
InVerS: An Incremental Verification System
with Circuit Similarity Metrics and Error Visualization
Kai-hui Chang, David A. Papa, Igor L. Markov and Valeria Bertacco

Department of EECS, University of Michigan at Ann Arbor
E-mail: {changkh, iamyou, imarkov, valeria}@eecs.umich.edu

Abstract
Dramatic increases in design complexity and advances in IC

manufacturing technology affect all aspects of circuit performance
and functional correctness. As interconnect increasingly domi-
nates delay and power at the latest technology nodes, much effort
is invested in physical synthesis optimizations, posing great chal-
lenges in validating the correctness of such optimizations. Com-
mon design methodology delays the verification of physical syn-
thesis transformations until the completion of the design phase.
However, this approach is not sustainable because the isolation
of potential errors becomes extremely challenging in current com-
plex design efforts. In addition, the lack of interoperability be-
tween verification and debugging tools greatly limits engineers’
productivity. Since the design’s functional correctness should not
be compromised, considerable resources are dedicated to check-
ing an ensuring correctness at the expense of improving other as-
pects of design quality. To address these challenges, we propose
a fast incremental verification system for physical synthesis op-
timizations, InVerS, which includes capabilities for error detec-
tion, diagnosis, and visualization. This system helps engineers to
discover errors earlier, simplifies error isolation and correction,
thus reducing verification effort and enabling more aggressive op-
timizations to improve performance.

1. Introduction
The growth in complexity of digital designs poses greater chal-

lenges in verifying the functional correctness of a circuit. As a re-
sult, digital systems are commonly released with latent bugs, and
the number of such bugs is growing larger for each new design, as
can be observed from publicly available errata documents by any
major semiconductor vendor. The verification problem is further
exacerbated by the growing dominance of interconnect in delay
and power of modern designs, which requires tremendous phys-
ical synthesis effort and even more powerful optimizations such
as retiming [9]. Traditional techniques address this problem by
checking the equivalence between the original design and the op-
timized version that has undergone physical optimizations. This
approach, however, only verifies the equivalence of two versions
of the design after a number, or possibly all, of the transforma-
tions and optimizations have been completed. Unfortunately, such
an approach is not sustainable in the long term because it makes
the identification, isolation, and correction of errors introduced by
such transformations extremely difficult and time-consuming. On
the other hand, performing traditional equivalence checking after
each circuit transformation is too demanding. Since functional
correctness is the most important aspect of high-quality designs,
large efforts are currently devoted to verification and debugging,
expending resources that could have otherwise been dedicated to

improve other aspects of performance. To this end, verification
has become the bottleneck that limits achievable optimizations and
the features that can be included in a design [4], slowing down the
evolution of the overall quality of electronic designs.

Given the current practice, it is crucial to address the verifica-
tion bottleneck to improve design quality. We advocate not only
investing in the performance of verification algorithms and tools,
but also revising the design methodology to ease the burden on
verification effort. To this end, we propose an Incremental Ver-
ification System (InVerS) that signals design errors earlier than
existing methodologies. The high performance of our equivalence
verification solution allows quick evaluation of the correctness of
each design transformation. When an error is detected, InVerS
provides a counterexample so that the designer can analyze the
error directly. Our technique also suggests the most probable lo-
cation and source of the error, pinpointing, in most cases, the spe-
cific transformation responsible for it. This information greatly
facilitates error diagnosis. To further improve designers’ produc-
tivity, InVerS provides an intuitive Graphical User Interface (GUI).
Our implementation is built using the OpenAccess database [13]
and uses the OpenAccess Gear (OAGear) programmer’s toolkit,
so that we can seamlessly integrate design, verification and debug-
ging activities into the same framework. This framework is highly
flexible and can easily be enhanced in the future.

The contributions of this work include: (1) InVerS, an incre-
mental equivalence verification methodology that enhances the ac-
curacy of error detection; (2) an innovative and scalable metric,
called the similarity factor, that quickly pinpoints potential spots
in a design that could be hiding bugs; (3) a fast simulator based
on OpenAccess that is 100 times faster on large designs than pre-
vious implementations; and (4) a GUI for InVerS with data visu-
alization that improves the usability of our tools. Our techniques
can greatly improve design quality because: (1) the resources and
effort saved in verifying the correctness of physical optimizations
can be redirected to improve other aspects of the design, such as re-
liability and performance; and (2) more aggressive changes to the
circuit can be applied, such as retiming optimizations and design-
for-verification (DFV) techniques.

The rest of this paper is organized as follows. In Section 2 we
review previous work and background material. We describe our
incremental verification system in detail in Section 3. In Section 4
we present our productivity enhancing GUI and error visualization
tools. Experimental results are shown in Section 5, and Section 6
concludes this paper.

2. Background
InVerS addresses the verification problem created by logic changes

to the netlist. To understand the problem better, we describe two
commonly used optimization techniques that make changes to the



netlist, physical synthesis and retiming. We then briefly explain
the challenges imposed by these optimization techniques to veri-
fication. Next, we introduce OpenAccess and OAGear, the infras-
tructure used to develop our tool. Finally, the error model used in
our experiments is described.

2.1. Physical Synthesis Flows
Post-placement optimizations have been studied and used ex-

tensively to improve circuit parameters, and such techniques are
often called physical synthesis. In addition, it is sometimes neces-
sary to change the layout manually in order to fix bugs or optimize
specific objectives; this process is called Engineering Change Or-
der (ECO). Physical synthesis is commonly performed using the
following flow: (1) perform accurate analysis of the optimization
objective, (2) select gates to form a region for optimization, (3)
resynthesize the region to optimize the objective, and (4) perform
legalization to repair the layout. The work by Lu et al. [8] and
Changfan et al. [3] are all based on this flow.

Since bugs may be introduced by the circuit modifications, ver-
ification must be performed to ensure the correctness of the circuit.
However, verification is typically slow; therefore, it is often per-
formed after hundreds of optimizations. As a result, it is difficult
to identify the circuit modification that introduced the bug. In ad-
dition, debugging the circuit at this design stage is often difficult
because engineers are unfamiliar with the automatically generated
netlist. As we will show later, InVerS addresses these problems
by providing a fast incremental verification technique and an inte-
grated error visualization tool.

2.2. Retiming
Retiming is a sequential logic optimization technique that repo-

sitions the registers in a circuit while leaving the combinational
cells unchanged [9]. It is often used to minimize the number of
registers in a design or to reduce a circuit’s delay. For example,
the circuit in Figure 1(b) is a retimed version of the circuit in Fig-
ure 1(a) that optimizes delay. Although retiming is a powerful
technique, ensuring its correctness imposes a serious problem on
verification because sequential equivalence checking is orders of
magnitude more difficult than combinational equivalence check-
ing [6]. As a result, the runtime of sequential verification is of-
ten much longer than that of combinational verification, if it ever
finishes. As we will show in Section 3.4, our technique can be
extended to sequential verification for retiming.

2.3. OpenAccess and OAGear
OpenAccess is a VLSI design data model with a standardized

database representation and a programming API. This common
design model with persistent storage provides a convenient plat-
form on which to build incremental algorithms, so we chose to
leverage the power of the OpenAccess database in our work. OAGear
has an existing GUI based on the OpenAccess data model, and it
provides additional infrastructure that we utilize in building our
new user interface and visualization tools.

2.4. Error Model
When evaluating our tool in Section 5, we need to inject errors

into existing circuits. In order to inject more realistic errors, we
adopted a frequently used error model based on Abadir’s work
[1]. The model consists of the following errors: (1) “wrong gate”
replaces one gate by another one with the same number of inputs;
(2) “extra/missing wire” use more or fewer inputs for a gate; (3)

“wrong input” connects an input of a gate to a wrong driver; and
(4) “extra/missing gate” incorrectly inserted or removed a gate. To
inject an error, we first randomly select one gate in the circuit.
Next, we choose an error type randomly and then change the gate
or its connections accordingly.

3. Incremental Verification
We provide a robust incremental verification package that is

composed of a logic simulator, a SAT-based formal equivalence-
checker, routines to compute our new similarity metric between a
circuit and its revision, and new visualization tools to aid users of
our proposed incremental verification methodology. Our equiva-
lence checker first uses random simulation to quickly detect sig-
nals that are not equivalent. For the signals that cannot be distin-
guished by random simulation, SAT-based equivalence checking
is used, and counterexamples found during SAT-solving are reused
as additional simulation patterns to distinguish more signals [10].
This implementation and its interface is used to support incremen-
tal verification, as explained below.

3.1. Fast Simulation Algorithms
Our simulator first extracts logic information, an And-Inverter-

Graph (AIG), for each cell used in the design from OAGear’s
Func(tional) package. Next, we simulate all possible input combi-
nations of each cell to construct its truth-table. Using such look-up
tables during simulation is far more efficient than traversing AIGs
of individual cells. To further improve speed, our simulator em-
ploys bit-parallel simulation (32 or 64 patterns simulated at once
depending on the definition of SimulationVector) and treats
most common gate types as special cases. In order to efficiently
simulate patterns with different event activity, we implemented an
oblivious algorithm as well as an event-driven algorithm [7]. We
observe that our simulation algorithm runs 100 times faster than
the existing simulator in OAGear on large designs.

3.2. SAT-based Equivalence Checking
Our equivalence checker first generates the CNF of every cell in

the library. This is accomplished by traversing the AIG of each cell
and converting the ANDs and INVERTERs to their corresponding
circuit-CNFs. Next, we build a miter for the signals to be checked
for equivalence and convert it to CNF. A miter is a circuit consist-
ing of an XOR gate combining the signals and their fanin cones
with depth such that the inputs to each cone are the same. We set
the output of the miter to 1 and use MiniSAT [5] to determine sat-
isfiability. If the CNF is not satisfiable, the signals are equivalent,
alternatively, a counterexample is returned by the SAT solver. We
employ a simple interface to a SAT-solver so that MiniSAT can be
easily replaced and CNF conversion can be improved. The user
can adjust the number of initial patterns used by random simula-
tion. Setting that number to 0 turns off random simulation and
resorts to SAT-based equivalence checking.

3.3. New Metric: Similarity Factor
We define an estimate of the similarity between two netlists,

ckt1 and ckt2, that utilizes fast simulation, called the similarity
factor. This metric is based on simulation signatures of individual
signals, i.e. the k-bit sequences holding signal values computed
by simulation on each of k input patterns (e.g., k=1024). Let N be
the total number of signals (wires) in both circuits. Out of those N
signals, we distinguish M matching signals — a signal is consid-
ered matching if and only if both circuits include signals with an



identical signature. The similarity factor between ckt1 and ckt2 is
then M/N . In other words:

Similarity factor =
number of matching signals

total number of signals
(1)

We also define the difference factor as (1 − similarity factor).

EXAMPLE 1. Suppose that netlist ckt1 has 3 signals, whose
signatures are 1, 2, and 3; netlist ckt2 has 3 signals, whose signa-
tures are 1, 2, and 4. Since the total number of signatures is 6 and
the number of matching signals is 4, the similarity factor is 4/6 =
0.67 and the difference factor is 1 - 4/6 = 0.33.

Intuitively, the similarity factor of two identical circuits should
be 1. If a circuit is changed slightly but is still mostly equivalent
to the original version, then its similarity factor should drop only
slightly. However, if the change greatly affects the circuit’s func-
tion, the similarity factor can drop significantly, depending on the
number of signals affected by the change. The new similarity met-
ric relies on simulation but not on SAT solvers, allowing fast com-
putation. However, two equivalent circuits may be dissimilar, e.g.,
a Carry-Look-Ahead adder and a Kogge-Stone adder. Therefore,
the similarity factor should be used in incremental verification and
cannot replace traditional verification techniques.

The similarity factor can also be used to support error diagno-
sis for a given bug trace. Since the effect of a bug is to change
the signatures of all downstream signals, the signatures will not
match those in the original circuit. Using hash-based signature-
matching, we can quickly identify such downstream logic and po-
tentially map it to Verilog code. Moreover, it is possible to identify
gates whose inputs have matching signatures while outputs do not.
The user interface of our system highlights such gates as potential
error locations, which is described in Section 4.

3.4. Sequential Verification for Retiming
A signature represents a fraction of a signal’s truth table, which

in turn describes the information flow within a circuit. While re-
timing may change the clock cycle that certain signatures are gen-
erated, because combinational cells are preserved, it should not
change which signatures are generated. Figure 1 shows a retiming
example adopted from Shenoy’s work [9], where (a) is the original
circuit and (b) is the retimed circuit. A comparison of signatures
between the circuits shows that the signatures in (a) also appear
in (b), although the cycles in which they appear may be different.
For example, the signatures of wire w (bold-faced) in the retimed
circuit appear one cycle earlier than those in the original circuit
because the registers were moved later in the circuit. Otherwise,
the signatures of (a) and (b) are identical.

Based on this observation, we extend our similarity factor to se-
quential verification as follows. Given circuit ckt1 and its retimed
revision ckt2, we perform sequential simulation for i cycles using
k random input patterns at each cycle. Let n be the total number
of signals used by the two circuits, then the total number of signa-
tures of the two circuits, denoted as N , will be n× i. Out of those
N signatures, we distinguish M matching signatures, which are
signatures that exist in both ckt1 and ckt2, and define the similar-
ity factor between ckt1 and ckt2 as M/N . Similar to verification
of combinational circuits, a sudden drop in the similarity factor
after retiming would indicate potential bugs.

(a)

(b)
Figure 1. A retiming example: (a) is the original circuit, and (b)
is its retimed version. The tables above the wires show their
signatures, where the nth row is for the nth cycle. Four traces
are used to generate the signatures, producing four bits per
signature. Registers are represented by black rectangles, and
their initial states are 0. As wire w shows, retiming may change
the cycle that signatures appear, but it does not change the
signatures (signatures shown in boldface are identical).

3.5. Overall Verification Methodology
As mentioned in Section 1, traditional verification is typically

performed after a batch of circuit modifications because it is very
demanding and time consuming. As a result, once a bug is found,
it is often difficult to isolate the change that introduces the bug
because hundreds or thousands of changes have been made. Sim-
ilarity factor addresses this problem by pointing out the changes
that might have corrupted the circuit. As described in previous
subsections, a change that greatly affects the circuit’s function will
probably cause a sudden drop in the similarity factor. By monitor-
ing the change in similarity factor after every circuit modification,
engineers will be able to know when a bug might have been intro-
duced and traditional verification should be performed.

In InVerS, we apply incremental verification as follows:
1. After each change to the circuit, the similarity factor be-

tween the new and the original circuit is calculated. Run-
ning average and standard deviation of the past 30 similarity
factors are used to determine whether the current similarity
factor has dropped significantly. Empirically, we found that
if the current similarity factor drops below the average by
more than two standard deviations, then it is likely that the
change introduced a bug.

2. When similarity factor indicates a potential problem, tradi-
tional verification should be performed to verify the correct-
ness of the executed circuit modification.

3. If verification fails, our error visualization tools can be used
to debug the errors by highlighting the gates producing er-
roneous signals.

As Section 5 shows, the similarity factor has high accuracy
for practical designs and allows our verification methodology to
achieve significant speed-up over traditional verification techniques.



4. Efficient User Interface
The usability of EDA tools affects the productivity of VLSI

verification engineers. To improve productivity, we developed a
novel user interface, as well as several visualization tools, that im-
prove the usability of our verification methodology.

InVerS adds several new use-cases to the OAGear GUI – Bazaar
[13]. One simple yet powerful use-case is to run simulation and
display the results using an efficient simulation algorithm devel-
oped on our own. Simulation signatures are subsequently used
to filter potentially equivalent signals. Any signals that cannot be
differentiated by simulation signatures alone will be checked for
equivalence using SAT-based exhaustive techniques. Performing
equivalence checking and displaying counter examples upon fail-
ure is another use-case. Finally, if transforming a circuit produces
a logically different circuit, the gates that create this difference can
be highlighted on a layout or schematic to graphically display the
equivalence data.

(a) (b)
Figure 2. Our similarity layout viewer for design SASC with
bug-related data shown in red (darker color): (a) one bug in-
jected; highlighted gates drive unmatched signals; (b) 5 un-
related bugs injected; highlighted gates drive unmatched sig-
nals, but all of their inputs are matched; 4 bugs are identified,
and one is masked.

4.1. Error Visualization
The computation of similarity factor works by matching sig-

nals from two revisions of a design. Naturally, this process also
identifies those nets for which there are no matches in the previous
design version. Those nets are of interest to the designer because
they are responsible for the change in circuit behavior. One way
to visually represent the data of nets that match versus those do
not match is to draw the layout of gates driving those nets using
different colors. Similarly, the schematic can be displayed using
different colors for gates driving non-matching nets than for those
driving matching ones. Both of these techniques show the designer
a large amount of data in a familiar form with an instant recogni-
tion of which gates are different, as the similarity layout view in
Figure 2(a) shows.

Another way to quickly ascertain what insights the similarity
data contains is to highlight those gates whose inputs match, but
whose outputs do not match. These gates very likely correspond
to a bug, as is shown in Figure 2(b). However, fixing these bugs
may unmask other bugs, which is illustrated by the fact that we
found only 4 of the 5 injected bugs in this example. Looking at
these two types of bug visualizations will allow the designer to
more efficiently reason about circuits with errors, and ideally, to
quickly locate and resolve errors and what caused them.

Figure 3. Design of plug-in interface incorporated into Bazaar.

4.2. Software Design
To minimize the impact of integrating our tools into Bazaar

and improve their usability, we created a plug-in for InVerS that
can be loaded optionally by the user at runtime. Figure 3 shows
the overall design of Bazaar with its new plug-in interface shaded.

Bazaar adheres to the Model-View-Controller design pattern
[2], where an integrated circuit is represented in an underlying data
model (OpenAccess) and can be viewed and modified using a GUI
(Bazaar). To facilitate dynamic loading of plug-ins, we added two
additional components to the design above, a plug-in API object
(piAPI) and a loader object.

When the user loads a plug-in into Bazaar, the loader creates
a piAPI object and supplies it with a pointer to Bazaar. A user-
provided function MyPlugIn::load(auto ptr<piAPI>) is
then called by the loader. This function takes possession of the pi-
API object and creates menus, toolbars, windows, and commands
in Bazaar. Thus, we decouple Bazaar from plug-ins since Bazaar
cannot access the piAPI object, and the plug-in can only access
Bazaar through the provided API. This allows Bazaar to safely
load various configurations of plug-ins on demand.

4.3. Software Engineering Details
Our simulator and equivalence checker are both implemented

natively in OpenAccess and follow the OAGear coding standards.
Our new software includes documentation and is supplied with re-
gression tests. Additionally, we provide a variety of convenient
ways to use these tools including standalone binaries, point-and-
click use-cases in Bazaar, and a library API. To encourage adop-
tion of our new tools, their interfaces are designed to be compati-
ble with the existing versions. Our package has some limitations,
specifically: (1) it only supports the datamodel of OA’s block do-
main as opposed to the module or occurrence domains, and (2) the
netlist must be mapped to a cell library.

5. Experimental Results
We implemented InVerS using OAGear 0.96 and OpenAccess

2.2. Our testcases are selected from IWLS’05 benchmarks [12]
based on designs from OpenCores suites, whose characteristics
are summarized in Table 1. In the table, the average level of logic
is calculated by averaging the logic level of 30 randomly selected
gates. The number of levels of logic can be used as an indication of
the circuit’s complexity. All our experiments were conducted on
an AMD Opteron 880 Linux workstation. The resynthesis package
used in our experiments is ABC from UC Berkeley [11], which is
based on AIGs. In this section, we first evaluate the accuracy of
the similarity factor, and then we investigate the impact of cell
count and level of logic on the similarity factor. The second exper-
iment evaluates the effectiveness and efficiency of our incremental
verification methodology.
Evaluation of the similarity factor: in our first experiment, we
perform two types of circuit modifications to evaluate the effec-



Benchmark Similarity factor (%)
One Error injected Resynthesized d1 d2

Meane Mine Maxe SDe Meanr Minr Maxr SDr

USB PHY 98.897 91.897 99.822 1.734 99.849 99.019 100.000 0.231 0.969 4.128
SASC 97.995 90.291 99.912 2.941 99.765 99.119 100.000 0.234 1.115 7.567
I2C 99.695 98.583 100.000 0.339 99.840 99.486 100.000 0.172 0.567 0.843
SPI 99.692 96.430 99.985 0.726 99.906 99.604 100.000 0.097 0.518 2.191
TV80 99.432 94.978 100.000 1.077 99.956 99.791 100.000 0.050 0.930 10.425
MEM CTRL 99.850 97.699 100.000 0.438 99.984 99.857 100.000 0.027 0.575 4.897
PCI BRIDGE32 99.903 97.649 99.997 0.426 99.978 99.941 100.000 0.019 0.338 3.878
AES CORE 99.657 98.086 99.988 0.470 99.990 99.950 100.000 0.015 1.372 21.797
WB CONMAX 99.920 99.216 99.998 0.180 99.984 99.960 100.000 0.012 0.671 5.184
DES PERF 99.942 99.734 100.000 0.072 99.997 99.993 100.000 0.002 1.481 23.969

Table 2. Statistics of similarity factors for different types of circuit modifications. Thirty tests were performed in this experiment,
whose means, minimal values (Min), maximum values (Max), and standard deviations (SD) are shown. The last two columns show
the standardized differences in the means: d1 is calculated using the average of both SDe and SDr , while d2 uses only SDr .

Benchmark Cell Ave. Lev. Function
count of logic

USB PHY 546 4.7 USB 1.1 PHY
SASC 549 3.7 Simple Asynchronous Serial

Controller
I2C 1142 5.5 I2C Master Controller
SPI 3227 15.9 SPI IP
TV80 7161 18.7 8-Bit Microprocessor
MEM CTRL 11440 10.1 WISHBONE Memory

Controller
PCI BRIDGE32 16816 9.4 PCI bridge
AES CORE 20795 11.0 AES Cipher
WB CONMAX 29034 8.9 WISHBONE Conmax IP

Core
DES PERF 98341 13.9 DES Cipher

Table 1. Benchmark characteristics.

tiveness of the similarity factor. In the first type, we randomly
inject an error into the circuit using the technique described in
Section 2.4. This mimics the situation where a bug has been intro-
duced. In the second type, we extract a subcircuit from the bench-
mark, which is composed of 2-20 gates, and perform resynthesis
of the subcircuit using ABC with the “resyn” command [11]. This
is similar to the physical synthesis or ECO flow described in Sec-
tion 2.1, where gates in a small region of the circuit are changed.
We then calculate the similarity factor after each circuit modifica-
tion for both types of circuit modifications and compare their dif-
ference. Thirty tests were performed in this experiment, and the
results are summarized in Table 2. From the results, we observe
that both types of circuit modifications lead to decreases in simi-
larity factor. However, the decrease is much more significant when
an error is injected. As d1 shows, the standardized differences in
the means of most benchmarks are larger than 0.5, indicating that
the differences are statistically significant. Since resynthesis tests
represent the norm and error-injection tests represent anomalies,
we also calculate d2 using only SDr . As d2 shows, the mean
similarity factor drops more than two standard deviations when an
error is injected for most benchmarks. This result shows that the
similarity factor is effective in predicting whether a bug has been
introduced by the circuit modification. Nonetheless, in all bench-
marks, the maximum similarity factor for error-injection tests is
larger than the minimum similarity factor for resynthesis tests,
suggesting that the similarity factor cannot replace traditional ver-
ification and should be used as an auxiliary technique.
The impact of cell count on the similarity factor: in order to
study other aspects that may affect the similarity factor, we further
analyze our results by plotting the factors against the cell counts

of the benchmarks. To make the figure clearer, we plot the differ-
ence factor instead of the similarity factor. We notice that by con-
struction, the difference factor tends to reduce with the increase in
design size, which makes the comparison among different bench-
marks difficult. In order to compensate this effect, we assume that
the bug density is 1 bug per 1,000 gates and adjust our numbers
accordingly. The plot is shown in Figure 4, where the triangles
represent data points from error-injection tests, and the squares
represent resynthesis tests. The linear regression lines of two data
sets are also shown. From the figure, we observe that the differ-
ence factor tends to increase with the cell count for error-injection
tests. The increase for resynthesis tests, however, is insignificant.
As a result, the difference factor of error-injected circuits (trian-
gle data points) will grow faster than that of resynthesized circuits
(square data points) when cell count increases, creating larger dis-
crepancy between them. This result shows that the similarity fac-
tor will drop more significantly for larger designs, making it more
accurate when applied practical designs, which often have orders
of magnitude more objects than benchmarks used in our tests.
The impact of level of logic on the similarity factor: here we
perform similar analysis using the number of levels of logic as
the independent variable. The slopes of the linear regression lines
for the error-injection tests and the resynthesis tests are 0.236 and
0.012, respectively. The difference in slopes shows that the dif-
ference factor grows faster when the number of levels of logic in-
creases, indicating that the similarity factor will be more effective
when designs become more complicated. This behavior is prefer-
able because complicated designs are often more difficult to verify.

Figure 4. The relationship between cell count and the differ-
ence factor. The linear regression lines of the datapoints are
also shown.

To study the impact of the number of levels of logic on the dif-
ference factor within a benchmark, we plotted the difference factor



against the number of levels of logic using benchmark des perf in
Figure 5. The logarithmic regression line for the error-injection
tests are also shown. As the figure suggests, the difference factor
decreases with the increase in the number of levels of logic. The
reason is that gates with smaller numbers of levels of logic have
larger downstream logic, therefore larger numbers of signatures
will be affected. As a result, the difference factor will be larger.
That the variance explained is large (0.7841) suggests that this re-
lation is strong. However, some benchmarks do not exhibit this
trend. For example, the variance explained for benchmark TV18
is only 0.1438. For benchmarks that exhibit this trend, the similar-
ity factor provides a good predication of the location of the bug: a
larger drop in the similarity factor indicates that the bug is closer
to primary inputs.

Figure 5. The relationship between the number of levels of logic
and the difference factor in benchmark DES PERF. The x-axis
is the level of logic that the circuit is modified. The logarithmic
regression line for the error-injection tests is also shown.

Evaluation of the incremental verification methodology: our
second experiment evaluates the effectiveness of our incremental
verification methodology described in Section 3.5. In this experi-
ment, we assume that there is 1 bug per 100 circuit modifications,
and then we calculate the accuracy of our methodology. We also
report the runtime for calculating the similarity factor and the run-
time for equivalence checking of each benchmark. Since most
circuit modifications do not introduce bugs, we report the run-
time when equivalence is maintained. The results are summarized
in Table 3. From the results, we observe that our methodology
has high accuracy for most benchmarks. In addition, the results
show that calculating the similarity factor is significantly faster
than performing equivalence checking. Take the largest bench-
mark (DES PERF) for example, calculating the similarity factor
takes less than 1 second, while performing equivalence checking
takes about 78 minutes. Due to the high accuracy of the similar-
ity factor, our incremental verification technique identifies more
than 99% of errors, rendering equivalence checking unnecessary
in those cases and providing a more than 100X speed-up.

6. Conclusions
In this work we developed a novel incremental equivalence ver-

ification system, InVerS, with a particular focus on improving de-
sign quality and engineer’s productivity. The high performance
of InVerS allows designers to invoke it frequently, after each cir-
cuit transformation, and thereby detect errors sooner, when these
errors can be more easily pinpointed and resolved. The scalabil-
ity of InVerS stems from the use of a novel fast simulator, which
can efficiently calculate a “similarity factor” metric to spot po-
tential differences between two versions of a design. The areas

Benchmark Cell Accuracy Runtime(s)
count EC SF

USB PHY 546 92.70% 0.19 <0.01
SASC 549 89.47% 0.29 <0.01
I2C 1142 95.87% 0.54 <0.01
SPI 3227 96.20% 6.90 <0.01
TV80 7161 96.27% 276.87 0.01
MEM CTRL 11440 99.20% 56.85 0.03
PCI BRIDGE32 16816 99.17% 518.87 0.04
AES CORE 20795 99.33% 163.88 0.04
WB CONMAX 29034 92.57% 951.01 0.06
DES PERF 98341 99.73% 4721.77 0.19

Table 3. The accuracy of our incremental verification method-
ology. 1 bug per 100 circuit modifications is assumed in this
experiment. Runtime for similarity-factor calculation (SF) and
equivalence checking (EC) are also shown.

where we detect a low similarity are spots potentially hiding func-
tional bugs that can be subjected to more expensive formal tech-
niques or visually inspected. Therefore, we provide a user inter-
face to improve the usability of our methodology and support the
designer in the debugging task. Part of this user interface is our
error visualization tool that graphically reveals the difference be-
tween two circuits, allowing the designer to pinpoint the root cause
of the bugs more easily. The experimental results show that InVerS
achieves a hundred-fold runtime speed-up on large designs com-
pared to traditional techniques for similar verification goals. Our
methodology and algorithms promise to decrease the number of
latent bugs released in future digital designs and to facilitate more
aggressive performance optimizations, thus improving the quality
of electronic design in several categories.

7. References
[1] M. S. Abadir, J. Ferguson and T. E. Kirkland, “Logic Verification

via Test Generation”, IEEE TCAD, pp. 138-148, Jan. 1988.
[2] S. Burbeck, “Applications Programming in Smalltalk-80(TM): How

to use Model-View-Controller”,
http://st-www.cs.uiuc.edu/users/smarch/
st-docs/mvc.html

[3] C. Changfan, Y. C. Hsu and F. S. Tsai, “Timing Optimization on
Routed Designs with Incremental Placement and Routing
Characterization”, IEEE Trans. on CAD, Feb. 2000, pp. 188-196.

[4] I. Chayut, “Next-Generation Multimedia Designs: Verification
Needs,” DAC’06, Section 23.2,
http://www.dac.com/43rd/43talkindex.html

[5] N. Eén and N. Sörensson, “An Extensible SAT-solver”, Theory and
Applications of Satisfiability Testing, SAT, 2003, pp. 502-518.

[6] J.-H. R. Jiang and R. K. Brayton, “On the Verification of Sequential
Equivalence”, IEEE Transactions on Computer-Aided Design, Jun.
2003, pp. 686-697.

[7] D. M. Lewis, “A Hierarchical Compiled-Code Event-Driven Logic
Simulator”, IEEE Transactions on Computer-Aided Design, Jul.
1987, pp.601-617.

[8] A. Lu, H. Eisenmann, G. Stenz and F. M. Johannes, “Combining
Technology Mapping with Post-Placement Resynthesis for
Performance Optimization”, ICCD’98, pp. 616-621.

[9] N. Shenoy and R. Rudell, “Efficient Implementation of Retiming”,
ICCAD’94, pp. 226-233.

[10] J. Zhang, S. Sinha, A. Mishchenko, R. Brayton, and M.
Chrzanowska-Jeske, “Simulation and Satisfiability in Logic
Synthesis”, IWLS 2005, pp. 161-168.

[11] Berkeley Logic Synthesis and Verification Group, ABC: A System
for Sequential Synthesis and Verification, Release 51205.
http://www-cad.eecs.berkeley.edu/˜alanmi/abc/

[12] http://iwls.org/iwls2005/benchmarks.html
[13] http://www.si2.org/


