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Abstract—
This paper presents Scribe, a scalable application-level multicast infras-

tructure. Scribe supports large numbers of groups, with a potentially large
number of members per group. Scribe is built on top of Pastry, a generic
peer-to-peer object location and routing substrate overlayed on the Inter-
net, and leverages Pastry’s reliability, self-organization, and locality prop-
erties. Pastry is used to create and manage groups and to build efficient
multicast trees for the dissemination of messages to each group. Scribe
provides best-effort reliability guarantees, and we outline how an applica-
tion can extend Scribe to provide stronger reliability. Simulation results,
based on a realistic network topology model, show that Scribe scales across
a wide range of groups and group sizes. Also, it balances the load on the
nodes while achieving acceptable delay and link stress when compared to
IP multicast.

Keywords— group communication, application-level multicast, peer-to-
peer.

I. INTRODUCTION

Network-level IP multicast was proposed over a decade
ago [1], [2], [3]. Subsequently, multicast protocols such as SRM
(Scalable Reliable Multicast Protocol) [4] and RMTP (Reliable
Message Transport Protocol) [5] have added reliability. How-
ever, the use of multicast in applications has been limited be-
cause of the lack of wide scale deployment and the issue of how
to track group membership.

As a result, application-level multicast has gained in popu-
larity. Algorithms and systems for scalable group management
and scalable, reliable propagation of messages are still active
research areas [6], [7], [8], [9], [10], [11]. For such systems,
the challenge remains to build an infrastructure that can scale
to, and tolerate the failure modes of, the general Internet, while
achieving low delay and effective use of network resources.

Recent work on peer-to-peer overlay networks offers a scal-
able, self-organizing, fault-tolerant substrate for decentralized
distributed applications [12], [13], [14], [15]. In this pa-
per we present Scribe, a large-scale, decentralized application-
level multicast infrastructure built upon Pastry, a scalable, self-
organizing peer-to-peer location and routing substrate with good
locality properties [12]. Scribe provides efficient application-
level multicast and is capable of scaling to a large number of
groups, of multicast sources, and of members per group.

Scribe and Pastry adopt a fully decentralized peer-to-peer
model, where each participating node has equal responsibili-
ties. Scribe builds a multicast tree, formed by joining the Pastry
routes from each group member to a rendez-vous point associ-
ated with a group. Membership maintenance and message dis-
semination in Scribe leverage the robustness, self-organization,
locality and reliability properties of Pastry.
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The rest of the paper is organized as follows. Section II gives
an overview of the Pastry routing and object location infrastruc-
ture. Section III describes the basic design of Scribe. We present
performance results in Section IV and discuss related work in
Section V.

II. PASTRY

In this section we briefly sketch Pastry [12], a peer-to-peer lo-
cation and routing substrate upon which Scribe was built. Pastry
forms a robust, self-organizing overlay network in the Internet.
Any Internet-connected host that runs the Pastry software and
has proper credentials can participate in the overlay network.

Each Pastry node has a unique, 128-bit nodeId. The set of
existing nodeIds is uniformly distributed; this can be achieved,
for instance, by basing the nodeId on a secure hash of the node’s
public key or IP address. Given a message and a key, Pastry reli-
ably routes the message to the Pastry node with the nodeId that
is numerically closest to the key, among all live Pastry nodes.
Assuming a Pastry network consisting of

�
nodes, Pastry can

route to any node in less than �������	��
 �
�
steps on average ( � is

a configuration parameter with typical value 4). With concur-
rent node failures, eventual delivery is guaranteed unless ����� or
more nodes with adjacent nodeIds fail simultaneously ( � is an
even integer parameter with typical value ��� ).

The tables required in each Pastry node have only �������������
������� ��
 �
�"! � entries, where each entry maps a nodeId to the
associated node’s IP address. Moreover, after a node failure or
the arrival of a new node, the invariants in all affected routing
tables can be restored by exchanging #$������� � 
 � � messages. In
the following, we briefly sketch the Pastry routing scheme. A
full description and evaluation of Pastry can be found in [12],
[16].

For the purposes of routing, nodeIds and keys are thought of
as a sequence of digits with base �	� . A node’s routing table is
organized into �������	��
 �
�

rows with � �%�&� entries each (see Fig-
ure 1). The � � �
� entries in row ' of the routing table each refer
to a node whose nodeId matches the present node’s nodeId in the
first ' digits, but whose ' ! � th digit has one of the ���(�)� pos-
sible values other than the ' ! � th digit in the present node’s id.
The uniform distribution of nodeIds ensures an even population
of the nodeId space; thus, only ������� � 
 �
�

levels are populated in
the routing table. Each entry in the routing table refers to one
of potentially many nodes whose nodeId have the appropriate
prefix. Among such nodes, the one closest to the present node
(according to a scalar proximity metric, such as the round trip
time) is chosen.

In addition to the routing table, each node maintains IP ad-
dresses for the nodes in its leaf set, i.e., the set of nodes with
the ����� numerically closest larger nodeIds, and the ����� nodes
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Fig. 1. Routing table of a Pastry node with nodeId���������
, �
	�� . Digits are in base 16,

�
represents an

arbitrary suffix. The IP address associated with each en-
try is not shown.

d46a1c

Route(d46a1c)

d462ba

d4213f

d13da3

65a1fc

d467c4
d471f1

O 2128 - 1

Fig. 2. Routing a message from node
��������
��

with key� � ������� . The dots depict live nodes in Pastry’s circular
namespace.

with numerically closest smaller nodeIds, relative to the present
node’s nodeId.

Figure 2 shows the path of an example message. In each rout-
ing step, the current node normally forwards the message to a
node whose nodeId shares with the key a prefix that is at least
one digit (or � bits) longer than the prefix that the key shares
with the current nodeId. If no such node is found in the routing
table, the message is forwarded to a node whose nodeId shares
a prefix with the key as long as the current node, but is numer-
ically closer to the key than the current nodeId. Such a node
must exist in the leaf set unless the nodeId of the current node
or its immediate neighbour is numerically closest to the key, or
����� adjacent nodes in the leaf set have failed concurrently.

A. Locality

Next, we discuss Pastry’s locality properties, i.e., the proper-
ties of Pastry’s routes with respect to the proximity metric. The
proximity metric is a scalar value that reflects the “distance”
between any pair of nodes, such as the round trip time. It is
assumed that a function exists that allows each Pastry node to
determine the “distance” between itself and a node with a given
IP address.

We limit our discussion to two of Pastry’s locality proper-
ties that are relevant to Scribe. The short routes property con-
cerns the total distance, in terms of the proximity metric, that
messages travel along Pastry routes. Recall that each entry in
the node routing tables is chosen to refer to the nearest node,
according to the proximity metric, with the appropriate nodeId
prefix. As a result, in each step a message is routed to the near-
est node with a longer prefix match. Simulations performed on
several network topology models show that the average distance
traveled by a message is between 1.59 and 2.2 times the dis-
tance between the source and destination in the underlying In-
ternet [16].

The route convergence property is concerned with the dis-
tance traveled by two messages sent to the same key before
their routes converge. Simulations show that, given our network
topology model, the average distance traveled by each of the two
messages before their routes converge is approximately equal

to the distance between their respective source nodes. These
properties have a strong impact on the locality properties of the
Scribe multicast trees, as explained in Section III.

B. Node addition and failure

A key design issue in Pastry is how to efficiently and dynam-
ically maintain the node state, i.e., the routing table and leaf set,
in the presence of node failures, node recoveries, and new node
arrivals. The protocol is described and evaluated in [12], [16].

Briefly, an arriving node with the newly chosen nodeId � can
initialize its state by contacting a nearby node � (according to
the proximity metric) and asking � to route a special message
using � as the key. This message is routed to the existing node�

with nodeId numerically closest to � 1. � then obtains the
leaf set from

�
, and the � th row of the routing table from the � th

node encountered along the route from � to
�

. One can show
that using this information, � can correctly initialize its state
and notify nodes that need to know of its arrival.

To handle node failures, neighboring nodes in the nodeId
space (which are aware of each other by virtue of being in each
other’s leaf set) periodically exchange keep-alive messages. If a
node is unresponsive for a period � , it is presumed failed. All
members of the failed node’s leaf set are then notified and they
update their leaf sets. Since the leaf sets of nodes with adjacent
nodeIds overlap, this update is trivial. A recovering node con-
tacts the nodes in its last known leaf set, obtains their current
leaf sets, updates its own leaf set and then notifies the members
of its new leaf set of its presence. Routing table entries that re-
fer to failed nodes are repaired lazily; the details are described
in [12], [16].

C. Pastry API

In this section, we briefly describe the application program-
ming interface (API) exported by Pastry to applications such as
Scribe. The presented API is slightly simplified for clarity. Pas-
try exports the following operations:
�
In the exceedingly unlikely event that � and � are equal, the new node must

obtain a new nodeId.
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nodeId = pastryInit(Credentials) causes the local node to join
an existing Pastry network (or start a new one) and initialize all
relevant state; returns the local node’s nodeId. The credentials
are provided by the application and contain information needed
to authenticate the local node and to securely join the Pastry
network. A full discussion of Pastry’s security model can be
found in [17].
route(msg,key) causes Pastry to route the given message to the
node with nodeId numerically closest to key, among all live Pas-
try nodes.
send(msg,IP-addr) causes Pastry to send the given message to
the node with the specified IP address, if that node is live. The
message is received by that node through the deliver method.

Applications layered on top of Pastry must export the following
operations:

deliver(msg,key) called by Pastry when a message is received
and the local node’s nodeId is numerically closest to key among
all live nodes, or when a message is received that was transmit-
ted via send, using the IP address of the local node.
forward(msg,key,nextId) called by Pastry just before a message
is forwarded to the node with nodeId = nextId. The application
may change the contents of the message or the value of nextId.
Setting the nextId to NULL will terminate the message at the
local node.
newLeafs(leafSet) called by Pastry whenever there is a change
in the leaf set. This provides the application with an opportunity
to adjust application-specific invariants based on the leaf set.

In the following section, we will describe how Scribe is lay-
ered on top of the Pastry API. Other applications built on top
of Pastry include PAST, a persistent, global storage utility [18],
[19].

III. SCRIBE

Scribe is a scalable application-level multicast infrastructure
built on top of Pastry. Any Scribe node may create a group;
other nodes can then join the group, or multicast messages to
all members of the group (provided they have the appropriate
credentials). Scribe provides best-effort delivery of multicast
messages, and specifies no particular delivery order. However,
stronger reliability guarantees and ordered delivery for a group
can be built on top of Scribe, as outlined in Section III-B. Nodes
can create, send messages to, and join many groups. Groups
may have multiple sources of multicast messages and many
members. Scribe can support simultaneously a large numbers
of groups with a wide range of group sizes, and a high rate of
membership turnover.

Scribe offers a simple API to its applications:

create(credentials, groupId) creates a group with groupId.
Throughout, the credentials are used for access control.
join(credentials, groupId, messageHandler) causes the local
node to join the group with groupId. All subsequently received
multicast messages for that group are passed to the specified
message handler.
leave(credentials, groupId) causes the local node to leave the
group with groupId.
multicast(credentials, groupId, message) causes the message to
be multicast within the group with groupId.

Scribe uses Pastry to manage group creation, group joining
and to build a per-group multicast tree used to disseminate the
messages multicast in the group. Pastry and Scribe are fully
decentralized: all decisions are based on local information, and
each node has identical capabilities. Each node can act as a
multicast source, a root of a multicast tree, a group member, a
node within a multicast tree, and any sensible combination of
the above. Much of the scalability and reliability of Scribe and
Pastry derives from this peer-to-peer model.

A. Scribe Implementation

A Scribe system consists of a network of Pastry nodes, where
each node runs the Scribe application software. The Scribe soft-
ware on each node provides the forward and deliver methods,
which are invoked by Pastry whenever a Scribe message arrives.
The pseudo-code for these Scribe methods, simplified for clar-
ity, is shown in Figure 3 and Figure 4, respectively.

Recall that the forward method is called whenever a Scribe
message is routed through a node. The deliver method is called
when a Scribe message arrives at the node with nodeId numer-
ically closest to the message’s key, or when a message was ad-
dressed to the local node using the Pastry send operation. The
possible message types in Scribe are JOIN, CREATE, LEAVE and
MULTICAST; the roles of these messages are described in the
next sections.

The following variables are used in the pseudocode: groups
is the set of groups that the local node is aware of, msg.source
is the nodeId of the message’s source node, msg.group is the
groupId of the group, and msg.type is the message type.

A.1 Group Management

Each group has a unique groupId. The Scribe node with a
nodeId numerically closest to the groupId acts as the rendez-
vous point for the associated group. The rendez-vous point is
the root of the multicast tree created for the group.

To create a group, a Scribe node asks Pastry to route
a CREATE message using the groupId as the key (e.g.
route(CREATE,groupId)). Pastry delivers this message to the
node with the nodeId numerically closest to groupId. The Scribe
deliver method adds the group to the list of groups it already
knows about (line 3 of Figure 4). It also checks the credentials
to ensure that the group can be created, and stores the creden-
tials. This Scribe node becomes the rendez-vous point for the
group.

The groupId is the hash of the group’s textual name concate-
nated with its creator’s name. The hash is computed using a
collision resistant hash function (e.g. SHA-1 [20]), which en-
sures a uniform distribution of groupIds. Since Pastry nodeIds
are also uniformly distributed, this ensures an even distribution
of groups across Pastry nodes.

Alternatively, we can make the creator of a group be the
rendez-vous point for the group as follows: a Pastry nodeId can
be the hash of the textual name of the node, and a groupId can
be the concatenation of the nodeId of the creator and the hash
of the textual name of the group. This alternative can improve
performance with a good choice of creator: link stress and delay
will be lower if the creator sends to the group often, or is close in
the network to other frequent senders or many group members.
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(1) forward(msg, key, nextId)
(2) switch msg.type is
(3) JOIN : if !(msg.group � groups)
(4) groups = groups � msg.group
(5) route(msg,msg.group)
(6) groups[msg.group].children � msg.source
(7) nextId = null // Stop routing the original message

Fig. 3. Scribe implementation of forward.

(1) deliver(msg,key)
(2) switch msg.type is
(3) CREATE : groups = groups � msg.group
(4) JOIN : groups[msg.group].children � msg.source
(5) MULTICAST : � node in groups[msg.group].children
(6) send(msg,node)
(7) if memberOf (msg.group)
(8) invokeMessageHandler(msg.group, msg)
(9) LEAVE : groups[msg.group].children = groups[msg.group].children - msg.source
(10) if ( � groups[msg.group].children � = 0)
(11) send(msg,groups[msg.group].parent)

Fig. 4. Scribe implementation of deliver.

In both alternatives, a groupId can be generated by any Scribe
node using only the textual name of the group and its creator,
without the need for an additional naming service. Of course,
proper credentials are necessary to join or multicast messages in
the associated group.

A.2 Membership management

Scribe creates a multicast tree, rooted at the rendez-vous
point, to disseminate the multicast messages in the group. The
multicast tree is created using a scheme similar to reverse path
forwarding [21]. The tree is formed by joining the Pastry routes
from each group member to the rendez-vous point. Group join-
ing operations are managed in a decentralized manner to support
large and dynamic membership.

Scribe nodes that are part of a group’s multicast tree are called
forwarders with respect to the group; they may or may not be
members of the group. Each forwarder maintains a children ta-
ble for the group containing an entry (IP address and nodeId) for
each of its children in the multicast tree.

When a Scribe node wishes to join a group, it asks Pastry
to route a JOIN message with the group’s groupId as the key
(e.g. route (JOIN,groupId)). This message is routed by Pastry
towards the group’s rendez-vous point. At each node along the
route, Pastry invokes Scribe’s forward method. Forward (lines 3
to 7 in Figure 3) checks its list of groups to see if it is currently
a forwarder; if so, it accepts the node as a child, adding it to the
children table. If the node is not already a forwarder, it creates
an entry for the group, and adds the source node as a child in
the associated children table. It then becomes a forwarder for
the group by sending a JOIN message to the next node along
the route from the joining node to the rendez-vous point. The

original message from the source is terminated; this is achieved
by setting nextId = null, in line 7 of Figure 3.

Figure 5 illustrates the group joining mechanism. The cir-
cles represent nodes, and some of the nodes have their nodeId
shown. For simplicity ��� � , so the prefix is matched one bit at a
time. We assume that there is a group with groupId � ����� whose
rendez-vous point is the node with the same identifier. The node
with nodeId � � � � is joining this group. In this example, Pastry
routes the JOIN message to node ����� � ; then the message from
����� � is routed to � ��� � ; finally, the message from � ��� � arrives at
� ����� . This route is indicated by the solid arrows in Figure 5.

Let us assume that nodes ����� � and � ��� � are not already for-
warders for group � ����� . The joining of node � � � � causes the
other two nodes along the route to become forwarders for the
group, and causes them to add the preceding node in the route to
their children tables. Now let us assume that node � ����� decides
to join the same group. The route that its JOIN message would
take is shown using dot-dash arrows. However, since node ����� �
is already a forwarder, it adds node � ����� to its children table for
the group, and the JOIN message is terminated.

When a Scribe node wishes to leave a group, it records locally
that it left the group. If there are no other entries in the children
table, it sends a LEAVE message to its parent in the multicast
tree, as shown in lines 9 to 11 in Figure 4. The message proceeds
recursively up the multicast tree, until a node is reached that still
has entries in the children table after removing the departing
child.

The properties of Pastry routes ensure that this mechanism
produces a tree. There are no loops because the nodeId of the
next node in every hop of a Pastry route matches a longer prefix
of the groupId than the previous node, or matches a prefix with
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Fig. 5. Membership management and multicast tree creation

the same length and is numerically closer, or is the nodeId of the
root.

The membership management mechanism is efficient for
groups with a wide range of memberships, varying from one
to all Scribe nodes. The list of members of a group is distributed
across the nodes in the multicast tree. Pastry’s randomization
properties ensure that the tree is well balanced and that the for-
warding load is evenly balanced across the nodes. This balance
enables Scribe to support large numbers of groups and members
per group. Joining requests are handled locally in a decentral-
ized fashion. In particular, the rendez-vous point does not han-
dle all joining requests.

The locality properties of Pastry ensure that the multicast tree
can be used to disseminate messages efficiently. The delay to
forward a message from the rendez-vous point to each group
member is small because of the short routes property. Second,
the route convergence property ensures that the load imposed on
the physical network is small because most messages are sent by
the nodes close to the leaves and the network distance traversed
by these messages is short. Simulation results quantifying the
locality properties of the Scribe multicast tree will be presented
in Section IV.

A.3 Multicast message dissemination

Multicast sources use Pastry to locate the rendez-vous
point of a group: they route to the rendez-vous point (e.g.
route(MULTICAST, groupId)), and ask it to return its IP ad-
dress. They cache the rendez-vous point’s IP address and use
it in subsequent multicasts to the group to avoid repeated rout-
ing through Pastry. If the rendez-vous point changes or fails, the
source uses Pastry to find the IP address of the new rendez-vous
point.

Multicast messages are disseminated from the rendez-vous
point along the multicast tree in the obvious way (lines 5 and 6
of Figure 4).

There is a single multicast tree for each group and all multi-
cast sources use the above procedure to multicast messages to
the group. This allows the rendez-vous node to perform access
control.

B. Reliability

Applications that use group multicast may have diverse re-
liability requirements. Some groups may require reliable and
ordered delivery of messages, whilst others require only best-
effort delivery. Therefore, Scribe provides only best-effort de-
livery of messages but it offers a framework for applications to
implement stronger reliability guarantees.

Scribe uses TCP to disseminate messages reliably from par-
ents to their children in the multicast tree and for flow control,
and it uses Pastry to repair the multicast tree when a forwarder
fails.

B.1 Repairing the multicast tree

Periodically, each non-leaf node in the tree sends a heartbeat
message to its children. Multicast messages serve as an implicit
heartbeat signal avoiding the need for explicit heartbeat mes-
sages in many cases. A child suspects that its parent is faulty
when it fails to receive heartbeat messages. Upon detection of
the failure of its parent, a node calls Pastry to route a JOIN mes-
sage to the group’s identifier. Pastry will route the message to a
new parent, thus repairing the multicast tree.

For example, in Figure 5, consider the failure of node � ��� � .
Node ����� � detects the failure of � ��� � and uses Pastry to route
a JOIN message towards the root through an alternative route
(indicated by the dashed arrows). The message reaches node
� � � � who adds ����� � to its children table and, since it is not a
forwarder, sends a JOIN message towards the root. This causes
node � ����� to add � � � � to its children table.

Scribe can also tolerate the failure of multicast tree roots
(rendez-vous points). The state associated with the rendez-vous
point, which identifies the group creator and has an access con-
trol list, is replicated across the

�
closest nodes to the root node

in the nodeId space (where a typical value of
�

is 5). It should
be noted that these nodes are in the leaf set of the root node. If
the root fails, its immediate children detect the failure and join
again through Pastry. Pastry routes the join messages to a new
root (the live node with the numerically closest nodeId to the
groupId), which takes over the role of the rendez-vous point.
Multicast senders likewise discover the new rendez-vous point
by routing via Pastry.

Children table entries are discarded unless they are periodi-
cally refreshed by an explicit message from the child, stating its
desire to remain in the group.

This tree repair mechanism scales well: fault detection is
done by sending messages to a small number of nodes, and
recovery from faults is local; only a small number of nodes
( #$������� ��
 � � ) is involved.

B.2 Providing additional guarantees.

By default, Scribe provides reliable, ordered delivery of mul-
ticast messages only if the TCP connections between the nodes
in the multicast tree do not break. For example, if some nodes
in the multicast tree fail, Scribe may fail to deliver messages or
may deliver them out of order.

Scribe provides a simple mechanism to allow applications to
implement stronger reliability guarantees. Applications can de-
fine the following upcall methods, which are invoked by Scribe.
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forwardHandler(msg) is invoked by Scribe before the node for-
wards a multicast message, msg, to its children in the multicast
tree. The method can modify msg before it is forwarded.
joinHandler(msg) is invoked by Scribe after a new child is
added to one of the node’s children tables. The argument is the
JOIN message.
faultHandler(msg) is invoked by Scribe when a node suspects
that its parent is faulty. The argument is the JOIN message that
is sent to repair the tree. The method can modify msg to add
additional information before it is sent.

For example, an application can implement ordered, reliable
delivery of multicast messages by defining the upcalls as fol-
lows. The forwardHandler is defined such that the root assigns
a sequence number to each message and such that recently mul-
ticast messages are buffered by the root and by each node in
the multicast tree. Messages are retransmitted after the multi-
cast tree is repaired. The faultHandler adds the last sequence
number, ' , delivered by the node to the JOIN message and the
joinHandler retransmits buffered messages with sequence num-
bers above ' to the new child. To ensure reliable delivery, the
messages must be buffered for an amount of time that exceeds
the maximal time to repair the multicast tree after a TCP con-
nection breaks.

To tolerate root failures, the root needs to be replicated. For
example, one could choose a set of replicas in the leaf set of
the root and use an algorithm like Paxos [22] to ensure strong
consistency.

IV. EXPERIMENTAL EVALUATION

This section presents results of simulation experiments to
evaluate the performance of a prototype Scribe implementation.
These experiments compare the performance of Scribe and IP
multicast along three metrics: the delay to deliver events to
group members, the stress on each node, and the stress on each
physical network link. We also ran our implementation in a real
distributed system with a small number of nodes.

A. Experimental Setup

We developed a simple packet-level, discrete event simulator
to evaluate Scribe. The simulator models the propagation delay
on the physical links but it does not model either queuing delay
or packet losses because modeling these would prevent simula-
tion of large networks. We did not model any cross traffic during
the experiments.

The simulations ran on a network topology with 5050 routers,
which were generated by the Georgia Tech [23] random graph
generator using the transit-stub model. The routers did not run
the code to maintain the overlays and implement Scribe. Instead,
this code ran on 100,000 end nodes that were randomly assigned
to routers in the core with uniform probability. Each end system
was directly attached by a LAN link to its assigned router (as
was done in [10]).

The transit-stub model is hierarchical. There are 10 transit do-
mains at the top level with an average of 5 routers in each. Each
transit router has an average of 10 stub domains attached, and
each stub has an average of 10 routers. We generated 10 differ-
ent topologies using the same parameters but different random

seeds. We ran all the experiments in all the topologies. The re-
sults we present are the average of the results obtained with each
topology.

We used the routing policy weights generated by the Georgia
Tech random graph generator to perform IP unicast routing. IP
multicast routing used a shortest path tree formed by the merge
of the unicast routes from the source to each recipient. This is
similar to what could be obtained in our experimental setting
using protocols like Distance Vector Multicast Routing Protocol
(DVMRP) [1] or PIM [3]. But in order to provide a conservative
comparison, we ignored messages required by these protocols
to maintain the trees. The delay of each LAN link was set to
1ms and the average delay of core links (computed by the graph
generator) was 40.7ms.

Scribe was designed to be a generic infrastructure capable
of supporting multiple concurrent applications with varying re-
quirements. Therefore, we ran experiments with a large number
of groups and with a wide range of group sizes. Since there are
no obvious sources of real-world trace data to drive these exper-
iments, we adopted a Zipf-like distribution for the group sizes.

Groups are ranked by size and the size of the group with rank� is given by ��� ������� � ��� � � ���
	�� ��
 ! ��� ��� , where
�

is the to-
tal number of Scribe nodes. The number of groups was fixed at
1,500 and the number of Scribe nodes (

�
) was fixed at 100,000,

which were the maximum numbers that we were able to simu-
late. The exponent ��� ��� was chosen to ensure a minimum group
size of eleven; this number appears to be typical of Instant Mes-
saging applications, which is one of the targeted multicast ap-
plications. The maximum group size is 100,000 (group rank 1)
and the sum of all group sizes 395,247. Figure 6 plots group
size versus group rank.
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Fig. 6. Distribution of group size versus group rank.

The members of each group were selected randomly with uni-
form probability from the set of Scribe nodes, and we used dif-
ferent random seeds for each topology. Distributions with better
network locality would improve the performance of Scribe.

We also ran experiments to evaluate Scribe on a different
topology, which is described in [24]. This is a realistic topology
with 102,639 routers that was obtained from Internet measure-
ments. The results of these experiments were comparable with
the results presented here.
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B. Delay penalty

The first set of experiments compares the delay to multicast
messages using Scribe and IP multicast. Scribe increases the
delay to deliver messages relative to IP multicast. To evaluate
this penalty, we measured the distribution of delays to deliver a
message to each member of a group using both Scribe and IP
multicast. We compute two metrics of delay penalty using these
distributions: RMD is the ratio between the maximum delay us-
ing Scribe and the maximum delay using IP multicast, and RAD
is the ratio between the average delay using Scribe and the aver-
age delay using IP multicast. This differs from the relative delay
penalty (RDP) used in [10], where the delay ratio was computed
for each individual group member. RAD and RMD avoid the
anomalies [15] associated with RDP.

Figure 7 shows the cumulative distribution of the RAD and
RMD metrics. The y-value of a point represents the number of
groups with a RAD or RMD lower than or equal to the relative
delay (x-value). Scribe’s performance is good because it lever-
ages Pastry’s short routes property. For 50% of groups, a RAD
of at most 1.68 and a RMD of at most 1.69 is observed. In the
worst case, the maximum RAD is 2 and the maximum RMD is
4.26.
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Fig. 7. Cumulative distribution of delay penalty relative to IP multicast per
group (average standard deviation was 62 for RAD and 21 for RMD).

We also calculated the RDP for the 100,000 members of the
group with rank 1. The results show that Scribe performs well:
the mean RDP is 1.81, the median is 1.65, more than 80% of
the group members have RDP less than 2.25, and more than
98% have RDP less than 4. IP routing does not always produce
minimum delay routes because it is performed using the routing
policy weights from the Georgia Tech model [23]. As a result,
Scribe was able to find routes with lower delay than IP multicast
for 2.2% of the group members.

C. Node stress

In Scribe, end nodes are responsible for maintaining mem-
bership information and for forwarding and duplicating packets
whereas routers perform these tasks in IP multicast. To evalu-
ate the stress imposed by Scribe on each node, we measured the
number of groups with non-empty children tables, and the num-
ber of entries in children tables in each Scribe node; the results
are in Figures 8 and 9.

Even though there are 1,500 groups, the mean number of non-
empty children tables per node is only 2.4 and the median num-
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Fig. 8. Number of children tables per Scribe node (average standard deviation
was 58).
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Fig. 9. Number of children table entries per Scribe node (average standard
deviation was 3.2).

ber is only 2. Figure 8 shows that the distribution has a long
tail with a maximum number of children tables per node of 40.
Similarly, the mean number of entries in all the children tables
on any single Scribe node is only 6.2 and the median is only 3.
This distribution also has a long thin tail with a maximum of
1059.

These results indicate that Scribe does a good job of partition-
ing and distributing forwarding load over all nodes: each node is
responsible for forwarding multicast messages for a small num-
ber of groups, and it forwards multicast messages only to a small
number of nodes. This is important to achieve scalability with
group size and the number of groups.

D. Link stress

The final set of experiments compares the stress imposed by
Scribe and IP multicast on each directed link in the network
topology. We computed the stress by counting the number of
packets that are sent over each link when a message is multicast
to each of the 1,500 groups. Figure 10 shows the distribution of
link stress for both Scribe and IP multicast with the results for
zero link stress omitted.

The total number of links is 1,035,295 and the total number of
messages over these links is 2,489,824 for Scribe and 758,853
for IP multicast. The mean number of messages per link in
Scribe is 2.4 whilst for IP multicast it is 0.7. The median is
0 for both. The maximum link stress in Scribe is 4031, whilst
for IP multicast the maximum link stress is 950. This means that
the maximum link stress induced by Scribe is about 4 times that
for a IP multicast on this experiment. The results are good be-
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Fig. 10. Link stress for multicasting a message to each of 1,500 groups (average
standard deviation was 1.4 for Scribe and for 1.9 for IP multicast).

cause Scribe distributes load across nodes (as shown before) and
because it leverages Pastry’s route convergence property. Group
members that are close in the network tend to be children of the
same parent in the multicast tree that is also close to them. This
reduces link stress because the parent receives a single copy of
the multicast message and forwards copies to its children along
short routes.

It is interesting to compare Scribe with a naı̈ve multicast that
is implemented by performing a unicast transmission from the
source to each subscriber. This naı̈ve implementation would
have a maximum link stress greater than or equal to 100,000
(which is the maximum group size).

Figure 10 shows the link stress for multicasting a message to
each group. The link stress for joining is identical because the
process we use to create the multicast tree for each group is the
inverse of the process used to disseminate multicast messages

E. Bottleneck remover

The base mechanism for building multicast trees in Scribe as-
sumes that all nodes have equal capacity and strives to distribute
load evenly across all nodes. But in several deployment sce-
narios some nodes may have less computational power or band-
width available than others. Under high load, these lower ca-
pacity nodes may become bottlenecks that slow down message
dissemination. Additionally, the distribution of children table
entries shown in Figure 9 has a long tail. The nodes at the end
of the tail may become bottlenecks under high load even if their
capacity is relatively high.

This section describes a simple algorithm to remove bottle-
necks when they occur. The algorithm allows nodes to bound
the amount of multicast forwarding they do by off-loading chil-
dren to other nodes.

The bottleneck remover algorithm works as follows. When a
node detects that it is overloaded, it selects the group that con-
sumes the most resources. Then it chooses the child in this group
that is farthest away, according to the proximity metric. The par-
ent drops the chosen child by sending it a message containing
the children table for the group along with the delays between
each child and the parent. When the child receives the mes-
sage, it performs the following operations: (i) it measures the
delay between itself and other nodes in the children table it re-
ceived from the parent; (ii) then for each node, it computes the

total delay between itself and the parent via each of the nodes;
(iii) finally, it sends a join message to the node that provides the
smallest combined delay. That way, it minimizes the delay to
reach its parent through one of its previous siblings.

Unlike the base mechanism for building multicast trees in
Scribe, the bottleneck remover may introduce routing loops.
However, this happens only when there are failures and with
low probability. In particular, there are no routing loops in the
experiments that we describe below. Loops are detected by hav-
ing each parent � propagate to its children the nodeIds in the
path from the root to � . If a node receives a path that contains its
nodeId, it uses Pastry to route a JOIN message towards the group
identifier using a randomized route. Additionally if a node re-
ceives a JOIN message from a node in its path to the root, it
rejects the join and informs the joining node that it should join
using a randomized route.

We reran all the experiments in the previous sections to evalu-
ate the bottleneck remover. Since we do not model bandwidth or
processing at the nodes in our simulator, the cost of forwarding
is the same for all children. A node is considered overloaded if
the total number of children across all groups is greater than 64,
and the group that consumes the most resources is the one with
the largest children table.

Figure 11 shows the distribution of the number of children ta-
ble entries per node. As expected, the bottleneck remover elim-
inates the long tail that we observed in Figure 9 and bounds the
number of children per node to 64.
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Fig. 11. Number of children table entries per Scribe node with the bottleneck
remover (average standard deviation was 57).

The drawback with the bottleneck remover is that it increases
the link stress for joining. The average link stress increases from
2.4 to 2.7 and the maximum increases from 4031 to 4728. This
does not account for the probes needed to estimate delay to other
siblings; there are an average of 3 probes per join. Our exper-
imental setup exacerbates this cost; the bottleneck remover is
invoked very often because all nodes impose a low bound on the
number of children table entries. We expect this cost to be low
in a more realistic setting.

We do not show figures for the other results because they are
almost identical to the ones presented without the bottleneck re-
mover. In particular, the bottleneck remover achieves the goal
of bounding the amount of forwarding work per node without
noticeably increasing latency.
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F. Scalability with many small groups

We ran an additional experiment to evaluate Scribe’s scalabil-
ity with a large number of groups. This experiment ran in the
same setup as the others except that there were 50,000 Scribe
nodes, and 30,000 groups with 11 members each (which was
the minimum group size in the distribution used in the previous
experiments). This setup is representative of Instant Messaging
applications.

Figures 12 and 13 show the distribution of children tables and
children table entries per node, respectively. The lines labelled
“scribe collapse” will be explained later. The distributions have
sharp peaks before 50 and a long thin tail, showing that Scribe
scales well because it distributes children tables and children
table entries evenly across the nodes.
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Fig. 12. Number of children tables per Scribe node.
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Fig. 13. Number of children table entries per Scribe node.

But the results also show that Scribe multicast trees are not
as efficient for small groups. The average number of children
table entries per node is 21.2, whereas the naı̈ve multicast would
achieve an average of only 6.6. The average is higher for Scribe
because it creates trees with long paths with no branching. This
problem also causes higher link stress as shown in Figure 14:
Scribe’s average link stress is 6.1, IP multicast’s is 1.6 and naı̈ve
multicast’s is 2.9. (As before, one message was sent in each of
the 30,000 groups).

We implemented a simple algorithm to produce more efficient
trees for small groups. Trees are built as before but the algorithm
collapses long paths in the tree by removing nodes that are not
members of a group and have only one entry in the group’s chil-
dren table. We reran the experiment in this section using this
algorithm. The new results are shown under the label “scribe
collapse” in Figures 12, 13, and 14. The algorithm is effective:
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Fig. 14. Link stress for multicasting a message to each of 30,000 groups.

it reduced the average link stress from 6.1 to 3.3, and the average
number of children per node from 21.2 to 8.5.

We also considered an alternative algorithm that grows trees
less eagerly. As before, a joining node, � , uses Pastry to route a
JOIN message towards the root of the tree. But these messages
are forwarded to the first node, � , that is already in the tree. If

� is not overloaded, it adds � to its children table and the previ-
ous nodes along the route do not become forwarders for the tree.
Otherwise, � adds the previous node in the route to its children
table, and tells this node to take � as its child. This alternative
algorithm can generate shallower trees but it has two disadvan-
tages: it can increase link stress relative to the algorithm that
collapses the tree; and it reduces Scribe’s ability to handle large
numbers of concurrent joins when a group suddenly becomes
popular.

V. RELATED WORK

Like Scribe, Overcast [25] and Narada [10] implement mul-
ticast using a self-organizing overlay network, and they assume
only unicast support from the underlying network layer. Over-
cast builds a source-rooted multicast tree using end-to-end mea-
surements to optimize bandwidth between the source and the
various group members. Narada uses a two step process to
build the multicast tree. First, it builds a mesh per group con-
taining all the group members. Then, it constructs a spanning
tree of the mesh for each source to multicast data. The mesh is
dynamically optimized by performing end-to-end latency mea-
surements and adding and removing links to reduce multicast
latency. The mesh creation and maintenance algorithms assume
that all group members know about each other and, therefore,
do not scale to large groups.

Scribe builds a multicast tree per group on top of a Pastry
overlay, and relies on Pastry to optimize the routes from the
root to each group member based on some metric (e.g. la-
tency). The main difference is that the Pastry overlay can scale
to an extremely large number of nodes because the algorithms
to build and maintain the network have space and time costs of
#$������� ��
 � � . This enables support for extremely large groups
and sharing of the Pastry network by a large number of groups.

The recent work on Bayeux [9] and Content Addressable Net-
work (CAN) multicast [26] is the most similar to Scribe. Both
Bayeux and CAN multicast are built on top of scalable peer-to-
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peer object location systems similar to Pastry. Bayeux is built
on top of Tapestry [13] and CAN multicast is built on top of
CAN [15].

Like Scribe, Bayeux supports multiple groups, and it builds a
multicast tree per group on top of Tapestry. However, this tree
is built quite differently. Each request to join a group is routed
by Tapestry all the way to the node acting as the root. Then, the
root records the identity of the new member and uses Tapestry to
route another message back to the new member. Every Tapestry
node along this route records the identity of the new member.
Requests to leave the group are handled in a similar way.

Bayeux has two scalability problems when compared to
Scribe: it requires nodes to maintain more group membership
information, and it generates more traffic when handling group
membership changes. In particular, the root keeps a list of
all group members and all group management traffic must go
through the root. Bayeux proposes a multicast tree partitioning
mechanism to ameliorate these problems by splitting the root
into several replicas and partitioning members across them. But
this only improves scalability by a small constant factor.

In Scribe, the expected amount of group membership infor-
mation kept by each node is small because this information is
distributed over the nodes. Furthermore, it can be bounded by a
constant independent of the number of group members by using
the bottleneck removal algorithm. Additionally, group join and
leave requests are handled locally. This allows Scribe to scale to
extremely large groups and to deal with rapid changes in group
membership efficiently.

Finally, whilst Scribe and Bayeux have similar delay charac-
teristics, Bayeux induces a higher link stress than Scribe. Both
Pastry and Tapestry (on which Bayeux is built) exploit network
locality in a similar manner. With each successive hop taken
within the overlay network from the source towards the destina-
tion, the message traverses an exponentially increasing distance
in the proximity space. In Bayeux, the multicast tree consists of
the routes from the root to each destination, while in Scribe the
tree consists of the routes from each destination to the root. As a
result, messages traverse the many long links near the leaves in
Bayeux, while in Scribe, messages traverse few long links near
the root.

CAN multicast does not build multicast trees. Instead, it
uses the routing tables maintained by CAN to flood messages
to all nodes in a CAN overlay network, and it supports multiple
groups by creating a separate CAN overlay per group. A node
joins a group by looking up a contact node for the group in a
global CAN overlay, and by using that node to join the group’s
overlay. Group leaves are handled by the regular CAN mainte-
nance algorithm.

CAN multicast has two features that may be advantageous in
some scenarios: group traffic is not restricted to flow through a
single multicast tree, and only group members forward multi-
cast traffic for a group. But it is significantly more expensive to
build and maintain separate CAN overlays per group than Scribe
multicast trees. Furthermore, the delays and link stresses re-
ported for CAN multicast in [26] are significantly higher than
those observed for Scribe. Taking network topology into ac-
count when building CAN overlays is likely to reduce delays
and link stresses but it will increase the cost of overlay con-

struction and maintenance further. Additionally, the group join
mechanism in CAN multicast does not scale well. The node in
the CAN overlay that supplies the contact node for the group and
the contact node itself handle all join traffic. The authors of [26]
suggest replicating the functionality of these nodes to avoid the
problem but this only improves scalability by a constant factor.

The mechanisms for fault resilience in CAN multicast,
Bayeux and Scribe are also very different. CAN multicast does
not require any additional mechanism to handle faults besides
what is already provided by the base CAN protocol. Bayeux and
Scribe require separate mechanisms to repair multicast trees.
All the mechanisms for fault resilience proposed in Bayeux are
sender-based whereas Scribe uses a receiver-based mechanism.
Bayeux does not provide a mechanism to handle root failures
whereas Scribe does.

VI. CONCLUSIONS

We have presented Scribe, a large-scale and fully decentral-
ized application-level multicast infrastructure built on top of
Pastry, a peer-to-peer object location and routing substrate over-
layed on the Internet. Scribe is designed to scale to large num-
bers of groups, large group size, and supports multiple multicast
source per group.

Scribe leverages the scalability, locality, fault-resilience and
self-organization properties of Pastry. The Pastry routing sub-
strate is used to maintain groups and group membership, and
to build an efficient multicast tree associated with each group.
Scribe’s randomized placement of groups and multicast roots
balances the load among participating nodes. Furthermore, Pas-
try’s properties enable Scribe to exploit locality to build an ef-
ficient multicast tree and to handle group join operations in a
decentralized manner.

Fault-tolerance in Scribe is based on Pastry’s self-organizing
properties. The default reliability scheme in Scribe ensures au-
tomatic repair of the multicast tree after node and network fail-
ures. Multicast message dissemination is performed on a best-
effort basis. However, stronger reliability models can be easily
layered on top of Scribe.

Our simulation results, based on a realistic network topology
model, indicate that Scribe scales well. Scribe is able to ef-
ficiently support a large number of nodes, groups, and a wide
range of group sizes. Hence Scribe can concurrently support
applications with widely different characteristics. Results also
show that it balances the load among participating nodes, while
achieving acceptable delay and link stress, when compared to
network-level (IP) multicast.
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