car)
Anova(model, Type="II",
white.adjust=TRUE)

Df F  Pr(>F)
Location 4 5.4617 0.001659 **
Residuals 34

Power analysis
Power analysis for one-way anova

2 e i
### Power analysis for anova, pp. 157
Bl —m -

Tibrary(pwr)

groups = 5

means = c(10, 10, 15, 15, 15)
sd = 12

grand.mean = mean(means)
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Ccohen.f = sqrt( sum( (1/groups) * (means-grand.mean)A2) ) /sd

pwr.anova.test(k = groups,
n = NULL,
f = Cohen.f,
sig.level = 0.05,
power = 0.80)

Balanced one-way analysis of variance power calculation
n = 58.24599
NOTE: n is number in each group

# # #

Kruskal-Wallis Test

When to use it
See the Handbook for information on this topic.

Null hypothesis

This example shows just summary statistics, histograms by group, and the Kruskal-Wallis test.
An example with plots, post-hoc tests, and alternative tests is shown in the “Example” section
below.

Kruskal-Wallis test example

#HY - - - -
### Kruskal-wallis test, hypothetical example, p. 159

Y - - - -
Input =(

"Group value

Group.1l 1

Group.1l 2

Group.1l 3

Group.1l 4

Group.1l 5

Group.1l 6

Group.1l 7

Group.1l 8

Group.1l 9

Group.1l 46

Group.1l 47

Group.1l 48

Group.1l 49

Group.1l 50

Group.1l 51
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Group.1l 52
Group.1l 53
Group.1l 342
Group.2 10
Group.2 11
Group.2 12
Group.2 13
Group.2 14
Group.2 15
Group.2 16
Group.2 17
Group.2 18
Group.2 37
Group.2 58
Group.2 59
Group.2 60
Group.2 61
Group.2 62
Group.2 63
Group.2 64
Group.2 193
Group.3 19
Group.3 20
Group.3 21
Group.3 22
Group.3 23
Group.3 24
Group.3 25
Group.3 26
Group.3 27
Group.3 28
Group.3 65
Group.3 66
Group.3 67
Group.3 68
Group.3 69
Group.3 70
Group.3 71
Group.3 72

)

Data = read.table(textConnection(Input),header=TRUE)

### Specify the order of factor levels
Tibrary(dplyr)

Data =

mutate(Data,

Group = factor(Group, levels=unique(Group))

)
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Medians and descriptive statistics
As noted in the Handbook, each group has identical medians and means.

Tibrary(psych)
describeBy(Data$value,
group=Data$Group,
type=2) # is type of skew and kurtosis

group: Group.1l
vars n mean sd median trimmed mad min max range skew kurtosis se
1 1 18 43.5 77.78 27.5 27.5 33.36 1 342 341 3.67 14.62 18.33

group: Group.2

vars n mean sd median trimmed mad min max range skew kurtosis se
1 1 18 43.5 43.69 27.5 36.25 25.2 10 193 183 2.49 8.06 10.3
group: Group.3

vars n mean sd median trimmed mad min max range skew kurtosis se
1 1 18 43.5 23.17 27.5 43.25 11.86 19 72 53 0.23 -2.13 5.46

Histograms for each group

Tibrary(lattice)
histogram(~ value | Group,
data=Data,
Tayout=c(1,3) # columns and rows of individual plots
)
L | L L
Group.3
50 — —
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0 — |
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ﬁg — — 50
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Kruskal-Wallis test

In this case, there is a significant difference in the distributions of values among groups, as is
evident both from the histograms and from the significant Kruskal-Wallis test. Only in cases
where the distributions are similar can a significant Kruskal-Wallis test be interpreted as a
difference in medians.

kruskal.test(value ~ Group,
data = Data)

Kruskal-wallis chi-squared = 7.3553, df = 2, p-value = 0.02528

# # #

How the test works

Assumptions
See the Handbook for information on these topics.

Example

The Kruskal-Wallis test is performed on a data frame with the kruskal.test function in the native
stats package. Shown first is a complete example with plots, post-hoc tests, and alternative
methods, for the example used in R help. It is data measuring if the mucociliary efficiency in the
rate of dust removal is different among normal subjects, subjects with obstructive airway
disease, and subjects with asbestosis. For the original citation, use the ?kruskal.test command.
For both the submissive dog example and the oyster DNA example from the Handbook, a
Kruskal-Wallis test is shown later in this chapter.

Kruskal-Wallis test example

e
### Kruskal-wallis test, asbestosis example from R help for
#H## kruskal.test

B - -
Input =(
"Obs Health Efficiency
1 Normal 2.9
2 Normal 3.0
3 Normal 2.5
4 Normal 2.6
5 Normal 3.2
6  OAD 3.8
7 OAD 2.7
8 OAD 4.0
9 OAD 2.4
10 Asbestosis 2.8
11 Asbestosis 3.4
12 Asbestosis 3.7
13 Asbestosis 2.2
14 Asbestosis 2.0
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ll)

Data = read.table(textConnection(Input),header=TRUE)

### Specify the order of factor levels

Tibrary(dplyr)

Data =

mutate(Data,
Health = factor(Health, Tevels=unique(Health))
)

Medians and descriptive statistics

Tibrary(psych)
describeBy(Data$Efficiency,
group=Data$Health,
type=2) # is type of skew and kurtosis

group: Normal
vars n mean sd median trimmed mad min max range skew kurtosis se

1 15 2.840.29 2.9 2.84 0.44 2.5 3.2 0.7 -0.04 -1.8 0.13
group: OAD

vars n mean sd median trimmed mad min max range skew kurtosis se
1 143.230.79 3.25 3.23 0.96 2.4 4 1.6 -0.07 -5 0.4

group: Asbestosis
vars n mean sd median trimmed mad min max range skew kurtosis se

1 152.82 0.74 2.8 2.82 0.89 2 3.7 1.7 0.09 -2.41 0.33
Graphing the results
Stacked histograms of values across groups
Tibrary(lattice)
histogram(~ Efficiency | Health,
data=Data,
Tayout=c(1,3) # columns and rows of individual plots
)
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Stacked histograms for each group in a Kruskal-Wallis test. If the distributions are
similar, then the Kruskal-Wallis test will test for a difference in medians.

Simple box plots of values across groups

boxplot(Efficiency ~ Health,
data = Data,
ylab="Efficiency",
xlab="Health")
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Kruskal-Wallis test
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kruskal.test(Efficiency ~ Health,
data = Data)

Kruskal-wallis chi-squared = 0.7714, df = 2, p-value = 0.68

Dunn test for multiple comparisons

If the Kruskal-Wallis test is significant, a post-hoc analysis can be performed to determine which
levels of the independent variable differ from each other level. Probably the most popular test
for this is the Dunn test, which is performed with the dunnTest function in the FSA package, or
with the DunnTest function in DescTools. Adjustments to the p-values could be made using the

method option to control the familywise error rate or to control the false discovery rate. See
?p.adjust for details.

Be cautious: at the time of writing, DunnTest in DescTools reports one-sided p-values, which are
usually not what is desired. The dunnTest function in FSA is therefore preferred.

Zar (2010) states that the Dunn test is appropriate for groups with unequal numbers of

observations.
Tibrary(FSA)
dunnTest(Efficiency ~ Health,
data=Data,
method="fdr") # Can adjust p-values;

# See ?p.adjust for options

punn (1964) Kruskal-wallis multiple comparison
p-values adjusted with the False Discovery Rate method.

Comparison Z P.unadj P.adj
1 OAD-Normal=0 0.6414270 0.5212453 0.7818680
2 Asbestosis-Normal=0 -0.2267787 0.8205958 0.8205958
3 Asbestosis-0AD=0 -0.8552360 0.3924205 0.7818680

Tibrary(DescTools)
DunnTest(x = Data$efficiency,
g = Data$Health,
method="fdr") # Can adjust p-values;
# See ?p.adjust for options

Dunn's test of multiple comparisons using rank sums : fdr

mean.rank.diff pval

OAD-Normal 1.8 0.3909
Asbestosis-Normal -0.6 0.4103
Asbestosis-0AD -2.4 0.3909

### Note that these p-values are one-sided values.
### For two-sided p-values, they would need to be doubled.
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Nemenyi test for multiple comparisons

Zar (2010) suggests that the Nemenyi test is not appropriate for groups with unequal numbers
of observations.

Tibrary(DescTools)

NemenyiTest(x = Data$eEfficiency,
g = Data$Health,
dist="tukey")

Nemenyi's test of multiple comparisons for independent samples (tukey)

mean.rank.diff pval

OAD-Normal 1.8 0.7972
Asbestosis-Normal -0.6 0.9720
Asbestosis-0AD -2.4 0.6686
Tibrary(PMCMR)
posthoc.kruskal.nemenyi.test(Data$efficiency,
Data$Health,

method = "Tukey")

Pairwise comparisons using Tukey and Kramer (Nemenyi) test
with Tukey-Dist approximation for independent samples

Normal OAD
OAD 0.80 -
Asbestosis 0.97 0.67
P value adjustment method: none # Is original Tukey-Kramer method
# that controls family-wise error

Pairwise Mann-Whitney U-tests

Another post-hoc approach is to use pairwise Mann-Whitney U-tests. To prevent the inflation of
type I error rates, adjustments to the p-values can be made using the p.adjust.method option to
control the familywise error rate or to control the false discovery rate. See ?p.adjust for details.

pairwise.wilcox.test(Data$efficiency,
Data$Health,
p.adjust.method="none")

# Can adjust p-values;
# See ?p.adjust for options

Pairwise comparisons using Wilcoxon rank sum test
Normal OAD

OAD 0.73 -
Asbestosis 1.00 0.41
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Compact letter display from lower triangle results

It is common for pairwise methods in R to display the results as a table of p-values, with the
lower triangle of p-values filled in, as in the case of the pairwise.wilcox.test function. If there are
several values to compare, it can be beneficial to have R convert this table to a compact letter
display for you. The multcompLetters function in the multcompView package can do this, but first
the table of p-values must be converted to a full table.

PT is the p-value table output for some test

PT = pairwise.wilcox.test(Data$efficiency,
Data$Health,
p.adjust.method="none")$p.value

# Can adjust p-values;
# See ?p.adjust for options
PT

Normal OAD

OAD 0.7301587 NA
Asbestosis 1.0000000 0.4126984

Convert PT to a full table and call it PT1

source("http://rcompanion.org/r_script/full.p.table.r™)

PT1 = full.p.table(PT)

PT1
Normal OAD Asbestosis
Normal 1.0000000 0.7301587 1.0000000
OAD 0.7301587 1.0000000 0.4126984

Asbestosis 1.0000000 0.4126984 1.0000000

Produce compact letter display

Tibrary(multcompview)
multcompLetters(PT1,
compare="<",
threshold=0.05,
Letters=letters,
reversed = FALSE)

Normal OAD Asbestosis

a a a
### values sharing the same letter are not significantly different
# # #

Kruskal-Wallis test example
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##H#t ------—-———-—--—---"4---4--&--&---— - —————————
### Kruskal-wallis test, submissive dog example, pp. 161-162
#t -------—- - oo o _——_——————————— -
Input =(

"Dog Sex Rank
Merlino Male 1
Gastone Male 2
Pippo Male 3
Leon Male 4
Golia Male 5
Lancillotto Male 6
Mamy Female 7
Nanha Female 8
Isotta Female 9
Diana Female 10
Simba Male 11
Pongo Male 12
Semola Male 13
Kimba Male 14
Morgana Female 15
Stella Female 16
Hansel Male 17
Cucciola Male 18
MammoTo Male 19
Dotto Male 20
Gongolo Male 21
Gretel Female 22
Brontolo Female 23
Eolo Female 24
Mag Female 25
Emy Female 26
Pisola Female 27

")

Data = read.table(textConnection(Input),header=TRUE)

kruskal.test(Rank ~ Sex,
data = Data)

Kruskal-wallis chi-squared = 4.6095, df = 1, p-value = 0.03179

# # #

Graphing the results
Graphing of the results is shown above in the “Example” section.

Similar tests
One-way anova is presented elsewhere in this book.
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How to do the test
Kruskal-Wallis test example

B ——— o
### Kruskal-wallis test, oyster DNA example, pp. 163-164

B ——— o
Input =(

"Markername Markertype fst

CVvB1l DNA -0.005
CVB2m DNA 0.116
Cvl5 DNA -0.006
CVvl6 DNA 0.095
cvLl DNA 0.053
CVL3 DNA 0.003
6Pgd protein -0.005
Aat-2 protein 0.016
Acp-3 protein 0.041
Adk-1 protein 0.016
Ap-1 protein 0.066
Est-1 protein 0.163
Est-3 protein 0.004
Lap-1 protein 0.049
Lap-2 protein 0.006
Mpi-2 protein 0.058
Pgi protein -0.002
Pgm-1 protein 0.015
Pgm-2 protein 0.044
Ssdh protein 0.024
")

Data = read.table(textConnection(Input),header=TRUE)

kruskal.test(fst ~ Markertype,
data = Data)
Kruskal-wallis chi-squared = 0.0426, df = 1, p-value = 0.8365

# # #

Power Analysis
See the Handbook for information on this topic.

References
Zar, ].H. 2010. Biostatistical Analysis, 5t ed. Pearson Prentice Hall: Upper Saddle River, NJ.
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One-way Analysis with Permutation Test

Permutation tests are non-parametric tests that do not assume normally-distributed errors.
However, these tests may assume that distributions have similar variance or shape.

A one-way anova using permutation tests can be performed with the coin package. A post-hoc
analysis can be conducted with pairwise permutation tests analagous to pairwise t-tests. This
can be accomplished with my custom functions pairwise.permutation.test and

pairwise.permutation.matrix, which rely on the independence_test function in the coin package.

[ do not know under what conditions permutation tests may not be valid.

For more information on permutation tests available in the coin package, see:

help(package="coin")

Consult the chapters on One-way Anova and Kruskal-Wallis Test for general consideration about
conducting analysis of variance.

Permutation test for one-way analysis

The independence_test function in the coin package takes into account ordered factors. In the
first part of the example, the factor Factor is unordered. In the second example below, ordered
factors are used

A
### One-way permutation test, hypothetical data
B —m -

Input =(
"Factor Response

TSONNDNONNAWW™EEE®ED>D>D>D>D>D>
VANRFWRHRWNWNANAWNANWULWU A
ONUVTOORAUVIOUVMTOORAUVIOUVITOONAUO
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O O OO
A BDMuw
[o) ey iV, |

ll)
Data = read.table(textConnection(Input),header=TRUE)

Data$Factor = factor(Data$Factor,
ordered=FALSE,
Tevels=unique(Data$Factor)

)

# order factors, otherwise R will alphabetize them

boxplot(Response ~ Factor,
data = Data,
ylab="Response",
xTab="Factor")

Response

Factor

Permutation test

Tibrary(coin)

independence_test(Response ~ Factor, data = Data,

teststat = "max",
distribution = "asymptotic"

)

Asymptotic General Independence Test

maxT = 3.2251, p-value = 0.005183

Permutation test with ordered factors

### Create ordered factors
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Tibrary(dplyr)
Data =
mutate(Data,
Factor = ordered(Factor, levels=unique(Factor))

)
### Permutation test
Tibrary(coin)

independence_test(Response ~ Factor, data = Data,

teststat = "max",
distribution = "asymptotic"

)

Asymptotic General Independence Test

Z = -0.3429, p-value = 0.7317

### Remove ordered factors

Tibrary(dplyr)
Data =
mutate(Data,
Factor = factor(Factor, levels=unique(Factor), ordered=FALSE)

)
str(Data$Factor)

Factor w/ 4 levels "A","B","C","D": 1111112222

Pairwise permutation tests

Pairwise permutation tests could be used as a post-hoc test for a significant permutation test. If
no p-value adjustment is made, then the type I error rate may be inflated due to multiple
comparisons. Here, the “fdr” p-value adjustment method is used to control the false discovery
rate.

Table output with pairwise.permutation.test

source("http://rcompanion.org/r_script/pairwise.permutation.test.r")

pairwise.permutation.test(Data$Efficiency,
Data$Health,
method=""fdr"
)

Comparison W p.value p.adjust
A-B=0 1.952 0.05088 0.06106
A-C=0 2.734 0.006253 0.01876
A -D=0 -0.2409 0.8096 0.80960
B-C=0 1.952 0.05088 0.06106
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-2.074 0.03812 0.06106
0.01876

Compact letter display output with pairwise.permutation.matrix

source("http://rcompanion.org/r_script/pairwise.permutation.matrix.r")

PM = pairwise.permutation.matrix(x
g

Data$Response,
Data$Factor,

method=""fdr"

)

PM

$unadjusted

A B C D
A NA 0.05088 0.006253 0.809600
B NA NA 0.050880 0.038120
C NA NA NA 0.005505
D NA NA NA NA

$Method
[1] "fdr"

$Adjusted

A B C
00000 0.06106 0.01876
06106 1.00000 0.06106
01876 0.06106 1.00000
80960 0.06106 0.01876

D
0.80960
0.06106
0.01876

A
B
C
D 1.00000

1.
0.
0.
0.

Tibrary(multcompVview)

multcompLetters(PM$Adjusted,
compare="<",
threshold=0.05,
Letters=letters,

reversed = FALSE)

A B
llall Habll

C
llbll

D

a

Nested Anova

When to use it
Null hypotheses
How the test works
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Partitioning variance and optimal allocation of resources

Unequal sample sizes

Assumptions
Example

Graphing the results

Similar tests
See the Handbook for information on these topics.

How to do the test
Nested anova example

BHHE - m -
### Nested anova, SAS example, pp. 171-173
R - -
Input =(

"Tech Rat Protein
Janet 1 1.119
Janet 1 1.2996
Janet 1 1.5407
Janet 1 1.5084
Janet 1 1.6181
Janet 1 1.5962
Janet 1 1.2617
Janet 1 1.2288
Janet 1 1.3471
Janet 1 1.0206
Janet 2 1.045
Janet 2 1.1418
Janet 2 1.2569
Janet 2 0.6191
Janet 2 1.4823
Janet 2 0.8991
Janet 2 0.8365
Janet 2 1.2898
Janet 2 1.1821
Janet 2 0.9177
Janet 3 0.9873
Janet 3 0.9873
Janet 3 0.8714
Janet 3 0.9452
Janet 3 1.1186
Janet 3 1.2909
Janet 3 1.1502
Janet 3 1.1635
Janet 3 1.151
Janet 3 0.9367
Brad 5 1.3883
Brad 5 1.104
Brad 5 1.1581
Brad 5 1.319
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Brad 5 1.1803
Brad 5 0.8738
Brad 5 1.387

Brad 5 1.301

Brad 5 1.3925
Brad 5 1.0832
Brad 6 1.3952
Brad 6 0.9714
Brad 6 1.3972
Brad 6 1.5369
Brad 6 1.3727
Brad 6 1.2909
Brad 6 1.1874
Brad 6 1.1374
Brad 6 1.0647
Brad 6 0.9486
Brad 7 1.2574
Brad 7 1.0295
Brad 7 1.1941
Brad 7 1.0759
Brad 7 1.3249
Brad 7 0.9494
Brad 7 1.1041
Brad 7 1.1575
Brad 7 1.294

Brad 7 1.4543
")

Data = read.table(textConnection(Input),header=TRUE)

### Since Rat is read in as an integer variable, convert it to factor

Data$rRat = as.factor(Data$rat)

Using the aov function for a nested anova

The aov function in the native stats package allows you to specify an error component to the
model. When formulating this model in R, the correct error is Rat, not Tech/Rat (Rat within
Tech) as used in the SAS example. The SAS model will tolerate Rat or Rat(Tech).

The summary of the aov will produce the correct test for Tech. The test for Rat can be performed
by manually calculating the p-value for the F-test using the output for Error:Rat and
Error:Within.

See the rattlesnake example in the Two-way anova chapter for designating an error term in a
repeated-measures model.

fit = aov(Protein ~ Tech + Error(Rat), data=Data)
summary (fit)

Error: Rat
Df Sum Sq Mean Sq F value Pr(>F)
Tech 1 0.0384 0.03841 0.268 0.632
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Residuals 4 0.5740 0.14349

### This matches “use for groups” in the Handbook

Using Mean Sq and Df values to get p-value for H = Tech and Error = Rat

pf(g=0.03841/0.14349,
dfl=1,
df2=4,
Tower.tail=FALSE)

[1] 0.6321845 ### Note: This is same test as summary(fit)

Using Mean Sq and Df values to get p-value for H = Rat and Error = Within

summary (fit)

Error: Within
Df Sum Sq Mean Sq F value Pr(>F)
Residuals 54 1.946 0.03604

pf(g=0.14349/0.03604,
df1=4,
df2=54,
Tower.tail=F)

[1] 0.006663615  ### Matches “use for subgroups” in the Handbook

Post-hoc comparison of means with Tukey

The aov function with an Error component produces an object of aovlist type, which
unfortunately isn’t handled by many post-hoc testing functions. However, in the TukeyC package,
you can specify a model and error term. For unbalanced data, the dispersion parameter may
need to be modified.

Tibrary(TukeyC)

tuk = TukeycC(Data,

model = 'Protein ~ Tech + Error(Rat)',
error = 'Rat',

which = 'Tech',

f11=1,

sig.level = 0.05

)

summary (tuk)

Groups of means at sig.level = 0.05
Means G1
Brad 1.21 a
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Using a mixed effects model for a nested anova

Another approach to fit a nested anova is to use a mixed effects model. This model has both fixed
effects and random effects. The concepts of fixed effect and random effect, and constructing
these models, take some time to understand. Here Tech is being treated as a fixed effect, while
Rat is treated as a random effect. Note that the F-value and p-value for the test on Tech agree
with the values in the Handbook. The effect of Rat will be tested by comparing this model to a
model without the Rat term. The model is fit using the Ime function in nime.

R - m -
### Nested anova, SAS example, pp. 171-173
R - m -
Input =(

"Tech Rat Protein
Janet 1 1.119
Janet 1 1.2996
Janet 1 1.5407
Janet 1 1.5084
Janet 1 1.6181
Janet 1 1.5962
Janet 1 1.2617
Janet 1 1.2288
Janet 1 1.3471
Janet 1 1.0206
Janet 2 1.045
Janet 2 1.1418
Janet 2 1.2569
Janet 2 0.6191
Janet 2 1.4823
Janet 2 0.8991
Janet 2 0.8365
Janet 2 1.2898
Janet 2 1.1821
Janet 2 0.9177
Janet 3 0.9873
Janet 3 0.9873
Janet 3 0.8714
Janet 3 0.9452
Janet 3 1.1186
Janet 3 1.2909
Janet 3 1.1502
Janet 3 1.1635
Janet 3 1.151
Janet 3 0.9367
Brad 5 1.3883
Brad 5 1.104
Brad 5 1.1581
Brad 5 1.319
Brad 5 1.1803
Brad 5 0.8738
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Brad 5 1.387

Brad 5 1.301

Brad 5 1.3925
Brad 5 1.0832
Brad 6 1.3952
Brad 6 0.9714
Brad 6 1.3972
Brad 6 1.5369
Brad 6 1.3727
Brad 6 1.2909
Brad 6 1.1874
Brad 6 1.1374
Brad 6 1.0647
Brad 6 0.9486
Brad 7 1.2574
Brad 7 1.0295
Brad 7 1.1941
Brad 7 1.0759
Brad 7 1.3249
Brad 7 0.9494
Brad 7 1.1041
Brad 7 1.1575
Brad 7 1.294

Brad 7 1.4543
")

Data = read.table(textConnection(Input),header=TRUE)
Data$Rat = as.factor(bData$rRat)
Tibrary(nlme)
model = Tme(Protein ~ Tech, random=~1]|Rat,
data=Data,
method="REML")
anova. Ime(modeT,
type="sequential",
adjustSigma = FALSE)
numbF denDF F-value p-value

(Intercept) 1 54 587.8664 <.0001
Tech 1 4 0.2677 0.6322

Post-hoc comparison of means

Tibrary(multcomp)
posthoc = glht(model, Tinfct = mcp(Tech="Tukey"))
mcs = summary(posthoc, test=adjusted("single-step"))

mcs
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### Adjustment options: "none", "single-step", "Shaffer",
### "westfall", "free", "holm", "hochberg",
### "hommel", "bonferroni", "BH", "BY", "fdr"

Linear Hypotheses:
Estimate Sstd. Error z value Pr(>|z])
Janet - Brad == 0 -0.05060 0.09781 -0.517 0.605

cld(mcs,
Tevel=0.05,
decreasing=TRUE)

Brad Janet

a a

### Means sharing a letter are not significantly different

Post-hoc comparison of least-square means

Least squares means are adjusted for other terms in the model. If the experimental design is
unbalanced or there is missing data, the least square means may differ significantly from
arithmetic means for treatments. If the model is appropriate, then in these cases the least square
mean should represent the population mean better than would the arithmetic mean.

Tibrary(multcompVview)
Tibrary(lsmeans)

Tsm = 1smeans(model,
"Tech",
adjust="tukey")

cld(Tsm,
alpha=.05,
Letters=letters)

Tech Tsmean SE df asymp.LCL asymp.UCL .group
Janet 1.160420 0.06916018 NA 1.005745 1.315095 a
Brad 1.211023 0.06916018 NA 1.056348 1.365698 a

### Means sharing a letter in .group are not significantly different

Test the significance of the random effect in the mixed effects model

In order to the test the significance of the random effect from our model (Rat), we fit a new
model with only the fixed effects from the model. For this we use the gls function in the nime
package, instead of Ime. We then compare the two models with anova. Note the p-value does not
agree with p-value from the Handbook, because the technique is different, though in this case the
conclusion is the same. As a general precaution, if your models are fit with “REML” (restricted
maximum likelihood) estimation, then you should compare only models with the same fixed
effects. If you need to compare models with different fixed effects, use “ML” as the estimation
method for all models.
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model.fixed = gls(Protein ~ Tech,

data=Data,
method="REML")

anova(model, model.fixed)

Model df AIC BIC TogLik Test L.Ratio p-value
model 1 4 -7.819054 0.4227176 7.909527
model. fixed 2 3 -4.499342 1.6819872 5.249671 1 vs 2 5.319713 0.0211

Checking assumptions of the model

hist(residuals(model),
col="darkgray")

Histogram of residuals(model)

10

Frequency
6
|

I
-0.4 -0.2 0.0 0.2 0.4

residuals(model)

A histogram of residuals from a linear model. The distribution of these residuals
should be approximately normal.

plot(fitted(model),
residuals(model)

)
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A plot of residuals vs. predicted values. The residuals should be unbiased and
homoscedastic. For an illustration of these properties, see this diagram by Steve Jost
at DePaul University: condor.depaul.edu/sjost/it223/documents/resid-plots.gif.

### additional model checking plots with: plot(model)

# # #

Mixed effects model with Imer
The following is an abbreviated example of a nested anova using the Imer function in the Ime4
package. See previous examples in this chapter for explanation and model-checking.

R - -
### Nested anova, SAS example, pp. 171-173
R - -
Input =(

"Tech Rat Protein

Janet 1 1.119

Janet 1 1.2996

Janet 1 1.5407

Janet 1 1.5084

Janet 1 1.6181

Janet 1 1.5962

Janet 1 1.2617

Janet 1 1.2288

Janet 1 1.3471

Janet 1 1.0206

Janet 2 1.045

Janet 2 1.1418

Janet 2 1.2569
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.6191
.4823
.8991
.8365
.2898
.1821
.9177
.9873
.9873
.8714
. 9452
.1186
.2909
.1502
.1635
.151

.9367
.3883
.104

.1581
.319

.1803
.8738
.387

.301

.3925
.0832
.3952
.9714
.3972
.5369
.3727
.2909
.1874
.1374
.0647
.9486
.2574
.0295
.1941
.0759
.3249
.9494
.1041
.1575
.294

.4543
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Data = read.table(textConnection(Input),header=TRUE)

Data$Rat = as.factor(Data$rat)

Tibrary(1me4)

Tibrary(ImerTest)
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model = Tmer(Protein ~ Tech + (1]|Rat),
data=Data,
REML=TRUE)

anova(model)

Analysis of variance Table of type III with Satterthwaite
approximation for degrees of freedom

Sum Sq Mean Sgq NumDF DenDF F.value Pr(>F)
Tech 0.0096465 0.0096465 1 4 0.26768 0.6322
rand (modeT)
Analysis of Random effects Table:
Chi.sq chi.DF p.value
Rat 5.32 1 0.02 *
difflsmeans(model,
test.effs="Tech")

Differences of LSMEANS:
Estimate Standard Error DF t-value Lower CI Upper CI p-value
Tech Brad - Janet 0.1 0.0978 4.0 0.52 -0.221 0.322 0.6

Tibrary(multcomp)
posthoc = glht(model, Tinfct = mcp(Tech="Tukey"))
mcs = summary(posthoc, test=adjusted("single-step"))
mcs
Linear Hypotheses:
Estimate Std. Error z value Pr(>|z|)

Janet - Brad == 0 -0.05060 0.09781 -0.517 0.605
(Adjusted p values reported -- single-step method)

cld(mcs,
Tevel=0.05,
decreasing=TRUE)

Brad Janet

a a
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Two-way Anova

When to use it
Null hypotheses
How the test works

Assumptions

See the Handbook for information on these topics.

Examples

The rattlesnake example is shown at the end of the “How to do the test” section.

How to do the test
For notes on linear models and conducting anova, see the “How to do the test” section in the One-
way anova chapter of this book. For two-way anova with robust regression, see the chapter on

Two-way Anova with Robust Estimation.

Two-way anova example

BHH —mm e
### Two-way anova, SAS example, pp. 179-180
B —— -
Input = (
"id Sex Genotype Activity
1 male ff 1.884
2 male ff 2.283
3 male fs 2.396
4 female ff 2.838
5 male fs 2.956
6 female ff 4.216
7 female ss 3.620
8 female ff 2.889
9 female fs 3.550
10 male fs 3.105
11 female fs 4.556
12 female fs 3.087
13 male ff 4.939
14 male ff 3.486
15 female ss 3.079
16 male fs 2.649
17 female fs 1.943
19 female ff 4.198
20 female ff 2.473
22 female ff 2.033
24 female fs 2.200
25 female fs 2.157
26 male Ss 2.801
28 male Ss 3.421
29 female ff 1.811
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30 female fs 4,281
32 female fs 4.772
34 female ss 3.586
36 female ff 3.944
38 female ss 2.669
39 female ss 3.050
41 male Ss 4.275
43 female ss 2.963
46 female ss 3.236
48 female ss 3.673
49 male Ss 3.110
")

Data = read.table(textConnection(Input),header=TRUE)

If yvou will be using Type IlI tests, vou'll have to change the way R does the contrasts for factors

options(contrasts = c("contr.sum", "contr.poly"))

### needed for type III tests

Means and summary statistics by group

Tibrary(Rmisc)
sum = summarySE(Data,
measurevar="Activity",

groupvars=c("sex","Genotype"))

sum
Sex Genotype N Activity sd se ci

1 female ff 8 3.05025 0.9599032 0.3393770 0.8024992

2 female fs 8 3.31825 1.1445388 0.4046556 0.9568584

3 female ss 8 3.23450 0.3617754 0.1279069 0.3024518

4 male ff 4 3.14800 1.3745115 0.6872558 2.1871546

5 male fs 4 2.77650 0.3168433 0.1584216 0.5041684

6 male ss 4 3.40175 0.6348109 0.3174055 1.0101258

Interaction plot using summary statistics

Tibrary(ggplot2)
pd = position_dodge(.2)

ggplot(sum, aes(x=Genotype,
y=Activity,
color=sex)) +
geom_errorbar(aes(ymin=Activity-se,
ymax=Activity+se),
width=.2, size=0.7, position=pd) +
geom_point(shape=15, size=4, position=pd) +
theme_bw() +
theme(axis.title.y = element_text(vjust= 1.8),
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axis.title.x = element_text(vjust= -0.5),
axis.title = element_text(face = "bold™)) +
scale_color_manual(values = c("black", "blue"))

### You may see an error, “ymax not defined”
### 1In this case, it does not appear to affect anything

3.6-
- 6
N Sex
Fug
> 8.2 ] -l female
© 1
< N -l male
2.8 -
2.4 - T | I
ff fs ss

Genotype

Interaction plot for a two-way anova. Square points represent means for groups, and
error bars indicate standard errors of the mean.

Simple box plot of main effect and interaction

boxplot(Activity ~ Genotype,
data = Data,
x1lab "Genotype",
ylab = "MPI Activity")
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boxplot(Activity ~ Genotype:Sex,
data = Data,
xlab = "Genotype x Sex",
ylab = "MPI Activity")
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Genotype x Sex

Fit the linear model and conduct ANOVA

model = Tm(Activity ~ Sex + Genotype + Sex:Genotype,
data=Data)

Tibrary(car)
Anova(model, type="II") # Can use type="III"

sum Sq Df F value Pr(>F)
Sex 0.0681 1 0.0861 0.7712
Genotype 0.2772 2 0.1754 0.8400
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0.8146 2 0.5153
23.7138 30

Sex:Genotype
Residuals

anova(modeT)

Df Sum Sq Mean Sq

Sex 1 0.0681 0.06808

Genotype 2 0.2772 0.13862

Sex:Genotype 2 0.8146 0.40732

Residuals 30 23.7138 0.79046
summary(model)

Multiple R-squared:

F-statistic: 0.2935 on 5 and 30 DF,

Checking assumptions of the model

hist(residuals(model),
col="darkgray")

0.04663, Adjusted R-squared:

AN R COMPANION FOR THE HANDBOOK OF BIOLOGICAL STATISTICS

0.6025

# Produces type I sum of squares

F value Pr(>F)
0.0861 0.7712
0.1754 0.8400
0.5153 0.6025

# Produces r-square, overall p-value, parameter estimates

-0.1123
p-value: 0.9128

Histogram of residuals(model)

Frequency

O_

T

T
-0.5 0.0

-1.5 1.0

T
05 1.0

1.5 20

residuals(model)
A histogram of residuals from a linear model. The distribution of these residuals

should be approximately normal.

plot(fitted(model),
residuals(model)

)
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A plot of residuals vs. predicted values. The residuals should be unbiased and

homoscedastic. For an illustration of these properties, see this diagram by Steve Jost
at DePaul University: condor.depaul.edu/sjost/it223/documents/resid-plots.gif.

### additional model checking plots with: plot(model)
### alternative: library(FSA); residPlot(model)

Post-hoc comparison of least-square means
For notes on least-square means, see the “Post-hoc comparison of least-square means” section in
the Nested anova chapter in this book.

One advantage of the using the Ismeans package for post-hoc tests is that it can produce
comparisons for interaction effects.

In general, if the interaction effect is significant, you will want to look at comparisons of means
for the interactions. If the interaction effect is not significant but a main effect is, it is appropriate
to look at comparisons among the means for that main effect. In this case, because no effect of
Sex, Genotype, or Sex:Genotype was significant, we would not actually perform any mean
separation test.

Mean separations for main factor with Ismeans

Tibrary(multcompVview)

Tibrary(lsmeans)

Tsm = 1smeans(modeT,
"Genotype",
adjust="tukey")

cld(1sm,
alpha=.05,
Letters=letters)
Genotype Tsmean SE df Tower.CL upper.CL .group
fs 3.047375 0.2722236 30 2.359065 3.735685 a
ff 3.099125 0.2722236 30 2.410815 3.787435 a
ss 3.318125 0.2722236 30 2.629815 4.006435 a
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### Means sharing a letter in .group are not significantly different

Mean separations for interaction effect with Ismeans

Tibrary(multcompview)
Tibrary(lsmeans)
Tsm = 1smeans(modeT,
pairwise ~ Sex:Genotype,
adjust="tukey")
Tsm$contrasts

contrast estimate SE df t.ratio p.value
female,ff - male,ff -0.09775 0.5444472 30 -0.180 1.0000
female,ff - female,fs -0.26800 0.4445393 30 -0.603 0.9900
female,ff - male,fs 0.27375 0.5444472 30 0.503 0.9957
female,ff - female,ss -0.18425 0.4445393 30 -0.414 0.9983
female,ff - male,ss -0.35150 0.5444472 30 -0.646 0.9864
male,ff - female,fs -0.17025 0.5444472 30 -0.313 0.9996
male,ff - male,fs 0.37150 0.6286735 30 0.591 0.9909
male,ff - female,ss -0.08650 0.5444472 30 -0.159 1.0000
male,ff - male,ss -0.25375 0.6286735 30 -0.404 0.9985
female,fs - male,fs 0.54175 0.5444472 30 0.995 0.9159
female,fs - female,ss 0.08375 0.4445393 30 0.188 1.0000
female,fs - male,ss -0.08350 0.5444472 30 -0.153 1.0000
male,fs - female,ss -0.45800 0.5444472 30 -0.841 0.9572
male,fs - male,ss -0.62525 0.6286735 30 -0.995 0.9161
female,ss - male,ss -0.16725 0.5444472 30 -0.307 0.9996
cld(1sm,

alpha=.05,

Letters=letters)

Sex Genotype Tlsmean SE df Tower.CL upper.CL .group
male fs 2.77650 0.4445393 30 1.524666 4.028334 a
female ff 3.05025 0.3143368 30 2.165069 3.935431 a
male ff 3.14800 0.4445393 30 1.896166 4.399834 a
female ss 3.23450 0.3143368 30 2.349319 4.119681 a
female fs 3.31825 0.3143368 30 2.433069 4.203431 a
male Ss 3.40175 0.4445393 30 2.149916 4.653584 a

### Note that means are Tisted from Tow to high,
### not in the same order as summarySE

Tukey-adjusted mean separations with aov and TukeyHSD
Using TukeyHSD with a model fit with aov will also produce mean comparisons for the
interaction effect.

model.aov = aov(Activity ~ Sex + Genotype + Sex:Genotype,
data=Data)

TukeyHSD(model . aov,
conf.level = 0.95)
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$sex
diff Twr upr p adj
male-female -0.09225 -0.7342113 0.5497113 0.7711798

$Genotype

diff Twr upr p adj
fs-ff 0.05483333 -0.8399734 0.9496401 0.9875021
ss-ff 0.20741667 -0.6873901 1.1022234 0.8362403
ss-fs 0.15258333 -0.7422234 1.0473901 0.9074857

$ Sex:Genotype”

diff Twr upr p adj
male:ff-female: ff 0.09775 -1.558238 1.753738 0.9999712
female:fs-female:ff 0.26800 -1.084108 1.620108 0.9900169
male:fs-female: ff -0.27375 -1.929738 1.382238 0.9956835
female:ss-female:ff 0.18425 -1.167858 1.536358 0.9982708
male:ss-female: ff 0.35150 -1.304488 2.007488 0.9863961
female:fs-male:ff 0.17025 -1.485738 1.826238 0.9995569
male:fs-male:ff -0.37150 -2.283670 1.540670 0.9908872
female:ss-male: ff 0.08650 -1.569488 1.742488 0.9999843
male:ss-male:ff 0.25375 -1.658420 2.165920 0.9984769
male:fs-female:fs -0.54175 -2.197738 1.114238 0.9159152
female:ss-female:fs -0.08375 -1.435858 1.268358 0.9999634
male:ss-female:fs 0.08350 -1.572488 1.739488 0.9999868
female:ss-male:fs 0.45800 -1.197988 2.113988 0.9571582
male:ss-male:fs 0.62525 -1.286920 2.537420 0.9160754
male:ss-female:ss 0.16725 -1.488738 1.823238 0.9995937

Graphing the results

Simple bar plot with categories and no error bars

### Re-enter data as matrix
Input =(

"Sex ff fs Ss
Female 3.05025 3.31825 3.23450
Male 3.14800 2.77650 3.40175

ll)

Matriz = as.matrix(read.table(textConnection(Input),
header=TRUE,
row.names=1))

Matriz
ff fs Ss

Female 3.05025 3.31825 3.23450
Male 3.14800 2.77650 3.40175
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barplot(Matriz,
beside=TRUE,
Tegend=TRUE,
yTim=c(0, 5),
xTlab="Genotype",
ylab="MPI Activity"

)
m C
B Female
< [0 Male
2 o -
=
ks
I
S o~
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ff fs ss
Genotype

Bar plot with error bars with ggplot2
This plot uses the data frame created by summarySE in Rmisc. Error bars indicate standard error
of the means (se in the data frame).

Tibrary(Rmisc)
sum = summarySE(Data, measurevar="Activity", groupvars=c("Sex","Genotype"))

sum

Sex Genotype N Activity sd se ci
1 female ff 8 3.05025 0.9599032 0.3393770 0.8024992
2 female fs 8 3.31825 1.1445388 0.4046556 0.9568584
3 female ss 8 3.23450 0.3617754 0.1279069 0.3024518
4 male ff 4 3.14800 1.3745115 0.6872558 2.1871546
5 male fs 4 2.77650 0.3168433 0.1584216 0.5041684
6 male ss 4 3.40175 0.6348109 0.3174055 1.0101258

### Plot adapted from:
###  shinyapps.stat.ubc.ca/r-graph-catalog/

Tibrary(ggplot2)
Tibrary(grid)

ggplot(sum,
aes(x = Genotype, y = Activity, fill = Sex,
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ymax=Activity+se, ymin=Activity-se)) +
geom_bar(stat="identity", position "dodge", width = 0.7) +
geom_bar(stat="identity", position "dodge",

colour = "black", width = 0.7,

show_guide = FALSE) +
scale_y_continuous(breaks = seq(0, 4, 0.5),

Timits = c(0, 4),

expand = c(0, 0)) +

scale_fill_manual(name = "Count type" ,
values = c('grey80', 'grey30'),
labels = c("Female",

"Male")) +

geom_errorbar(position=position_dodge(width=0.7),
width=0.0, size=0.5, color="black") +
Tabs(x = "Genotype",
y = "MPI Activity") +

## ggtitle("Main title") +

theme_bw() +

theme(panel.grid.major.x = element_blank(),
panel.grid.major.y = element_line(colour = "grey50"),
plot.title = element_text(size = rel(1.5),
face = "bold", vjust = 1.5),
axis.title = element_text(face = "bold"),
Tegend.position = "top",
Tegend.title = element_blank(),
Tegend.key.size = unit(0.4, "cm"),
Tegend.key = element_rect(fill = "black™),
axis.title.y = element_text(vjust= 1.8),
axis.title.x = element_text(vjust= -0.5)

# # #

Female [ Male

4.0

3.5

3.0+

2.5

2.0+

1.5

MPI Activity

1.0 4

0.5

0.0

fs ss

Genotype

Bar plot for a two-way anova. Bar heights represent means for groups, and error bars
indicate standard errors of the mean.
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Rattlesnake example - two-way anova without replication, repeated measures

This example could be interpreted as two-way anova without replication or as a one-way
repeated measures experiment. Below it is analyzed as a two-way fixed effects model using the
Im function, as a repeated measures experiment using the aov function, as a mixed effects model
using the nlme package, and using the car package.

s

rattlesnake example, pp. 177-178

e

### Two-way anova,

Input = (

"Day Snake Openings
1 D1 85
1 D3 107
1 D5 61
1 D8 22
1 D11 40
1 D12 65
2 D1 58
2 D3 51
2 D5 60
2 D8 41
2 D11 45
2 D12 27
3 D1 15
3 D3 30
3 D5 68
3 D8 63
3 D11 28
3 D12 3
4 D1 57
4 D3 12
4 D5 36
4 D8 21
4 D11 10
4 D12 16

")

Data = read.table(textConnection(Input),header=TRUE)

Data$pay = as.factor(bata$pay)

Using two-way fixed effects model

Means and summary statistics by group

Tibrary(Rmisc)

sum = summarySE(Data, measurevar="Openings", groupvars=c("Day"))

sum

151



Two-WAY ANOVA AN R COMPANION FOR THE HANDBOOK OF BIOLOGICAL STATISTICS

Day N Openings sd se ci
1 6 63.33333 30.45434 12.432931 31.95987
2 6 47.00000 12.21475 4.986649 12.81859
3 6 34.50000 25.95958 10.597956 27.24291
4 6

25.33333 18.08498 7.383164 18.97903

AW R

Simple box plots

boxplot(Openings ~ Day,

data = Data,
xlab = "Day",
ylab = "Openings until tail stops rattling")
o
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Fit the linear model and conduct ANOVA
model = Im(Openings ~ Day + Snake,
data=Data)
Tibrary(car)
Anova(model, type="II") # Can use type="III"
sum Sq Df F value Pr(F)
Day 4877.8 3 3.3201 0.04866 *
Snake 3042.2 5 1.2424 0.33818

Residuals 7346.0 15

anova(modeT) # Produces type I sum of squares

Df Sum Sq Mean Sq F value Pr(>F)
Day 3 4877.8 1625.93 3.3201 0.04866 *
Shake 5 3042.2 608.44 1.2424 0.33818
Residuals 15 7346.0 489.73
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summary(model) # Produces r-square, overall p-value, parameter estimates

Multiple R-squared: 0.5188, Adjusted R-squared: 0.2622
F-statistic: 2.022 on 8 and 15 DF, p-value: 0.1142

Checking assumptions of the model

hist(residuals(model),
col="darkgray")

Histogram of residuals(model)

Frequency

-40 -20 0 20 40

residuals(model)

A histogram of residuals from a linear model. The distribution of these residuals
should be approximately normal.

plot(fitted(model),
residuals(model)

)
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A plot of residuals vs. predicted values. The residuals should be unbiased and
homoscedastic. For an illustration of these properties, see this diagram by Steve Jost
at DePaul University: condor.depaul.edu/sjost/it223/documents/resid-plots.gif.

### additional model checking plots with: plot(model)
### alternative: library(FSA); residPlot(model)

Mean separations for main factor with Ismeans

For notes on least-square means, see the “Post-hoc comparison of least-square” means section in
the Nested anova chapter in this book. For other mean separation techniques for a main factor in
anova, see “Tukey and Least Significant Difference mean separation tests (pairwise
comparisons)” section in the One-way anova chapter.

Tibrary(multcompview)
Tibrary(lsmeans)
Tsm = 1smeans(modeT,
"Day",
adjust="tukey")

cld(1sm,
alpha=.05,
Letters=letters)

Day TIsmean SE df Tower.CL upper.CL .group
4  25.33333 9.034476 15 -0.2085871 50.87525 a

3 34.50000 9.034476 15 8.9580796 60.04192 ab

2  47.00000 9.034476 15 21.4580796 72.54192 ab

1 63.33333 9.034476 15 37.7914129 88.87525 b

### Means sharing a letter in .group are not significantly different

Using error term to define Day as repeated measure

The Snake factor defines the subjects in which multiple measurements are made. This design can

be thought of a repeated measures or within-subjects design. As such, it is appropriate to define
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a model with Snake serving as the error term. The within-subjects effect is the effect of Day. As a
caveat, using aov for repeated measures analysis on unbalanced data may not be appropriate.

The TukeyC function can be used for models in which an error term is specified. For unbalanced
data, the dispersion parameter may need to be modified.

model.aov = aov(Openings ~ Day + Error(Snake/Day), data=Data)
summary(model.aov)

Error: wWithin

Df Sum Sq Mean Sq F value Pr(>F)
Day 3 4878 1625.9 3.32 0.0487 *
Residuals 15 7346 489.7

Tibrary(TukeyC)
tuk = TukeyC(Data,
model = 'Openings ~ Day + Error(Snake/Day)’',
error = 'Snake:Day',
which = 'Day',
f11=1,

sig.level = 0.05)

Goups of means at sig.level = 0.05

Means Gl G2
1 63.33 a
2 47.00 a b
334.50 a b
4 25.33 b

Using mixed effects model with nlme
This is an abbreviated example using the Ime function in the nime package.

Tibrary(nlme)
model = Tme(Openings ~ Day, random=~1]|Snake,
data=Data,

method="REML")

anova. Ime(modeTl,
type="sequential",
adjustSigma = FALSE)

numbDF denDF F-value p-value
(Intercept) 1 15 71.38736 <.0001
Day 3 15 3.32005 0.0487

Tibrary(multcompview)
Tibrary(lsmeans)
Tsm = 1smeans(modeTl,

llDayll ,
alpha=.05)
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cld(Tsm,
alpha=.05,
Letters=letters)

Day Ismean SE df asymp.LCL asymp.UCL .group
4  25.33333 9.304196 NA 2.157372 48.50929 a

3 34.50000 9.304196 NA 11.324038 57.67596 ab

2 47.00000 9.304196 NA 23.824038 70.17596 ab

1 63.33333 9.304196 NA 40.157372 86.50929 b

### Means sharing a Tetter in .group are not significantly different

Using mixed effects model with Imer
This is an abbreviated example using the Imer function in the Ime4 package.

Tibrary(1me4)
Tibrary(ImerTest)

model = Tmer(Openings ~ Day + (1|Snake),
data=Data,
REML=TRUE)

anova(model)

Analysis of variance Table of type III with Satterthwaite
approximation for degrees of freedom

Sum Sq Mean Sq NumDF DenDF F.value Pr(>F)
Day 4877.8 1625.9 3 15 3.3201 0.04866 *
rand(model)
Analysis of Random effects Table:

Chi.sq Chi.DF p.value
Snake 0.0915 1 0.8

difflsmeans(model,
test.effs="Day")
Differences of LSMEANS:

Estimate Standard Error DF t-value Lower CI Upper CI p-value

Day 1 - 2 16.3 12.78 15.0 1.28 -10.90 43.6 0.220
Day 1 - 3 28.8 12.78 15.0 2.26 1.60 56.1 0.039 *
Day 1 - 4 38.0 12.78 15.0 2.97 10.77 65.2 0.009 ==
Day 2 - 3 12.5 12.78 15.0 0.98 -14.73 39.7 0.343
Day 2 - 4 21.7 12.78 15.0 1.70 -5.57 48.9 0.111
Day 3 - 4 9.2 12.78 15.0 0.72 -18.07 36.4 0.484

Tibrary(multcomp)
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posthoc = glht(model, Tlinfct = mcp(Day="Tukey™"))
mcs = summary(posthoc, test=adjusted("single-step"))
mcs
Simultaneous Tests for General Linear Hypotheses

Linear Hypotheses:
Estimate Sstd. Error z value Pr(>|z])

2 -1==0 -16.333 12.777 -1.278 0.5767
3-1==0 -28.833 12.777 -2.257 0.1082
4 -1==0 -38.000 12.777 -2.974 0.0157 *
3-2==0 -12.500 12.777 -0.978 0.7618
4 -2 ==0 -21.667 12.777 -1.696  0.3258
4 -3 ==0 -9.167 12.777 -0.717 0.8902
cld(mcs,
Tevel=0.05,
decreasing=TRUE)
1 2 3 4
llall llabll Ilabll Ilbll
# # #

Using the car package for repeated measure with data in wide format

The car package can also be used to analyze a one-way repeated measures experiment, though
the process is not as straight-forward as with other techniques. Furthermore, I do not know of
any appropriate post-hoc tests for this procedure.

B —— -
### Two-way anova, rattlesnake example, pp. 177-178

### using car package with data in Tong format

B —— -
Input = (

"Snake Day.l Day.2 Day.3 Day.4

D1 85 58 15 57
D3 107 51 30 12
D5 61 60 68 36
D8 22 41 63 21
D11 40 45 28 10
D12 65 27 3 16
"

Data = read.table(textConnection(Input),header=TRUE)
options(contrasts = c("contr.sum", "contr.poly"))
### needed for type III tests
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Tibrary(car)

DV = Im(cbind(pay.1l, Day.2, Day.3, Day.4) ~ 1,
data=Data)

Days = factor(c("D1","D2","D3","D4"))

nova = Anova(DV,
idata= data.frame(Days),
idesign=~Days
)

summary(nova,

multivariate=FALSE,
univariate=TRUE)

Univariate Type III Repeated-Measures ANOVA Assuming Sphericity

SS num Df Error SS den Df F Pr(>F)
(Intercept) 43435 1 3042.2 5 71.3874 0.0003812 ***
Days 4878 3 7346.0 15 3.3201 0.0486562 *
# # #

Two-way Anova with Robust Estimation

A two-way anova using robust estimators can be performed with the WRSZ package. Options for
estimators are M-estimators, trimmed means, and medians. This type of analysis is resistant to
deviations from the assumptions of the traditional ordinary-least-squares anova, and are robust
to outliers. However, it may not be appropriate for data that deviate too widely from parametric
assumptions.

The main analysis using M-estimators for a two-way anova is conducted with the pbadZway
function in the WRS2 package. Post-hoc tests can be performed with the mcpZ2a function in the
WRSZ2 package or with my custom functions pairwise.robust.test and pairwise.robust.matrix,
which rely on the pbZgen function in WRSZ.

My custom function groupwise.huber uses the HuberM function in the DescTools package to
determine the Huber M-estimators across groups in a data frame.

For more information on robust tests available in the WRSZ2 package, see:

help(package="wRS2")

Consult the chapter on Two-way Anova for general consideration about conducting analysis of
variance.
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B —m -
### Two-way anova with robust estimators, hypothetical data

###  Using WRS2 package

B —m -

Input = (

"Factor.A Factor.B Response

K XK XK XK XK XK XK XK XK X
ONRFEFNRPRRWWWNWNNRNRREO
ONOONOONNOOTP,OOOOOWPRAO

“ S5 53 535353535 53533 SS S S S A —-Ad—-d—dada

Data = read.table(textConnection(Input),header=TRUE)

Produce Huber M-estimators and confidence intervals by group

Tibrary(plyr)
Tibrary(DescTools)

source("http://rcompanion.org/r_script/groupwise.huber.r")

Sum = groupwise.huber(data = Data,
group = c("Factor.A", "Factor.B"),
var = "Response",
conf.level=0.95,
conf.type="wald")

Sum

Factor.A Factor.B n M.Huber Tower.ci upper.ci
1 1 x 3 1.266667 0.9421910 1.591142
2 1 y 3 2.000000 1.4456385 2.554362
3 m x 3 2.800000 2.4304256 3.169574
4 m y 3 3.538805 3.2630383 3.814572
5 n x 3 2.100000 1.5855743 2.614426
6 n y 3 1.333333 0.8592063 1.807460
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Interaction plot using summary statistics

Tibrary(ggplot2)
pd = position_dodge(.2)

ggplot(Sum, aes(x=Factor.A,
y=M. Huber,
color=Factor.B)) +
geom_errorbar(aes(ymin=lower.ci,
ymax=upper.ci),
width=.2, size=0.7, position=pd) +
geom_point(shape=15, size=4, position=pd) +
theme_bw() +
theme (
axis.title.y = element_text(vjust= 1.8),
axis.title.x = element_text(vjust= -0.5),
axis.title = element_text(face = "bold")) +
scale_color_manual(values = c("black", "blue"))

Factor.B

- x
-y

M.Huber

1 I 1
| m n

Factor.A

Two-way analysis of variance for M-estimators

The est = "mom"” option uses a modified M-estimator for the analysis. To analyze using medians,
use the est= "median” option in the pbad2way function in the WRSZ package. To analyze using
trimmed means, use the tZway function in the WRS2 package.

Tibrary(wRrRS2)

pbad2way(Response ~ Factor.A + Factor.B + Factor.A:Factor.B,
data = Data,
est = "mom", # modified M-estimator
nboot = 5000) # number of bootstrap samples
# a higher number will take longer to compute

pbad2way(formula = Response ~ Factor.A + Factor.B + Factor.A:Factor.B,
data = Data, est = "mom", nboot = 3000)
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p.value
Factor.A 0.0000
Factor.B 0.3403

Factor.A:Factor.B 0.0460

Produce post-hoc tests for main effects with mcp2a

post = mcp2a(Response ~ Factor.A + Factor.B + Factor.A:Factor.B,
data = Data,
est = "mom", # M-estimator
nboot = 5000) # number of bootstrap samples
post$contrasts
post
Factor.Al: Factor.A2: Factor.A3:
Factor.Al Factor.A2 Factor.A3 Factor.Bl Factor.Bl Factor.Bl Factor.Bl
1_x 1 1 0 1 1 1 0
1_y 1 1 0 -1 -1 -1 0
m_x -1 0 1 1 -1 0 1
m_y -1 0 1 -1 1 0 -1
n_x 0 -1 -1 1 0 -1 -1
n_y 0 -1 -1 -1 0 1 1
V1l ci.lower ci.upper p-value
Factor.Al -3.18333 -4.20000 -1.60000 0.00000
Factor.A2 -0.16667 -1.70000 1.36667 0.40233
Factor.A3 3.01667 1.40000 4.05000 0.00000
Factor.B1l -0.81667 -2.28333 1.00000 0.22233
Factor.Al:Factor.Bl 0.11667 -1.50000 1.16667 0.48033
Factor.A2:Factor.B1l -1.50000 -3.10000 0.00000 0.01767
Factor.A3:Factor.Bl -1.61667 -2.80000 0.00000 0.01433
### The Factor.Al contrast compares 1 to m; since it is significant,

### 1 is significantly different than m.

### The Factor.A2 contrast compares 1 to n; since it is not significant,
### 1 is not significantly different than n.

Produce post-hoc tests for main effects with pairwise.robust.test or pairwise.robust.matrix

Table output with pairwise.robust.test

Tibrary(wRrRS2)

source("http://rcompanion.org/r_script/pairwise.robust.test.r")

PT = pairwise.robust.test(
Data$Response,

Data$Factor.A,
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est="mom",
nboot=5000,
method=""fdr") # adjust p-values; see ?p.adjust for options
PT
Comparison Statistic p.value p.adjust
1 1 -m=0 -1.483 8e-04 0.0012
2 1 -n=0 -0.08333 0.7226 0.7226
3 m-n=20 1.4 6e-04 0.0012

### p-values may differ

Compact letter display output with pairwise.robust.matrix

source("http://rcompanion.org/r_script/pairwise.robust.matrix.r")

PM = pairwise.robust.matrix(
Data$Response,
Data$Factor.A,
est="mom",
nboot=5000,
method=""fdr") # adjust p-values; see ?p.adjust for options

PM$Adjusted
PM$Adjusted
1 m n
T 1.0000 9e-04 0.7284
m 0.0009 1e+00 0.0009
n 0.7284 9e-04 1.0000

### p-values may differ

Tibrary(multcompVview)

multcompLetters(PM$Adjusted,

compare="<",
threshold=0.05,
Letters=letters,
reversed = FALSE)

1 m n

llall Ilbll llall

### Note, means are not ordered from largest to smallest

Produce post-hoc tests for interaction effect

Data$Factor.int = interaction (Data$Factor.A, Data$Factor.B)
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### Create a factor which is the interaction of Factor.A and Factor.B

Tibrary(FSA)
headtail(pata)

Factor.A Factor.B Response Factor.int

1 1 X 0.9 T.x
2 1 y 1.4 T.y
3 1 X 1.3 T.x
16 n y 1.9 n.y
17 n X 2.7 n.x
18 n y 0.9 n.y

Table output with pairwise.robust.test

Tibrary(wRrRS2)
source("http://rcompanion.org/r_script/pairwise.robust.test.r")

PT = pairwise.robust.test(

Data$Response,

Data$Factor.int,

est="mom",

nboot=5000,

method="fdr") # adjust p-values; see ?p.adjust for options

PT
Comparison Statistic p.value p.adjust

1 T.x - T.y=0 -0.7333 0.1342 0.1629
2 T.x -mx=0 -1.533 0 0.0000
3 1.x-my-=20 -2.383 0 0.0000
4 1.x -n.x=0 -0.8333 0.0687 0.1472
5 1.x - n.y =0 -0.06667 0.9457 0.9457
6 1.y -m.x =0 0.8 0.1298 0.1629
7 1.y —-my=20 -1.65 0 0.0000
8 1.y - n.x=20 0.1 0.7681 0.8230
9 1.y - n.y =0 0.6667 0.1368 0.1629
10 m.x - m.y =0 -0.85 0.1314 0.1629
11 mx - n.x =0 0.7 0.1374 0.1629
12 m.x - n.y =0 1.467 0 0.0000
13 my - n.x=0 -1.55 0 0.0000
14 m.y - n.y =0 2.317 0 0.0000
15 n.x - n.y =0 0.7667 0.1412 0.1629

### p-values may differ

Compact letter display output with pairwise.robust.matrix

source("http://rcompanion.org/r_script/pairwise.robust.matrix.r")

PM = pairwise.robust.matrix(
Data$Response,
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Data$Factor.int,

est="mom",
nboot=5000,
method="fdr") # adjust p-values; see ?p.adjust for options
PM
$unadjusted
T.x T.y m.x m.y n.x n.y
T.x NA 0.1322 0.0000 0.0000 0.0666 0.951
T.y NA NA 0.1366 0.0000 0.7465 0.1324
m.x NA NA NA 0.1418 0.1242 0.0000
m.y NA NA NA NA 0.0000 0.0000
n.x NA NA NA NA NA 0.1396
n.y NA NA NA NA NA NA
$Method
[1] "fdr"
$Adjusted
1.x T.y m. X m.y n.x n.y
T.x 1.0000 0.1636 0.0000 0.0000 0.1427 0.951
T.y 0.1636 1.0000 0.1636 0.0000 0.7998 0.1636
m.x 0.0000 0.1636 1.0000 0.1636 0.1636 0.0000
m.y 0.0000 0.0000 0.1636 1.0000 0.0000 0.0000
n.x 0.1427 0.7998 0.1636 0.0000 1.0000 0.1636
n.y 0.9515 0.1636 0.0000 0.0000 0.1636 1.0000

### p-values may differ

Tibrary(multcompview)

multcompLetters(PM$Adjusted,
compare="<",
threshold=0.05,
Letters=letters,

reversed = FALSE)

T.x 1.y m.x m.y n.x n.y
llall llabll Ilbcll IICII llabll Ilall

### Note, means are not ordered from largest to smallest

# # #

Paired t-test

Paired t-tests can be conducted with the t.test function in the native stats package using the
paired=TRUE option. Data can be in long format or short format. Examples of each are shown in
this chapter.
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As a non-parametric alternative to paired t-tests, a permutation test can be used. An example is
shown in the “Permutation test for dependent samples” section of this chapter.

When to use it
The horseshoe crab example is shown at the end of the “How to do the test” section.

Null hypothesis
Assumption

How the test works
See the Handbook for information on these topics.

Examples
The flicker feather example is shown in the “How to do the test” section.

Graphing the results
Plots are shown in the “How to do the test” section.

How to do the test
Paired t-test, data in wide format, flicker feather example

BHH —
### Paired t-test, Flicker feather example, p. 185

BHH —
Input = (

"Bird Typical odd

A -0.255 -0.324
B -0.213 -0.185
C -0.190 -0.299
D -0.185 -0.144
E -0.045 -0.027
F -0.025 -0.039
G -0.015 -0.264
H 0.003 -0.077
I 0.015 -0.017
J 0.020 -0.169
K 0.023 -0.096
L 0.040 -0.330
M 0.040 -0.346
N 0.050 -0.191
0 0.055 -0.128
P 0.058 -0.182
)

Data = read.table(textConnection(Input),header=TRUE)

Paired t-test
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t.test(Data$Typical, Data$odd,
paired=TRUE,
conf.level=0.95)
t = 4.0647, df = 15, p-value = 0.001017

mean of the differences
0.137125

Simple plot of differences

Difference = Data$odd - Data$Typical

plot(pifference,

pch = 16,

ylab="Difference (0odd - Typical)"

)
abline(0,0, col="blue", lwd=2)
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A simple plot of differences between one sample and the other. Points below the blue
line indicate observations where Typical is greater than Odd, that is where (Odd —
Typical) is negative

Simple 1-to-1 plot of values

plot(pata$Typical, Data$odd,
pch = 16,
xTab="Typical feathers",
ylab="0dd feathers"

)
abline(0,1, col="blue", Twd=2)
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Typical feathers

Plot of paired samples from a paired t-test. Circles below or to the right of the blue
one-to-one line indicate observations with a higher value for Typical than for Odd.

Checking assumptions of the model

Difference = Data$odd - Data$Typical

hist(bifference,
col="gray",
main="Histogram of differences",
x1ab="Difference")

Histogram of differences

Frequency
2
|

| T
-0.4 -0.3 -0.2 -0.1 0.0 0.1

Difference

Histogram of differences of two populations from a paired t-test. Distribution of
differences should be approximately normal. Bins with negative values indicate
observations with a higher value for Typical than for Odd.
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Graphing the results

Data$pifference = Data$odd - Data$Typical

Tibrary(ggplot2)
ggplot(Data,
aes(x Bird,

Difference)) +
geom_bar(stat = "identity",
i1l = "grey50",
colour = "black",
width = 0.6) +
scale_y_continuous(breaks = seq(-0.4, 0.1, 0.1),
Timits = c(-0.4, 0.1),
expand = c(0, 0)) +
#ggtitle("Chart title") +
Tabs(x = "Bird identification letter",
y = "Difference in yellowness index (Typical - odd)") +
theme_bw() +
theme(panel.grid.major.x = element_blank(),
panel.grid.major.y = element_line(colour = "grey50"),
plot.title = element_text(size = rel(1.5),
face = "bold", vjust = 1.5),
element_blank(),
element_blank(),

axis.ticks.x
axis.ticks.y

axis.title.y element_text(face = "bold",
vjust= 1.8),
axis.title.x = element_text(face = "bold",
vjust= -0.8)
)
# # #
0.1

m_ M=

; I 7 I. 7 | 7
-0.1 |I|
-0.2
-0.3
G H | J K L M N (0] P

Difference in yellowness index (Typical — Odd)

-0.4

A B c D E F

Bird identification letter
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Paired t-test, data in wide format, horseshoe crab example

B —— -
### Paired t-test, Horseshoe crab example, pp. 181-182
B —— -

# Note, if you use "2011" as a variable name,
# the read.table function will convert it to "X2011"

Input = (

"Beach Year.2011 Year.2012
'Bennetts Pier' 35282 21814
'Big Stone' 359350 83500
'Broadkill’ 45705 13290
'Cape Henlopen' 49005 30150
'Fortescue' 68978 125190
'"Fowler' 8700 4620
'Gandys' 18780 88926
'"Higbees' 13622 1205
"Highs' 24936 29800
'"Kimbles' 17620 53640
'Kitts Hummock' 117360 68400
"Norburys Landing' 102425 74552
"North Bowers' 59566 36790
"North Cape May' 32610 4350
'Pickering' 137250 110550
'Pierces Point' 38003 43435
'Primehook’ 101300 20580
'Reeds' 62179 81503
'STaughter' 203070 53940
'South Bowers' 135309 87055
"South CSL' 150656 112266
'"Ted Harvey' 115090 90670
'"Townbank' 44022 21942
'villas' 56260 32140
'woodland' 125 1260
")

Data = read.table(textConnection(Input),header=TRUE)

Paired t-test
t.test(Data$Year.2011l, Data$year.2012,
paired=TRUE,
conf.level=0.95)
t = 2.1119, df = 24, p-value = 0.04529

mean of the differences
28225.4
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Simple 1-to-1 plot of values

plot(bata$yvear.2011, Data$vear.2012,

pch = 16,
xTab="2011",
ylab="2012"
)

abline(0,1, col="blue", lwd=2)
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Plot of paired samples from a paired t-test. Circles below and to the right of the blue one-to-one line
indicate observations with a higher value for 2011 than for 2012.

Difference = Data$year.2012 - Data$Year.2011
hist(bifference,
col="gray",

main="Histogram of differences",
x1lab="Difference™)

Histogram of differences
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Difference
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Histogram of differences in two populations from paired t-test. Distribution of
differences should be approximately normal. Bins with negative values indicate
observations with a higher score for 2011 than for 2012.

# # #
Paired t-test, data in long format

B —— -
### Paired t-test, long format data, Flicker feather example, p. 185
B —— -
Input = (

"Bird Feather Length

A Typical -0.255

B Typical -0.213

C Typical -0.19

D Typical -0.185

E Typical -0.045

F Typical -0.025

G Typical -0.015

H Typical 0.003

I Typical 0.015

J Typical 0.02

K Typical 0.023

L Typical 0.04

M Typical 0.04

N Typical 0.05

0 Typical 0.055

P Typical 0.058

A odd -0.324

B odd -0.185

C odd -0.299

D odd -0.144

E odd -0.027

F odd -0.039

G odd -0.264

H odd -0.077

I odd -0.017

J odd -0.169

K odd -0.096

L odd -0.33

M odd -0.346

N odd -0.191

0 odd -0.128

P odd -0.182

")

Data = read.table(textConnection(Input),header=TRUE)

### Note: data must be ordered so that the first observation of Group 1
### 1is the same subject as the first observation of Group 2
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t.test(Length ~ Feather,

data=Data,
paired=TRUE,

conf.level=0.95)

AN R COMPANION FOR THE HANDBOOK OF BIOLOGICAL STATISTICS

t = -4.0647, df = 15, p-value = 0.001017

mean of the differences
-0.137125

Permutation test for dependent samples

This permutation test is analogous to a nonparametric paired t-test.

e
### Paired two-sample permutation test, long format data

### Flicker feather example, p. 185

e

Input = (

"Bird Feather
Typical
Typical
Typical
Typical
Typical
Typical
Typical
Typical
Typical
Typical
Typical
Typical
Typical
Typical
Typical
Typical
odd
odd
odd
odd
odd
odd
odd
odd
odd
odd
odd
odd
odd
odd
odd

OZ=ErMuUu HIOTMMUMN®»P UOZ=EIrARUHIOTMON®®>W

Length

N N oL
[eNeoleolojloNoNololooNoNolololoNoolo o oo o oo oololo oo o]

.255
.213
.19

.185
.045
.025
.015
.003
.015
.02

.023
.04

.04

.05

.055
.058
.324
.185
.299
.144
.027
.039
.264
.077
.017
.169
.096
.33

.346
.191
.128
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P odd -0.182
ll)
Data = read.table(textConnection(Input),header=TRUE)
Tibrary(coin)
independence_test(Length ~ Feather | Bird,
data = Data,

teststat = "max",
distribution = "asymptotic")

Asymptotic General Independence Test

Z = -2.8959, p-value = 0.003781

# # #
Power analysis
Power analysis for paired t-test
Bl —mm e e e e e o
### Power analysis, paired t-test, pp. 185-186
e T R
Detect = 0.1 # Difference in means to detect
SD = 0.135 # Standard deviation of differences
Cohen.d = Detect/sSD
Tibrary(pwr)
pwr.t.test(
n = NULL, # Number of _pairs_ of observations
d = Cohen.d,
sig.level = 0.05, # Type I probability
power = 0.90, # 1 minus Type II probability
type = "paired", # paired t-test
alternative = "two.sided"

)

Paired t test power calculation
n = 21.16434

NOTE: n is number of *pairs*

Wilcoxon Signed-rank Test
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When to use it
The poplar example is shown below in the “How to do the test” section.

Null hypothesis
How it works
Examples

Graphing the results
See the Handbook for information on these topics.

Similar tests
Paired t-test and permutation test are described in the Paired t-test chapter. The sign test is
described below.

How to do the test
Wilcoxon signed-rank test example

## -----—-— -
### wilcoxon signed-rank test, poplar example, p. 189
#H# -----— -
Input = (

"Clone August November

Balsam_Spire 8.1 11.2

Beaupre 10.0 16.3

Hazendans 16.5 15.3

Hoogvorst 13.6 15.6

Raspalje 9.5 10.5

Unal 8.3 15.5

Columbia_River 18.3 12.7

Fritzi_Pauley 13.3 11.1

Trichobel 7.9 19.9

Gaver 8.1 20.4

Gibecq 8.9 14.2

Primo 12.6 12.7

wolterson 13.4 36.8

")

Data = read.table(textConnection(Input),header=TRUE)

wilcox.test(Data$August, Data$November,
paired=TRUE)

wilcoxon signed rank test
V = 16, p-value = 0.03979

### Matches “Signed Rank” p-value in SAS output
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Simple 1-to-1 plot of values

plot(pata$August, Data$November,
pch = 16,
xTab="August",
ylab="November"

)
abline(0,1, col="blue", lwd=2)
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Plot of paired samples from a Wilcoxon signed-rank test. Circles above and to the left
of the blue one-to-one line indicate observations with a higher value for November
than for August.

Sign test example

The following is an example of the two-sample dependent-samples sign test. The data are
arranged as a data frame in which each row contains the values for both measurements being
compared for each experimental unit. This is sometimes called “wide format” data. The
SIGN.test function in the BSDA package is used. The option md=0 indicates that the expected
difference in the medians is 0 (null hypothesis). This function can also perform a one-sample

sign test.
B —m -
### Two-sample sign test, poplar example, p. 189
B —m -
Input = (
"Clone August November
Balsam_Spire 8.1 11.2
Beaupre 10.0 16.3
Hazendans 16.5 15.3
Hoogvorst 13.6 15.6
Raspalje 9.5 10.5
unal 8.3 15.5
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Columbia_River 18.3 12.7
Fritzi_Pauley 13.3 11.1
Trichobel 7.9 19.9
Gaver 8.1 20.4
Gibecq 8.9 14.2
Primo 12.6 12.7
wolterson 13.4 36.8
")

Data = read.table(textConnection(Input),header=TRUE)
Tibrary(BSDA) # remember to install the package first!
# install.packages("BSDA")
SIGN.test(x = Data$ August,
y = Data$ November,
md = 0,
alternative = "two.sided",
conf.level = 0.95)
Dependent-samples Sign-Test
S = 3, p-value = 0.09229
### Matches “Sign” p-value in SAS output

# # #
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Regressions

Correlation and Linear Regression

Introduction
The amphipod egg example is shown below in the “How to do the test” section.

When to use them

Correlation versus linear regression
Correlation and causation

Null hypothesis

Independent vs. dependent variables
How the test works

Assumptions
See the Handbook for information on these topics.

Examples
The species diversity example is shown below in the “How to do the test” section.

Graphing the results
Similar tests

How to do the test
Correlation and linear regression example

e
### Correlation and linear regression, species diversity example
### pp. 207-208

##Ht ------ - - -o- - ———_——-— ————————————————— -
Input = (

"Town State Latitude Species
'Bombay Hook' DE 39.217 128
'Cape Henlopen' DE 38.800 137
'MiddTetown' DE 39.467 108
'Milford' DE 38.958 118
'Rehoboth’ DE 38.600 135
'seaford-Nanticoke’ DE 38.583 94
'Wilmington' DE 39.733 113
"Crisfield’ MD 38.033 118
'Denton’ MD 38.900 96
"Elkton’ MD 39.533 98
'Lower Kent County' MD 39.133 121
'Ocean City' MD 38.317 152
'salisbury' MD 38.333 108
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'S Dorchester County' MD

'"Cape Charles' VA
'"Chincoteague’ VA
'Wachapreague' VA
ll)

38.367
37.200
37.967
37.667

ANR

COMPANION FOR THE HANDBOOK OF BIOLOGICAL STATISTICS

118
157
125
114

Data = read.table(textConnection(Input),header=TRUE)

Simple plot of the data

plot(Species ~ Latitude,
data=Data,
pch=16,
xlab = "Latitude",
ylab = "Species")
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Correlation can be performed with the cor.test function in the native stats package. It can
perform Pearson, Kendall, and Spearman correlation procedures. Methods for multiple
correlation of several variables simultaneously are discussed in the Multiple regression chapter.

Pearson correlation

Pearson correlation is the most common form of correlation. It is a parametric test, and assumes
that the data are linearly related and that the residuals are normally distributed.

cor.test( ~ Species + Latitude,

data=Data,
method = "pearson",
conf.level = 0.95)

Pearson's product-moment correlation

t = -2.0225, df = 15, p-value = 0.06134
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cor
-0.4628844

Kendall correlation

Kendall rank correlation is a non-parametric test that does not assume a distribution of the data
or that the data are linearly related. It ranks the data to determine the degree of correlation.

cor.test( ~ Species + Latitude,
data=Data,
method = "kendall",
continuity = FALSE,
conf.level = 0.95)

Kendall's rank correlation tau

z = -1.3234, p-value = 0.1857

tau
-0.2388326

Spearman correlation

Spearman rank correlation is a non-parametric test that does not assume a distribution of the

data or that the data are linearly related. It ranks the data to determine the degree of correlation,
and is appropriate for ordinal measurements.

cor.test( ~ Species + Latitude,
data=Data,
method = "spearman",
continuity = FALSE,
conf.level = 0.95)

Spearman's rank correlation rho
S = 1111.908, p-value = 0.1526

rho
-0.3626323

Linear regression

Linear regression can be performed with the Im function in the native stats package. A robust
regression can be performed with the Imrob function in the robustbase package.

model = Tm(Species ~ Latitude,
data = Data)

summary(model) # shows parameter estimates,

# p-value for model, r-square

Estimate Std. Error t value Pr(>|t])
(Intercept) 585.145 230.024 2.544 0.0225 =
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Latitude -12.039 5.953 -2.022 0.0613 .

Multiple R-squared: 0.2143, Adjusted R-squared: 0.1619
F-statistic: 4.09 on 1 and 15 DF, p-value: 0.06134

Tibrary(car)
Anova(model, type="II") # shows p-value for effects in model

Response: Species

sum Sq Df F value Pr(F)
Latitude 1096.6 1 4.0903 0.06134 .
Residuals 4021.4 15

Plot linear regression

int = model$coefficient["(Intercept)"]
slope =model$coefficient["Latitude"]

plot(Species ~ Latitude,
data = Data,

pch=16,
xTab = "Latitude",
ylab = "Species")
abTline(int, slope,
Tty=1, lwd=2, col="blue™) # style and color of line
[ ]
- [ ]
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3_
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Checking assumptions of the model

hist(residuals(model),
col="darkgray")
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Histogram of residuals(model)

Frequency
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A histogram of residuals from a linear model. The distribution of these residuals
should be approximately normal.

plot(fitted(model),
residuals(model)
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A plot of residuals vs. predicted values. The residuals should be unbiased and
homoscedastic. For an illustration of these properties, see this diagram by Steve Jost
at DePaul University: condor.depaul.edu/sjost/it223/documents/resid-plots.gif.

### additional model checking plots with: plot(model)
### alternative: library(FSA); residPlot(model)
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Robust regression
The Imrob function in the robustbase package produces a linear regression which is not sensitive
to outliers in the response variable. It uses MM-estimation.

Tibrary(robustbase)
model = Tmrob(Species ~ Latitude,
data = Data)
summary (model) # shows parameter estimates, r-square
Estimate Std. Error t value Pr(>|t])

(Intercept) 568.830 230.203 2.471 0.0259 *

Latitude -11.619 5.912 -1.966 0.0681 .

Multiple R-squared: 0.1846, Adjusted R-squared: 0.1302

model.null = Tmrob(Species ~ 1,
data = Data)

anova(model, model.null) # shows p-value for model

pseudoDf Test.Stat Df Pr(>chisq)

1 15
2 16 3.8634 1 0.04935 *
Plot the model

int = model$coefficient[" (Intercept)"]
slope =model$coefficient["Latitude"]

plot(Species ~ Latitude,
data = Data,

pch=16,
xlab = "Latitude",
ylab = "Species")

abTline(int, slope,
1ty=1, lwd=2, col="blue") # style and color of line
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Linear regression example

B —m -
### Linear regression, amphipod eggs example

### pp. 191-193

B —m -

Input = (

"weight Eggs

5.38 29
7.36 23
6.13 22
4.75 20
8.10 25
8.62 25
6.30 17
7.44 24
7.26 20
7.17 27
7.78 24
6.23 21
5.42 22
7.87 22
5.25 23
7.37 35
8.01 27
4.92 23
7.03 25
6.45 24
5.06 19
6.72 21
7.00 20
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9.39 33
6.49 17
6.34 21
6.16 25
5.74 22
"
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Data = read.table(textConnection(Input),header=TRUE)

model = Tm(Eggs ~ weight,
data = Data)

summary(model)

Coefficients:
Estimate Std.

# shows parameter estimates,
# p-value for model, r-square

Error t value Pr(>|t|)

(Intercept) 12.6890 4.2009 3.021 0.0056 **
Weight 1.6017 0.6176  2.593  0.0154 *
Multiple R-squared: 0.2055, Adjusted R-squared: 0.175

F-statistic: 6.726 on 1 and 26 DF,

p-value: 0.0154

### Neither the r-squared nor the p-value agrees with what is reported

#H## in the Handbook.

Tibrary(car)
Anova(model, type="II")

# shows p-value for effects in model

sum Sq Df F value Pr(>F)

weight
Residuals 362.96 26

Power analysis
Power analysis for correlation

93.89 1 6.7258 0.0154 *

BHH - -
### Power analysis, correlation, p. 208
BHH - -
pwr.r.test(n = NULL,

r = 0.500,

sig.level = 0.05,

power = 0.80,

alternative = "two.sided")

approximate correlation power calculation (arctangh transformation)

n = 28.87376

# answer is somewhat different than in Handbook

# # #
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Spearman Rank Correlation

When to use it
Null hypothesis
Assumption

How the test works
See the Handbook for information on these topics.

Example

Example of Spearman rank correlation
BHH —
### Spearman rank correlation, frigatebird example
## p. 212
2
Input = (

"Volume Pitch

1760 529
2040 566
2440 473
2550 461
2730 465
2740 532
3010 484
3080 527
3370 488
3740 485
4910 478
5090 434
5090 468
5380 449
5850 425
6730 389
6990 421
7960 416
"

Data = read.table(textConnection(Input),header=TRUE)

cor.test( ~ Pitch + volume,

data=Data,

method = "spearman",
continuity = FALSE,
conf.level = 0.95)

Spearman's rank correlation rho
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S = 1708.382, p-value = 0.0002302
sample estimates:

rho
-0.7630357

Simple plot of the data

plot(Pitch ~ volume,
data=Data,
pch=16)

Pitch
500 550
!

450
l

400
|

I T I T T I T
2000 3000 4000 5000 6000 7000 8000

Volume

# # #
Graphing the results

See the Handbook for information on this topic.

How to do the test
Example of Spearman rank correlation

B —m -
### Spearman rank correlation, species diversity example

### p. 214

B —m -
Input = (

"Town State Latitude Species

'Bombay Hook' DE 39.217 128

'Cape Henlopen' DE 38.800 137

'Middletown' DE 39.467 108

'Milford' DE 38.958 118

'Rehoboth’ DE 38.600 135

'Seaford-Nanticoke' DE 38.583 94
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'WiTmington' DE 39.733 113
'Crisfield’ MD 38.033 118
'Denton’ MD 38.900 96
'"Elkton’ MD 39.533 98
'Lower Kent County' MD 39.133 121
'Ocean City' MD 38.317 152
'salisbury' MD 38.333 108
'S Dorchester County' MD 38.367 118
'Cape Charles' VA 37.200 157
'"Chincoteague’ VA 37.967 125
'wWachapreague' VA 37.667 114
")

Data = read.table(textConnection(Input),header=TRUE)

cor.test( ~ Species + Latitude,

data=Data,

method = "spearman",
continuity = FALSE,
conf.level = 0.95)

Spearman's rank correlation rho
S = 1111.908, p-value = 0.1526

rho
-0.3626323

Simple plot of the data

plot(Species ~ Latitude,

data=Data,
pch=16)
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Curvilinear Regression

When to use it

Null hypotheses
Assumptions

How the test works
Examples

Graphing the results

Similar tests
See the Handbook for information on these topics.

How to do the test

This chapter will fit models to curvilinear data using three methods: 1) Polynomial regression;
2) B-spline regression with polynomial splines; and 3) Nonlinear regression with the nls
function. In this example, each of these three will find essentially the same best-fit curve with
very similar p-values and R-squared values.

Polynomial regression

Polynomial regression is really just a special case of multiple regression, which is covered in the
Multiple regression chapter. In this example we will fit a few models, as the Handbook does, and
then compare the models with the extra sum of squares test, the Akaike information criterion
(AIC), and the adjusted R-squared as model fit criteria.

For a linear model (Im), the adjusted R-squared is included with the output of the
summary(model) statement. The AIC is produced with its own function call, AIC(model). The
extra sum of squares test is conducted with the anova function applied to two models.

For AIC, smaller is better. For adjusted R-squared, larger is better. A non-significant p-value for
the extra sum of squares test comparing model a to model b indicates that the model with the
extra terms does not significantly reduce the error sum of squares over the reduced model.
Which is to say, a non-significant p-value suggests the model with the additional terms is not
better than the reduced model.

#H# -----—- -
### Polynomial regression, turtle carapace example

### pp. 220-221
-
Input = (

"Length Clutch

284 3
290 2
290 7
290 7
298 11
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299 12
302 10
306 8
306 8
309 9
310 10
311 13
317 7
317 9
320 6
323 13
334 2
334 8
)

Data = read.table(textConnection(Input),header=TRUE)
### Change Length from integer to numeric variable
###  otherwise, we will get an integer overflow error on big numbers

Data$Length = as.numeric(bata$Length)

### Create quadratic, cubic, quartic variables

Tibrary(dplyr)
Data =
mutate(Data,
Length2 = Length*Length,
Length3 = Length*Length*Length,
Length4 = Length*Length*Length*Length
)
Tibrary(FSA)
headtail(bpata)
Length Clutch Length2 Length3 Length4
1 284 3 80656 22906304 6505390336
2 290 2 84100 24389000 7072810000
3 290 7 84100 24389000 7072810000
16 323 13 104329 33698267 10884540241
17 334 2 111556 37259704 12444741136
18 334 8 111556 37259704 12444741136

Define the models to compare

model.1 = Im (Clutch ~ Length, data=Data)
model.2 = Im (Clutch ~ Length + Length2, data=Data)
model.3 = Tm (Clutch ~ Length + Length2 + Length3, data=Data)
model1.4 = Tm (Clutch ~ Length + Length2 + Length3 + Length4, data=Data)
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Generate the model selection criteria statistics for these models

summary(model.1)
Coefficients:
Estimate Std. Error t value Pr(>|t])
(Intercept) -0.4353 17.3499 -0.03 0.98
Length 0.0276 0.0563 0.49 0.63
Multiple R-squared: 0.0148, Adjusted R-squared: -0.0468
F-statistic: 0.24 on 1 and 16 DF, p-value: 0.631
AIC(model.1)

[1] 99.133

summary (model.2)
Coefficients:
Estimate Std. Error t value Pr(>|t]|)
(Intercept) -9.00e+02 2.70e+02 -3.33 0.0046 *=*

Length 5.86e+00 1.75e+00 3.35 0.0044 ==
Length? -9.42e-03  2.83e-03 -3.33  0.0045 **

Multiple R-squared: 0.434, Adjusted R-squared: 0.358
F-statistic: 5.75 on 2 and 15 DF, p-value: 0.014

AIC(model.2)

[1] 91.16157

anova(model.1, model.2)

Analysis of variance Table

Res.Df RSS Df Sum of Sq F Pr(>F)
1 16 186.15
2 15 106.97 1 79.178 11.102 0.00455 **

### Continue this process for the remainder of the models

Model selection criteria for four polynomial models. Model 2 has the
lowest AIC, suggesting it is the best model from this list for these data.
Likewise model 2 shows the largest adjusted R-squared. Finally, the
extra SS test shows model 2 to be better than model 1, but that model
3 is not better than model 2. All this evidence indicates selecting
model 2.
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Model AIC Adjusted R- p-value for extra SS
squared from previous model

1 99.1 -0.047

2 91.2 0.36 0.0045

3 92.7 0.33 0.55

4 94.4 0.29 0.64

Compare models with compare.Im and anova

This process can be automated somewhat by using my compare.Im function and by passing
multiple models to the anova function. Any of AIC, AICc, or BIC can be minimized to select the
best model. If you have no preference, I might recommend using AlCc.

mode1.1 = Tm (Clutch ~ Length, data=Data)
model1.2 = Tm (Clutch ~ Length + Length2, data=Data)
model1.3 = Tm (Clutch ~ Length + Length2 + Length3, data=Data)
mode1.4 = Tm (Clutch ~ Length + Length2 + Length3 + Length4, data=Data)

source("http://rcompanion.org/r_script/compare.Im.r")
compare.Im(model.1l, model.2, model.3, model.4)

$Fit.criteria
Rank Df.res AIC AICc BIC R.squared Adj.R.sq p.value Shapiro.w Shapiro.p

1 2 16 99.13 100.80 101.80 0.01478 -0.0468 0.63080 0.9559 0.5253
2 3 15 91.16 94.24 94.72 0.43380 0.3583 0.01403 0.9605 0.6116
3 4 14 92.68 97.68 97.14 0.44860 0.3305 0.03496 0.9762 0.9025
4 5 13 94.37 102.00 99.71 0.45810 0.2914 0.07413 0.9797 0.9474

anova(model.1l, model.2, model.3, model.4)

Res.Df RSS Df Sum of Sq F Pr(>F)
1 16 186.15
2 15 106.97 1 79.178 10.0535 0.007372 ** ## Compares m.2 to m.1
3 14 104.18 1 2.797 0.3551 0.561448 ## Compares m.3 to m.2
4 13 102.38 1 1.792 0.2276 0.641254 ## Compares m.4 to m.3

Investigate the final model

model.final = Tm (Clutch ~ Length + Length2,
data=Data)

summary(model.final) # Shows coefficients,
# overall p-value for model, R-squared

Coefficients:

Estimate Sstd. Error t value Pr(>|t])
(Intercept) -9.00e+02 2.70e+02 -3.33 0.0046 **
Length 5.86e+00 1.75e+00 3.35 0.0044 ==
Length?2 -9.42e-03 2.83e-03 -3.33 0.0045 **
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Multiple R-squared: 0.434, Adjusted R-squared: 0.358
F-statistic: 5.75 on 2 and 15 DF, p-value: 0.014

Tibrary(car)
Anova(model.final, type="II") # Shows p-values for individual terms

Anova Table (Type II tests)

Response: Clutch

Ssum Sq Df F value Pr(>F)
Length 79.9 1 11.2 0.0044 **
Length?2 79.2 1 11.1 0.0045 =*=*
Residuals 107.0 15

Simple plot of model

plot(Clutch ~ Length,
data = Data,

pch=16,
xTab = "cCarapace length",
ylab = "Clutch™)
i = seq(min(pata$Length), max(Data$Length), 1en=100) # x-values for line

predy = predict(model.final,

data.frame(Length=1i, Length2=i%*1i)) # fitted values
Tines(i, predy, # spline curve
Tty=1, Twd=2, col="blue") # style and color
[ ]
N )
@
o _
N
L2 o
=
O o
q—_
AN — [ ] [ ]

I I I I
290 300 310 320 330

Carapace length

Checking assumptions of the model

hist(residuals(model.final),
col="darkgray")
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Histogram of residuals(model)

1.0 20 3.0

Frequency

0.0

residuals(model)

A histogram of residuals from a linear model. The distribution of these residuals
should be approximately normal.

plot(fitted(model.final),
residuals(model.final)
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A plot of residuals vs. predicted values. The residuals should be unbiased and
homoscedastic. For an illustration of these properties, see this diagram by Steve Jost
at DePaul University: condor.depaul.edu/sjost/it223/documents/resid-plots.gif.

### additional model checking plots with: plot(model.final)
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B-spline regression with polynomial splines

B-spline regression uses smaller segments of linear or polynomial regression which are stitched
together to make a single model. It is useful to fit a curve to data when you don’t have a
theoretical model to use (e.g. neither linear, nor polynomial, nor nonlinear). It does not assume a
linear relationship between the variables, but the residuals should still be normal and
independent. The model may be influenced by outliers.

B —— -
### B-spline regression, turtle carapace example

### pp. 220-221

B —— -
Input = (

"Length Clutch

284 3
290 2
290 7
290 7
298 11
299 12
302 10
306 8
306 8
309 9
310 10
311 13
317 7
317 9
320 6
323 13
334 2
334 8
)

Data = read.table(textConnection(Input),header=TRUE)

Tibrary(splines)
model = Tm(Clutch ~ bs(Length,
knots = 5, # How many internal segment nodes?
degree = 2), # 1=local Tinear fits, 2=quadratic
data = Data)
summary(model) # Display p-value and R-squared

Residual standard error: 2.671 on 15 degrees of freedom
Multiple R-squared: 0.4338, Adjusted R-squared: 0.3583
F-statistic: 5.747 on 2 and 15 DF, p-value: 0.01403

Simple plot of model

194



CURVILINEAR REGRESSION AN R COMPANION FOR THE HANDBOOK OF BIOLOGICAL STATISTICS

plot(Clutch ~ Length,
data = Data,

pch=16,
xlab = "Carapace length",
ylab = "Clutch")

x-values for Tine
fitted values
spline curve
style and color

i = seq(min(pata$Length), max(Data$Length), 1en=100)
predy = predict(model, data.frame(Length=1i))
Tines(i, predy,

Tty=1, Twd=2, col="blue")

H o H H

Clutch
2 4 6 8 10
]

I I I I
290 300 310 320 330

Carapace length

Checking assumptions of the model

hist(residuals(model),
col="darkgray")

Histogram of residuals(model)

1.0 20 3.0

Frequency

0.0

residuals(model)

A histogram of residuals from a linear model. The distribution of these residuals
should be approximately normal.

195



CURVILINEAR REGRESSION AN R COMPANION FOR THE HANDBOOK OF BIOLOGICAL STATISTICS

plot(fitted(model),
residuals(model)
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A plot of residuals vs. predicted values. The residuals should be unbiased and
homoscedastic. For an illustration of these properties, see this diagram by Steve Jost
at DePaul University: condor.depaul.edu/sjost/it223/documents/resid-plots.gif.

### additional model checking plots with: plot(model)

# # #

Nonlinear regression

Nonlinear regression can fit various nonlinear models to a data set. These model might include
exponential models, logarithmic models, decay curves, or growth curves. The nis function works
by an iterative process, starting with user supplied estimates for the parameters in the model,
and finding successively better parameter estimates until certain convergence criteria are met.

In this example, we assume that we want to fit a parabola to our data, but we’ll use the vertex
form of the equation (y = a-(x-h) + k). This form is handy because the point (h, k) indicates the
vertex of the parabola.

Note in the formula in the nls call below, that there are variables from our data (Clutch and
Length), and parameters we want to estimate (Lcenter, Cmax, and a).

There’s no set process for choosing starting estimates for the parameters. Often, the parameters
will be meaningful. For example, here, Lcenter is the x-coordinate of the vertex and Cmax is the
y-coordinate of the vertex. So we can guess at reasonable values for these. The parameter a
would be difficult to guess at, though we know it should be negative because the parabola opens
downward.
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Because nls uses an iterative process based on initial estimates of the parameters, it fails to find a
solution if the estimates are too far off, or it may return a set of parameter estimates that don’t fit
the data well. Itis important to plot the solution and make sure it is reasonable. I have seen nis
have difficulty with models that have more than three parameters. The package nlmrt uses a
different process for determining the iterations, and may be better to fit difficult models.

If you wish to have an overall p-value for the model and a pseudo-R-squared for the model, the
model will need to be compared with a null model. Technically for this to be valid, the null model
must be nested within the fitted model. That means that the null model is a special case of the
fitted model. In our example, if we were to force a to be zero, that would leave a model Clutch ~
constant, where constant would be a parameter that estimates the mean of the Clutch variable.
Many theoretical models do not have this property; that is, they don’t have a constant or linear
term. They are therefore considered nonlinear models. In these cases, nlis can still be used to fit
the model, but the extra steps determining the model’s overall p-value and pseudo-R-squared are
technically not valid. In these cases, models could be compared with the Akaike information
criterion (AIC).

The p-value for the model, relative to the null model, is determined with the extra SS (F) test
(anova function) or likelihood ratio test (Irtest in the package Imtest).

There are various pseudo-R-squared values that have been developed for models without r-
squared defined. My function nagelkerke calculates the McFadden, the Cox and Snell, and the
Nagelkereke pseudo-R-squared. For nis models, a null model must be explicitly defined and
passed to the function. The Nagelkereke is a modification of the Cox and Snell so that it has a
maximum of 1. I find the Nagelkereke to usually be satisfactory for nls, Ime, and gls models. As a
technical note, for gls and Ime models, my function uses the likelihood for the model with ML
fitting (REML = FALSE).

Pseudo-R-squared values are not directly comparable to multiple R-squared values, though in
the examples in this chapter, the Nagelkereke is reasonably close to the multiple R-squared for
the quadratic parabola model.

e
### Nonlinear regression, turtle carapace example

### pp. 220-221
e
Input = (

"Length Clutch

284 3
290 2
290 7
290 7
298 11
299 12
302 10
306 8
306 8
309 9

197



CURVILINEAR REGRESSION

310 10
311 13
317

317

320

323 1
334

334

)

coON WO O

Data = read.table(textConnection(Input),header=TRUE)

l

model = nls(Clutch ~ a * (Length - Lcenter)A2 + Cmax,

data = Data,

start = c(Lcenter = 310,
Cmax = 12,
a = _1)!

trace = FALSE,
nls.control (maxiter = 1000)

)
summary (model)

Parameters:

Estimate std. Error t value Pr(>|t])
Lcenter 310.72865 2.37976 130.57 < 2e-16 ***
Cmax 10.05879 0.86359 11.65 *
a -0.00942 0.00283 -3.33 0.0045 **

Determine overall p-value and pseudo-R-squared

model.null = nls(Clutch ~ I,
data = Data,
start = c(I = 8),
trace = FALSE)

anova(model, model.null)
Res.Df Res.sum Sq Df Sum Sq F value Pr(>F)

1 15 106.97
2 17 188.94 -2 -81.971 5.747 0.01403 *

source("http://rcompanion.org/r_script/nagelkerke.r™)

modeT,
model.null)

nagelkerke(fit
null

$Pseudo.R.squared.for.model.vs.null
Pseudo.R.squared

McFadden 0.109631
Cox and Snell (ML) 0.433836
Nagelkerke (Cragg and Uhler) 0.436269
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Determine confidence intervals for parameters

Tibrary(nlstools)

confint2(model,

level = 0.95,
method = " asymptotic"
)
2.5 % 97.5 %
Lcenter 305.6563154 315.800988774
Cmax 8.2180886 11.899483768
a -0.0154538 -0.003395949

Boot=n1sBoot(model)
summary (Boot)

Bootstrap statistics

Estimate Std. error
Lcenter 311.07998936 2.872859816
Cmax 10.13306941 0.764154661
a -0.00938236 0.002599385

Median of bootstrap estimates and percentile confidence intervals

Median 2.5% 97.5%
Lcenter 310.770796703 306.78718266 316.153528168
cmax 10.157560932 8.58974408 11.583719723
a -0.009402318 -0.01432593 -0.004265714

Simple plot of model

plot(Clutch ~ Length,
data = Data,
pch=16,
xTab = "cCarapace length",
ylab = "Clutch™)

x-values for Tine
fitted values
spline curve
style and color

i = seq(min(pata$Length), max(Data$Length), 1en=100)
predy = predict(model, data.frame(Length=1i))
Tines(i, predy,

Tty=1, Twd=2, col="blue")

H o H H
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10 12
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Carapace length

Checking assumptions of the model

hist(residuals(model),
col="darkgray")

Histogram of residuals(model)

1.0 20 3.0

Frequency

0.0

residuals(model)

A histogram of residuals from a linear model. The distribution of these residuals
should be approximately normal.

plot(fitted(model),
residuals(model)

)
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A plot of residuals vs. predicted values. The residuals should be unbiased and
homoscedastic. For an illustration of these properties, see this diagram by Steve Jost
at DePaul University: condor.depaul.edu/sjost/it223/documents/resid-plots.gif.

# # #

Analysis of Covariance

When to use it
The cricket example is shown in the “How to do the test” section.

Null hypotheses

Assumptions

How the test works

Examples

Graphing the results

Similar tests

See the Handbook for information on these topics.

How to do the test
Analysis of covariance example with two categories and type Il sum of squares
This example uses type Il sum of squares, but otherwise follows the example in the Handbook.
The parameter estimates are calculated differently in R, so the calculation of the intercepts of the
lines is slightly different.

Bl m

### Analysis of covariance, cricket example

### pp. 228-229

B~ m o

Input = (
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"Species Temp Pulse

ex 20.8 67.9
ex 20.8 65.1
ex 24 77.3
ex 24 78.7
ex 24 79.4
ex 24 80.4
ex 26.2 85.8
ex 26.2 86.6
ex 26.2 87.5
ex 26.2 89.1
ex 28.4 98.6
ex 29 100.8
ex 30.4 99.3
ex 30.4 101.7
niv 17.2 44 .3
niv 18.3 47 .2
niv 18.3 47 .6
niv 18.3 49.6
niv 18.9 50.3
niv 18.9 51.8
niv 20.4 60
niv 21 58.5
niv 21 58.9
niv 22.1 60.7
niv 23.5 69.8
niv 24.2 70.9
niv 25.9 76.2
niv 26.5 76.1
niv 26.5 77
niv 26.5 77.7
niv 28.6 84.7
")
Data = read.table(textConnection(Input),header=TRUE)
Simple plot
plot(x = Data$Temp,
y = Data$prulse,
col = Data$species,
pch = 16,
xTab = "Temperature",

ylab = "Pulse™)

Tegend('bottomright',

Tegend = levels(Data$sSpecies),

col = 1:2,
cex =1,
pch = 16)

Analysis of covariance
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options(contrasts = c("contr.treatment", "contr.poly"))

### These are the default contrasts in R

model.1 = Im (Pulse ~ Temp + Species + Temp:Species,
data = Data)

Tibrary(car)
Anova(model.1l, type="II")

Anova Table (Type II tests)

sum sq Df F value Pr(>F)
Temp 4376.1 1 1388.839 < 2.2e-16 ***
Species 598.0 1 189.789 9.907e-14 **=
Temp:Species 4.3 1 1.357 0.2542

### Interaction 1is not significant, so the slope across groups
### is not different.

model.2 = Im (Pulse ~ Temp + Species,
data = Data)

Tibrary(car)
Anova(model.2, type="II")

Anova Table (Type II tests)

sum Sq Df F value Pr(>F)
Temp 4376.1 1 1371.4 < 2.2e-16 **%*
Species 598.0 1 187.4 6.272e-14 #%**

### The category variable (Species) is significant,
### so the intercepts among groups are different

summary(model.2)

Coefficients:

Estimate Std. Error t value Pr(>|t]|)
(Intercept) -7.21091 2.55094 -2.827 0.00858 **
Temp 3.60275 0.09729 37.032 < 2e-16 ***
Speciesniv -10.06529 0.73526 -13.689 6.27e-14 ***

### Note that these estimates are different than in the Handbook,
#H## but the calculated results will be identical.

### The slope estimate 1is the same.

### The 1intercept for species 1 (ex) is (intercept).

### The intercept for species 2 (niv) 1is (intercept) + Speciesniv.
### This is determined from the contrast coding of the Species

### variable shown below, and the fact that Speciesniv is shown 1in
### coefficient table above.
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contrasts(Data$Species)

niv
ex 0
niv 1

Simple plot with fitted lines

I.nought = -7.21091

I1 = I.nought + O
I2 = I.nought + -10.06529
B = 3.60275
plot(x = Data$Temp,
y = Data$pulse,
col = Data$species,
pch = 16,
xTab = "Temperature",
ylab = "pPulse™)

Tegend('bottomright',
Tegend = levels(Data$sSpecies),

col
cex
pch

abline(1l,

B,

Tty=1,

abline(12,

B,

Tty=1,

1:2,

1,

16)

Twd=2, col
Twd=2, col

D

2)

AN R COMPANION FOR THE HANDBOOK OF BIOLOGICAL STATISTICS
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80 90 100

Pulse
70

60

50

18 20 22 24 26 28 30

Temperature

p-value and R-squared of combined model

summary(model.2)

Multiple R-squared: 0.9896, Adjusted R-squared: 0.9888
F-statistic: 1331 on 2 and 28 DF, p-value: < 2.2e-16

Checking assumptions of the model

hist(residuals(model.?2),
col="darkgray")

Histogram of residuals(model.2)

w_
.
5 o -
o
o < -
o
IC oy
7 T | I |
4 2 0 2 4

residuals(model.2)
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A histogram of residuals from a linear model. The distribution of these residuals
should be approximately normal.

plot(fitted(model.2),
residuals(model.2)
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fitted(model.2)

A plot of residuals vs. predicted values. The residuals should be unbiased and
homoscedastic. For an illustration of these properties, see this diagram by Steve Jost
at DePaul University: condor.depaul.edu/sjost/it223/documents/resid-plots.gif.

### additional model checking plots with: plot(model.2)
### alternative: library(FSA); residPlot(model.2)

# # #

Analysis of covariance example with three categories and type Il sum of squares
This example uses type Il sum of squares, and considers a case with three groups.

e
### Analysis of covariance, hypothetical data
e
Input = (

"Species Temp Pulse

ex 20.8 67.9
ex 20.8 65.1
ex 24 77.3
ex 24 78.7
ex 24 79.4
ex 24 80.4
ex 26.2 85.8
ex 26.2 86.6
ex 26.2 87.5
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ex 26.2 89.1
ex 28.4 98.6
ex 29 100.8
ex 30.4 99.3
ex 30.4 101.7
niv 17.2 44 .3
niv 18.3 47 .2
niv 18.3 47.6
niv 18.3 49.6
niv 18.9 50.3
niv 18.9 51.8
niv 20.4 60
niv 21 58.5
niv 21 58.9
niv 22.1 60.7
niv 23.5 69.8
niv 24.2 70.9
niv 25.9 76.2
niv 26.5 76.1
niv 26.5 77
niv 26.5 77.7
niv 28.6 84.7
fake 17.2 74.3
fake 18.3 77.2
fake 18.3 77.6
fake 18.3 79.6
fake 18.9 80.3
fake 18.9 81.8
fake 20.4 90
fake 21 88.5
fake 21 88.9
fake 22.1 90.7
fake 23.5 99.8
fake 24.2 100.9
fake 25.9 106.2
fake 26.5 106.1
fake 26.5 107
fake 26.5 107.7
fake 28.6 114.7
")
Data
Simple plot
plot(x = Data$Temp,
y = Data$prulse,
col = Data$species,
pch = 16,
xTab = "Temperature",
ylab = "Pulse")

AN R COMPANION FOR THE HANDBOOK OF BIOLOGICAL STATISTICS

= read.table(textConnection(Input),header=TRUE)

Tegend('bottomright',

Tegend = levels(Data$sSpecies),
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col = 1:3,
cex =1,
pch = 16)

Analysis of covariance

options(contrasts = c("contr.treatment", "contr.poly™))

### These are the default contrasts in R

model.1l = Im (Pulse ~ Temp + Species + Temp:Species,
data = Data)

Tibrary(car)
Anova(model.1l, type="II")

Sum Sq Df F value Pr(>F)
Temp 7026.0 1 2452.4187 <2e-16 *%*
Species 7835.7 2 1367.5377 <2e-16 ***
Temp:Species 5.2 2 0.9126 0.4093

### Interaction 1is not significant, so the slope among groups
### is not different.

model.2 = Im (Pulse ~ Temp + Species,
data = Data)

Tibrary(car)
Anova(model.2, type="II")

Ssum sq Df F value Pr(>F)
Temp 7026.0 1 2462.2 < 2.2e-16 ***
Species 7835.7 2 1373.0 < 2.2e-16 ***
Residuals 125.6 44

### The category variable (Species) is significant,
### so the intercepts among groups are different

summary(model.2)

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) -6.35729 1.90713 -3.333 0.00175 =**
Temp 3.56961 0.07194 49.621 < 2e-16 *
Speciesfake 19.81429 0.66333 29.871 < 2e-16 ***
Speciesniv -10.18571 0.66333 -15.355 < 2e-16 ***

### The slope estimate is the Temp coefficient.

### The intercept for species 1 (ex) 1is (intercept).

### The intercept for species 2 (fake) is (intercept) + Speciesfake.
### The intercept for species 3 (niv) 1is (intercept) + Speciesniv.

208



ANALYSIS OF COVARIANCE AN R COMPANION FOR THE HANDBOOK OF BIOLOGICAL STATISTICS

### This is determined from the contrast coding of the Species
### variable shown below.

contrasts(Data$sSpecies)

fake niv
ex 0 0
fake 1 0
niv 0 1

Simple plot with fitted lines

I.nought = -6.35729

I1 = I.nought + O
I2 = I.nought + 19.81429
I3 = I.nought + -10.18571
B = 3.56961
plot(x = Data$Temp,
y = Data$prulse,
col = Data$species,
pch = 16,
xTab = "Temperature",
ylab = "Pulse")

Tegend('bottomright',
Tegend = levels(Data$sSpecies),

col = 1:3,
cex =1,
pch = 16)

abline(1l, B,

Tty=1, Twd=2, col = 1)
abline(12, B,

Tty=1, Twd=2, col = 2)
abline(13, B,

Tty=1, Twd=2, col = 3)
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100

Pulse

50 60 70 80 90

18 20 22 24 26 28 30

Temperature

p-value and R-squared of combined model

summary(model.2)

Multiple R-squared: 0.9919, Adjusted R-squared: 0.9913
F-statistic: 1791 on 3 and 44 DF, p-value: < 2.2e-16

Checking assumptions of the model

hist(residuals(model.?2),
col="darkgray")

Histogram of residuals(model.2)

Frequency

3 2 1 0 1 2 3 4

residuals(model.2)
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A histogram of residuals from a linear model. The distribution of these residuals
should be approximately normal.

plot(fitted(model.2),
residuals(model.2)
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fitted(model.2)

A plot of residuals vs. predicted values. The residuals should be unbiased and
homoscedastic. For an illustration of these properties, see this diagram by Steve Jost
at DePaul University: condor.depaul.edu/sjost/it223/documents/resid-plots.gif.

### additional model checking plots with: plot(model.2)
### alternative: library(FSA); residPlot(model.2)

# # #

Power analysis
See the Handbook for information on this topic.

Multiple Regression

When to use it

Null hypothesis

How it works

Using nominal variables in a multiple regression
Selecting variables in multiple regression
Assumptions

See the Handbook for information on these topics.
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Example
The Maryland Biological Stream Survey example is shown in the “How to do the multiple
regression” section.

Graphing the results

Similar tests
See the Handbook for information on these topics.

How to do multiple regression

Multiple correlation

Whenever you have a dataset with multiple numeric variables, it is a good idea to look at the
correlations among these variables. One reason is that if you have a dependent variable, you can
easily see which independent variables correlate with that dependent variable. A second reason
is that if you will be constructing a multiple regression model, adding an independent variable
that is strongly correlated with an independent variable already in the model is unlikely to
improve the model much, and you may have a good reason to chose one variable over another.

Finally, it is worthwhile to look at the distribution of the numeric variables. If the distributions
differ greatly, using Kendall or Spearman correlations may be more appropriate. Also, if
independent variables differ in distribution from the dependent variable, the independent
variables may need to be transformed. In this example, Longnose, Acreage, Maxdepth, NO3, and
S04 are relatively log-normally distributed, while DO2 and Temp are relatively normal in
distribution. It may be advisable in this case to transform these variable so that they all have
similar distributions (not shown here).

With the corr.test function in the psych package, the “Correlation matrix” shows r-values and the
“Probability values” table shows p-values. The PerformanceAnalytics plot shows r-values, with
asterisks indicating significance, as well as a histogram of the individual variables. Either of
these indicates that Longnose is significantly correlated with Acreage, Maxdepth, and NO3.

#H# -----—-— -
### Multiple correlation and regression, stream survey example
### pp. 236-237

BHH -

Input = (

"Stream Longnose Acerage DO2 Maxdepth NO3 S04 Temp
BASIN_RUN 13 2528 9.6 80 2.28 16.75 15.3
BEAR_BR 12 3333 8.5 83 5.34 7.74 19.4
BEAR_CR 54 19611 8.3 96 0.99 10.92 19.5
BEAVER_DAM_CR 19 3570 9.2 56 5.44 16.53 17
BEAVER_RUN 37 1722 8.1 43 5.66 5.91 19.3
BENNETT_CR 2 583 9.2 51 2.26 8.81 12.9
BIG_BR 72 4790 9.4 91 4.1 5.65 16.7
BIG_ELK_CR 164 35971 10.2 81 3.2 17.53 13.8
BIG_PIPE_CR 18 25440 7.5 120 3.53 8.2 13.7
BLUE_LICK_RUN 1 2217 8.5 46 1.2 10.85 14.3
BROAD_RUN 53 1971 11.9 56 3.25 11.12  22.2
BUFFALO_RUN 16 12620 8.3 37 0.61 18.87 16.8
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BUSH_CR 32 19046 8.3 120 2.93 11.31 18
CABIN_JOHN_CR 21 8612 8.2 103 1.57 16.09 15
CARROLL_BR 23 3896 10.4 105 2.77 12.79 18.4
COLLIER_RUN 18 6298 8.6 42 0.26 17.63 18.2
CONOWINGO_CR 112 27350 8.5 65 6.95 14.94 24.1
DEAD_RUN 25 4145 8.7 51 0.34 44.93 23
DEEP_RUN 5 1175 7.7 57 1.3 21.68 21.8
DEER_CR 26 8297 9.9 60 5.26 6.36 19.1
DORSEY_RUN 8 7814 6.8 160 0.44 20.24 22.6
FALLS_RUN 15 1745 9.4 48 2.19 10.27 14.3
FISHING_CR 11 5046 7.6 109 0.73 7.1 19
FLINTSTONE_CR 11 18943 9.2 50 0.25 14.21 18.5
GREAT_SENECA_CR 87 8624 8.6 78 3.37 7.51 21.3
GREENE_BR 33 2225 9.1 41 2.3 9.72 20.5
GUNPOWDER_FALLS 22 12659 9.7 65 3.3 5.98 18
HAINES_BR 98 1967 8.6 50 7.71 26.44 16.8
HAWLINGS_R 1 1172 8.3 73 2.62 4.64 20.5
HAY_MEADOW_BR 5 639 9.5 26 3.53 4.46 20.1
HERRINGTON_RUN 1 7056 6.4 60 0.25 9.82 24.5
HOLLANDS_BR 38 1934 10.5 &5 2.34 11.44 12
ISRAEL_CR 30 6260 9.5 133 2.41 13.77 21
LIBERTY_RES 12 424 8.3 62 3.49 5.82 20.2
LITTLE_ANTIETAM_CR 24 3488 9.3 44 2.11 13.37 24
LITTLE_BEAR_CR 6 3330 9.1 67 0.81 8.16 14.9
LITTLE_CONOCOCHEAGUE_CR 15 2227 6.8 54 0.33 7.6 24
LITTLE_DEER_CR 38 8115 9.6 110 3.4 9.22 20.5
LITTLE_FALLS 84 1600 10.2 56 3.54 5.69 19.5
LITTLE_GUNPOWDER_R 3 15305 9.7 85 2.6 6.96 17.5
LITTLE_HUNTING_CR 18 7121 9.5 58 0.51 7.41 16
LITTLE_PAINT_BR 63 5794 9.4 34 1.19 12.27 17.5
MAINSTEM_PATUXENT_R 239 8636 8.4 150 3.31 5.95 18.1
MEADOW_BR 234 4803 8.5 93 5.01 10.98 24.3
MILL_CR 6 1097 8.3 53 1.71 15.77 13.1
MORGAN_RUN 76 9765 9.3 130 4.38 5.74 16.9
MUDDY_BR 25 4266 8.9 68 2.05 12.77 17
MUDLICK_RUN 8 1507 7.4 51 0.84 16.3 21
NORTH_BR 23 3836 8.3 121 1.32 7.36 18.5
NORTH_BR_CASSELMAN_R 16 17419 7.4 48 0.29 2.5 18
NORTHWEST_BR 6 8735 8.2 63 1.56 13.22 20.8
NORTHWEST_BR_ANACOSTIA_R 100 22550 8.4 107 1.41 14.45 23
OWENS_CR 80 9961 8.6 79 1.02 9.07 21.8
PATAPSCO_R 28 4706 8.9 61 4.06 9.9 19.7
PINEY_BR 48 4011 8.3 52 4.7 5.38 18.9
PINEY_CR 18 6949 9.3 100 4,57 17.84 18.6
PINEY_RUN 36 11405 9.2 70 2.17 10.17 23.6
PRETTYBOY_BR 19 904 9.8 39 6.81 9.2 19.2
RED_RUN 32 3332 8.4 73 2.09 5.5 17.7
ROCK_CR 3 575 6.8 33 2.47 7.61 18
SAVAGE_R 106 29708 7.7 73 0.63 12.28 21.4
SECOND_MINE_BR 62 2511 10.2 60 4.17 10.75 17.7
SENECA_CR 23 18422 9.9 45 1.58 8.37 20.1
SOUTH_BR_CASSELMAN_R 2 6311 7.6 46 0.64 21.16 18.5
SOUTH_BR_PATAPSCO 26 1450 7.9 60 2.96 8.84 18.6
SOUTH_FORK_LINGANORE_CR 20 4106 10.0 96 2.62 5.45 15.4
TUSCARORA_CR 38 10274 9.3 90 5.45 24.76 15
WATTS_BR 19 510 6.7 82 5.25 14.19 26.5
")

Data = read.table(textConnection(Input),header=TRUE)
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### Create a new data frame with only the numeric variables.
### This is required for corr.test and chart.Correlation

Tibrary(dplyr)
Data.num =
select(Data,

Longnose,
Acerage,
D02,
Maxdepth,
NO3,
S04,
Temp)

Tibrary(FSA)
headtail(pata.num)

Longnose Acerage D02 Maxdepth NO3 S04 Temp

1 13 2528 9.6 80 2.28 16.75 15.3
2 12 3333 8.5 83 5.34 7.74 19.4
3 54 19611 8.3 96 0.99 10.92 19.5
66 20 4106 10.0 96 2.62 5.45 15.4
67 38 10274 9.3 90 5.45 24.76 15.0
68 19 510 6.7 82 5.25 14.19 26.5
Tibrary(psych)
corr.test(bata.num,
use = "pairwise",
method="pearson",
adjust="none", # Can adjust p-values; see ?p.adjust for options
alpha=.05)

Correlation matrix
Longnose Acerage D02 Maxdepth NO3 S04 Temp

Longnose 1.00 0.35 0.14 0.30 0.31 -0.02 0.14
Acerage 0.35 1.00 -0.02 0.26 -0.10 0.05 0.00
D02 0.14 -0.02 1.00 -0.06 0.27 -0.07 -0.32
Maxdepth 0.30 0.26 -0.06 1.00 0.04 -0.05 0.00
NO3 0.31 -0.10 0.27 0.04 1.00 -0.09 0.00
S04 -0.02 0.05 -0.07 -0.05 -0.09 1.00 0.08
Temp 0.14 0.00 -0.32 0.00 0.00 0.08 1.00

Sample Size

Probability values (Entries above the diagonal are adjusted for multiple

tests.)

Longnose Acerage D02 Maxdepth NO3 S04 Temp
Longnose 0.00 0.00 0.27 0.01 0.01 0.89 0.26
Acerage 0.00 0.00 0.86 0.03 0.42 0.69 0.98
D02 0.27 0.86 0.00 0.64 0.02 0.56 0.01
Maxdepth 0.01 0.03 0.64 0.00 0.77 0.69 0.97
NO3 0.01 0.42 0.02 0.77 0.00 0.48 0.99
S04 0.89 0.69 0.56 0.69 0.48 0.00 0.52
Temp 0.26 0.98 0.01 0.97 0.99 0.52 0.00
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pairs(data=Data,

~ Longnose + Acerage + D02
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+ Maxdepth + NO3 + S04 + Temp)

7 9

0 15000 35000 40 80 140 10 30
1 N T Y I | | N T | L1 L 1 L
00 ] <] T [+ B—) [SIrs) T °
[e/ e} o ] o o
Longnose 8.0 %
o
mo‘g 9 o
8o o% o 0o o o° 00 o ® o ° o
S He° Acerage o 8 o0 ® 0 8% o @
S o °o o 0, 0 0 g o
@ ol o (4 O oq 9~ @ 3 & 8 @0
o ]ﬁﬁ%o ° Uﬂ 0%1%%% s Q:% © I% q&& o 9 OOdSO o8 g
o (2] o [e) [2]
il o
® 90, & DO2 &0 o &co"?%éim% o oorﬁf’ad) ®
weg @ mﬂ’o uoooo L) d %;g o ¥ 08% % ©9 ocoo cgp80
60 ‘9 ° o Oc [} [/ g o o o 0% O
Le] % i o o =
e °° 4 o o O°8 ° o °»

40 100

11111

10 30

o Q o O o o
o0 °® °oo o
0,0 o (] [e) o o
o "8 o D &0
o @ o ol ®o o © 0 o [° @Q} og o NO3 &aoo
o0 o0 o L og0f & &
®0% o 2° o o 03 ° B o2 2 @om
@ o) o
] (2] [¢] [*] i*) [¢]

Tibrary(PerformanceAnalytics)
chart.Correlation(Data.num,

method="pearson",
histogram=TRUE,
pch=16)
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Multiple regression

Model selection using the step function

The step function has options to add terms to a model (direction="forward"), remove terms from
a model (direction="backward"), or to use a process that both adds and removes terms
(direction="both"). It uses AIC (Akaike information criterion) as a selection criterion. You can
use the option k = log(n) to use BIC instead.

You can add the test="F" option to see the p-value for adding or removing terms, but the test will
still follow the AIC statistic. If you use this, however, note that a significant p-value essentially
argues for the term being included in the model, whether it’s its addition or its removal that’s
being considered.

A full model and a null are defined, and then the function will follow a procedure to find the
model with the lowest AIC. The final model is shown at the end of the output, with the Call:
indication, and lists the coefficients for that model.

Stepwise procedure

modeTl.null = Im(Longnose ~ 1,
data=Data)
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model.full = Tm(Longnose ~ Acerage + DO2 + Maxdepth + NO3 + S04 + Temp,
data=Data)

step(model.nulT,
scope = list(upper=model.full),
direction="both",
data=Data
)

Longnhose ~ 1

Df Sum of Sq RSS AIC
+ Acerage 1 17989.6 131841 518.75

+ NO3 1 14327.5 135503 520.61
+ Maxdepth 1  13936.1 135894 520.81
<none> 149831 525.45
+ Temp 1 2931.0 146899 526.10
+ D02 1 2777 .7 147053 526.17
+ S04 1 45.3 149785 527.43
< snip... more steps >

Longnose ~ Acerage + NO3 + Maxdepth

Df Sum of Sq RSS AIC
<none> 107904 509.13

+ Temp 1 2948.0 104956 509.24
+ D02 1 669.6 107234 510.70
- Maxdepth 1 6058.4 113962 510.84
+ S04 1 5.9 107898 511.12
- Acerage 1 14652.0 122556 515.78
- NO3 1 16489.3 124393 516.80
call:

Tm(formula = Longnose ~ Acerage + NO3 + Maxdepth, data = Data)
Coefficients:

(Intercept) Acerage NO3 Maxdepth
-23.829067 0.001988 8.673044 0.336605

Define final model

model.final = Tm(Longnose ~ Acerage + Maxdepth + NO3,
data=Data)

summary(model.final) # Show coefficients, R-squared, and overall p-value

Estimate Std. Error t value Pr(>|t|)
(Intercept) -2.383e+01 1.527e+01 -1.560 0.12367

Acerage 1.988e-03 6.742e-04 2.948 0.00446 **
Maxdepth 3.366e-01 1.776e-01  1.896 0.06253 .
NO3 8.673e+00 2.773e+00  3.127 0.00265 **
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Multiple R-squared: 0.2798, Adjusted R-squared: 0.2461
F-statistic: 8.289 on 3 and 64 DF, p-value: 9.717e-05

Analysis of variance for individual terms

Tibrary(car)
Anova(model.final,
Type="11")

Anova Table (Type II tests)

Response: Longnose

Ssum sq Df F value Pr(>F)
Acerage 14652 1 8.6904 0.004461 **
Maxdepth 6058 1 3.5933 0.062529 .
NO3 16489 1 9.7802 0.002654 **
Residuals 107904 64

Simple plot of predicted values with 1-to-1 line

Data$predy = predict(model.final)

plot(Longnose, predy,
data=Data,
pch = 16,
xTab="Actual response value",
ylab="Predicted response value"

)
abline(0,1, col="blue", Twd=2)

Predicted response value
0 20 40 60 80
|

I I

0 50 100 150 200

Actual response value

Checking assumptions of the model

hist(residuals(model.final),
col="darkgray")
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Histogram of residuals(model.final)
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A histogram of residuals from a linear model. The distribution of these residuals
should be approximately normal.

plot(fitted(model.final),

residuals(model.final)

)
5 -
IS
o | (o}
% © C@OO OOOO o %o
c_:ts B @O@OOO%@OOS 8 &
S %— @ ©° Oo
N "
9 I I [ I I I
0 20 40 60 80 100

fitted(model.final)

A plot of residuals vs. predicted values. The residuals should be unbiased and
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homoscedastic. For an illustration of these properties, see this diagram by Steve Jost
at DePaul University: condor.depaul.edu/sjost/it223/documents/resid-plots.gif.

### additional model checking plots with: plot(model.final)

Model fit criteria

Model fit criteria are available to decide which model is most appropriate. The step function
uses AIC, or optionally BIC, but there are others. You don’t want to use multiple R-squared,
because it will continue to improve as more terms are added into the model. Instead, you want
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to use a criterion that balances the improvement in explanatory power with not adding
extraneous terms to the model. Adjusted R-squared is a modification of R-squared that includes
this balance. Larger is better. AIC is based on information theory and measures this balance.
AlCc is an adjustment to AIC that is more appropriate for data sets with relatively fewer
observations. BIC is similar to AIC, but penalizes more for additional terms in the model.
Smaller is better for AIC, AICc, and BIC. There are differing opinions on which model fitting
criteria is best to use, but if you have no opinion, I would recommend AICc for routine use.

Using the step procedure to automatically find an optimal model is an option, but some people
caution against using an automated procedure because it might not hone in on the best model.
Instead, you can look at the model fit criteria for competing models manually. There may be
reasons why you wish to include or exclude some terms in the model, and it may be useful to
look at different model selection criteria simultaneously.

In my compare.Im function below, Shapiro.W and Shapiro.p are results from the Shapiro-Wilks
test for normality on the model residuals. A higher Shapiro W and a higher Shapiro p indicate
that the residuals are more normally distributed. You should be aware, however, that any model
with a high number of observation may yield a significant p-value (p < 0.05) for the Shapiro-
Wilks test. It is best to investigate the residuals visually.

In the following example, we’ll look only at the terms that are significantly correlated with
Longnose (Acreage, Maxdepth, and NO3), and then add in the other terms just to show the

decrease in AlCc by adding extra terms.

Note that AIC and BIC are calculated differently than in the step function.

mode1.1 = Tm(Longnose ~ Acerage, data=Data)
mode1.2 = Tm(Longnose ~ Maxdepth, data=Data)
mode1.3 = Tm(Longnose ~ NO3, data=Data)
mode1.4 = Tm(Longnose ~ Acerage + Maxdepth, data=Data)
mode1.5 = Tm(Longnose ~ Acerage + NO3, data=Data)
mode1.6 = Tm(Longnose ~ Maxdepth + NO3, data=Data)
model1.7 = Tm(Longnose ~ Acerage + Maxdepth + NO3, data=Data)
mode1.8 = Tm(Longnose ~ Acerage + Maxdepth + NO3 + D02, data=Data)
mode1.9 = Tm(Longnose ~ Acerage + Maxdepth + NO3 + S04, data=Data)
model1.10 = Tm(Longnose ~ Acerage + Maxdepth + NO3 + Temp, data=Data)

source("http://rcompanion.org/r_script/compare.Im.r")

compare.Im(model.1l, model.2, model.3, model.4, model.5, model.6,
model1.7, model.8, model.9, model.10)

$Models
Formula
1 "Longnose ~ Acerage"
2 "Longnose ~ Maxdepth"
3 "Longnose ~ NO3"
4 '"Longnose ~ Acerage + Maxdepth"
5 '"Longnose ~ Acerage + NO3"
6 "Longnose ~ Maxdepth + NO3"
7 "Longnose ~ Acerage + Maxdepth + NO3"
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8 "Longnose ~ Acerage + Maxdepth + NO3 + DO2"
9 "Longnose ~ Acerage + Maxdepth + NO3 + so4"
10 "Longnose ~ Acerage + Maxdepth + NO3 + Temp"

$Fit.criteria

Rank Df.res AIC AICc BIC R.squared Adj.R.sq p.value Shapiro.w Shapiro.p
1 2 66 713.7 714.1 720.4 0.12010 0.10670 3.796e-03 0.7278 6.460e-10
2 2 66 715.8 716.2 722.4 0.09301 0.07927 1.144e-02 0.7923 2.115e-08
3 2 66 715.6 716.0 722.2 0.09562 0.08192 1.029e-02 0.7361 9.803e-10
4 3 65 711.8 712.4 720.6 0.16980 0.14420 2.365e-03 0.7934 2.250e-08
5 3 65 705.8 706.5 714.7 0.23940 0.21600 1.373e-04 0.7505 2.055e-09
6 3 65 710.8 711.4 719.6 0.18200 0.15690 1.458e-03 0.8149 8.405e-08
7 4 64 704.1 705.1 715.2 0.27980 0.24610 9.717e-05 0.8108 6.511e-08
8 5 63 705.7 707.1 719.0 0.28430 0.23890 2.643e-04 0.8041 4.283e-08
9 5 63 706.1 707.5 719.4 0.27990 0.23410 3.166e-04 0.8104 6.345e-08
10 5 63 704.2 705.6 717.5 0.29950 0.25500 1.409e-04 0.8225 1.371e-07

### Model 7 is the model which minimizes AICc, which is the same model
###  chosen by the step function

Result = compare.lm(model.1l, model.2, model.3, model.4, model.5, model.6,
model.7, model.8, model.9, model.10)

plot(Result$Fit.criteria$AicCc,
xTab = "Model number",
ylab = "AICc")

Tines(Result$Fit.criteria$AIcCc)

AlCc
706 710 714
|

2 4 6 8 10

Model number

A plot of AlCc (modified Akaike information criterion) of several models. Model 7
minimizes AlCc, and is therefore chosen as the best model out of this set.

Comparing models with likelihood ratio test
It may also be helpful to compare models with the extra sum of squares test or likelihood ratio
test to see if additional terms significantly reduce the error sum of squares.

One of the compared models should be nested within the other. That is, the one model should be
the same as the other, except with additional terms. For example in the set of models below, it is
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appropriate to compare model.7 to model.4. Or to compare each of model.8, model.9, and
model.10 to model.7.

For a single comparison, the anova function can be used for the Extra SS test, or Irtest in Imtest
can be used for the likelihood ratio test. For multiple comparisons, the extraSS and Irt functions
in the FSA package can be used. The extraSS function works only for Im and nls models, whereas
the Irt function works on a wider range of model objects.

model.4 = Im(Longnose ~ Acerage + Maxdepth, data=Data)
model.7 = Im(Longnose ~ Acerage + Maxdepth + NO3, data=Data)
model.8 = Im(Longnose ~ Acerage + Maxdepth + NO3 + D02, data=Data)
model.9 = Im(Longnose ~ Acerage + Maxdepth + NO3 + S04, data=Data)
model.10 = Im(Longnose ~ Acerage + Maxdepth + NO3 + Temp, data=Data)

anova(model.7, model.4)
Analysis of variance Table

Model 1: Longnose ~ Acerage + Maxdepth + NO3
Model 2: Longnhose ~ Acerage + Maxdepth

Res.Df RSS Df sum of Sq F  Pr(>F)
1 64 107904
2 65 124393 -1 -16489 9.7802 0.002654 **
Tibrary(Imtest)

Trtest(model.7, model.4)
LikeTihood ratio test

Model 1: Longnose ~ Acerage + Maxdepth + NO3
Model 2: Longnhose ~ Acerage + Maxdepth

#Df LogLik Df cChisq Pr(>Chisq)
1 5 -347.05
2 4 -351.89 -1 9.6701 0.001873 **

Tibrary(FSA)
extrass(model.8, model.9, model.10,
com=model.7)

Model 1: Longnose ~ Acerage + Maxdepth + NO3 + DO2
Model 2: Longnose ~ Acerage + Maxdepth + NO3 + S04
Model 3: Longnose ~ Acerage + Maxdepth + NO3 + Temp
Model A: Longnose ~ Acerage + Maxdepth + NO3

DfO RSSO DfA RSSA Df SS F Pr(>F)
1vA 63 107234.38 64 107903.97 -1  -669.59 0.3934 0.5328
2vA 63 107898.06 64 107903.97 -1 -5.91 0.0035 0.9533

3vA 63 104955.97 64 107903.97 -1 -2948.00 1.7695 0.1882

222



SIMPLE LOGISTIC REGRESSION AN R COMPANION FOR THE HANDBOOK OF BIOLOGICAL STATISTICS

Trt(model.8, model.9, model.10,
com=model.7)

Model 1: Longnose ~ Acerage + Maxdepth + NO3 + DO2
Model 2: Longnose ~ Acerage + Maxdepth + NO3 + S04
Model 3: Longnose ~ Acerage + Maxdepth + NO3 + Temp
Model A: Longnose ~ Acerage + Maxdepth + NO3

DfO TogLiko DfA TogLikA Df TogLik chisq Pr(>Chisq)
1vA 63 -346.83881 64 -347.05045 -1 0.21164 0.4233 0.5153
2VA 63 -347.04859 64 -347.05045 -1 0.00186 0.0037 0.9513
3vA 63 -346.10863 64 -347.05045 -1 0.94182 1.8836 0.1699

# # #

Power analysis
See the Handbook for information on this topic.

Simple Logistic Regression

When to use it
Null hypothesis
How the test works

Assumptions
See the Handbook for information on these topics.

Examples
The Mpi example is shown below in the “How to do the test” section.

Graphing the results

Similar tests
See the Handbook for information on these topics.

How to do the test

Logistic regression can be performed in R with the gim (generalized linear model) function. This
function uses a link function to determine which kind of model to use, such as logistic, probit, or
poisson. These are indicated in the family and link options. See ?glm and ?family for more
information.

Assumptions
Generalized linear models have fewer assumptions than most common parametric tests.

Observations still need to be independent, and the correct link function needs to be specified. So,
for example you should understand when to use a poisson regression, and when to use a logistic
regression. However, the normal distribution of data or residuals is not required.
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Specifying the counts of “successes” and “failures”

Logistic regression has a dependent variable with two levels. In R, this can be specified in three
ways. 1) The dependent variable can be a factor variable where the first level is interpreted as
“failure” and the other levels are interpreted as “success”. (As in the second example in this
chapter). 2) The dependent variable can be a vector of proportions of successes, with the caveat
that the number of observations for each proportion is indicated in the weights option. 3) The
dependent variable can be a matrix with two columns, with the first column being the number of
“successes” and the second being the number of “failures”. (As in the first example in this
chapter).

Not all proportions or counts are appropriate for logistic regression analysis

Note that in each of these specifications, both the number of successes and the number of failures
is known. You should not perform logistic regression on proportion data where you don’t know
(or don’t tell R) how many individuals went into those proportions. In statistics, 75% is different
if it means 3 out of 4 rather than 150 out of 200. As another example where logistic regression
doesn’t apply, the weight people lose in a diet study expressed as a proportion of initial weight
cannot be interpreted as a count of “successes” and “failures”. Here, you might be able to use
common parametric methods, provided the model assumptions are met; log or arc-sine
transformations may be appropriate. Likewise, if you count the number of people in front of you
in line, you can’t interpret this as a percentage of people since you don’t know how many people
are not in front of you in line. In this case with count data as the dependent variable, you might
use poisson regression.

Overdispersion

One potential problem to be aware of when using generalized linear models is overdispersion.
This occurs when the residual deviance of the model is high relative to the residual degrees of
freedom. It is basically an indication that the model doesn't fit the data well.

It is my understanding, however, that overdispersion is technically not a problem for a simple
logistic regression, that is one with a binomial dependent and a single continuous independent
variable. Overdispersion is discussed in the chapter on Multiple logistic regression.

Pseudo-R-squared

R does not produce r-squared values for generalized linear models (glm). My function
nagelkerke will calculate the McFadden, Cox and Snell, and Nagelkereke pseudo-R-squared for
glm and other model fits. The Cox and Snell is also called the ML, and the Nagelkerke is also
called the Cragg and Uhler. These pseudo-R-squared values compare the maximum likelihood of
the model to a nested null model fit with the same method. They should not be thought of as the
same as the r-squared from an ordinary-least-squares linear (OLS) model, but instead as a
relative measure among similar models. The Cox and Snell for an OLS linear model, however,
will be equivalent to r-squared for that model. I have seen it mentioned that a McFadden
pseudo-R-squared of 0.2-0.4 indicates a good fit. Whereas, I find that the Nagelkerke usually
gives a reasonable indication of the goodness of fit for a model on a scale of 0 to 1. That being
said, I have found the Cox and Snell and Nagelkerke to sometimes yield values [ wouldn’t expect
for some glm. The function pR2 in the package pscl will also produce these pseudo-R-squared
values.
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Testing for p-values

Note that testing p-values for a logistic or poisson regression uses Chi-square tests. This is
achieved through the test="Wald” option in Anova to test the significance of each coefficient, and
the test="Chisq” option in anova for the significance of the overall model. A likelihood ratio test
can also be used to test the significance of the overall model.

Logistic regression example

### ----———————————————————— -
### Logistic regression, amphipod example, p. 247
### ----———————————————————— -
Input = (

"Location Latitude mpi90 mpil00

Port_Townsend,_WA 48.1 47 139

Neskowin,_OR 45.2 177 241

Siuslaw_R.,_OR 44.0 1087 1183

Umpqua_R.,_OR 43.7 187 175

Coos_Bay,_OR 43.5 397 671

san_Francisco,_CA 37.8 40 14

Carmel,_CA 36.6 39 17

Santa_Barbara,_CA 34.3 30 0

")

Data = read.table(textConnection(Input),header=TRUE)
Data$Total = Data$mpi90 + Data$mpilO0

Data$Percent = Data$mpilO0 / + Data$Total

Model fitting

Trials = cbind(pata$mpil00, Data$mpi90) # Sucesses, Failures

model = gIm(Trials ~ Latitude,
data = Data,
family = binomial(link="logit")
)

Coefficients and exponentiated cofficients

summary(model)

Coefficients:

Estimate std. Error z value Pr(>|z]|)
(Intercept) -7.64686 0.92487 -8.268 <2e-16 **%
Latitude 0.17864 0.02104 8.490 <2e-16 ***
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confint(model)

2.5 % 97.5 %
(Intercept) -9.5003746 -5.8702453
Latitude 0.1382141 0.2208032
exp(model$coefficients) # exponentiated coefficients
(Intercept) Latitude

0.0004775391 1.1955899446

exp(confint(model)) # 95% CI for exponentiated coefficients
2.5 % 97.5 %

(Intercept) 7.482379e-05 0.002822181
Latitude 1.148221e+00 1.247077992

Analysis of variance for individual terms

Tibrary(car)
Anova(model, type="II", test="wald")

Analysis of Deviance Table (Type II tests)
Response: Trials

Df Chisqg Pr(>Chisq)
Latitude 172.076 < 2.2e-16 *%*

Pseudo-R-squared

source("http://rcompanion.org/r_script/nagelkerke.r™)
nagelkerke(model)
$Models

Model: "gIm, Trials ~ Latitude, binomial(link = \"logit\"), Data"
Null: "glm, Trials ~ 1, binomial(link = \"logit\"), Data"

$Pseudo.R.squared.for.model.vs.null
Pseudo.R.squared

McFadden 0.425248
Cox and Snell (ML) 0.999970
Nagelkerke (Cragg and Uhler) 0.999970

Overall p-value for model

anova(model,
update(model, ~1), # update here produces null model for comparison
test="Chisq")
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Analysis of Deviance Table

Model 1: Trials ~ Latitude
Model 2: Trials ~ 1
Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 6 70.333
2 7 153.633 -1 -83.301 < 2.2e-16 *¥¥*
Tibrary(Imtest)

Trtest(model)
LikeTihood ratio test

Model 1: Trials ~ Latitude
Model 2: Trials ~ 1
#Df LogLik Df chisq Pr(>Chisq)
1 2 -56.293
2 1 -97.944 -1 83.301 < 2.2e-16 ***

Plot of standardized residuals

plot(fitted(model),
rstandard(model)
)
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fitted(model)

A plot of standardized residuals vs. predicted values. The residuals should be unbiased
and homoscedastic. For an illustration of these properties, see this diagram by Steve
Jost at DePaul University: condor.depaul.edu/sjost/it223/documents/resid-plots.gif.

### additional model checking plots with: plot(model)

Plotting the model

plot(Percent ~ Latitude,
data = Data,
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xTab="Lat1itude",
ylab="Percent mpil00",
pch=19)

curve(predict(model,data.frame(Latitude=x),type="response'),
Tty=1, Twd=2, col="blue",
add=TRUE)
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# # #
Logistic regression example
BHH ——mmmmm -
### Logistic regression, favorite insect example, p. 248
BHH ——mmmmm -
Input = (
"Height 1Insect
62 beetle
66 other
61 beetle
67 other
62 other
76 other
66 other
70 beetle
67 other
66 other
70 other
70 other
77 beetle
76 other
72 beetle
76 beetle
72 other
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70 other
65 other
63 other
63 other
70 other
72 other
70 beetle
74 other
")

Data = read.table(textConnection(Input),header=TRUE)

Model fitting
model = gIm(Insect ~ Height,
data=Data,
family = binomial(link="Togit")
)

Coefficients and exponentiated cofficients

summary (model)

Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 4.41379 6.66190 0.663 0.508

Height -0.05016 0.09577 -0.524 0.600
confint(model)
2.5 % 97.5 %
(Intercept) -8.4723648 18.4667731
Height -0.2498133 0.1374819
exp(model$coefficients) # exponentiated coefficients
(Intercept) Height

82.5821122 0.9510757

exp(confint(model)) # 95% CI for exponentiated coefficients
2.5 % 97.5 %

(Intercept) 0.0002091697 1.047171e+08
Height 0.7789461738 1.147381e+0

Analysis of variance for individual terms

Tibrary(car)
Anova(model, type="II", test="wald")
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Analysis of Deviance Table (Type II tests)

Response: Insect

Df cChisq Pr(>Chisq)
Height 1 0.2743 0.6004
Residuals 23

Pseudo-R-squared

source("http://rcompanion.org/r_script/nagelkerke.r")

nagelkerke(model)

$Pseudo.R.squared.for.model.vs.null
Pseudo.R.squared

McFadden 0.00936978
Cox and Snell (ML) 0.01105020
Nagelkerke (Cragg and Uhler) 0.01591030

Overall p-value for model

anova(model,

update(model, ~1), # update here produces null model for comparison
test="Chisq")

Analysis of Deviance Table
Model 1: Insect ~ Height

Model 2: Insect ~ 1
Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 23 29.370
2 24 29.648 -1 -0.27779 0.5982
Tibrary(Imtest)

Trtest(model)
LikeTihood ratio test

Model 1: Insect ~ Height
Model 2: Insect ~ 1
#Df LogLik Df cChisq Pr(>Chisq)
1 2 -14.685
2 1 -14.824 -1 0.2778 0.5982

Plot of standardized residuals

plot(fitted(model),
rstandard(model)
)
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Plotting the model

### Convert Insect to a numeric variable, levels 0 and 1
Data$Insect.num=as.numeric(Data$Insect)-1

Tibrary(FSA)
headtail(pata)

Height Insect Insect.num

1 62 beetle 0

2 66 other 1

3 61 beetle 0

23 72 other 1

24 70 beetle 0

25 74 other 1
### Plot

plot(Insect.num ~ Height,
data = Data,
xTlab="Height",
ylab="Insect",
pch=19)

curve(predict(model,data.frame(Height=x),type="response"),

Tty=1, Twd=2, col="blue",
add=TRUE)
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### Convert Insect to a logical variable, Tevels TRUE and FALSE
Data$Insect.log=(Data$Iinsect=="other")

Tibrary(FSA)
headtail(pata)

Height Insect Insect.num Insect.log

1 62 beetle 0 FALSE
2 66 other 1 TRUE
3 61 beetle 0 FALSE
23 72 other 1 TRUE
24 70 beetle 0 FALSE
25 74 other 1 TRUE
Tibrary(popbio)
Togi.hist.plot(Data$Height,
Data$Insect.log,
boxp=FALSE,
type="hist",
col="gray",
xTabel="Height")

1.0 | -0
‘.?08_‘_ _53
3 06 B |
© 10 3
2 0.4 o
D024 oL
0.0 1 | e ==,
65 70 75

Height
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Logistic regression example with significant model and abbreviated code

B —— -
### Logistic regression, hypothetical example

### Abbreviated code and description

B —— -

Input = (

"Continuous Factor
62
63
64
65
66
67
68
69
70
71
72
73
74
75
72.5
73.
74.5
75
76
77
78
79
80
81
82
83
84
85
86

")

(92}
U WWWWWWWWWWwWWwww>>>>>>>>>>>> > >

Data = read.table(textConnection(Input),header=TRUE)

model = gIm(Factor ~ Continuous,
data=Data,
family = binomial(link="Togit")
)

summary(model)
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Coefficients:

Estimate Std. Error z value Pr(>|z])
(Intercept) -66.4981 32.3787 -2.054 0.0400 *
continuous 0.9027 0.4389 2.056 0.0397 =

Tibrary(car)
Anova(model, type="II", test="wald")
Analysis of Deviance Table (Type II tests)
Response: Factor
Df Chisq Pr(>Chisq)

Continuous 1 4.229 0.03974 *
Residuals 27

source("http://rcompanion.org/r_script/nagelkerke.r")

nagelkerke(model)
Pseudo.R.squared
McFadden 0.697579
Cox and sSnell (ML) 0.619482
Nagelkerke (Cragg and Uhler) 0.826303
anova(model,

update(model, ~1),
test="Chisq")

Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 27 12.148
2 28 40.168 -1  -28.02 1.2e-07 ***
plot(fitted(model),
rstandard(model)
)
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fitted(model)
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### Convert Factor to a numeric variable, levels 0 and 1
Data$Factor.num=as.numeric(Data$Factor)-1

Tibrary(FSA)
headtail(pata)

continuous Factor Factor.num

1 62 A 0
2 63 A 0
3 64 A 0
27 84 B 1
28 85 B 1
29 86 B 1
plot(Factor.num ~ Continuous,

data = Data,
x1ab="Continuous",
ylab="Factor",
pch=19)

curve(predict(model,data.frame(Continuous=x),type="response"),
Tty=1, Twd=2, col="blue",
add=TRUE)

Factor
0.4

Continuous

### Convert Factor to a logical variable, Tevels TRUE and FALSE
Data$Factor.log=(Data$Factor=="B")

Tibrary(FSA)
headtail(pata)

Continuous Factor Factor.num Factor.log

1 62 A 0 FALSE
2 63 A 0 FALSE
3 64 A 0 FALSE

235



MULTIPLE LOGISTIC REGRESSION AN R COMPANION FOR THE HANDBOOK OF BIOLOGICAL STATISTICS

27 84 B 1 TRUE

28 85 B 1 TRUE

29 86 B 1 TRUE
Tibrary(popbio)

Togi.hist.plot(bData$Continuous,
Data$Factor.log,
boxp=FALSE,
type="hist",
col="gray",
xTabel="Height")

1.0 0
> 0.8 / - 5 >
S 0.6 - - 10 $
é 0.4 - 10 %
5 pp - 7 5
0.0 S— | . 0
65 70 75 80 85
Height
# # #

Power analysis
See the Handbook for information on this topic.

Multiple Logistic Regression

When to use it
The bird example is shown in the “How to do multiple logistic regression” section.

Null hypothesis
How it works

Selecting variables in multiple logistic regression
See the Handbook for information on these topics.

Assumptions

See the Handbook and the “How to do multiple logistic regression” section below for information
on this topic.
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Example
Graphing the results

Similar tests
See the Handbook for information on these topics.

How to do multiple logistic regression

Multiple logistic regression can be determined by a stepwise procedure using the step function.
This function selects models to minimize AIC, not according to p-values as does the SAS example
in the Handbook. Note, also, that in this example the step function found a different model than
did the procedure in the Handbook.

It is often advised to not blindly follow a stepwise procedure, but to also compare competing
models using fit statistics (AIC, AlCc, BIC), or to build a model from available variables that are
biologically or scientifically sensible.

Multiple correlation is one tool for investigating the relationship among potential independent
variables. For example, if two independent variables are correlated to one another, likely both
won'’t be needed in a final model, but there may be reasons why you would choose one variable
over the other.

Multiple correlation

B —m -
### Multiple logistic regression, bird example, p. 254-256
B —m -

### When using read.table, the column headings need to be on the
### same line. If the headings will spill over to the next line,
### Dbe sure to not put an enter or return at the end of the top
### Tline. The same holds for each 1line of data.

Input = (

"Species Status Length Mass Range Migr Insect Diet Clutch Broods wWood Upland water Release Indiv

Cyg_olor 1 1520 9600 1.21 1 12 2 6 1 0 0 1 6 29
Cyg_atra 1 1250 5000 0.56 1 0 1 6 1 0 0 1 10 85
Cer_nova 1 870 3360 0.07 1 0 1 4 1 0 0 1 3 8
Ans_caer 0 720 2517 1.1 3 12 2 3.8 1 0 0 1 1 10
Ans_anse 0 820 3170 3.45 3 0 1 5.9 1 0 0 1 2 7
Bra_cana 1 770 4390 2.96 2 0 1 5.9 1 0 0 1 10 60
Bra_sand 0 50 1930 0.01 1 0 1 4 2 0 0 0 1 2
Alo_aegy O 680 2040 2.71 1 NA 2 8.5 1 0 0 1 1 8
Ana_plat 1 570 1020 9.01 2 6 2 12.6 1 0 0 1 17 1539
Ana_acut O 580 910 7.9 3 6 2 8.3 1 0 0 1 3 102
Ana_pene 0 480 590 4.33 3 0 1 8.7 1 0 0 1 5 32
Aix_spon O 470 539 1.04 3 12 2 13.5 2 1 0 1 5 10
Ayt_feri 0 450 940 2.17 3 12 2 9.5 1 0 0 1 3 9
Ayt_fuli O 435 684 4.81 3 12 2 10.1 1 0 0 1 2 5
Ore_pict O 275 230 0.31 1 3 1 9.5 1 1 1 0 9 398
Lop_cali 1 256 162 0.24 1 3 1 14.2 2 0 0 0 15 1420
col_virg 1 230 170 0.77 1 3 1 13.7 1 0 0 0 17 1156
Ale_grae 1 330 501 2.23 1 3 1 15.5 1 0 1 0 15 362
Ale_rufa 0 330 439 0.22 1 3 2 11.2 2 0 0 0 2 20
Per_perd 0 300 386 2.4 1 3 1 14.6 1 0 1 0 24 676
Cot_pect O 182 95 0.33 3 NA 2 7.5 1 0 0 0 3 NA
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Cot_aust 1 180 95 0.69 2 12 2 11 1 0 0 1 11 601
Lop_nyct O 800 1150 0.28 1 12 2 5 1 1 1 0 4 6
Pha_colc 1 710 850 1.25 1 12 2 11.8 1 1 0 0 27 244
Syr_reev 0 750 949 0.2 1 12 2 9.5 1 1 1 0 2 9
Tet_tetr 0 470 900 4.17 1 3 1 7.9 1 1 1 0 2 13
Lag_lago O 390 517 7.29 1 0 1 7.5 1 1 1 0 2 4
Ped_phas 0 440 815 1.83 1 3 1 12.3 1 1 0 0 1 22
Tym_cupi O 435 770 0.26 1 4 1 12 1 0 0 0 3 57
van_vane 0 300 226 3.93 2 12 3 3.8 1 0 0 0 8 124
Plu_squa O 285 318 1.67 3 12 3 4 1 0 0 1 2 3
Pte_alch 0 350 225 1.21 2 0 1 2.5 2 0 0 0 1 8
Pha_chal 0 320 350 0.6 1 12 2 2 2 1 0 0 8 42
ocy_loph 0 330 205 0.76 1 0 1 2 7 1 0 1 4 23
Leu_mela O 372 NA 0.07 1 12 2 2 1 1 0 0 6 34
Ath_noct 1 220 176 4.84 1 12 3 3.6 1 1 0 0 7 221
Tyt_alba 0 340 298 8.9 2 0 3 5.7 2 1 0 0 1 7
Dac_nova 1 460 382 0.34 1 12 3 2 1 1 0 0 7 21
Lul_arbo 0 150 32.11.78 2 4 2 3.9 2 1 0 0 1 5
Ala_arve 1 185 38.9 5.19 2 12 2 3.7 3 0 0 0 11 391
Pru_modu 1 145 20.5 1.95 2 12 2 3.4 2 1 0 0 14 245
Eri_rebe 0 140 15.8 2.31 2 12 2 5 2 1 0 0 11 123
Lus_mega O 161 19.4 1.88 3 12 2 4.7 2 1 0 0 4 7
Tur_meru 1 255 82.6 3.3 2 12 2 3.8 3 1 0 0 16 596
Tur_phil 1 230 67.3 4.84 2 12 2 4.7 2 1 0 0 12 343
Syl_comm O 140 12.8 3.39 3 12 2 4.6 2 1 0 0 1 2
Ssyl_atri O 142 17.5 2.43 2 5 2 4.6 1 1 0 0 1 5
Man_mela O 180 NA 0.04 1 12 3 1.9 5 1 0 0 1 2
Man_mela O 265 59 0.25 1 12 2 2.6 NA 1 0 0 1 80
Gra_cyan O 275 128 0.83 1 12 3 3 2 1 0 1 1 NA
Gym_tibi 1 400 380 0.82 1 12 3 4 1 1 0 0 15 448
Cor_mone O 335 203 3.4 2 12 2 4.5 1 1 0 0 2 3
cor_frug 1 400 425 3.73 1 12 2 3.6 1 1 0 0 10 182
Stu_vulg 1 222 79.8 3.33 2 6 2 4.8 2 1 0 0 14 653
Acr_tris 1 230 111.3 0.56 1 12 2 3.7 1 1 0 0 5 88
Pas_dome 1 149 28.8 6.5 1 6 2 3.9 3 1 0 0 12 416
Pas_mont O 133 22 6.8 1 6 2 4.7 3 1 0 0 3 14
Aeg_temp O 120 NA  0.17 1 6 2 4.7 3 1 0 0 3 14
Emb_gutt O 120 19 0.15 1 4 1 5 3 0 0 0 4 112
Poe_gutt O 100 12.4 0.75 1 4 1 4.7 3 0 0 0 1 12
Lon_punc O 110 13.5 1.06 1 0 1 5 3 0 0 0 1 8
Lon_cast O 100 NA  0.13 1 4 1 5 NA 0 0 1 4 45
Pad_oryz 0 160 NA 0.09 1 0 1 5 NA 0 0 0 2 6
Fri_coel 1 160 23.5 2.61 2 12 2 4.9 2 1 0 0 17 449
Fri_mont O 146 21.4 3.09 3 10 2 6 NA 1 0 0 7 121
Car_chlo 1 147 29 2.09 2 7 2 4.8 2 1 0 0 6 65
car_spin 0 117 12 2.09 3 3 1 4 2 1 0 0 3 54
Car_card 1 120 15.5 2.85 2 4 1 4.4 3 1 0 0 14 626
Aca_flam 1 115 11.5 5.54 2 6 1 5 2 1 0 0 10 607
Aca_fTlavi 0 133 17 1.67 2 0 1 5 3 0 1 0 3 61
Aca_cann O 136 18.5 2.52 2 6 1 4.7 2 1 0 0 12 209
Pyr_pyrr 0 142 23.5 3.57 1 4 1 4 3 1 0 0 2 NA
Emb_citr 1 160 28.2 4.11 2 8 2 3.3 3 1 0 0 14 656
Emb_hort 0 163 21.6 2.75 3 12 2 5 1 0 0 0 1 6
Emb_cirl 1 160 23.6 0.62 1 12 2 3.5 2 1 0 0 3 29
Emb_scho 0 150 20.7 5.42 1 12 2 5.1 2 0 0 1 2 9
Pir_rubr 0 170 31 0.55 3 12 2 4 NA 1 0 0 1 2
Age_phoe 0 210 36.9 2 2 8 2 3.7 1 0 0 1 1 2
Stu_negl 0 225 106.5 1.2 2 12 2 4.8 2 0 0 0 1 2
")

Data = read.table(textConnection(Input),header=TRUE)

Create a data frame of numeric variables

### Select only those variables that are numeric or can be made numeric
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Tibrary(dplyr)

Data.

num =

select(Data,

### Covert integer

Data.
Data.
Data.
Data.
.num$Diet
Data.
.num$wood
Data.
Data.
Data.
Data.

Data

Data

Status,
Length,
Mmass,
Range,
mMigr,
Insect,
Diet,
Clutch,
Broods,
wood,
Upland,
water,

Release,

Indiv)

num$status
num$Length
num$migr

num$Insect

num$Broods

num$upland
num$water
num$release
num$Indiv

= 4as
as
as
as
as
as
as
as
as

as

as.

.humeric(Data.
.humeric(Data.
.humeric(Data.
.humeric(Data.
.humeric(Data.
.humeric(Data.
.humeric(Data.
.humeric(Data.
.humeric(Data.
numeric(Data.
.humeric(Data.

### Examine the new data frame

Tibrary(FSA)
headtail(bata.num)

1
2
3
77

78
79

Status Length
1520
1 1250
1 870
0 170
0

0

=

210
225

Mass
9600.
5000.
3360.

TOVWOOOO

AN R COMPANION FOR THE HANDBOOK OF BIOLOGICAL STATISTICS

variables to numeric variables

num$status)
num$Length)
num$Migr)
num$Insect)
num$Diet)
num$Broods)
num$wood)
num$upTand)
num$water)
num$rRelease)
num$Indiv)

Range Migr Insect Diet Clutch Broods wood Upland water Release Indiv

1.21 1
0.56 1
0.07 1
0.55 3
2.00 2
1.20 2

Examining correlations among variables

12
0
0

12
8

12

NNNRERE RN
Pwbpoo
ONOOOO

### Note I used Spearman correlations here

Tibrary(PerformanceAnalytics)
chart.cCorrelation(Data.num,

method="spearman",
histogram=TRUE,

pch=

16)
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Tibrary(psych)

corr.test(bata.num,

Multiple logistic regression example

use "pairwise",

method="spearman",

adjust="none",
alpha=.05)

# Can adjust p-values; see ?p.adjust for options

In this example, the data contain missing values. In SAS, missing values are indicated with a

period, whereas in R missing values are indicated with NA. SAS will often deals with missing
values seamlessly. While this makes things easier for the user, it may not ensure that the user

understands what is being done with these missing values. In some cases, R requires that user
be explicit with how missing values are handled. One method to handle missing values in a
multiple regression would be to remove all observations from the data set that have any missing
values. This is what we will do prior to the stepwise procedure, creating a data frame called
Data.omit. However, when we create our final model, we want to exclude only those
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observations that have missing values in the variables that are actually included in that final
model. For testing the overall p-value of the final model, plotting the final model, or using the
glm.compare function, we will create a data frame called Data.final with only those observations
excluded.

There are some cautions about using the step procedure with certain glm fits, though models in
the binomial and poission families should be okay. See ?stats::step for more information.

B —— -
### Multiple logistic regression, bird example, p. 254-256

B —— -
Input = (

"Species Status Length Mass Range Migr Insect Diet Clutch Broods wWood Upland water Release Indiv

Cyg_olor 1 1520 9600 1.21 1 12 2 6 1 0 0 1 6 29
Cyg_atra 1 1250 5000 0.56 1 0 1 6 1 0 0 1 10 85
Cer_nova 1 870 3360 0.07 1 0 1 4 1 0 0 1 3 8
Ans_caer 0 720 2517 1.1 3 12 2 3.8 1 0 0 1 1 10
Ans_anse 0 820 3170 3.45 3 0 1 5.9 1 0 0 1 2 7
Bra_cana 1 770 4390 2.96 2 0 1 5.9 1 0 0 1 10 60
Bra_sand 0 50 1930 0.01 1 0 1 4 2 0 0 0 1 2
Alo_aegy O 680 2040 2.71 1 NA 2 8.5 1 0 0 1 1 8
Ana_plat 1 570 1020 9.01 2 6 2 12.6 1 0 0 1 17 1539
Ana_acut O 580 910 7.9 3 6 2 8.3 1 0 0 1 3 102
Ana_pene 0 480 590 4.33 3 0 1 8.7 1 0 0 1 5 32
Aix_spon O 470 539 1.04 3 12 2 13.5 2 1 0 1 5 10
Ayt_feri 0 450 940 2.17 3 12 2 9.5 1 0 0 1 3 9
Ayt_fuli O 435 684 4.81 3 12 2 10.1 1 0 0 1 2 5
Ore_pict O 275 230 0.31 1 3 1 9.5 1 1 1 0 9 398
Lop_cali 1 256 162 0.24 1 3 1 14.2 2 0 0 0 15 1420
Col_virg 1 230 170 0.77 1 3 1 13.7 1 0 0 0 17 1156
Ale_grae 1 330 501 2.23 1 3 1 15.5 1 0 1 0 15 362
Ale_rufa 0 330 439 0.22 1 3 2 11.2 2 0 0 0 2 20
pPer_perd 0 300 386 2.4 1 3 1 14.6 1 0 1 0 24 676
Cot_pect O 182 95 0.33 3 NA 2 7.5 1 0 0 0 3 NA

Cot_aust 1 180 95 0.69 2 12 2 11 1 0 0 1 11 601
Lop_nyct O 800 1150 0.28 1 12 2 5 1 1 1 0 4 6
Pha_colc 1 710 850 1.25 1 12 2 11.8 1 1 0 0 27 244
Syr_reev 0 750 949 0.2 1 12 2 9.5 1 1 1 0 2 9
Tet_tetr 0 470 900 4.17 1 3 1 7.9 1 1 1 0 2 13
Lag_lago O 390 517 7.29 1 0 1 7.5 1 1 1 0 2 4
Ped_phas 0 440 815 1.83 1 3 1 12.3 1 1 0 0 1 22
Tym_cupi O 435 770 0.26 1 4 1 12 1 0 0 0 3 57
van_vane 0 300 226 3.93 2 12 3 3.8 1 0 0 0 8 124
Plu_squa O 285 318 1.67 3 12 3 4 1 0 0 1 2 3
Pte_alch 0 350 225 1.21 2 0 1 2.5 2 0 0 0 1 8
Pha_chal 0 320 350 0.6 1 12 2 2 2 1 0 0 8 42
ocy_Tloph 0 330 205 0.76 1 0 1 2 7 1 0 1 4 23
Leu_mela O 372 NA 0.07 1 12 2 2 1 1 0 0 6 34
Ath_noct 1 220 176 4.84 1 12 3 3.6 1 1 0 0 7 221
Tyt_alba 0 340 298 8.9 2 0 3 5.7 2 1 0 0 1 7
Dac_nova 1 460 382 0.34 1 12 3 2 1 1 0 0 7 21
Lul_arbo 0 150 32.11.78 2 4 2 3.9 2 1 0 0 1 5
Ala_arve 1 185 38.9 5.19 2 12 2 3.7 3 0 0 0 11 391
Pru_modu 1 145 20.5 1.95 2 12 2 3.4 2 1 0 0 14 245
Eri_rebe 0 140 15.8 2.31 2 12 2 5 2 1 0 0 11 123
Lus_mega O 161 19.4 1.88 3 12 2 4.7 2 1 0 0 4 7
Tur_meru 1 255 82.6 3.3 2 12 2 3.8 3 1 0 0 16 596
Tur_phil 1 230 67.3 4.84 2 12 2 4.7 2 1 0 0 12 343
Syl_comm O 140 12.8 3.39 3 12 2 4.6 2 1 0 0 1 2
Syl_atri O 142 17.5 2.43 2 5 2 4.6 1 1 0 0 1 5
Man_mela O 180 NA 0.04 1 12 3 1.9 5 1 0 0 1 2
Man_mela O 265 59 0.25 1 12 2 2.6 NA 1 0 0 1 80
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Gra_cyan O 275 128 0.83 1 12 3 3 2 1 0 1 1 NA
Gym_tibi 1 400 380 0.82 1 12 3 4 1 1 0 0 15 448
Cor_mone O 335 203 3.4 2 12 2 4.5 1 1 0 0 2 3
Cor_frug 1 400 425 3.73 1 12 2 3.6 1 1 0 0 10 182
Stu_vulg 1 222 79.8 3.33 2 6 2 4.8 2 1 0 0 14 653
Acr_tris 1 230 111.3 0.56 1 12 2 3.7 1 1 0 0 5 88
Pas_dome 1 149 28.8 6.5 1 6 2 3.9 3 1 0 0 12 416
Pas_mont O 133 22 6.8 1 6 2 4.7 3 1 0 0 3 14
Aeg_temp O 120 NA  0.17 1 6 2 4.7 3 1 0 0 3 14
Emb_gutt O 120 19 0.15 1 4 1 5 3 0 0 0 4 112
Poe_gutt O 100 12.4 0.75 1 4 1 4.7 3 0 0 0 1 12
Lon_punc O 110 13.5 1.06 1 0 1 5 3 0 0 0 1 8
Lon_cast O 100 NA  0.13 1 4 1 5 NA 0 0 1 4 45
pPad_oryz 0 160 NA 0.09 1 0 1 5 NA 0 0 0 2 6
Fri_coel 1 160 23.5 2.61 2 12 2 4.9 2 1 0 0 17 449
Fri_mont O 146 21.4 3.09 3 10 2 6 NA 1 0 0 7 121
Car_chlo 1 147 29 2.09 2 7 2 4.8 2 1 0 0 6 65
Car_spin 0 117 12 2.09 3 3 1 4 2 1 0 0 3 54
Car_card 1 120 15.5 2.85 2 4 1 4.4 3 1 0 0 14 626
Aca_flam 1 115 11.5 5.54 2 6 1 5 2 1 0 0 10 607
Aca_flavi 0 133 17 1.67 2 0 1 5 3 0 1 0 3 61
Aca_cann O 136 18.5 2.52 2 6 1 4.7 2 1 0 0 12 209
Pyr_pyrr O 142 23.5 3.57 1 4 1 4 3 1 0 0 2 NA
Emb_citr 1 160 28.2 4.11 2 8 2 3.3 3 1 0 0 14 656
Emb_hort 0 163 21.6 2.75 3 12 2 5 1 0 0 0 1 6
Emb_cirl 1 160 23.6 0.62 1 12 2 3.5 2 1 0 0 3 29
Emb_scho 0 150 20.7 5.42 1 12 2 5.1 2 0 0 1 2 9
Pir_rubr 0 170 31 0.55 3 12 2 4 NA 1 0 0 1 2
Age_phoe 0 210 36.9 2 2 8 2 3.7 1 0 0 1 1 2
Stu_negl O 225 106.5 1.2 2 12 2 4.8 2 0 0 0 1 2
")

Data = read.table(textConnection(Input),header=TRUE)

Determining model with step procedure

### Create new data frame with all missing values removed (NA’s)

Data.omit = na.omit(Data)

### Define full and null models and do step procedure

model.null glm(status ~ 1,
data=Data.omit,
family = binomial(link="T1ogit")

)

modeT.full gIlm(status ~ Length + Mass + Range + Migr + Insect + Diet +
Clutch + Broods + Wood + Upland + water +
Release + Indiv,
data=Data.omit,
family = binomial(link="1ogit"),

)

step(model.nulT,
scope = list(upper=model.full),
direction="both",
test="chisq",
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data=Data
)
Start: AIC=92.34
Status ~ 1
Df Deviance AIC LRT Pr(>chi)
+ Release 1 56.130 60.130 34.213 4.940e-09 #***
+ Indiv 1 60.692 64.692 29.651 5.172e-08 ***
+ Migr 1 85.704 89.704 4.639 0.03125 *
+ Upland 1 86.987 90.987 3.356 0.06696 .
+ Insect 1 88.231 92.231 2.112 0.14614
<none> 90.343 92.343
+ Mass 1 88.380 92.380 1.963 0.16121
+ Wood 1 88.781 92.781 1.562 0.21133
+ Diet 1 89.195 93.195 1.148 0.28394
+ Length 1 89.372 93.372 0.972 0.32430
+ Water 1 90.104 94.104 0.240 0.62448
+ Broods 1 90.223 94.223 0.120 0.72898
+ Range 1 90.255 94.255 0.088 0.76676
+ Clutch 1 90.332 94.332 0.012 0.91420

< several more steps >

Step: AIC=42.03
Status ~ Upland + Migr + Mass + Indiv + Insect + Wood

Df Deviance AIC LRT Pr(>chi)
<none> 28.031 42.031
- wood 1 30.710 42.710 2.679 0.101686
+ Diet 1 26.960 42.960 1.071 0.300673
+ Length 1 27.965 43.965 0.066 0.796641
+ Water 1 27.970 43.970 0.062 0.803670
+ Broods 1 27.983 43.983 0.048 0.825974
+ Clutch 1 28.005 44.005 0.027 0.870592
+ Release 1 28.009 44.009 0.022 0.881631
+ Range 1 28.031 44.031 0.000 0.999964
- Insect 1 32.369 44.369 4.338 0.037276 *
- Migr 1 35.169 47.169 7.137 0.007550 **
- Upland 1 38.302 50.302 10.270 0.001352 **
- Mass 1 43.402 55.402 15.371 8.833e-05 ***
- Indiv 1 71.250 83.250 43.219 4.894e-11 ***

Final model

model.final = glm(Status ~ Upland + Migr + Mass + Indiv + Insect + Wood,
data=Data,
family = binomial(Tink="Togit"),
na.action(na.omit)

)
summary(model.final)

Coefficients:
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Estimate Sstd. Error z value Pr(>|z])

(Intercept) -3.5496482 2.0827400 -1.704 0.088322 .
UpTand -4.5484289 2.0712502 -2.196 0.028093 *
Migr -1.8184049 0.8325702 -2.184 0.028956 *
Mass 0.0019029 0.0007048 2.700 0.006940 **
Indiv 0.0137061 0.0038703 3.541 0.000398 ***
Insect 0.2394720 0.1373456 1.744 0.081234 .
wood 1.8134445 1.3105911 1.384 0.166455

Analysis of variance for individual terms

Tibrary(car)
Anova(model.final, type="II", test="wald")

Pseudo-R-squared

source("http://rcompanion.org/r_script/nagelkerke.r™)
nagelkerke(model.final)

$Pseudo.R.squared.for.model.vs.null
Pseudo.R.squared

McFadden 0.700475
Cox and Snell (ML) 0.637732
Nagelkerke (Cragg and Uhler) 0.833284

Overall p-value for model

### Create data frame with variables in final model and NA’s omitted

Tibrary(dplyr)
Data.final =
select(Data,
Status,
Upland,
Migr,
Mmass,
Indiv,
Insect,
wood

)

Data.final = na.omit(Data.final)

### Define null models and compare to final model

model.null = glm(Status ~ 1,
data=Data.final,
family = binomial(link="Togit")
)
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anova(model.final,
model.nulT,
test="Chisq")

Analysis of Deviance Table
Model 1: Status ~ Upland + Migr + Mass + Indiv + Insect + Wood

Model 2: Status ~ 1
Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 63 30.392
2 69 93.351 -6 -62.959 1.125e-11 ***
Tibrary(Imtest)

Trtest(model.final)
Likelihood ratio test
#Df LogLik Df chisq Pr(>Chisq)

1 7 -15.196
2 1 -46.675 -6 62.959 1.125e-11 *%*

Plot of standardized residuals

plot(fitted(model.final),
rstandard(model.final)
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fitted(model.final)

Simple plot of predicted values

### Create data frame with variables in final model and NA’s omitted

Tibrary(dplyr)
Data.final =
select(Data,
Status,
Upland,
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Migr,
Mass,
Indiv,
Insect,
wood

)

Data.final = na.omit(Data.final)

Data.final$predy = predict(model.final,
type="response")

### Plot

plot(Status ~ predy,
data = Data.final,
pch = 16,
xTab="Predicted probability of 1 response",
ylab="Actual response"

)
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Predicted probability of 1 response

Check for overdispersion

Overdispersion is a situation where the residual deviance of the glm is large relative to the
residual degrees of freedom. These values are shown in the summary of the model. One
guideline is that if the ratio of the residual deviance to the residual degrees of freedom exceeds
1.5, then the model is overdispersed. Overdispersion indicates that the model doesn't fit the data
well: the explanatory variables may not well describe the dependent variable or the model may
not be specified correctly for these data. If there is overdispersion, one potential solution is to
use the quasibinomial family option in gim.

summary(model)

Null deviance: 93.351 on 69 degrees of freedom
Residual deviance: 30.392 on 63 degrees of freedom
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summary(model.final)$deviance / summary(model.final)$df.residual

[1] 0.482417

Alternative to assess models: using compare.glm

An alternative to, or a supplement to, using a stepwise procedure is comparing competing
models with fit statistics. My compare.glm function will display AIC, AlCc, BIC, and pseudo-R-
squared for glm models. The models used should all be fit to the same data. That is, caution
should be used if different variables in the data set contain missing values. If you don’t have any
preference on which fit statistic to use, I might recommend AlCc, or BIC if you’d rather aim for
having fewer terms in the final model.

A series of models can be compared with the standard anova function. Models should be nested
within the previous model or the next model in the list in the anova function; and models should
be fit to the same data. When comparing multiple regression models, a p-value to include a new
term is often relaxed is 0.10 or 0.15.

In the following example, the models chosen with the stepwise procedure are used. Note that
while model 9 minimizes AIC and AICc, model 8 minimizes BIC. The anova results suggest that
model 8 is not a significant improvement to model 7. These results give support for selecting any
of model 7, 8, or 9. Note that the SAS example in the Handbook selected model 4.

### Create data frame with just final terms and no NA’s

Tibrary(dplyr)
Data.final =
select(Data,
Status,
Upland,
Migr,
Mmass,
Indiv,
Insect,
wood

)

Data.final = na.omit(Data.final)

### Define models to compare.

model.1=gIm(Status ~ 1,
data=Data.omit, family=binomial())
model.2=gTm(Status ~ Release,
data=Data.omit, family=binomial())
model.3=gTm(Status ~ Release + Upland,
data=Data.omit, family=binomial())
model.4=gIm(Status ~ Release + Upland + Migr,
data=Data.omit, family=binomial())
model.5=gIm(Status ~ Release + Upland + Migr + Mass,
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data=Data.omit, family=binomial())

model.6=gIm(Status ~ Release + Upland + Migr + Mass + Indiv,

data=Data.omit, family=binomial())

model.7=gIm(Status ~ Release + Upland + Migr + Mass + Indiv + Insect,

data=Data.omit, family=binomial())

model.8=gIm(Status ~ Upland + Migr + Mass + Indiv + Insect,

data=Data.omit, family=binomial())

model.9=gIm(Status ~ Upland + Migr + Mass + Indiv + Insect + Wood,

data=Data.omit, family=binomial())

### Use compare.glm to assess fit statistics.

source("http://rcompanion.org/r_script/compare.gim.r")

compare.glm(model.l, model.2, model.3, model.4, model.5, model.6,

$Models
Formula

OooNOOUVLTD WN R

"Status ~
"Status ~
"Status ~
"Status ~
"Status ~
"Status ~
"Status ~
"Status ~
"Status ~

model.7, model.8, model.9)

1m
ReTease"

Release + Upland"

Release + Upland + Migr"

Release + Upland + Migr + Mass"

Release + Upland + Migr + Mass + Indiv"

Release + Upland + Migr + Mass + Indiv + Insect"

Upland + Migr + Mass + Indiv + Insect"
Upland + Migr + Mass + Indiv + Insect + wood"

$Fit.criteria
Rank Df.res AIC AICc BIC McFadden Cox.and.Snell Nagelkerke p.value

OooNOOUVLITD WN R
NONOuUvIh WN R

66 94.34 94.53 98.75 0.0000 0.0000 0.0000 Inf
65 62.13 62.51 68.74 0.3787 0.3999 0.5401 2.538e-09
64 56.02 56.67 64.84 0.4684 0.4683 0.6325 3.232e-10
63 51.63 52.61 62.65 0.5392 0.5167 0.6979 7.363e-11
62 50.64 52.04 63.87 0.5723 0.5377 0.7263 7.672e-11
61 49.07 50.97 64.50 0.60118 0.5618 0.7588 5.434e-11
60 46.42 48.90 64.05 0.6633 0.5912 0.7985 2.177e-11
61 44.71 460.61 60.14 0.6601 0.5894 0.7961 6.885e-12
60 44.03 46.51 61.67 0.6897 0.6055 0.8178 7.148e-12

### Use anova to compare each model to the previous one.

anova(model
modeT

test=

.1, model.2, model.3,model.4, model.5, model.6,
.7, model.8, model.9,
"Chisq")

Analysis of Deviance Table

Model 1:
Model 2:
Model 3:
Model 4:

Status ~ 1

Status ~ Release

Status ~ Release + Upland

Status ~ Release + Upland + Migr
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ModeT
ModeT
Model
Model
Model

Resid.

OooNOoOOTUVLTD WN R

O 00 ~NOYWUI

Status ~
Status ~
Status ~
Status ~
Status ~
Df Resid.
66 90.
65 56.
64 48.
63 41.
62 38.
61 35
60 30.
61 30.
60 28.

Power analysis
See the Handbook for information on this topic.
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Release + Upland + Migr + Mass

Release + Upland + Migr + Mass + Indiv

Release + Upland + Migr + Mass + Indiv + Insect
Upland + Migr + Mass + Indiv + Insect

Upland + Migr + Mass + Indiv + Insect + wood

Dev Df Deviance Pr(>Chi)

343
130 1  34.213 4.94e-09 ***
024 1 8.106 0.004412 **
631 1 6.393 0.011458 *
643 1 2.988 0.083872 .
.070 1 3.573 0.058721 .
415 1 4.655 0.030970 *
710 -1 -0.295 0.587066
031 1 2.679 0.101686

# # #
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Multiple tests

Multiple Comparisons

The problem with multiple comparisons
See the Handbook for information on this topic. Also see sections of this book with the terms

“multiple comparisons”, “Tukey
“adjust”.

» o« ” o«

, 'pairwise”,

»” o« » « n o«

post-hoc”, “p.adj”, “p.adjust”, ‘p.method”, or

Controlling the familywise error rate: Bonferroni correction
Example is shown below in the “How to do the tests” section

Controlling the false discovery rate: Benjamini-Hochberg procedure
Example is shown below in the “How to do the tests” section

Assumption

When not to correct for multiple comparisons
See the Handbook for information on these topics.

How to do the tests
R has built in methods to adjust a series of p-values either to control the family-wise error rate or
to control the false discovery rate.

The methods Holm, Hochberg, Hommel, and Bonferroni control the family-wise error rate.
These methods attempt to limit the probability of even one false discovery (a type I error,
incorrectly rejecting the null hypothesis when there is no real effect), and so are all relatively
strong (conservative).

The methods BH (Benjamini-Hochberg, which is the same as FDR in R) and BY control the false
discovery rate. These methods attempt to control the expected proportion of false discoveries.

For more information on these methods, see ?p.adjust or other resources.

Note that these methods require only the p-values to adjust and the number of p-values that are
being compared. This is different from methods such as Tukey or Dunnett that require also the
variability of the underlying data. Tukey and Dunnett are considered familywise error rate
methods.

To get some sense of how conservative these different adjustments are, see the two plots below
in this chapter.

There is no definitive advice on which p-value adjustment measure to use. In general, you should
choose a method which will be familiar to your audience or in your field of study. In addition,
there may be some logic which allows you to choose how you balance the probability of making a
type I error relative to a type Il error. For example, in a preliminary study, you might want to
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keep as many significant values as possible to not exclude potentially significant factors from
future studies. On the other hand, in a medical study where people’s lives are at stake and very
expensive treatments are being considered, you would want to have a very high level of certainty
before concluding that one treatment is better than another.

Multiple comparisons example with 25 p-values

R - m -
### Multiple comparisons example, p. 262-263
BHHE - m -
Input = (

"Food Raw.p
Blue_fish .34
Bread .594
Butter .212
Carbohydrates .384
Cereals_and_pasta .074
Dairy_products .94
Eggs .275
Fats .696
Fruit .269
Legumes .341
Nuts .06
Olive_oil .008
Potatoes .569
Processed_meat .986

Proteins .042

Red_meat .251

Semi-skimmed_milk .942

Skimmed_miTk .222

Sweets .762

Total_calories .001

Total_meat .975

Vegetables .216

white_fish .205

white_meat .041

whole_milk .039

")

Data = read.table(textConnection(Input),header=TRUE)

### Order data by p-value

Data = Datal[order(Data$rRaw.p),]

### Check if data is ordered the way we intended

Tibrary(FSA)
headtail(Data)
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Food Raw.p
20 Total_calories 0.001
12 OTlive_oil 0.008
25 whole_milk 0.039
17 semi-skimmed_milk 0.942
21 Total_meat 0.975
14 Processed_meat 0.986

### Perform p-value adjustments and add to data frame

Data$Bonferroni =
p.adjust(Data$raw.p,
method = "bonferroni')

Data$BH =
p.adjust(Data$raw.p,
method = "BH")

Data$HoIm =
p.adjust(pata$ Raw.p,
method = "hoTm")

Data$Hochberg =
p.adjust(pata$ Raw.p,
method = "hochberg")

Data$Hommel =
p.adjust(Data$ Raw.p,
method = "hommel")

Data$ByY =
p.adjust(pata$ Raw.p,
method = "BY")

Data

Food Raw.p Bonferroni BH Holm Hochberg Hommel BY
20 Total_calories 0.001 0.025 0.0250000 0.025 0.025 0.025 0.09539895
12 Olive_oil 0.008 0.200 0.1000000 0.192 0.192 0.192 0.38159582
25 whole_miTk 0.039 0.975 0.2100000 0.897 0.882 0.682 0.80135122
24 white_meat 0.041 1.000 0.2100000 0.902 0.882 0.697 0.80135122
15 Proteins 0.042 1.000 0.2100000 0.902 0.882 0.714 0.80135122
11 Nuts 0.060 1.000 0.2500000 1.000 0.986 0.840 0.95398954
5 Cereals_and_pasta 0.074 1.000 0.2642857 1.000 0.986 0.962 1.00000000
23 white_fish 0.205 1.000 0.4910714 1.000 0.986 0.986 1.00000000
3 Butter 0.212 1.000 0.4910714 1.000 0.986 0.986 1.00000000
22 Vegetables 0.216 1.000 0.4910714 1.000 0.986 0.986 1.00000000
18 skimmed_miTk 0.222 1.000 0.4910714 1.000 0.986 0.986 1.00000000
16 Red_meat 0.251 1.000 0.4910714 1.000 0.986 0.986 1.00000000
9 Fruit 0.269 1.000 0.4910714 1.000 0.986 0.986 1.00000000
7 Eggs 0.275 1.000 0.4910714 1.000 0.986 0.986 1.00000000
1 Blue_fish 0.340 1.000 0.5328125 1.000 0.986 0.986 1.00000000
10 Legumes 0.341 1.000 0.5328125 1.000 0.986 0.986 1.00000000
4 Carbohydrates 0.384 1.000 0.5647059 1.000 0.986 0.986 1.00000000
13 Potatoes 0.569 1.000 0.7815789 1.000 0.986 0.986 1.00000000
2 Bread 0.594 1.000 0.7815789 1.000 0.986 0.986 1.00000000
8 Fats 0.696 1.000 0.8700000 1.000 0.986 0.986 1.00000000
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19
6

Sweets 0.762
Dairy_products 0.940

17 semi-skimmed_milk 0.942

21
14

Total_meat 0.975
Processed_meat 0.986
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1.000 0.9071429 1.000
1.000 0.9860000 1.000
1.000 0.9860000 1.000
1.000 0.9860000 1.000
1.000 0.9860000 1.000

0.986
0.986
0.986
0.986
0.986

0.986 1.00000000
0.986 1.00000000
0.986 1.00000000
0.986 1.00000000
0.986 1.00000000

,_.:
o
—

Data$Raw.p

cbind(pata$Bonferroni,
Data$BH,
Data$HoIm,
Data$Hochberg,
Data$Hommel,
Data$BY)

X
Y

matplot(X, Y,
xTlab="Raw p-value",
ylab="Adjusted p-value",
type="1",
asp=1,
col=1:6,
Tty=1,
Twd=2)

Tegend('bottomright',
Tegend = c("Bonferroni", "BH", "Holm", "Hochberg", "Hommel", "BY"),
col = 1:6,
cex =1,
pch = 16)

abline(0, 1,
col=1,
Tty=2,
Twd=1)

0.8

Bonferroni

Holm
Hochberg
Hommel

. BY

[ | |

0.5 1.0

Adjusted p-value
0.4

Raw p-value
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Plot of adjusted p-values vs. raw p-values for a series of 25 p-values. The dashed line
represents a one-to-one line.

Multiple comparisons example with five p-values

B —— -
### Multiple comparisons example, hypothetical example

B —— e -
Input = (

"Factor Raw.p

A .001
B .01
C .025
D .05
E .1
)

Data = read.table(textConnection(Input),header=TRUE)

### Perform p-value adjustments and add to data frame

Data$Bonferroni =
p.adjust(bpata$raw.p,
method = "bonferroni™)

Data$BH =
signif(p.adjust(pata$raw.p,
method = "BH"),
4)

Data$HoIm =
p.adjust(pata$ Raw.p,
method = "holm")

Data$Hochberg =
p.adjust(pata$ Raw.p,
method = "hochberg")

Data$Hommel =
p.adjust(pata$ Raw.p,
method = "hommel™)
Data$BY =

signif(p.adjust(pata$ Raw.p,
method = "BY"),
4)

Data
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Factor Raw.p Bonferroni BH Holm Hochberg Hommel BY
1 A 0.001 0.005 0.00500 0.005 0.005 0.005 0.01142
2 B 0.010 0.050 0.02500 0.040 0.040 0.040 0.05708
3 C 0.025 0.125 0.04167 0.075 0.075 0.075 0.09514
4 D 0.050 0.250 0.06250 0.100 0.100 0.100 0.14270
5 E 0.100 0.500 0.10000 0.100 0.100 0.100 0.22830
Plot
X = Data$Raw.p
Y = cbind(pata$Bonferroni,
Data$BH,
Data$Holm,
Data$Hochberg,
Data$Hommel,
Data$BY)

matplot(X, Y,
xlab="Raw p-value",
ylab="Adjusted p-value",
type="1",
asp=1,
col=1:6,
Tty=1,
Twd=2)

Tegend('bottomright',
Tegend = c("Bonferroni", "BH", "Holm", "Hochberg", "Hommel", "BY"),
col 1:6,
cex 1,
pch 16)

abline(0, 1,
col=1,
Tty=2,
Twd=1)
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g < _
© o
T
o~ e Bonferroni
8 AN [
*g o * Holm
= i ~ | * Hochberg
< Hommel
o * BY
o

-0.4 -0.2 0.0 0.2 0.4

Raw p-value

Plot of adjusted p-values vs. raw p-values for a series of five p-values between 0 and
0.1. Note that Holm and Hochberg have the same values as Hommel, and so are
hidden by Hommel. The dashed line represents a one-to-one line.

# # #
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Miscellany

Chapters Not Covered in this Book

Meta-analysis

Using spreadsheets for statistics
Guide to fairly good graphs
Presenting data in tables
Getting started with SAS

Choosing a statistical test
See the Handbook for information on these topics.
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Other Analyses

Contrasts in Linear Models

Contrasts within linear models

One method to use single-degree-of-freedom contrasts within an anova is to use the split option
within the summary function for an aov analysis. There are limits to the number of degrees of
freedom that a factor can be split into for tests of contrasts.

A second option is to use the package multcomp, which allows for unlimited tests of single-
degree contrasts, with a p-value correction for multiple tests.

This hypothetical example could represent a pharmacological experiment with a factorial design
of two levels of a dose treatment crossed with two levels of a concentration treatment plus a

control treatment.

See the chapters on One-way Anova and Two-way Anova for general considerations on
conducting analysis of variance.

Tests of contrasts within aov

B —m -
### Tests of contrasts within aov, hypothetical example
B —m -
Input =
"Treatment Response

'Dl:C1’ 1.0

'Dl:C1’ 1.2

'Dl:C1’ 1.3

'Dl:C2' 2.1

'Dl:C2' 2.2

'Dl:C2' 2.3

'D2:C1' 1.4

'D2:C1’ 1.6

'D2:C1' 1.7

'D2:C2' 2.5

'D2:C2' 2.6

'D2:C2' 2.8

"Control' 1.0

"Control' 0.9

"Control' 0.8

Data = read.table(textConnection(Input),header=TRUE)
Data$Treatment = factor(Dpata$Treatment, Tevels=unique(Data$Treatment))
### Specify the order of factor levels. Otherwise R will alphabetize them.

Data
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boxpTot(Response ~ Treatment,

data = Data,
ylab="Response",
xlab="Treatment")

o —
A
@ —
w o —
& o
S —_—
e 0 | —
o | B
=] =
[ [ [ I |
D1:C1 D1:C2 D2:C1 D2:C2 Control
Treatment

Tevels(Data$Treatment)
### You need to Took

[1] "pl:c1"  "Dl:cC2"

### Define contrasts

DlvsD2 = c(l, 1,
ClvsC2 = c(1, -1,
InteractionDC = c(1, -1,

TreatsvscControl = c(1, 1,

at order of factor Tevels to determine the contrasts

"D2:C1" "D2:C2" "Control"
-1, -1, 0)
1, -1, 0)
-1, 1, 0
15 11 _4)

Matriz = cbind(blvsD2, ClvscC2,

InteractionD
contrasts(Data$Treatment) =

CList = Tlist("DlvsD2" 1,
"Clvsc2" = 2,
"InteractionDC
"TreatsvscContr

### Define model and displ
model = aov(Response ~ Trea

summary (model,
split=Tist(Treatmen

C, TreatsvscControl)

Matriz

n = 3’
ol" = 4)
ay summary

tment, data = Data)

t=CList))

Df Sum Sq Mean Sq F value Pr(>F)
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Treatment 4 6.189 1.547 85.963 1.06e-07 #***
Treatment: D1lvsD2 1 0.521 0.521 28.935 0.00031
Treatment: ClvsC2 1 3.307 3.307 183.750 9.21e-08 #*=*
Treatment: InteractionDC 1 0.001 0.001 0.046 0.83396
Treatment: TreatsvsControl 1 2.360 2.360 131.120 4.53e-07 #***

Residuals 10 0.180 0.018

# # #
Tests of contrasts with multcomp

BHH - -
### Tests of contrasts with multcomp, hypothetical example
BHH - -
Input =
"Treatment Response

'D1:C1' 1.0

'D1:C1' 1.2

'D1:C1' 1.3

'D1:C2' 2.1

'D1:C2' 2.2

'D1:C2' 2.3

'D2:C1' 1.4

'D2:C1' 1.6

'D2:C1' 1.7

'D2:C2' 2.5

'D2:C2' 2.6

'D2:C2' 2.8

"Control' 1.0

"Control' 0.9

"Control' 0.8

Data = read.table(textConnection(Input),header=TRUE)
Data$Treatment = factor(pata$Treatment, Tevels=unique(Data$Treatment))
### Specify the order of factor levels. Otherwise R will alphabetize them.
Data
boxpTot(Response ~ Treatment,
data = Data,

ylab="Response",
x1ab="Treatment")
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Response
1.0 1.5 2.0 25

[

— —_—
e

—

E——

[ [ [ I
D1:C1 D1:C2 D2:C1 D2:C2 Control

Treatment

Tevels(Data$Treatment)
### You need to Took at order of factor levels to determine the contrasts

[1] "pl:c1" "Dl:C2" "D2:Cl1" "D2:C2" "Control"

### Define Tinear model
model = Tm(Response ~ Treatment, data = Data)

Tibrary(car)
Anova(model, type="II")

summary (model)

### Define contrasts and produce results

Input =

"Contrast.Name D1C2 DI1C2 D2C1l D2C2 Control
D1lvsD2 1 1 -1 -1 0
ClvsC2 1 -1 1 -1 0
InteractionDC 1 -1 -1 1 0
Clvsc2forDlonly 1 -1 0 0 0
Clvsc2forb2only O 0 1 -1 0
Treatsvscontrol 1 1 1 1 -4
D1lvsC 1 0 0 0 -1
D2vsC 0 1 0 0 -1
D3vsC 0 0 1 0 -1
D4vsC 0 0 0 1 -1

Matriz = as.matrix(read.table(textConnection(Input),
header=TRUE,
row.names=1))

Matriz
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Tibrary(multcomp)
G = glht(model, Tinfct = mcp(Treatment = Matriz))
G$Tinfct
summary (G, test=adjusted("single-step"))
### Adjustment options: "none", "single-step", "Shaffer",

#i#t# "westfall", "free", "holm", "hochberg",
### "hommel", "bonferroni", "BH", "BY", "fdr"

Estimate Std. Error t value Pr(>|t])

DlvsD2 == -0.83333 0.15492 -5.379 0.00218 **
ClvsC2 == 0 -2.10000 0.15492 -13.555 < 0.001 **=
InteractionDC == 0 0.03333 0.15492 0.215 0.99938

Clvsc2forblonly == 0 -1.03333 0.10954 -9.433 < 0.001 ***
Clvsc2forD2only == 0 -1.06667 0.10954 -9.737 < 0.001 ***
TreatsvsControl == 0 3.96667 0.34641 11.451 < 0.001 #**=*
DlvsC == 0 0.26667 0.10954  2.434 0.17428

D2vsC == 0 1.30000 0.10954 11.867 < 0.001 ***
D3vsC == 0 0.66667 0.10954 6.086 < 0.001 ***
D4vsC == 0 1.73333 0.10954 15.823 < 0.001 ***

### with test=adjusted("none"), results will be the same as aov method.

# # #

Cate-Nelson Analysis

Cate-Nelson analysis is used to divide bivariate data into two groups: one where a change in the
x variable is likely to correspond to a change in the y variable, and the other group where a
change in x is unlikely to correspond to a change y. Traditionally this method was used for soil
test calibration. For example to determine if a certain level of soil test phosphorus would
indicate that adding phosphorus to the soil would likely cause an increase in crop yield or not.

The method can be used for any case in which bivariate data can be separated into two groups,
one with a large x variable is associated with a large y, and a small x associated with a small y. Or
vice-versa.

For a fuller description of Cate-Nelson analysis and examples in soil-test and other applications,
see Mangiafico (2013) and the references there.

Custom function to develop Cate-Nelson models
My cate.nelson function follows the method of Cate and Nelson (1971). A critical x value is
determined by iteratively breaking the data into two groups and comparing the explained sum of
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squares of the iterations. A critical y value is determined by using an iterative process which
minimizes the number of data point which fall into Quadrant I and III for data with a positive
trend.

Options in the cate.nelson function:

e plotit=TRUE (the default) produces a plot of the data, a plot of the sum of squares of the
iterations, a plot of the data points in error quadrants, and a final plot with critical x and
critical y drawn as lines on the plot.

e hollow=TRUE (the default) for the final plot, points in the error quadrants as open circles
e trend="negative"” (not the default) needs to be used if the trend of the data is negative.

e xthreshold and ythreshold determine how many options the function will return for
critical x and critical y. A value of 1 would return all possibilities. A value of 0.10 returns
values in the top 10% of the range of maximum sum of squares.

e clx and cly determine which of the listed critical x and critical y the function should use to
build the final model. A value of 1 selects the first displayed value, and a value of 2 selects
the second. This is useful when you have more than one critical x that maximizes or
nearly maximizes the sum of squares, or if you want to force the critical y value to be close
to some value such as 90% of maximum yield. Note that changing the clx value will also
change the list of critical y values that is displayed. In the second example I set clx=2 to
select a critical x that more evenly divides the errors across the quadrants.

Example of Cate-Nelson analysis

## Cate-Nelson analysis

## Data from Mangiafico, S.S., Newman, J.P., Mochizuki, M.J.,

## & zurawski, D. (2008). Adoption of sustainable practices

##  to protect and conserve water resources in container nurseries
## with greenhouse facilities. Acta horticulturae 797, 367-372.

size = ¢(68.55,6.45,6.98,1.05,4.44,0.46,4.02,1.21,4.03,
6.05,48.39,9.88,3.63,38.31,22.98,5.24,2.82,1.61,
76.61,4.64,0.28,0.37,0.81,1.41,0.81,2.02,20.16,
4.04,8.47,8.06,20.97,11.69,16.13,6.85,4.84,80.65,1.61,0.10)

proportion = ¢(0.850,0.729,0.737,0.752,0.639,0.579,0.594,0.534,
0.541,0.759,0.677,0.820,0.534,0.684,0.504,0.662,
0.624,0.647,0.609,0.647,0.632,0.632,0.459,0.684,
0.361,0.556,0.850,0.729,0.729,0.669,0.880,0.774,
0.729,0.774,0.662,0.737,0.586,0.316)

source("http://rcompanion.org/r_script/cate.nelson.r")

cate.nelson(x = size,
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y = proportion,

plotit=TRUE,

holTow=TRUE,

xTab="Nursery size in hectares",
ylab="Proportion of good practices adopted",
trend="positive",

clx=1,

cly=1,

xthresho1d=0.10,

ythreshold=0.15)

Critical x that maximize sum of squares:

Critical.x.value Sum.of.squares

1
2

4.035 0.2254775
4.740 0.2046979

Critical y that minimize errors:

Critical.y.value Q.i Q.ii Q.iii Q.iv Q.model Q.err

coNOUVI A WNRE

n

CLX

SS

CLy

Q
Q.model
p.model
Q.Error
p.Error
model
Fisher

0.6355 3 20 2 13 33 5
0.6430 3 19 3 13 32 6
0.6470 3 19 3 13 32 6
0.6545 2 18 4 14 32 6
0.6620 2 18 4 14 32 6
0.6015 6 21 1 10 31 7
0.6280 5 20 2 11 31 7
0.6320 5 20 2 11 31 7

Number of observations

Critical value of x

sum of squares for that critical value of x

Critical value of y

Number of observations which fall into quadrants 1, II, III, IV

Total observations which fall into the quadrants predicted by the model
Percent observations which fall into the quadrants predicted by the model
Observations which do not fall into the quadrants predicted by the model
Percent observations which do not fall into the quadrants predicted by the

p-value from Fisher exact test dividing data into these quadrants

Final result:

n

CLx SS CLY Q.I Q.II Q.III Q.IV Q.Model p.Model Q.Error

1 38 4.035 0.2254775 0.6355 3 20 2 13 33 0.8684211 5

p.Error Fisher.p.value

0.1315789

8.532968e-06
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Plots showing the results of Cate—Nelson analysis. In the final plot, the critical x value
is indicated with a vertical blue line, and the critical y value is indicated with a
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horizontal blue line. Points agreeing with the model are solid, while hollow points
indicate data not agreeing with model. (Data from Mangiafico, S.S., Newman, J.P.,
Mochizuki, M.J., & Zurawski, D. (2008). Adoption of sustainable practices to protect
and conserve water resources in container nurseries with greenhouse facilities. Acta
horticulturae 797, 367-372.)

# # #

Example of Cate-Nelson analysis with negative trend data

## Cate-Nelson analysis
## Hypothetical data

B mmm -
Input =
"oy y
5 55
7 110
6 120
5 130
7 120
10 55
12 60
11 110
15 50
21 55
22 60
20 70
24 55
")

Data = read.table(textConnection(Input),header=TRUE)
source("http://rcompanion.org/r_script/cate.nelson.r")

cate.nelson(x = Data$x,
y = Data$y,
plotit=TRUE,
holTow=TRUE,

xTlab="x",

y'I a.b=llyll s

trend="negative",

clx=2, # Normally leave as 1 unless you wish to
cly=1, # select a specific critical x value

xthreshol1d=0.10,
ythreshold=0.15)

Critical x that maximize sum of squares:

Critical.x.value Sum.of.squares
1 11.5 5608.974
2 8.5 5590.433
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Critical y that minimize errors:

Critical.y.value Q.i Q.ii Q.iii Q.iv Q.model Q.err

1 90 4 1 7 1 11 2

2 110 4 1 7 1 11 2

3 115 3 0 8 2 11 2

4 120 3 0 8 2 11 2

n = Number of observations

CLX = Critical value of x

SS = sum of squares for that critical value of x

CLy = Critical value of y

Q = Number of observations which fall into quadrants I, II, III, IV

Q.Model = Total observations which fall into the quadrants predicted by the model
p.Model = Percent observations which fall into the quadrants predicted by the model
Q.Error = Observations which do not fall into the quadrants predicted by the model
p.Error = Percent observations which do not fall into the quadrants predicted by the
model

Fisher = p-value from Fisher exact test dividing data into these quadrants

Final model:

n CLX SS CLY Q.I Q.II Q.III Q.IV Q.Model p.Model Q.Error
1 13 8.5 5608.974 90 4 1 7 1 11 0.8461538 2
p.Error Fisher.p.value
0.1538462 0.03185703
®
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Plot showing the final result of Cate—Nelson analysis, for data with a negative trend.
# # #
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Additional Helpful Tips

Reading SAS Datalines in R

Reading SAS datalines with DescTools
The ParseSASDatalines function in the DescTools package will read in data with simple SAS
DATALINES code. More complex INPUT schemes may not work.

B — -
### Reading SAS datalines, DescTools::ParseSASDatalines example
B — -
Input = "

DATA survey;

INPUT id sex $ age inc rl r2 r3 @a@;

DATALINES;

1 F 3517 722 17 ™M 5014 553 33 F 45 6 7 27

49 ™M 2414 757 65 F 52 9 477 81 ™M 4411 777

2 F 3417 653 18 M 4014 752 34 F 47 6 656
M 3517 575

50

Tibrary(DescTools)
Data = ParseSASDatalines(Input)

### You can omit the DATA statement, the @@, and the final semi-colon.
### The $ is required for factor variables.

Data

id sex age inc rl r2 r3
1 1 F 35 17 7 2 2
2 17 ™M 50 14 5 5 3
3 33 F 45 6 7 2 7
4 49 M 24 14 7 5 7
5 65 F 52 9 4 7 7
6 81 M 44 11 7 7 7
7 2 F 34 17 6 5 3
8 18 M 40 14 7 5 2
9 34 F 47 6 6 5 6
1050 ™M 35 17 5 7 5
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