
The Abstract Data Interface

by

Brian T. Wong

Submitted to the Department of Electrical Engineering and Computer Science

in Partial Fulfillment of the Requirements for the Degree of

Master of Engineering in Electrical Engineering and Computer Science

at the Massachusetts Institute of Technology

May 23, 2001

Copyright 2001 Massachusetts Institute of Technology. All rights reserved.

Author…………………………………………………………………………………………

Department of Electrical Engineering and Computer Science
May 23, 2001

Certified by……………………………………………………………………………………

Dr. Amar Gupta
Thesis Supervisor

Accepted by…………………………………………………………………………………...

Arthur C. Smith
Chairman, Department Committee on Graduate Students

 2

 3

The Abstract Data Interface
by

Brian T. Wong

Submitted to the
Department of Electrical Engineering and Computer Science

May 23, 2001

in Partial Fulfillment of the Requirements for the Degree of

Master of Engineering in Electrical Engineering and Computer Science
at the Massachusetts Institute of Technology

ABSTRACT

Data interoperability between computer systems is a critical goal for businesses. This thesis
attempts to address data interoperability by proposing a design in which data producers
produce an Abstract Data Interface to expose data. The interface allows data consumers to
determine semantic matches, after which data producers and consumers can provide input to
an Interface Generator that resolves the schematic differences. The result of the Interface
Generator is an Interface that enables unfettered, interoperable data exchange between a data
producer-data consumer pair.

Thesis Supervisor: Dr. Amar Gupta

Title: Co-Director, Productivity From Information Technology (PROFIT) Initiative, Sloan

School of Management

 4

Acknowledgements

I would like to begin by taking a moment to thank, in no particular order, all the people who
helped me to accomplish a work of this magnitude. Without their patience and advice I would
not have been able to persevere and succeed in this endeavor.

I could not have started, let alone finish, this thesis without the guidance of several people at
the MITRE Corporation in Bedford. Scott Renner lent me his invaluable knowledge and
direction that helped me to nail down my thoughts. As my supervisor, he also provided me
with all the resources I needed to get the job done, as well as a productive work environment.
Ed Housman gave me an essential introduction to the data engineering field. Arnie Rosenthal
and Frank Manola provided me with bountiful brainstorming sessions that filled my head full
of wonderful ideas. And of course, Beth Roberts put up with me as her officemate. You all
have my gratitude.

I am also indebted to Dr. Amar Gupta, who made this entire project possible. He gave me
indispensable insights into improving my research techniques and formalizing my ideas. His
leadership ensured that I never lost sight of my goals.

Last but certainly not least, I would like to thank my family and friends, who were so patient
and supportive of me through it all. They gave me the strength to endure through the stressful
times and the happiness to enjoy the good times. Thank you.

Cambridge, Massachusetts BTW
May 23, 2001

 5

Table of Contents

1 Introduction.. 9

1.1 History of Data Interoperability Research... 10

1.2 Data Interoperability.. 13

1.3 Semantic Heterogeneity.. 15

1.4 Schematic Heterogeneity.. 17

1.5 Types of Schematic Heterogeneity... 19
1.5.1 Naming Conflicts ... 19
1.5.2 Homonym Conflicts ... 20
1.5.3 Synonym Conflicts ... 20
1.5.4 Precision Conflicts.. 20
1.5.5 Scaling Conflicts .. 20
1.5.6 Structural Conflicts ... 21
1.5.7 Type Conflicts .. 21
1.5.8 Key Conflicts ... 21
1.5.9 Cardinality Ratio Conflicts.. 21
1.5.10 Interface Conflicts .. 22

1.6 Thesis Organization.. 22

2 Approaches to Achieving Data Interoperability.. 24

2.1 Human Intervention.. 24

2.2 Point to Point Interfaces ... 25
2.2.1 Standardization... 27

2.3 Federation.. 29
2.3.1 Tightly-Coupled Federation.. 29
2.3.2 Loosely-Coupled Federation... 30

2.4 Ontology .. 31

2.5 Mediation... 31

2.6 Comparison.. 33

3 Active Data Interface.. 34

3.1 Active Data Interface Concept .. 34

3.2 Abstract Data Interface Architecture Specification.. 38
3.2.1 Database Contents Publication.. 40
3.2.2 Database Access Description.. 43
3.2.3 Application Requirements Description.. 45
3.2.4 Translator Library Preparation.. 48

 6

3.2.5 Interface Generation ... 50
3.2.6 Interface Operation... 51

4 Goals of the Abstract Data Interface Architecture.. 52

4.1 Scalability.. 52

4.2 Maintainability... 54

4.3 Adaptability.. 56

5 Sample Component Construction.. 60

5.1 Database.. 60

5.2 Abstract Data Interface... 62

5.3 Database Access Description.. 64

5.4 Application... 67

5.5 Application Requirements... 68

5.6 Translator Library.. 70

5.7 Interface Generator.. 74

5.8 Interface... 74

6 Metrics .. 76

6.1 Time and Labor Expenditure .. 76
6.1.1 ADI and Database Access Description Construction 76
6.1.2 Application Requirements Construction.. 77
6.1.3 Translator Library Maintenance.. 77
6.1.4 Interface Modification .. 78

6.2 Interface Speed... 78

7 Related Work.. 80

7.1 Human Intervention.. 80

7.2 Tightly-Coupled Federation.. 81
7.2.1 SIM.. 81
7.2.2 VHDBS ... 82
7.2.3 ADI and Tightly-Coupled Federations .. 82

7.3 Mediated and Loosely-Coupled Federations... 83
7.3.1 COIN ... 83
7.3.2 TSIMMIS... 84
7.3.3 ODMG-OQL and SQL Query Mediation.. 85
7.3.4 SIMS.. 85
7.3.5 YAT and TranScm... 86

 7

8 Conclusion.. 88

8.1 Epilogue... 88

8.2 Future Work... 89
8.2.1 Implementation .. 89
8.2.2 Alternate Implementations .. 89
8.2.3 Relaxation of Simplifying Assumptions .. 90
8.2.4 Application Focus... 91

8.3 Concluding Remarks.. 92

9 Appendix A. Glossary of Acronyms.. 93

10 Appendix B. Sample DDL for the MAP Example.. 96

11 Appendix C. IDEF1X Background... 103

12 Appendix D. IDEF1X Notation Conventions.. 105

12.1 Entity Notation ... 105

12.2 Attribute Notation... 106

12.3 Relationship Notation... 106

13 Bibliography ... 107

 8

Table of Figures

Figure 2.1. Point-to-Point Interface, Two Databases: Only One Interface to Build 25

Figure 2.2. Point-to-Point Interface, Many Databases: Even More Interfaces to Build 27

Figure 3.1. Scheduler and Payroll Example.. 35

Figure 3.2. Single Application-Single Database ADI Architecture 39

Figure 3.3. Scheduler and Payroll Example, Interface 1.. 50

Figure 4.1. ADI Architecture is Scalable... 53

Figure 4.2. ADI Architecture is Maintainable .. 56

Figure 5.1. ADI for the MAP Database Example ... 63

Figure 5.2. Database Access Description for MAP Database Example.......................... 66

Figure 5.3. Application Requirements Declaration.. 69

Figure 5.4. Translator Library Provides Translators to Interface Generator............... 73

Figure 12.1. Independent Entity.. 105

Figure 12.2. Dependent Entity... 106

Figure 12.3. One -to-Many Relationship.. 106

 9

1 Introduction

With the information age and the accompanying rapid advances in information

technology has come an overwhelming abundance of data. However, storage of these data are

far from the only challenge in dealing with these plentiful data. Perhaps more importantly, a

greater challenge is the ability to share and exchange this data with others. Although the

development of database management systems has increased the utility of a large store of data,

such systems have not solved the problem of having a great number of separate such stores in

a large company or community. Users would like to access and manipulate data from several

databases, and applications may require data from a wide variety of databases. Since these

databases are generally created and administered independently, physical and logical

differences are common between databases [Hammer and McLeod, 1993].

Solutions to these challenges have a wide area of applicability, including

telecommunications [Wu, 1999], digital libraries [Stern, 1999], finance [Bressan and Goh,

1998], taxonomy [Kitakami et al., 1999], biotechnology [Jones and Franklin, 1998],

geoinformation [Leclercq et al., 1999], transportation [Bishr et al., 1999], shipping [Phoha,

1999], and medicine [Hasselbring, 1997]. As a result, a great deal of research has been

focused on changing the way in which data are accessed from databases. Instead of accessing

and manipulating individual databases in isolation, the computing environment should support

interoperation, permitting data consumers to access information from a variety of data sources.

The interoperability should be supported without modifying the databases or reducing the

autonomy of the databases, and in such a way that is relatively transparent to users and

applications [Zisman and Kramer, 1996].

 10

 In this section, a brief history of research in the field of data interoperability is

presented. Approaches to solving some of the problems in this field will also be discussed.

1.1 History of Data Interoperability Research

 In the early days of computing, there was no formalized notion of a database.

However, by the 1960’s, people had begun to notice the difficulty of having thousands of

programs access information held in external files. It had become clear that a set of utility

functions placed between the programs and the data would help control the complexity

resulting from this kind of data access. These utility functions came to be known as access

methods and represented a first step towards removing the responsibility for managing data

from the application program. [Bruce, 1992]

Computing technology progressed through a series of steps in which each achieved an

increasing degree of separation between the program functions and the data access functions.

Hardware-specific constraints came to be removed from the tasks of programmers. The term,

“database,” emerged to capture the notion that information stored within a computer could be

conceptualized, structured, and manipulated independently of the specific machine on which it

resided. [CICC, 1999]

A significant amount of database research during this period caused the database to

evolve quickly. The hierarchical model, network model, and relational model, along with a

host of other types of database models, were invented. In 1970, Dr. Edgar “Ted” Codd of

IBM research wrote a landmark paper that spawned the birth of the relational database model.

The paper, entitled, A Relational Model of Data for Large Shared Data Banks, outlined a way

to use relational calculus and algebra to allow non-technical users to store and retrieve large

 11

amounts of information. Codd envisioned a database system where a user would access data

using English-like commands, and where information would be stored in tables. [Codd, 1970]

In the late 1970’s and 1980’s, several projects and prototype development efforts to

support access to heterogeneous, distributed databases were started, mostly focusing on

providing methodologies for relational database design. This work addressed methodologies

and mechanisms to support the integration of individual, user-oriented schemas into a single

global conceptual schema. In 1986, Batini, Lenzerini, and Navathe wrote an important paper

entitled, A Comparative Analysis of Methodologies for Database Schema Integration. This

paper described some of the causes for schema diversity, and then investigated twelve of the

integration methodologies and compared them on the basis of five commonly accepted

integration activities: pre-integration, comparison of schemas, conforming of schemas,

merging, and restructuring. [Hammer and McLeod, 1993] However, the paper did not

include any of the existing specialized languages or data structures for automating these

integration activities, and so the survey does not directly address the diversity problem

described. Also, only a few of the methodologies presented specific tools or procedures to

carry out the process of resolution beyond renaming, redundancy elimination, and

generalization; more difficult resolution tasks such as translating integrity constraints,

language, and data structure incompatibilities were not addressed. Furthermore, as stated by

the authors:

“None [of the methodologies] provide an analysis or proof of the
completeness of the schema transformation operations from the standpoint of
being able to resolve any type of conflict that can arise.” [Batini, Lenzerini,
and Navathe, 1986]

 12

The absence of such analysis or proof suggests that none of the methodologies is based on any

established mathematical theory; instead, they are a result of a consensus on schemas achieved

by changing the view of some users.

Subsequent research data heterogeneity used varying levels of mathematical

grounding and formal database theory. Several papers provided an intuitive classification of

types of semantic data heterogeneity, schematic data heterogeneity, and metadata. [Kashyap

and Sheth, 1996] Although not backed by formal proofs, these classifications provide a useful

contribution to the study of the data heterogeneity problem because they allow researchers to

focus on smaller instances of the problem. Other researchers eventually came to use more

theoretical designs to specify and solve the data interoperability problem. One team of

researchers investigated the use of information capacity equivalence to determine the

correctness of transformed schemas by examining common tasks that require schema

integration and translation, based on a set of formal definitions. [Miller, Ioannidis, and

Ramakrishnan, 1993] Another approach investigated used a logic that reasons about the

similarity of names in local domains, using statistical methods and a set of formal logic

axioms. [Cohen, 1998]

 Of the more recent methodologies to solving data heterogeneity, the tightly-coupled

federation and loosely-coupled federation approaches are among the most well known. In a

tightly-coupled federation, the administrator or administrators are responsible for creating and

maintaining the federation and actively controlling the individual component databases.

[Sheth and Larson, 1990] In a loosely-coupled federation, the user bears the responsibility of

creating and maintaining the federation and no control is enforced by the federated system or

 13

by any of the administrators. The main differences between the two strategies involve who

resolves conflicts and when. [Goh, 1997]

 Creating a tightly-coupled federation requires schema integration. Accessing data in a

loosely-coupled federation requires that a view over multiple databases be defined, or that a

query using a multi-database language be defined. Schema integration, multiple database

view definition, and multi-database language query definition are all affected by the problems

of semantic and schematic heterogeneity.

 More concrete examples of federated database systems will be presented in a later

chapter. The next sections will discuss the data interoperability problem, and then the

problems of semantic and schematic heterogeneity, which are subsets of the data

interoperability problem.

1.2 Data Interoperability

Formally defined, data interoperability is the ability to correctly interpret data that

crosses system or organizational boundaries. [Renner, 1995] From this definition, one could

conclude that data interoperability problems are obstacles that frustrate efforts to correctly

interpret data that crosses system or organizational boundaries. However, not all such

problems are strictly data interoperability problems. Indeed, the definition of data

interoperability can be justifiably vague because it must include many different kinds of

interoperability, all of which are necessary.

Consider a computer user unable to download a paper containing needed information

due to impaired network service. The impaired network service qualifies as a data

interoperability problem because it hampers the ability of the user to interpret the data that he

 14

or she is transferring from an outside entity, across a system boundary, to himself or herself.

However, this problem is primarily a communication interoperability problem, which can be

solved if the viability of the underlying communications network is established.

In the same example, the computer user discovers that the paper he or she downloaded

does not contain the information he actually needed. The incomplete information also

qualifies as a data interoperability problem for the same reasons that the impaired network

service did. However, it can be cast as a process interoperability problem, which can be

solved if the user and the author of the paper properly communicate their requirements and

resources.

These examples demonstrate that data interoperability includes other kinds of

interoperability. Therefore, any solution that aims to solve data interoperability problems

must also provide for a solution of other types of interoperability problem as well. At a

minimum the solution should specify how solutions to other interoperability problems would

work alongside it; at the other extreme, the overall solution could include the solutions of the

other interoperability problems within itself. For instance, an interoperability solution for the

example of the user downloading the paper may include assumptions of reliable network

services and predetermined agreement on what is required and what will be delivered.

In solving the data focus of the data interoperability problem, the fundamental

question is that of identifying objects in different data sources that are semantically related,

and then of resolving the schematic differences among the semantically related objects. Two

sub-problems of data interoperability are semantic heterogeneity and semantic heterogeneity.

In this thesis, the term semantic heterogeneity will be used to refer to the identification of

semantically or conceptually related objects in different databases, whereas the term schematic

 15

heterogeneity will be used to refer to the resolution of differences and similarities among

semantically related objects. A solution for data interoperability must address these two

critical problems. [Kashyap and Sheth, 1996]

 It should be noted that, in the literature, different researchers have assigned various

definitions to the terms semantic heterogeneity and schematic heterogeneity. Some of those

definitions may differ from the ones used in this thesis. What is referred to in this thesis as

semantic heterogeneity has been called fundamental semantic heterogeneity, process

interoperability, and semantic mismatch. [Coulomb, 1997; Renner, 1999] What is referred to

as schematic heterogeneity has been called semantic heterogeneity, domain incompatibility,

and data interoperability. [Hammer and McLeod, 1993; Sheth and Kashyap, 1996]

Nevertheless, this thesis will consistently use the terms as described in the previous paragraph,

unless specified otherwise.

The next section will discuss semantic heterogeneity and schematic heterogeneity in

turn, followed by approaches to each of these problems.

1.3 Semantic Heterogeneity

The semantic heterogeneity problem is the problem of identifying semantically related

objects in different databases. Intuitively, two objects are semantically related if they

represent the same real-world concept. A distinction between the real world and the model

world helps in characterizing semantic heterogeneity. Objects in the model world are

representations of things in the real world. Therefore, a semantic match is present between

two objects in the model world if both objects correspond to the same real world object; a

semantic mismatch is present instead if the two objects correspond to different real world

 16

objects. [Sheth and Kashyap, 1992] However, it turns out that determining presence of

semantic match or semantic mismatch is not as straightforward as one might think from this

description.

One simple example of semantic heterogeneity is a type of search problem known as

the text database discovery problem. With the availability and popularity of online document

stores, such as Dialog, Mead Data Central, Archie, WAIS, and World Wide Web, users do not

have the problem of finding documents; rather, they have the problem of deciding which

documents are the most relevant. Naïve search methods that depend on word frequency can

be helpful in some cases, but in other cases they fail completely. For example, a document

can have a high frequency for a particular word that a user is searching for. However, the

semantic meaning that the user is searching for might not match the semantic meaning of the

word as used in that document, in which case the document would have little or no relevance.

[Gravano, Garcia-Molina, and Tomasic, 1994]

One approach recognizes description overlap, which occurs when two different

databases contain descriptions of identical real-world properties, and contends that a property

equivalence assertion must be defined when description overlap occurs. In this approach,

when a property equivalence assertion occurs between two different domains, a conversion

function must be defined to map the two domains to each other, and then a decision function is

applied to choose between the two properties when the values from each database disagree.

[Vermeer and Apers, 1996]

Another approach defines a value known as semantic proximity that measures the

degree to which two objects are semantically similar. In this approach, the semantic proximity

of two objects is a function of the respective contexts of the objects, the abstraction used to

 17

map the domains of the objects, the domains of the objects themselves, and the states of the

objects. Using a more formal definition of semantic proximity, this approach can help to

identify the strongest semantic relationships to the weakest ones: semantic equivalence,

semantic relationship, semantic relevance, semantic resemblance, and semantic

incompatibility. [Sheth and Kashyap, 1992]

For the purposes of this thesis, the semantic heterogeneity problem will be treated

largely as a process problem. As such, the implicit assumption is made that people, not

automated computer systems, will be held responsible for resolving the problem of semantic

heterogeneity. The assumption, however, does allow for the use of computer systems to help

people to make better or more informed choices about semantic heterogeneity.

1.4 Schematic Heterogeneity

From the viewpoint of an application or other data consumer, identifying the data that

are required for application operation is the first step in enabling data interoperability. After

discovering a data source containing data that semantically matches the needed data, then the

schematic differences between the needed data and the database data must be resolved. This

resolution problem is known as schematic heterogeneity. A subtle point regarding the scope

of schematic heterogeneity is that it necessarily also includes the problem of identifying

schematically similar objects that are semantically unrelated, because this problem can

produce other confounding problems similar to those produced by schematically dissimilar yet

semantically related objects.

 Schematic heterogeneity is a result of several factors. One of the most pervasive and

universal complications is that different data engineers, programmers, and users think about

 18

data in different ways. As a result, schema implementations, which tend to capture the

idiosyncrasies of individual thought processes, have a high chance of exhibiting corresponding

idiosyncratic differences. As one researcher states:

“Schematic heterogeneity arises frequently since names for schema constructs
(labels within schemas) often capture some intuitive semantic information.
…Even within the relational model it is more the rule than the exception to
find data represented in schema constructs. Within semantic or object-based
data models it is even more common.” [Miller, 1998]

Most often, this phenomenon occurs during the design phase of a database schema. However,

its effects can linger to confound schema and data integration efforts long after the design

phase is over.

 Another factor is data model heterogeneity. For example, in an Entity-Relationship

(ER) model, a generalization hierarchy may be represented using is-a relationships, while in

an extended ER model, the same construct might be modeled using generalization

relationships, and in the relational model, there is no specific construct for modeling such

abstractions. [Hall, 1995] Numerous other data models have also been introduced into the

literature as well, each with its own constructs for representing data and data relationships.

Some researchers have suggested solving instances of schematic heterogeneity due to data

model heterogeneity by converting all data into the terms of one data model before trying to

reconcile any differences; however, this approach has the potential to violate individual

schema constraints as well as component schema autonomy. Data model heterogeneity

remains a significant challenge to solving schematic heterogeneity problems.

 Yet another major cause of schematic heterogeneity is incompatible design

specifications between data sources. It is not often the case that two databases share the same

exact purpose even though they may be related. As a result there is no reason for the two

 19

databases to necessarily have compatible design specifications. Even if two databases do

share the same purpose, it is not necessarily the case that designers choose designs that are

compatible with each other, since in most cases there is a virtually unlimited number of ways

to create a design. For example, a travel agency reservation system could be supported by two

databases. One database imposes a cardinality constraint between travelers and bookings,

such that each customer can have only one booking at a time, while the other allows

customers to have several reservations at once. These design specifications could be

completely justified in each database’s individual case, yet their incompatibilities will frustrate

interoperability efforts. [Batini, 1986; Hammer and McLeod, 1993]

1.5 Types of Schematic Heterogeneity

Schematic heterogeneity conflicts fall roughly into one of the following categories:

naming conflicts, structural conflicts, or interface conflicts. [Sciore, Siegel, and Rosenthal,

1994; Sheth and Kashyap, 1992; Cardiff, Catarci, and Santucci, 1997]

1.5.1 Naming Conflicts

Schemas for data models include names for the various entities, attributes, and

relationships. Data engineers naturally use their own terminology when designing schemas if

there are no requirements to do otherwise. Of course, there is no guarantee that people from

different organizations will happen to use the same conventions. Naming conflicts refer to the

redundancies and inconsistencies resulting from people incorporating their own names,

terminology, and conventions into their schemas. Naming conflicts include the following:

 20

1.5.2 Homonym Conflicts

Schemas may use the same name to describe two different concepts, resulting in

inconsistency between the models. For example, one schema could use the word "tank" to

refer to a container used to hold a certain amount of liquid, whereas another schema may use

the same word to refer to a large, armored war vehicle.

1.5.3 Synonym Conflicts

Schemas may use different names to describe the same concept, resulting in redundant

names. For example, one schema could describe a four-wheeled passenger vehicle as a "car,"

whereas another could describe the same object as an "automobile."

1.5.4 Precision Conflicts

Schemas have different conventions for the number of decimal places used to

represent numerical values. For example, one schema could call require all numerical values

to be exact to 10 places, whereas another could require all numerical values to be rounded to

the nearest integer.

1.5.5 Scaling Conflicts

Schemas may attach different units of measure to numerical values. For instance, one

schema could describe distances in terms of feet, whereas another could describe it in meters.

 21

1.5.6 Structural Conflicts

Just as data engineers create different names when not restricted to particular

requirements, they also choose different modeling constructs. Data engineers from different

organizations can and often do think about the same data in different ways. The schemas that

result from the heterogeneous methodologies may exhibit differences in modeling constructs.

These differences are referred to as structural conflicts, and include the following:

1.5.7 Type Conflicts

Schemas may utilize different modeling constructs to represent the same concept. For

instance, one schema could use an entity to represent a tank while another could use an

attribute.

1.5.8 Key Conflicts

Schemas may assign different keys to the same concept. For example, the keys pilot-

name and pilot-number could both be conceivably used to identify pilot records.

1.5.9 Cardinality Ratio Conflicts

Schemas may relate a group of concepts among themselves with different cardinality

ratios. For example, one schema may call for a one-to-one ratio between "ship" and "captain,"

with the rationale that each ship has only one captain, whereas another schema may call for a

one-to-many ratio for the same concepts, accounting for all of the officers who have ever

captained that ship.

 22

1.5.10 Interface Conflicts

Databases can be and often are designed to work with specific applications, and vice

versa. When systems are designed in this way, they can be highly optimized to do the things

they were specifically designed for. Unfortunately, with no regard for other potential

consumers, this methodology also results in data that is difficult, if not impossible, to use with

additional applications.

Single-purpose data systems continue to exist today. In the past, this type of system

was easier to justify since response-time requirements and relatively slow database

performance left no choice but to optimize based on a single purpose. However, such systems

have much less justification today, since the underlying technology is now able to give better

database performance and most enterprises have a requirement to share data at least within

their internal organization, if not with external organizations as well. [Bruce, 1992]

Even if a database is not built with a specific application in mind, it often requires an

application to use a specific interface to access the data it contains. Interface conflicts refer to

the problems that occur when an application cannot interoperate with a database because the

application does not use that database's specific interface.

1.6 Thesis Organization

This chapter discussed the problem of data interoperability, described several of the

associated sub-problems of data interoperability, and provided motivations for solutions. The

next chapter will provide a description of the related work that has been done towards

achieving solutions to data interoperability. Several chapters afterwards will discuss the

 23

proposed ADI architecture, specification, advantages, construction, and metrics. After a

thorough background is given on the ADI, a comparison of the ADI with other data

interoperability approaches is provided. The final chapter ends with conclusions and

suggestions for future research.

 24

2 Approaches to Achieving Data Interoperability

The previous section discussed various types of data interoperability problems. The

next section explores some of the approaches that have been researched or tried towards

achieving better data interoperability. These approaches include human intervention, point-to-

point interfaces, standardization, federation, ontologies, and mediation.

2.1 Human Intervention

 One approach that solves data interoperability problems is human intervention. In this

approach, two or more systems experiencing difficulty in exchanging data can resolve

differences through communication by the owners of the systems—people who design,

maintain or otherwise have a responsibility for the system. Such communication can be in a

face to face meeting, through an instant messaging system, or by way of POTS (Plain Old

Telephone Service).

Such an approach has the advantage that it is fast and inexpensive, at least in some

cases. This approach does not require hardware beyond that which is already typically

available in a computing environment. Also, if the owners are sufficiently knowledgeable

about their systems or if the data conflict is of a type such that it can be easily resolved, then

the human intervention approach can be quicker to implement and yield results than other,

more automated, solutions. However, this solution is not effective when scaled for large

environments that may potentially encounter a large number of data conflicts, because the

human intervention will be needed for every instance of conflict. Therefore, this thesis will

focus on more automated approaches, which will yield more scalable results. Nevertheless, it

 25

is important to include the human intervention approach because there are cases where it will

be an effective solution.

2.2 Point to Point Interfaces

Another way to enable data interoperability is through the use of point-to-point

interfaces. To connect any two systems, a piece of special software or interface can be written

to negotiate data and facilitate communication between the two systems. Such software is

known as a point-to-point interface. The advantage of the point-to-point interface is that it is

almost always the simplest, fastest, and cheapest way to connect two systems in the short run.

However, the benefits of this approach are outweighed by disadvantages when considering a

large environment and long term effects. [Renner, 1999]

Building a point-to-point interface may or may not be easy depending on the

application and database involved, but in the general case it should be considered as a non-

trivial task. [Hammer et al., 1997] However, situations exist where this approach is the most

cost-effective one. For example, if it is known that there will be only two systems that need to

exchange and interpret data, then a point-to-point interface is almost certainly the best

candidate to solve the interoperability need.

Figure 2.1. Point-to-Point Interface, Two Databases: Only One Interface to Build

Database

Interface

Database

 26

Point-to-point interfaces can work well for an environment composed of a small

number of individual systems. However, the number of interfaces does not grow linearly with

the number of systems. In an environment consisting of n systems, the number of interfaces

needed to inter-connect all of the n systems requires

total interfaces, which grows with the square of the number of systems. Clearly, the point-to-

point interface approach becomes infeasible when applied to large environments because of

the sheer number of interfaces that must be built. [Renner, 1999]

Although a point-to-point interface can be constructed easily and cheaply to connect

two systems, the maintenance of an environment full of interfaces is costly in the long run.

Changes, for example, become difficult to deal with. In an environment consisting of n

interfaces, a change to a single system requires a change in each of the up to n - 1 interfaces

that connects to that system. (In the following diagram, each line represents an interface.)

)(
2

)1(2
1

0

n
nn

i
n

i

Ο=−=∑
−

=

 27

Figure 2.2. Point-to-Point Interface, Many Databases: Even More Interfaces to Build

2.3 Standardization

A way to avoid the data interoperability problem altogether, where feasible, is through

standardization. Requiring the set of all intercommunicating systems to use the same data

models and structure to represent data assures any system within the set that it will be able to

communicate with any other system within the set. Unfortunately, there are potential

significant pitfalls with the standardization approach.

Database

Database

Database

Database

Database

Database

Database

Database

Database

Database

Database

Database

 28

Constructing a single, comprehensive data standard is difficult or even impossible. If

every system is to be able to conform to a data standard, that standard must include the union

of the requirements of the individual systems; if the requirements of any one system are left

out, that system will not be able to conform to the standard. The complexity associated with

constructing and maintaining a monolithic standard can easily exceed reasonable human limits

even in modestly large environments. [Renner, 1999]

Assuming that a standard can be established for some set of systems, maintenance is

still a difficult problem in its own right. Because of changing requirements, changing

regulations, changing technology, or other reasons, systems always must be prepared to

change. Maintaining a standard over a large number of systems implies a high rate of

occurrence of changes since the changes propagate from the individual systems into the

standard. Assuming that an individual system averages one change every three years, a

standard that accommodates 300 individual systems must undergo 100 changes per year, or

two changes per week. [Goh, 1994] Unfortunately, standards are by nature resistant to

change. Once a standard is established, it is much more difficult to make the standard change

around the systems than it is to make the systems conform to the standard. Maintaining a

standard over a large number of systems is clearly a difficult problem because of the conflict

between inevitable, frequent changes, and the tendency of standards to resist change.

When the standard is changed for whatever reason, compatibility problems can be

introduced. To ensure compatibility when a standard is changed, all of the individual systems

must also change. However, it is often impossible for all of the individual systems to change

simultaneously, especially with a standard that encompasses a large number of systems, giving

 29

rise to interoperability problems between systems that have changed and systems that have

not. [Renner, 1995]

Standardization is infeasible when all communication is not self-contained. It is rare

that systems never encounter outside interaction. Communication with systems outside the

standard will necessarily be more difficult than with systems within the standard.

Standardization is not an optimal approach in an environment that consists of many

independent systems. Even though systems may be independent there can be a requirement to

share data, for example, in an environment where many systems combine vast data stores to

enable decision-making. In such an environment, the standard would be seen as intrusive to

the individual systems. The special requirements of one particular system may be detrimental

to another system, yet the standard must accommodate both systems.

2.4 Federation

As described earlier, the construction of a federation can aid in data interoperability.

Individual databases can join in a federation, where each database extends its schema to

incorporate subsets of the data held in the other member databases. Federations can be tightly-

coupled or loosely-coupled. Both approaches yield a schema against which data consumers

can make queries; the former placing the burden of creating and maintaining the schema on

administrators, the latter placing that burden on users.

2.4.1 Tightly-Coupled Federation

In the tightly-coupled federation, a shared global schema, which is maintained by an

authoritative administration, represents all of the data available in a heterogeneous

 30

environment. Tightly-coupled federations require the identification and resolution of data

conflicts in advance. Once this task has been accomplished, queries can be made against the

resulting global schema. Examples of tightly-coupled federation approaches include

Multibase [Smith et al., 1981], PRECI* [Deen et al., 1985], ADDS [Breitbart et al., 1986], and

Mermaid [Templeton et al., 1987]; more recent examples include IRO-DB [Gardarin and Sha,

1997], SIM [Motz and Fankhauser, 1998], GIM [Akoka et al., 1999], VHDBS [Wu, 1997],

and SIGMA(FDB) [Saake et al., 1997].

The critical task in the creation of a tightly-coupled federation--the creation of a global

schema--depends heavily on an ability to determine semantic matches between data structures.

In the past, efforts to eliminate semantic ambiguities were mostly empirical, resulting in

categorizations of semantic heterogeneity problems. While useful, such research does not

address on a formal level what a semantic match is or is not. However, recent trends in the

research of tightly-coupled federations have been aimed at formalizing notions of semantic

similarity or affinity between different data models. Formal mathematical models or

definitions help to better define the logic behind creation of a global schema. [Jannink et al.,

1999; Castano and DeAntonellis, 2001; Kiyoki et al., 1995; Hull, 1997]

2.4.2 Loosely-Coupled Federation

In the loosely-coupled federation, the component databases do not share a global

schema; rather, they attempt to detect and resolve data conflicts during data exchanges

between systems. While this approach avoids the overhead of maintaining a global schema

characteristic of tightly-coupled approaches, it places an extra burden of data conflict

resolution on the individual data stores and data consumers, a burden that is not present in

 31

tightly-coupled approaches. Examples of loosely-coupled approaches in the literature include

MRDSM [Litwin and Abdellatif, 1986], FEDDICT [Richardson and Smeaton, 1996], and

MASM [Lee and Baik, 1999]. Most of the research pertaining to loosely-coupled federations

focuses on the creation or refinement of query languages and query transformations.

2.5 Ontology

An ontology organizes the knowledge about data elements, such as tables and classes,

in a data domain at a higher abstraction level into concepts and relationships among concepts.

The lower level data elements are often ambiguous or heterogeneous, preventing data

consumers from understanding the contents of a data store. Ontologies permit a data

consumer to query several distributed databases in a uniform way, overcoming possible

heterogeneity. [Castano and DeAntonellis, 1998] Examples of ontology-based approaches

include DOME [Cui, 2000], SKAT [Mitra et al., 1999], and Linguistic Dictionaries [Kedad

and Metais, 1999]. Much of the research relating to ontologies is closely related to the

research on tightly-coupled federations: A common need for data interoperability approaches

that rely on ontologies is the need to merge two different, yet possibly overlapping ontologies.

Therefore, the need to identify semantic similarities and differences is also an important area

of research.

2.6 Mediation

In the traditional mediation approach, an integrated view of data that resides in

multiple databases is created and supported. The basic architecture for such an approach

utilizes a component known as a mediator that typically resides on a system separate from the

 32

individual databases. A schema for the integrated view can be made available from the

mediator, and queries can be made against that schema. More generally, a mediator is a

system that supports an integrated view over multiple sources. [Masood and Eaglestone,

1998] According to this definition, mediators help enable tightly-coupled federation

strategies.

The first approaches to mediation permitted read-only views of the data through the

mediator. A natural extension that was developed was to support updates as well as read-only

queries from the mediators. In its most general form, the update capability raises the view

update problem-maintaining a valid view even after updates to component databases have

taken place. However, updates can be supported against the integrated view provided

appropriate limitations are utilized. [Keller, 1986] Different systems using the mediation

approach feature a variety of techniques to ensure that the integrated view constitutes a valid

schema. A mediator may involve data from a variety of information sources, including other

mediators, in order to support the proper view. [Masood and Eaglestone, 1998]

Newer architectures utilizing mediators have not always strictly followed the

traditional definition of mediator. Such systems have combined ideas from the other

previously mentioned architectures. For example, the COIN approach [Goh, 1997] utilizes

mediators that rely on data producers and consumers having explicit contexts. This approach

combines elements of point-to-point interfaces and ontologies, as well as reducing the data

reconciliation efforts of both tightly-coupled and loosely-coupled federation approaches.

Other approaches involving mediators include AMOS [Fahl et al., 1993], TSIMMIS [Hammer

and McLeod, 1993], DECA [Benslimane et al., 2000], XMLMedia [Gardarin et al., 1999],

and DIOM [Liu and Pu, 1997].

 33

2.7 Comparison

For the purposes of comparison to the ADI, several of the approaches to data

interoperability will be revisited in a later chapter. The next chapter will introduce the

architecture and specifications of the Abstract Data Interface. After a discussion of the ADI, a

more detailed discussion of the approaches will be presented along with a comparison to the

ADI.

 34

3 Active Data Interface

The previous chapter introduced data interoperability and discussed various

approaches to achieving it. This chapter introduces the Active Data Interface (ADI) concept,

architecture, and design.

3.1 Active Data Interface Concept

 The ADI concept arose from the following observation: In a large-scale distributed

environment consisting of physically disparate applications and databases, many different

systems utilize different data models and interfaces; but the same functionality is often

replicated by interfaces that translate data between the various systems. An analogy in terms

of previous approaches is that the point-to-point interfaces in a non-standardized environment

often achieve the same purposes, even though the specific implementations are different. The

following figure provides an example.

 35

Figure 3.1. Scheduler and Payroll Example

In this example, there are two applications, a Scheduler application and a Payroll

application, that need to communicate with two databases in order to produce correct reports.

The diagram indicates the application requirements and data format. Application

requirements are the assumptions about the data that the application developers make when

creating the application. Data format indicates the way in which the relevant data are stored in

the databases. Oftentimes the application requirements and the data format are not conceived

with each other in mind, and therefore custom built interfaces that allow the application and

databases to work together properly must be built and inserted between the database and

application layers.

Pilots and
Training

Flyers and
Missions

PayrollScheduler

Access: SOAP
Units: English

Access: MTF
Units: English

Precision: Integer
Request: CGI
Units: Metric

Interface 1 Interface 2 Interface 3 Interface 4

Precision: Float
Request: RPC
Units: English

Data Format

Application
Requirements

Application

Custom-Built
Interface

Database

 36

Together, application requirements and data format indicate the functionality required

by the four interfaces in the center. Both databases contain raw data in English units. The

Pilots and Training Database assumes that it will be queried through a Simple Object Access

Protocol (SOAP) access mechanism. The Flyers and Missions Database assumes that it will

be queried via requests in Message Text Format (MTF).

The Scheduler application communicates with the Pilots and Training Database via

Interface 1, and with the Flyers and Missions Database via Interface 2. The Scheduler expects

to communicate to a database through the CGI protocol, and assumes that it will receive data

about pilots in metric units, rounded to the nearest integer. Interface 1 needs to translate CGI

application requests into SOAP queries to communicate with the Pilots and Training

Database, and convert the data from that database from English to metric units and round to

the nearest integer. Similarly, Interface 2 needs to convert CGI application requests into MTF

queries to communicate with the Flyers and Missions Database, and convert the data from that

database from English to metric units, rounded to the nearest integer.

The Payroll application also requires interaction with custom interfaces. It

communicates with the Pilots and Training Database via Interface 3, and with the Flyers and

Missions Database via Interface 4. The Payroll application expects to communicate with

databases through Remote Procedure Calls (RPC), and assumes that it will receive data about

pilots in English units, with as much floating-point precision as possible. Therefore, Interface

3 needs to convert RPC application requests into SOAP queries to communicate with the

Pilots and Training Database, and interpret data from that database with floating-point

precision. Lastly, Interface 4 needs to convert RPC application requests into MTF queries to

communicate with the Flyers and Missions Database, and interpret data from that database

 37

with floating-point precision. With the Payroll application there happens to be no conflict

between systems of units of measurement.

This example demonstrates the repetition inherent in constructing a set of custom

interfaces for communication and interaction between these applications and databases. For

example, Interfaces 1 and 2 only differ in that they require different ways for the application to

access the data in the databases, while the rest of the functionality is the same. As another

example, Interfaces 3 and 4 also exhibit different ways to permit application access to data, but

the functionality provided by the floating-point conversion is the same in both interfaces. This

observation leads one to conclude that it should be possible to construct an interface generator

that automatically produces customized interfaces between individual systems in the

environment, without duplicating the work usually associated with constructing customized

interfaces.

 Such an interface generator would only be possible with the proper input. The

required input includes what would be analogous to the Application Requirements and Data

Format layers in the above example. In simpler language, the interface generator would have

to know (1) what is needed by the application; and (2) what is available in the database. These

two inputs, in some sense, form the basis of the Abstract Data Interface. Along with these

inputs, the interface generator would also have to have the proper mediation tools to perform

any necessary translations between application requirements and database data. These three

categories of input—application requirements, database content description and mediation

tools—are necessary for interface generation.

It should be noted that although these inputs are necessary, they might not be

sufficient. Even though an eventual goal of a system that automatically generates these

 38

interfaces might be to operate without any human intervention, a system that would overcome

such problems as process interoperability might need more inputs. However, a successful

implementation of the Abstract Data Interface concept does not require that interfaces be fully

automatically generated. Interface programmers would be pleased to have an interface

generator that could generate even a portion of an interface, as long as it is able to prevent

some amount of work from being duplicated.

3.2 Abstract Data Interface Architecture Specification

The ADI is not intended to act as a stand-alone device. Rather, it is designed to be a

part of a framework that could include new applications and databases as well as legacy

systems. This section describes the general architecture that includes the ADI, specifies what

requirements are needed for each component, and explains how the ADI functions alongside

other interoperability components.

 39

Figure 3.2. Single Application-Single Database ADI Architecture

This diagram shows an interface being generated for a single application-database

pair. The generation is accomplished through the following general steps:

1. Database Contents Publication. The database contents are published

through the ADI.

Application
Requirements

Interface
Generator

Interface

Translator
Library

1

3

4

5

6

Application

Database

Access
Description

ADI 2

 40

2. Database Access Description. The information and methods needed

to access the database are described via a database model or other

vehicle.

3. Application Requirements Description. The application

requirements are selected from the ADI.

4. Translator Library Preparation. A collection of translation tools is

made available.

5. Interface Generation. The interface generator produces an

application-to-database interface.

6. Interface Operation. The application and database communicate

using the newly generated interface.

The following sections will explain each of these requirements in further detail.

3.2.1 Database Contents Publication

Publishing the contents of the database is accomplished through the Abstract Data

Interface (ADI). The person who maintains the database—in most cases she will be known as

the Database Administrator (DBA)—is the person best equipped to construct the ADI, since

she both decides what data should be published or not published, and has the knowledge to

assemble such an interface.

The purpose of the ADI is threefold:

 41

1. To allow a DBA to decide what data she wishes to expose, or make

available to applications and other data consumers;

2. To allow interface programmers or application developers to easily

select the data that is required by an application; and

3. To provide the Interface Generator with information that will allow it

to relate the selected data to particular access methods, and access the

data needed.

In order for the ADI to achieve the goal of providing an abstract data interface for

programmers, the ADI must be easy to read and understand. To this end, the ADI itself will

consist of a description of the data, and the relationships between that data, in the database. To

the extent possible, supporting data details, that do nothing to describe what the data actually

is, are to be omitted from the abstraction. Some details can in general be left out, such as

numeric precision, units of measure, and value integrity constraints. In other cases, the DBA

will need to make a judgment as to whether a particular attribute should or should not be

included in the ADI. In addition, the names of the data fields should be changed to describe

the data in as human a language as possible. Data field names that resemble human language,

e. g., “Number of Aircraft,” lend an intuitive notion of the data and help to better understand

what data is available. In contrast, database names for data fields are frequently cryptic, e. g.,

“2b_noa_acf,” and have no meaning except to the database designer or DBA. In the end, the

ADI should be descriptive enough to allow an interface programmer or an application

developer to select the data objects needed for a particular application, yet simple enough so

that the same person does not see any of the underlying data storage implementation details.

 42

To help formalize the notion of an ADI, the following structure, known as a Data

Descriptor Set or DDS, is defined. A DDS is defined to be a set of tuples:

for some number of tuples n. Each tuple T is defined by:

for any tuple i and some number of references j. Each d represents some finite piece of data.

The corresponding r’s represent a reference to the d with which they are grouped. The

rationale for the existence of the r‘s is that in general a single piece of data d cannot be useful

on its own. The data must have a frame of reference or context to be useful, e. g. a list of

heights is useless unless one knows which individuals each height describes. Also, there may

be multiple references r, since users may have many different ways to reference the data.

An ADI is defined to be an instance of a Data Descriptor Set, or DDS. In addition, the

ADI also has the following constraints for each piece of data d:

These constraints capture the concept that the ADI ought to avoid cryptic descriptions. They

require that the description of the data and references to be the simplest (minimum)

descriptions possible.

})(min{)(. U
b

ibi dndescriptiodndescriptioi =∀

U
b

ijbij rndescriptiorndescriptioji)}(min{)(., =∀

{ }nTTTTDDS ,...,,, 321≡

ijiiiii rrdRdT ,...,,, 1=≡

 43

3.2.2 Database Access Description

Although it is not important to include database details in an ADI—in fact it is

disadvantageous to the ADI to do so—in order for an interface to function properly, it will

have to have some means of providing the actual data specified in the ADI. In the ADI

architecture, the Interface Generator generates the interface, and so the Interface Generator

will also require this access. The DBA should be held responsible for the task of constructing

the Database Access Description.

In order for the Database Access Description to accomplish the goal of providing a

data consumer with any piece of data included in the ADI, the Database Access Description

will need to provide access to the contents of the database. That is, for any piece of abstract

data specified in the ADI, the description must contain all of the information needed to

provide that data. Many or all of the database details that were omitted from the ADI will be

needed in the Database Access Description in order to enable this access.

The DBA, having created the ADI, and having intimate knowledge of the workings of

the database he maintains, should understand the relation between any piece of information in

the ADI and the methods needed in order to access that information. As an example, assume

that the attribute, “Person’s Height,” is a piece of data that could be selected from an ADI.

The Database Access Details would include not only the “ht” (height) data field, but also the

data-fields “ht-accy” (the accuracy of the height measurement) and “ht-um” (the units of

measure for the height).

In more formal language, the Database Access Description (DAD) is defined to be

another instance of a DDS. The relationship between the DAD and the ADI can be described

thus:

 44

The ADI is a subset of the DAD. This relationship must be true since an ADI by itself cannot

contain more than the quantity of information required to retrieve data from the database.

After all, the ADI omits database details that must be provided in order to access database

data.

This subset relationship also entails the following constraints. First, let ADI and DAD

each be an instance of a DDS. Then the number of tuples in ADI is less than or equal to the

number of tuples in DAD, or:

This relationship must be true because the DAD may need auxiliary data in order to answer

queries. Let i be the index of some tuple in ADI and DAD such that the corresponding d’s in

each tuple are equal. Then the number of references in the tuple i of ADI is less than or equal

to the number of references in the tuple i of DAD:

The comparisons in these definitions are not defined to be strict, as in strict subset or strictly

less than. However, in practice the ADI is virtually guaranteed to be a strict subset—not only

is it true that the ADI cannot contain more than the quantity of information required to retrieve

data from the database, it should in practice contain less because of the omitted data.

DADADI DDSDDS ⊆

DADADI ≤

{ }ijiiADIi rrdT ,...,, 1, =

{ }ikiiDADi rrdT ,...,, 1, =

kj ≤

 45

In theory, the Database Access Description needs to be responsible for providing

access to at least the data that is specified in the ADI. However, providing access to more data

than is necessary may or may not be something a DBA will want to do. There are advantages

and disadvantages to providing more than the minimum amount of access that will be

discussed later.

In summary, the Database Access Description provides a way for an ADI component

to access data from the database. Database details need to be known in order to enable proper

access. It gives the interface generator the information it needs to create functional interfaces

to communicate with the database.

3.2.3 Application Requirements Description

The Application Requirements (ARD) description indicates the data, and the format

for that data, that is required by the application. The Scheduler and Payroll example

mentioned earlier provides a couple of good examples. In that example, the requirements of

the Scheduler application are that it must work with data that is expressed in metric units,

rounded to the nearest integer, and returned via CGI. The requirements of the Payroll

application are that it must work with data that is expressed in English units, measured as

exactly as possible with floating point numbers, and returned via RPC. The Application

Requirements description should be able to express the requirements of these two examples in

this manner.

The ADI facilitates the construction of the Application Requirements because the

application developer or interface programmer should be able to more easily establish a

 46

semantic match. That is, he can make a quick and accurate assessment as to whether the data

that needed by the application is contained within a particular database. Once a semantic

match is established, the Application Requirements dictate how the data is to be transferred

between application and database. The interface generator can then use the information

contained in this description to create an interface that is tailored to the application’s needs.

To define the Application Requirements more formally, an extension of the DDS

called a Data and Format Descriptor Set, or DFDS, is defined. A DFDS also consists of a set

of tuples:

for some number of tuples n. However, the structure of each tuple T is extended to include a

description of format:

for some number of references j and some number of formats k. The Application

Requirements are defined in terms of a DFDS. As before, a piece of data is specified through

the use of its associated references R. In addition, an Application Requirements also specifies

for each piece of data the way in which an application needs to receive that data, through each

data’s associated set of formats F.

 The definition of an ARD can be refined through the inspection of its associated DDS.

Since an ARD is a proper extension of a DDS, the following structure can be defined:

{ }nTTTTDFDS ,...,,, 321≡

ikiijiiiiii ffrrdFRdT ,...,,,...,,,, 11=≡

{ }nARD TTTTDDS ′′′′≡ ,...,,, 321

 47

where the following relationship holds:

for all l such that 1 ≤ l ≤ n, and for the number of factors k corresponding to tuple T at index l.

In other words, a DDS for the ARD includes all of the data and references included in the

DFDS for that ARD, and does not include any of the factors from the DFDS.

The relationship between the DDS of the Application Requirements and the ADI can

then be described thus:

The DDS of the Application Requirements (the set on the left-hand side) are a subset of the

ADI. This relationship must be true since an Application Requirement set can never exceed

the data that is allowed to be queried or viewed through the ADI. In other words, an

application cannot request data from a database that is not included in that database’s ADI.

The subset relationship is not a strict-subset relation because it is possible for an application to

request the entire set of data.

It should be noted that, in principle, it should be possible to create an actual description

or language to represent the Application Requirements description such as the one just

described. However, in practice it will probably make more sense to implement the

description as a process rather than an actual description. The process might consist of a

person working through some sort of graphical user interface (GUI) representing an ADI, to

select the desired qualities of the interface. The program containing the GUI can then relay

ADIARD DDSDDS ⊆

},...,{. 1 lklllARDl ffTTDFDST o′=∈∀

 48

the selections to the appropriate interface generator. Although such a process does not appear

to explicitly declare a description of the application requirements, it does implicitly describe

the application requirements. Such an implicit description may or may not suffice. This

process will be described in further detail in a later section.

3.2.4 Translator Library Preparation

 In order to enable the interface generator to generate interfaces, a library of translator

tools must be provided. The translator library consists of individual translators—programs

that perform some kind of translation from one data format or paradigm into another. These

translators can be assembled to produce an interface between some application and some

database. The translators represent the building blocks of the interfaces that the interface

generator produces.

 More formally, a translator is defined to be a function φ that imposes a particular

format f on some piece of data d:

where the notation f{d} indicates the format f imposed on d. An example of a format imposed

on a piece of data is the following: Assume the existence of the format f for meters, and of a

piece of data d that corresponds to the distances between the bases in a baseball diamond,

which are usually measured in feet. However, the format f imposed on d in this instance

yields an exact measurement of those distances in meters instead.

() { }dfdf =,φ

 49

A translator library, or TL, is a set of these φ functions:

where d is the number of functions in the Translator Library. A Translator Library may

contain any number of individual translators, and should be able to be expanded to include

more translators as the need arises.

 The Scheduler and Payroll example can be used to demonstrate the translator library

concept. In order to implement Interface 1 in the example, a set of specific translators are

required. The Scheduler requires that all numeric data be rounded to the nearest integer. The

interface will require a translator that rounds the numeric data to the nearest integer. It

accesses data via CGI calls, whereas the database interacts with other programs via SOAP

calls. The interface will therefore also require translators that convert CGI calls to SOAP calls

and vice versa. Finally, the Scheduler requires that quantitative data be presented in metric

units, whereas the database stores data in English units. The interface will also require

translators that convert various metric units to English units and vice versa, e. g., feet to meters

and meters to feet, kilograms to pounds and pounds to kilograms, etc.

{ }dTL φφ ,...,1=

 50

Figure 3.3. Scheduler and Payroll Example, Interface 1

It is easy to see how this example could be expanded to include the required

translators for all of the other interfaces in the Scheduler and Payroll example as well.

3.2.5 Interface Generation

 The Interface Generator takes in as input the ADI, the Database Access Description of

the database, the Application Requirements, and the Translator Library, and produces an

interface that will allow the application and database to interoperate with each other. The

Database Access Description provides the necessary access to the database, including any

required specific metadata information. The ADI facilitates the construction of the

Pilots and
Training

Scheduler

Access: SOAP
Units: English

Precision: Integer
Request: CGI
Units: Metric

Interface 1

Data Format

Application
Requirements

Application

Custom-Built
Interface

Database

 51

Application Requirements, which in turn dictate how the data is to be exchanged between the

application and the database. Finally, the Translator Library provides the tools necessary to

perform the various translations between the specific data paradigms of the database and the

required formats of the application.

 The interface generator is defined as a function G that yields an output I, which is also

a function. The function G takes in as input an ADI represented by a DSS, a DAD,

represented by another DSS, an ARD, represented by a DFDS, and a Translator Library,

represented by a set of functions. More formally,

such that

where the input d to the function I is a query for some piece of data. This requirement on G

states that for any data in the ARD, the interface I should be able to output the data in the

format specified in the ARD.

3.2.6 Interface Operation

 An interface created by the Interface Generator allows an application and a database to

exchange information with each other. Transactions between the application and database

occur through the newly generated interface. Together, that application, database, and

interface are capable of interoperation without further intervention from other devices.

() ()dITLARDDADADIG =,,,

{ }iiki
output

iii dffdITfTdARDT oo ...)(.,, 1 →∈∀∈∀∈∀

 52

4 Goals of the Abstract Data Interface Architecture

The ADI aims to foster improved data interoperability in a scalable, maintainable, and

adaptable manner:

1. Scalability. The ADI concept should be applicable in large

environments consisting of many applications and many databases.

2. Maintainability. A system that utilizes the ADI concept should be

easy to maintain relative to other solutions.

3. Adaptability. Changes to an individual component within the

architecture should have minimal impact on other components.

The following sections will discuss the ability of the proposed ADI architecture to meet these

goals.

4.1 Scalability

 Scalability refers to the ease with which a system can be modified to fit the problem

area. The ADI concept extends well beyond one application-database pair. For each database

in a set of databases, Detailed Abstractions can be easily created from logical design models.

Each database can add its own individual abstract data description to the ADI that

encompasses the set of databases. This comprehensive ADI facilitates construction of

Application Requirements descriptions as before, but with the added feature that data can be

retrieved from any of the individual databases, without necessarily having knowledge of

 53

individual databases. This feature is remarkable, since the ability to treat the set of databases

as a single logical unit simplifies the tasks and thought processes of the application developer

or interface programmer.

Figure 4.1. ADI Architecture is Scalable

Access
Description

Application
Requirements

Interface
Generation

Tool

Translator
Library

Application

Application
Requirements

Application

Application
Requirements

Application

Database Database Database

InterfaceInterface

Interface Interface Interface

InterfaceInterface

ADI

Access
Description

ADI

Access
Description

ADI

 54

Once the ADI and Database Access Descriptions of each database, the Application

Requirements of each application, and the Translator Library with appropriate translators are

made available as input to the Interface Generator, interfaces between any application-

database pair within the entire system can be automatically generated.

4.2 Maintainability

 Maintainability is defined as the ease with which a software system or component can

be modified to correct faults, improve performance, or other attributes, or adapt to a changed

environment. [IEEE, 1990] The ADI concept and architecture allow for a highly

maintainable system, since less maintenance work relative to previous approaches is reduced

in the event individual databases and applications need to be changed.

 The modularity inherent in the ADI architecture allows for significant maintenance

ease. The ADI architecture provides for the automated generation of interfaces, which can

easily be modified after generation as needed, without impacting the operations between other

applications and databases or the rest of the ADI architecture. If faults are discovered in an

individual application, database or interface, the components in the ADI architecture are

sufficiently modular and separable that they can be modified individually to meet the new

need, with minimal impact on the rest of the architecture. While the point-to-point approach

described earlier features this kind of maintainability, standardization does not, since standards

are more closely coupled with the individual applications and databases that they support.

 The ADI architecture requires maintenance attention to a significantly smaller fraction

of interfaces as compared to an architecture that utilizes point-to-point interfaces. If

 55

maintenance efforts are required, they are aimed at the ADIs and Database Access

Descriptions associated with each database, and the Application Requirements. In the case of

maintenance efforts that require attention to individual databases, the number of interfaces that

must be inspected is in the worst case linear in the number of individual databases and

applications. In a point-to-point model, maintenance efforts must be aimed at each individual

interface, which in the worst case could require that maintenance work be performed on an

exponential number of interfaces compared to the number of databases or applications. For

any sizable number of changes, the ADI approach offers a considerable reduction in the

amount of work that needs to be done. This reduction in work is possible because, in the ADI

model, the interface generator performs the maintenance work for each interface by generating

a new interface, whereas in a point-to-point model, each interface must be modified by hand.

 In the diagram below, components in marked in bold (applications and databases) are

targets of maintenance efforts but all shaded components (interfaces) are generated

automatically by the Interface Generator and do not require extra maintenance work.

Although it can be seen from the diagram that a significant amount of work is saved, it should

be noted that an even more overwhelming amount of work would be saved in an environment

with only a few more databases or applications. In such an environment, there could be an

exponential number of interfaces, all of which would be automatically generated.

 56

Figure 4.2. ADI Architecture is Maintainable

4.3 Adaptability

Adaptability is defined as the ease with which software satisfies differing system and

user constraints. [Evans 87] In this section the ability of the ADI to respond to the challenge

Access
Description

Application
Requirements

Interface
Generation

Tool

Translator
Library

Application

Application
Requirements

Application

Application
Requirements

Application

Database Database Database

InterfaceInterface

Interface Interface Interface

InterfaceInterface

ADI

Access
Description

ADI

Access
Description

ADI

 57

of adding new applications or databases is examined. It will be seen that the ADI should be

able to handle the challenge effectively.

 The ADI architecture can enable a new application to exchange information with the

already existing set of databases. In order to enable the exchanges, the application developer

or interface programmer uses the ADI database abstractions to create a new set of Application

Requirements, which are then passed to the Interface Generator. The Interface Generator, in

turn, creates a new interface that could be similar to, but is independent of, any previous

interface created.

The ADI architecture can also accommodate the addition of new databases. One who

wants to add a new database to the architecture publishes the database using both the ADI

abstraction as well as the Detailed Abstraction. The ADI of the new database is added to the

Comprehensive ADI, while the Detailed Abstraction is made available to the Interface

Generator. Application developers or interface programmers can now use the Comprehensive

ADI to create interfaces that will exchange information with a logical database that includes

the newly added one. Already-existing interfaces will be affected in one of two ways:

1. They will not be affected. This case occurs when the newly added database

includes no data that affects the application that connects to the interface.

2. They will require changes. This case occurs when the newly added database

includes some data that conflicts or otherwise intermingles with previously

existing databases.

 58

The first case is easy to deal with. If the new data does not have any relation to the

application, the application developer or interface programmer should not need to do anything,

and he should instead simply allow the interface to continue to retrieve the same data as

before. No further action is necessary to ensure smooth operation.

The second case is somewhat harder to deal with because there is a requirement to

expend additional resources to accommodate the change. If the new data serves as a better

substitute for the previously used data, or if a combination of the new data and the old data

serves the purposes of the application better, then a new Applications Requirements

description should be created. The new Applications Requirements description allows the

Interface Generator to create a new interface for operation between the application and the

new set of databases.

At first glance, the extra work required to make the application work again seems to

offer a serious disadvantage. Assuming that there is a requirement to change many of the

applications as a result of adding a new database, then work will have to be done on a linear

number of applications, in the form of a new Applications Requirements description for each

application. A system of point-to-point interfaces under the same assumption, on the other

hand, would require programming work to be done on each of the interfaces for each

application, which can be the number of applications, squared. The Interface Generator in the

ADI architecture reduces the programming work necessary.

It would be highly convenient if the ADI architecture were robust enough to

accommodate these kinds of changes automatically. However, the application developer or

interface programmer must make a choice that dictates the change. The choice can be thought

of as a new instance of deciding whether a semantic match exists between the application and

 59

the new database. Therefore, the problem of accommodating these kinds of changes is a

process problem, and cannot be automated.

 60

5 Sample Component Construction

The previous section discussed the architecture specification, operation, and

advantages of the ADI. The next section is concerned with the construction of the individual

components of the ADI. The components that need to be considered are:

1. Database

2. Abstract Data Interface

3. Database Access Definition

4. Application

5. Application Requirements

6. Translator Library

7. Interface Generator

8. Interface

In the next section, each of these components will be discussed and demonstrated with

examples. The accompanying examples will assume for simplicity that there are two

applications and one database.

5.1 Database

 According to one definition, a database is “a collection of logically related data stored

together in one or more computerized files.” [IEEE, 1990] According to another definition, it

is “an electronic repository of information accessible via a query language.” [DoD, 1991]

 61

These definitions characterize at a high level what a database is, but it is one particular

characteristic that helps to apply the ADI concept over databases in general: the fact that

databases are based on some kind of information model.

 Information modeling is a technique used to understand and document the definition

and structure of data. A logical information model is a specification of the data structures and

business rules needed to support a business area. A physical information model represents a

solution to these requirements. Databases utilize information models for a variety of reasons,

including education, planning, analysis, design, documentation, standardization, policy, and

speed.

 Because the ADI concept relies on general information modeling practices that apply

to all databases rather than on specific types of databases, virtually all kinds of databases

should be eligible for inclusion in the ADI architecture. There exist many kinds of databases,

including flat-file text databases, associative flat-file databases, network databases, object

databases, hierarchical databases, and relational databases. Relational databases are by far the

most useful type commonly available, and so this thesis will for the most part assume a focus

on relational databases. However, it should be stressed that the concepts presented here do not

depend on any particular type of database, and that any bias in the examples is merely due to

the convenience of a simplifying assumption.

 The ADI architecture will accommodate any database. Such databases do not need

any modification to interact with the ADI architecture. The discussion of ADI architecture

construction assumes that the databases it interacts with will be provided by an outside source.

The examples in this paper are drawn from a fictional SQL-based database containing

 62

mission, aircraft, and pilot information, which will hereafter be referred to as the MAP

database, or simply the MAP.

5.2 Abstract Data Interface

 As stated previously, the Abstract Data Interface of a database is a view, created by a

DBA, which enables the application developer or interface programmer to easily ascertain the

contents of a database without being hampered by unnecessary details. It will remove

attributes that are not necessary for determining semantic match, and it will rename data to

help bring out intuitive meanings.

 The DBA can implement an ADI by assembling a modified IDEF1X information

model. (See appendix for background information on IDEF1X.) An IDEF1X model is

composed of three main building blocks: [Bruce, 1992]

1. Entities, which refer to any distinguishable person, place, thing, event,

or concept about which information is kept;

2. Attributes, which refer to properties of entities; and

3. Relationships, which refer to connections between two entities.

An ADI will capture most entities and relationships in a database, and a portion of the

attributes—the attributes that are not essential to determining semantic matches are omitted

from the ADI. An example relating to the MAP database is given below:

 63

Figure 5.1. ADI for the MAP Database Example

This diagram attempts to convey in as clear a manner as possible the contents of the database

that the DBA has decided to expose. Schema details have been omitted, and names have been

selected to give an intrinsic, intuitive meaning.

In brief summary, this ADI exposes data about Pilots, Missions, and Planes. Missions

are composed of individual Assignments, which individual Pilots are assigned to. An aircraft,

which can be one of several models, can be assigned to an Assignment as well. These fields

can be indexed by various identifying keys, including unique pilot numbers, aircraft numbers,

and mission numbers.

 A note on the selection of IDEF1X for the ADI is this case is in order. The choice of

IDEF1X is related to the fact that the database that is of the relational variety; IDEF1X is

 64

particularly effective at modeling relational databases, although other choices, such as a

modified Entity-Relationship (ER) model, do exist. However, the assertion that the ADI is not

dependent on a particular type of database still holds. The database literature contains logical

data models suited to represent any type of database; a database textbook should provide a

good starting point. Any such logical data model should be able to be modified in a similar

way that the IDEF1X model was modified in this example to provide a good ADI.

5.3 Database Access Description

The Database Access Description is an access mechanism for the Interface Generator,

and ultimately, the individual generated Interfaces. It allows a component to execute

commands to actually retrieve data from the database, which cannot be done through the ADI

alone.

It was mentioned earlier that the amount of access permitted through the Database

Access Description could be variable. There must be at least the minimum amount to access

all of the data contained in the ADI. If there were not, then an interface programmer could

select some piece of data from the ADI to be incorporated into a generated Interface, but not

actually be able to create an interface that correctly accessed and manipulated that data.

If the Access Description were to contain the minimum amount of information

available, then the DBA has two advantages. She has not lessened her degree of data security

by publishing a document that would permit access to her database in unwanted ways. Also,

creating a minimal Access Description would in general imply that she would have to spend

less effort in assembling such a description. On the other hand, there are advantages to

including more information. If the complete set of information needed for data access is

 65

included in the data model, then the Access Description the DBA creates could serve as a

complete database model for that database. Such a product could serve as a useful document;

after all, in general most database design documents are created to be useful only during the

design phase, and then are left to become either lost or obsolete.

In the MAP example, a straightforward method the DBA could use to implement a

Database Access Description would be to create a SQL Data Definition Language (DDL) file

corresponding to the MAP database. For each entry in the ADI, the DBA will understand

how the data is assembled from the database to create that entry. Note that there may not

necessarily be a one-to-one correspondence between ADI and Access Description data fields.

After all, the ADI is simplified representation of what data is in the database, and a set of more

complex pieces of data may combine to yield one simple piece of data.

As an example, an expanded IDEF1X model corresponding to sample SQL DDL for

the MAP database is shown below. The DDL is included in the appendices.

 66

Figure 5.2. Database Access Description for MAP Database Example

As can be seen in the above diagram, there is some extra information in this diagram

that was not included in the ADI. The fuel-level-units attribute in the AIRCRAFT entity, as

well as the top-speed-units and fuel-capacity-units attributes in the MODEL entity denote what

kind of units of measure are associated with some of the other attributes. Also, the

hrs_fln_accy attribute in the PILOT entity denotes the margin of error when pilot logged his

 67

flying time. Further, note that while there are attributes that correspond to the data given in the

ADI, some of the names are not the English-like names seen in the ADI. After all, in order to

communicate with the database, one must use the database data field names, which may not

be as user-friendly as one might like.

 As in the ADI example, the choice of SQL DDL is influenced by the fact that this

example is based on a relational database. However, other database types have other ways of

accessing data, and this access is not dependent on the use of SQL DDL. If other database

types are to be used, then a different database access method should be used—it should not be

difficult to find one that will work well for any given database type.

5.4 Application

 The application is the data consumer in the ADI architecture. Intuitively, the ADI

enables an application, or any other data consumer, to specify the data that it needs, and then

specify the way in which it needs that data. Consider the following applications:

1. Real-Time Fueling.

This application takes data about vehicles from a variety of sources

and determines which vehicles need fueling most urgently. The

information will be used by a special team that delivers fuel in the

most urgent situations.

Requires Input: Aircraft, indexed by an identification number, and

corresponding fuel levels, measured in liters. Data expected to be in

CORBA IDL.

 68

2. Personnel Assignment.

This application takes data from personnel databases and determines

whether a person has had enough experience and training to be

scheduled on special missions.

Requires Input: Pilots, identified by their identification number, along

with the number of hours they have flown, and the training courses

they have taken. Data should be returned in SOAP.

3. NASA Scheduler.

This application takes data about space satellite missions, checks for

changes in priority on each probe’s mission, and decides the next

course of action for that probe, which is one of promote priority,

demote priority, or leave priority unchanged.

Requires Input: Missions, identified by unique identification number,

along with probe identification number and probe status. Requires

data to be returned via RPC.

5.5 Application Requirements

 The application developer or interface programmer must state the application

requirements and pass this information to the Interface Generator in order for the proper

interface to be generated. The interface programmer accomplishes this task by examining the

ADI and deciding what data is needed. Because the ADI contains so little specific

information about the data, the interface programmer is not able to think about the data details.

He should not have to; after all, schematic differences can be resolved.

 69

The interface programmer begins with the Real-Time Fueling application. He

examines the ADI for the data he needs, and finds that aircraft-number and fuel-level should

suit his purposes. For the Personnel Assignment application, he performs another

examination, and discovers that pilot-number, pilot-training, and time-flown, should be the

correct inputs. Finally, for the NASA Scheduler application, he determines that mission-

number and mission-priority is the data he needs.

Figure 5.3. Application Requirements Declaration

An important step for the interface programmer now is to verify that the items picked

from the ADI do indeed constitute a semantic match. The degree of rigor used in this

 70

verification should be tantamount to the task at hand; for mission critical operations, the

verification should be very rigorous indeed. For example, if the interface programmer did

such verification at this point, she would discover that the data she thought was appropriate for

the NASA application was, in fact, no good at all; it is relevant only to airplane missions. It is

an important point that the ADI architecture treats the semantic heterogeneity problem as a

process problem, and so manual verification is necessary.

An implementation of the Application Requirements component can take at least two

forms. One form would be that of a specialized language designed for submitting selected

values. Most likely, the language, while specialized for selecting items from the ADI, should

actually be as neutral as possible so that interactions with the Interface Generator are not

affected by the particulars of one specific programming language or another. The Interface

Generator needs to be able to generate a wide variety of Interfaces. UML shows promising

potential for this application, and other researchers have worked on assembling specialized

toolkits or languages for similar purposes. [Hammer et al., 1997]

An even more intuitive Application Requirements implementation calls for a

Graphical User Interface (GUI) so that interface programmers or application developers can

look at the ADI diagram and work off of it. Of course, such an approach would require that

an implementation of the language described in the previous paragraph, or a similar

functionality, be available before a GUI can be implemented over the logic.

5.6 Translator Library

 The Translator Library serves as a repository for tools that the Interface Generator

needs in order to generate Interfaces. In the general case, an application requires a piece of

 71

data from a database; the data must be converted or translated into a form that the application

can use if the information exchange is to be successful. Of course, an information exchange

can, and often will, involve the exchange of numerous pieces of data; each individual piece

may require one or more translations.

 The Real-Time Fueling and Personnel Assignment application examples will

demonstrate the vital function of the translator library. The Real-Time Fueling application

requires information about specific aircraft and their respective fuel levels, in meters.

According the ADI for the MAP database, the fuel levels for aircraft is available. However, if

the fuel levels are measured in gallons in the database, then a translator is required to convert

the units of measure from gallons to liters. Also, the MAP database returns answers as a SQL

database; however, the application requires that data be returned via CORBA IDL. Therefore

another translator is necessary to return the answer to the query through an IDL stub.

The Personnel Assignment application requires information about Pilots and their

respective flying experience and combat training. The application requires that the flying

experience be measured by hours flown, but fortunately the MAP database includes the time

in hours already. Note that although the database provides an attribute denoting the precision

or accuracy of the figure for hours flown, an Interface generated by the Interface Generator is

not required to use this figure because the application does not require it. If the situation were

reversed, that is, the application required a similar kind of metadata but the database did not

include it, then there is no solution; this situation is tantamount to a semantic mismatch, since

the data consumer is seeking something that the data producer simply does not have. In the

end, the only translation needed for the Personnel Assignment application is the translation of

 72

the access mechanism—the way in which the application retrieves the information. In this

case, the application requires interaction via SOAP.

If the required translators just described are provided to the Interface Generator, an

Interface should be able to be produced. For the purposes of reuse and efficiency, the ADI

architecture utilizes a Translator Library to store translators that have already been created.

Thus, if a translator has been written once, another Interface requiring the same translator can

make use of a previously created instance of the translator rather than requiring that a new

translator be written every time the same instance of translation occurs. Further, translators

should be written in a modular way so as to promote their reuse.

 73

Figure 5.4. Translator Library Provides Translators to Interface Generator

A full description of the implementation of the Translator Library would be well

beyond the scope of this thesis; however, a brief specification is provided: The Library must

have a way to interact with the Interface Generator in such a way so that the correct translators

are retrieved when needed. The Library should store the translators in a neutral form so that

the Interface Generator, which needs to generate Interfaces in arbitrary languages and formats,

can make use of the translator in a code generator. Again, UML is a strong candidate for this

purpose, as COTS UML code generators already exist for other applications. [Microtool,

2001] Finally, the Library should also make use of efficient sorting and search algorithms in

Translator Library

CORBA IDL
Wrapper

SOAP
Wrapper

Metric-English

Precision Scaler

Context-Name
Conflict
Resolver

Integrity Constraint
Relation

Interface
Generator

 74

the literature [Cormen, Leiserson, and Rivest, 1990], since such a device could grow to a

considerable size if many translators are created and retained.

5.7 Interface Generator

 The Interface Generator assembles the four inputs, Abstract Data Interface, Database

Access Description, Application Requirements, and Translator Library, into an Interface. The

Abstract Data Interface declares what kinds of data are available. The Database Access

Description allows it to actually access the data in the database. The Application

Requirements state what data, out of the available data, is needed, and how that data should be

presented. The Translator Library provides the tools that convert the data that is needed into a

form usable by the application. The result is an Interface that is capable of enabling

interoperable communication between an application and database.

This task can be implemented via code generators. An interface generator essentially

packages the translators that the first three inputs determined were required in an interface.

After selection of the appropriate translators, the assembly process should be able to be

automated via UML code generation techniques. The final step is to automate the assembly of

the actual interface that will be used to translate between the application and database.

5.8 Interface

The Interface is the output of the Interface Generator, when presented with inputs of

Database Access Description, Abstract Data Interface, Application Requirements, and

Translator Library. Once the Interface is generated and enabling effective communication

between application and database, then the rest of the ADI Architecture components no longer

 75

need to interfere. The only time the ADI would come into play again would be if the

application requirements, the application itself, or the database underwent changes. In this

case, the Interface Generation process should start anew to generate a new Interface that meets

the new constraints.

 76

6 Metrics

In this section, metrics that could be used to determine the success of the ADI

architecture are discussed. These metrics should be measured using qualitative as well as

quantitative means, since in many cases, there is no standard to test the hypotheses against.

6.1 Time and Labor Expenditure

One hypothesis of the ADI architecture is that use of the ADI architecture and

methods will provide significant savings in terms of time and labor spent in enabling and

maintaining an interoperable system. Therefore the ADI approach should be evaluated in

terms of the number of man-hours required to accomplish a similar level of interoperability as

in other approaches. Several areas where effort may need to be applied are identified, and

their evaluation in terms of this metric is discussed.

6.1.1 ADI and Database Access Description Construction

An assumption of the ADI architecture is that DBAs will be responsible for the

construction of two vital parts, the ADI and the Database Access Description. The rationale

behind this assumption is that the DBA is the individual responsible for deciding how access

to the database should be granted in most organizations; further, he should be capable of

accomplishing this task easily. However, there exist situations that have the potential to

undermine the utility of this assumption. For example, an organization that does not recognize

the need for, or have the funds to afford, a DBA may assign the task of constructing the ADI

 77

and DAD to others who do not have the required expertise. Excessive effort spent in

constructing these components will undermine the utility of the ADI, and therefore such

efforts should be accounted for as a metric.

6.1.2 Application Requirements Construction

The effort required to construct an Application Requirements Description should be

minimal, because the ADI is intended to make the contents of the database as clear as

possible. However, actual implementations of the tools used to create an ARD can complicate

matters for the interface or maintenance programmer, who would be the individual charged

with the task of constructing an ARD. For instance, one suggested way to facilitate ARD

construction is a scripting language that allows one to specify the data and format that is

needed by some application. However, poorly implemented or overly complicated scripting

languages could make it difficult for the interface programmer to construct the ARD. Effort is

expended to construct this component, and so that effort should be measured.

6.1.3 Translator Library Maintenance

At first glance it may seem that a lot of effort is spent to maintain the Translator

Library. Every time the Interface Generator encounters a data translation that it is unable to

accommodate, a new translator must be constructed and added to the Translator Library.

However, it should be emphasized that such effort results in components that can be reused.

Therefore, such effort can optionally be included in the metric. The argument for including it

is that the metric should account for all effort expended in constructing an interface. The

 78

argument against is that the metric should account for only the efforts that must be undertaken

every time an interface is created; in other words, the metric should account only for recurring

costs. However, the effort spent writing a translator can be treated as a sunk cost because the

translator can be reused. The organization evaluating its data interoperability initiatives must

make a decision between the two that will depend on its particular environment and situation.

6.1.4 Interface Modification

 Once an interface is created, there may or may not be extra effort required to ensure

seamless operation. Most likely interface or maintenance programmers would be responsible

for this task if proves to be necessary. If modifications must be made before the interface can

be deployed as an autonomous unit, then the effort spent to achieve those modifications must

be accounted for.

6.2 Interface Speed

Ideally, interfaces generated by the ADI architecture’s Interface Generator will not

only enable interoperability, but also operates quickly at runtime. However, it might be

expected that a generated interface would be slower than an interface custom coded by hand.

The automatically generated one depends on automated construction that must apply equally

well to construction of different interfaces, whereas a handcrafted interface has the possibility

of being optimized based on details of a particular database-application data exchange. The

operating time between the two should be compared for the purposes of evaluating the ADI

architecture.

 79

The question of interface speed will depend heavily on the relative value of

interoperable data. The organization concerned with these issues will need to make an

engineering decision to determine the tradeoff between having interfaces that operate quickly

and data that works with many applications at low cost (in terms of time and effort spent). An

organization that depends on a small set of independent data consumers and producers, knows

with a high degree of certainty that the data environment is stable, and has no desire to work

with outside parties, may decide that it is more cost-effective to custom-code all of the

necessary interfaces. Many organizations, however, are not of this type, and so it is expected

that the value of having interoperable data at low cost will outweigh the disadvantage of

having interfaces that do not operate as quickly.

An alternative to evaluating a strict tradeoff between interface operating speed and

interoperable data is to evaluate the performance of an interface that, after automatic

generation, is tweaked by hand for better speed. In this case, however, the effort necessary to

incorporate the optimizations must also be accounted for.

 80

7 Related Work

In this section, several of recent approaches from the data interoperability literature

introduced in the earlier chapter on data interoperability approaches are discussed, compared,

and contrasted with the ADI approach.

7.1 Human Intervention

Some aspects of human intervention are present in the ADI, and it is important to

recognize them because typically there is a high cost associated with human labor relative to

automated computer work. A DBA or equivalent person must construct the ADI and

Database Access Description. Interface programmers or application developers must

construct the Application Requirements. Together, these people are also responsible for

maintaining the Translator Library. Finally, the interface programmer may be called upon yet

again to make adjustments or tweaks to the generated interface.

As described, the ADI architecture still contains opportunities to further minimize the

amount of human intervention necessary. It was suggested that the ADI be created purely

from the DBA's concepts of what should and should not be accessed. However, a potentially

labor-saving alternative is to employ a method of generating a database model from the

database itself. One such method can discover conceptual object models from instances of

relational databases. [Shen et al., 1999] Another potential savings could result from careful

accounting and reuse practices for the Translator Library, to ensure the highest possible

chances of reusability of translators contributed to the Library.

 81

7.2 Tightly-Coupled Federation

Although the ADI bears more resemblance to a loosely-coupled federation rather than

a tightly-coupled federation, a discussion of some tightly-coupled federations is provided here

to describe the characteristics of such an approach, as well as to convey recent research trends

in this area.

7.2.1 SIM

SIM, or Schema Integration Methodology, accomplishes the integration of schemas

by resolving a set of equivalence correspondences between arbitrarily complex local sub-

schemas. From such a set of correspondences, SIM semi-automatically derives schema

transformations, termed schema augmentations, from each local schema to the integrated one.

The transformation is conducted in such a way that corresponding data among the local

databases is mapped to the same structure in the integrated database. The generated schema

augmentations enhance the schemas with classes and paths, resulting in an integrated non-

redundant schema. [Fankhauser, 1997]

Efforts have been made to enhance SIM with the capability of resolving some

semantic heterogeneity problems as well, through the incremental integration of schemas.

During incremental integration, SIM admits the declaration of new equivalence

correspondences between sub-schemas, but only in cases that do not lead to ambiguity or

inconsistency with respect to previous integration steps. SIM's augmentation constraints allow

it to identify inconsistent correspondences within the schema structure, as sub-schemas are

incorporated, and reject them. [Motz and Fankhauser, 1998]

 82

7.2.2 VHDBS

VHDBS is a federated database system based on a client/server architecture. In this

approach, federated data is stored in an object-oriented data model, which is an extension of

the ODMG-93 object model. Objects are organized into repositories and unified by a schema

that includes the types of all objects, their inheritances, and the repository schemas. A

federated view is achieved either by viewing the repositories, or manipulating the data types

such that only the desired methods or attributes of these types are seen.

7.2.3 ADI and Tightly-Coupled Federations

Compared to the ADI, tightly-coupled federations have the advantage of a central

focus for the purposes of resolving conflicts between data models. If there are overlaps

between the data models of two different data sources, then resolution efforts will be aimed

towards the integrated schema. In contrast, the ADI approach leaves the data consumer or

application with the problem of resolving such conflicts. If the data consumer needs to query

many overlapping sources, resolution efforts will have to be aimed over all of the overlaps.

For a large number of overlaps, the ADI approach will have a more complex overlap

resolution process.

The ADI approach permits more resilience to changes than the tightly-coupled

federation approach. In the federated database system, the ability to exchange data between

data producers and consumers hinges on the integrity of the integrated schema. If one sub-

schema in the integrated schema changes, the effects could be propagated through the entire

environment. On the other hand, the ADI facilitates data exchanges between data consumer-

data producer pairs. In the ADI approach, the response to a change in a single component

 83

within the environment is to generate a new interface for that pair. The impact on the data

interoperability of the environment as a whole is minimal.

7.3 Mediated and Loosely-Coupled Federations

The ADI is architecturally more similar to a mediation or a loosely-coupled federation

approach. The next section investigates some of these approaches found in the literature in

more detail and again compares them to the ADI approach.

7.3.1 COIN

In the Context Interchange approach, semantic interoperation is accomplished by

making use of declarative definitions that correspond to source and receiver contexts. Each

party in the data exchange expresses is own constraints, choices, and preferences for

representing and interpreting data. A context mediator can then automatically identify and

resolve any potential semantic conflicts. [Bressan and Goh, 1998]

The major difference between the COIN and ADI approaches is the choice of target

for automation. Under the COIN approach, schematic details particular to data producers and

consumers are declared, and then the semantic differences are automatically resolved by the

mediator. However, COIN has been shown to exhibit some failures in determining proper

semantic correspondences. [Ouksel and Ahmed, 1999] In contrast, in the ADI approach,

semantic matches are determined first, and then schematic differences are automatically

resolved by the interface generated.

 84

7.3.2 TSIMMIS

The Stanford-IBM Manager of Multiple Information Sources, otherwise known as the

TSIMMIS System, is an approach to data interoperability developed by researchers at

Stanford University and IBM. The TSIMMIS system enables access to multiple

heterogeneous information sources by translating source information into a common self-

describing object model known as the Object Exchange Model, or OEM. Source specific

wrappers and "intelligent" modules known as mediators provide the integrated access to the

heterogeneous sources. The wrappers convert queries over information in the common OEM

model that into requests that the source can execute, and the data returned by the source is

converted back into the common model. The mediators collect information from one or more

sources, process and combine that information, and export the resulting information to the end

user or application program. Users or applications can choose to interact either directly with

the translators or indirectly via one or more mediators. [Hammer et al., 1995]

Later work on the TSIMMIS project resulted in the development of a wrapper

implementation toolkit for quickly building wrappers. The work was motivated by the fact

that building a wrapper is a task that requires a lot of effort and time, thus diminishing the

usefulness and applicability of writing wrappers in situations where it is important or desirable

to gain access to new data sources quickly. The work was based on an observation that only a

relatively small part of the code deals with the specific access details of the source. [Hammer

et al., 1997] Indeed, the integration wrapper implementation toolkit developed by the

researchers at Stanford University is analogous in some sense to the Translator Library in the

ADI. The difference between the two is that in the base case, the TSIMMIS wrapper

implementation toolkit allows many data sources to be made to conform to a single

 85

application's native query, whereas the ADI provides interfaces for many applications to

interoperate with a single database.

7.3.3 ODMG-OQL and SQL Query Mediation

An approach based on two query languages, ODMG-OQL and SQL, has been

proposed to allow query transformation as a mediator for data interoperability. [Huang et al.,

2000] In this approach, the mediation architecture provides a way of accessing underlying

heterogeneous databases without using an integrated model. Automated query

transformations permit data consumers to use native query languages to access heterogeneous

databases without acquiring or adapting to the target schema and syntax.

The ODMG-OQL/SQL query mediation architecture is also a complement of the ADI

architecture. This approach permits one data consumer to query a set of heterogeneous data

sources in the consumer's native language and constructs, whereas the ADI architecture

permits many applications to exchange data with a single database, through an interface that

provides the interoperability.

7.3.4 SIMS

The SIMS information mediator [Arens et al., 1996], also complements the ADI in the

same way as the TSIMMIS and Query Mediation approaches mentioned above. However,

SIMS offers optimizations in its mediators in that they are able to take domain-level queries

and dynamically select only the appropriate information sources based on content and

availability. Then the mediator generates a query access plan that specifies the operations and

 86

their order for processing the data. Semantic query optimizations are performed to minimize

the overall execution time.

The SIMS method offers some features that differentiate it from other architectures.

First, the SIMS architecture provides optimizations to the queries as they are being

formulated. Second, the mediator must contain a model of its own domain of expertise, which

provides the terminology for interacting with the mediator as well as the models of all the

individual data stores available to it. These components have their analogues in the ADI

architecture: the former is analogous in some sense to the Translator Library, whereas the

latter is analogous to the Database Access Descriptions of the individual databases. However,

in the ADI architecture there is no restriction that a mediator deal only with a "domain of

expertise," since modular components can always be added if a greater breadth of

functionality is desired. Further, because the mediator contains a model of its own domain of

expertise, it is expected that changes to the environment might be hard to maintain. When

individual systems are removed from or added to the SIMS environment, the mediator model

must change along with it. On the other hand, the ADI approach would call for the addition or

deletion of an individual interface that does not interact with any other interface, and thus such

a change would have minimal impact.

7.3.5 YAT and TranScm

YAT is a data model that consists of named ordered labeled trees that may be

assembled to form a pattern. A set of patterns forms a model that is used to represent real-

world data. The interesting characteristic of YAT models is that they can be mapped from one

format into another, while retaining the equivalent data model. Furthermore, the YAT

 87

language, or YATL, can be used to customize the data model to a specific need. [Abiteboul et

al., 1999]

YAT can be seen as a model or even a candidate for implementation of the Interface

Generation portion of the ADI. A useful feature of YAT data models is that a significant

portion of YAT model translations can be generated automatically using the TranScm system.

In the context of the ADI, the YAT model is analogous to the data description inputs to the

Interface Generator (but is not analogous to the Translator Library). The TranScm system

should be capable of doing most of the work that the Interface Generator will do. Any extra

work that needs to be done by interface programmers can be accomplished through YATL.

Having discussed the architecture of the ADI as well as comparisons to approaches

found in the literature, this thesis closes with conclusions and future work in the next section.

 88

8 Conclusion

8.1 Epilogue

Chapters 1 and 2 introduced the data interoperability problem, motivations, history,

and approaches. Chapters 3 through 6 discussed the proposed ADI architecture, specification,

advantages, examples, and metrics. Chapter 7 compared and contrasted the ADI approach

with some of the previous approaches in detail. All of the background presented suggests that

the ADI approach has the potential to be a viable solution to data interoperability problems.

The ADI has the most applicability in large distributed environments where a high

value is placed on the ability of the data interoperability solution to adapt to changes and

maintain itself. In general, larger environments will derive more value from the ADI than

smaller ones since there are a higher potential number of interfaces that would have to be built

in its stead. Environments that need to change frequently yet gracefully will also derive more

value from the ADI than environments that are more stable. The environment undergoing

significant changes can take advantage of the fact that the ADI can simply discard old

interfaces that have been made obsolete due to changes. Organizations that depend on

distributed environments will also appreciate the fact that ADI allows maintenance efforts to

be directed at a small set of targets while preserving autonomy of the data producers and

consumers.

 89

8.2 Future Work

In this section, future work that builds on the research presented in this thesis is

described. Possible future research projects include implementation, alternate

implementations, relaxation of simplifying assumptions, and a converse application focus.

8.2.1 Implementation

While the architecture described in this thesis is based on sound principles and the

most recent research in the field of data interoperability, a concrete implementation and

demonstration would provide a more convincing argument for the feasibility of the ADI and

its architecture. The chapter regarding component construction provides a good start, and

performance of such a demonstration could be measured according to the chapter regarding

metrics.

8.2.2 Alternate Implementations

Although the chapter regarding component construction provides one way to

implement the ADI architecture, the methods described therein are not the only way to

implement it. As an example, one possible variation is to reverse the order of construction of

the ADI and the Database Access Description. In some cases, a data source will have up to

date documentation or methodology for access to all of its data within. In such a case, it might

be advantageous for the DBA to create the ADI based on the Database Access Description.

Rather than first deciding what data will be exposed, and then trying to reverse engineer

methods to provide that data, she could examine a database model that determines the

 90

comprehensive set of what data could be provided. Then the task of producing an ADI is

reduced to a problem of selecting a subset of data from that model.

8.2.3 Relaxation of Simplifying Assumptions

The examples in this thesis made simplifying assumptions so that the concepts could

be clearly explained. One such assumption is that of semantic heterogeneity as a process

problem. Although a great deal of focus has been on schematic heterogeneity in the past,

semantic heterogeneity is beginning to emerge in the minds of researchers as a problem with

equal, if not more, significance. A future task is to incorporate methods of solving semantic

heterogeneity to help automate the generation of Application Requirements within the ADI

architecture.

A second simplifying assumption made in this thesis was an environment consisting

of multiple applications and one database. The ADI concept theoretically extends to many

applications and many databases. However, there are even more complicated semantic

heterogeneity issues that need to be considered when attempting to allow an application to

access and work with data from two different data sources, such as determining overlaps

between domains of data, and then resolving and unifying the overlapping instances. Another

future task is to apply the ADI architecture to environments with multiple data sources and

consumers.

A third simplifying assumption was the assumption that the data source was a

relational database. This assumption was made for the purposes of the examples, because of

the popularity and convenience of the relational model. Some of the examples appear the way

that they do because of the choice of this assumption. Nevertheless, it should be stressed that

 91

the examples do not depend on the assumption of a relational model. Instead, different

database models will require slightly different but analogous ADI components. A future task

is to explicitly specify what models and constructs are analogous to the examples presented in

this thesis, and then to implement those models and constructs.

8.2.4 Application Focus

The ADI differs from some of the approaches discussed in the previous chapter

including the TSIMMIS System, the SIMS information mediator, and the Query Mediation

techniques in that it focuses on allowing multiple applications to access a single data source.

These approaches, on the other hand, focus on allowing an application to access multiple data

sources. Future work should investigate the possibility of an Abstract Application Interface,

an approach that would attempt the converse of the focus taken with the ADI, as in these other

approaches. Afterwards, a study could be conducted to see which cases of data

interoperability problems were solved more efficiently when using either focus. It is

conceivable that such a study could yield a hybrid approach.

 92

8.3 Concluding Remarks

Achieving data interoperability is well recognized as a problem that currently has no

ideal solution: tradeoffs must always be made between quality and cost of information. The

ADI architecture represents a step towards improved data interoperability that should be

implemented and evaluated in a real-world environment. Although much research has been

conducted, and many advances made, researchers need to continue to work on this problem,

lest the growing amount of digital information completely overwhelm the data systems of the

future.

 93

9 Appendix A. Glossary of Acronyms

Acronyms can be convenient to use, and the computer world is brimming with them.

However, they can also befuddle readers who are not aware of their meaning. This table of

the various acronyms used in this thesis is provided as an aid to the reader.

ACM Association for Computing Machinery

ADI Abstract Data Interface

ADDS Amoco Distributed Database System

ARD Application Requirements Description

CGI Common Gateway Interface

COIN COntext INterchange

CORBA Common Object Request Broker Architecture

COTS Commercial Off-the-Shelf

DAD Database Access Description

DBA DataBase Administrator

DBMS Data Base Management System

DFDS Data and Format Descriptor Set

DDL Data Definition Language

DDS Data Descriptor Set

DIOM Distributed Interoperable Object Model

DoD Department of Defense

DOME Domain Ontology Management Environment

 94

ER Entity Relationship

FAM Fully Attributed Model

GIM Generic Integration Model

GUI Graphical User Interface

HTML Hyper Text Markup Language

ICAM Integrated Computer Aided Manufacturing

IDEF1X ICAM DEFinition 1 eXtended

IDL Interface Definition Language

IEEE Institute of Electrical and Electronics Engineers

IRO-DB Interoperable Relational & Object-oriented DataBases

MAP Mission-Aircraft-Pilot database

MASM Multi-Aspect Semantic Model

MRDSM Multics Relational Data Store Multidatabase

MTF Message Text Format

OQL Object Query Language

ODMG Object Data Management Group

POTS Plain Old Telephone Service

PRECI* Prototype of a RElational Canonical Interface

RPC Remote Procedure Call

SIGMA[FDB] Schema Integration & Global Integrity Maintenance Approach for Federated

Databases

SIM Schema Integration Methodology

SKAT Semantic Knowledge Articulation Tool

 95

SOAP Simple Object Access Protocol

SQL Structured Query Language

TSIMMIS The Stanford-IBM Manager of Multiple Information Sources

TL Translator Library

VHDBS Verteiltes Heterogenes DatenBankSystem

XML eXtensible Markup Language

XQL XML Query Language

XSL eXtensible Stylesheet Language

 96

10 Appendix B. Sample DDL for the MAP Example

This appendix includes the sample DDL for the MAP example. This DDL was

generated using ERwin version 3.52. ERwin is a database design tool that permits the

creation of a visual blueprint or data model. Among its many features are the ability to draw

various data models including IDEF1X, IE, and ER models; and reverse and forward engineer

between data models and DBMS code. [CA, 2000]

map.sql

' Starting Access Basic DAO Session...

Dim ERwinWorkspace As Workspace
Dim ERwinDatabase As Database
Dim ERwinTableDef As TableDef
Dim ERwinQueryDef As QueryDef
Dim ERwinIndex As Index
Dim ERwinField As Field
Dim ERwinRelation As Relation

Set ERwinWorkspace = DBEngine.WorkSpaces(0)

Set ERwinDatabase =
ERwinWorkspace.OpenDatabase(sERwinDatabase)

' CREATE TABLE "AIRCRAFT"

Set ERwinTableDef = ERwinDatabase.CreateTableDef("AIRCRAFT")
Set ERwinField = ERwinTableDef.CreateField("aircraft-type",
DB_TEXT, 18)
ERwinField.Required = True
ERwinTableDef.Fields.Append ERwinField
Set ERwinField = ERwinTableDef.CreateField("aircraft-number",
DB_INTEGER)
ERwinField.Required = True
ERwinTableDef.Fields.Append ERwinField

 97

Set ERwinField = ERwinTableDef.CreateField("fuel-level",
DB_LONG)
ERwinTableDef.Fields.Append ERwinField
Set ERwinField = ERwinTableDef.CreateField("fuel-level-units",
DB_TEXT, 18)
ERwinTableDef.Fields.Append ERwinField
Set ERwinField = ERwinTableDef.CreateField("ammo", DB_INTEGER)
ERwinTableDef.Fields.Append ERwinField
Set ERwinField = ERwinTableDef.CreateField("genl-cond",
DB_TEXT, 18)
ERwinTableDef.Fields.Append ERwinField
ERwinDatabase.TableDefs.Append ERwinTableDef
Set ERwinField = ERwinTableDef.Fields("ammo")
SetFieldProp (ERwinField, "Caption", DB_TEXT, "ammunition:")
Set ERwinField = ERwinTableDef.Fields("genl-cond")
SetFieldProp (ERwinField, "Caption", DB_TEXT, "general-
condition:")

' CREATE INDEX "PrimaryKey"

Set ERwinTableDef = ERwinDatabase.TableDefs("AIRCRAFT")
Set ERwinIndex = ERwinTableDef.CreateIndex("PrimaryKey")
Set ERwinField = ERwinIndex.CreateField("aircraft-type")
ERwinIndex.Fields.Append ERwinField
Set ERwinField = ERwinIndex.CreateField("aircraft-number")
ERwinIndex.Fields.Append ERwinField
ERwinIndex.Primary = True
ERwinIndex.Clustered = True
ERwinTableDef.Indexes.Append ERwinIndex

' CREATE TABLE "ASSIGNMENT"

Set ERwinTableDef = ERwinDatabase.CreateTableDef("ASSIGNMENT")
Set ERwinField = ERwinTableDef.CreateField("mission-number",
DB_INTEGER)
ERwinField.Required = True
ERwinTableDef.Fields.Append ERwinField
Set ERwinField = ERwinTableDef.CreateField("pilot-number",
DB_INTEGER)
ERwinField.Required = True
ERwinTableDef.Fields.Append ERwinField
Set ERwinField = ERwinTableDef.CreateField("aircraft-type",
DB_TEXT, 18)
ERwinField.Required = True
ERwinTableDef.Fields.Append ERwinField
Set ERwinField = ERwinTableDef.CreateField("aircraft-number",
DB_INTEGER)

 98

ERwinField.Required = True
ERwinTableDef.Fields.Append ERwinField
Set ERwinField = ERwinTableDef.CreateField("assignment-time",
DB_DATETIME)
ERwinField.Required = True
ERwinTableDef.Fields.Append ERwinField
Set ERwinField = ERwinTableDef.CreateField("AOBJ", DB_TEXT,
18)
ERwinTableDef.Fields.Append ERwinField
Set ERwinField = ERwinTableDef.CreateField("ST", DB_DATETIME)
ERwinTableDef.Fields.Append ERwinField
Set ERwinField = ERwinTableDef.CreateField("CT", DB_DATETIME)
ERwinTableDef.Fields.Append ERwinField
ERwinDatabase.TableDefs.Append ERwinTableDef
Set ERwinField = ERwinTableDef.Fields("AOBJ")
SetFieldProp (ERwinField, "Caption", DB_TEXT, "assignment-
objective:")
Set ERwinField = ERwinTableDef.Fields("ST")
SetFieldProp (ERwinField, "Caption", DB_TEXT, "start-time:")
Set ERwinField = ERwinTableDef.Fields("CT")
SetFieldProp (ERwinField, "Caption", DB_TEXT, "completion-
time:")

' CREATE INDEX "PrimaryKey"

Set ERwinTableDef = ERwinDatabase.TableDefs("ASSIGNMENT")
Set ERwinIndex = ERwinTableDef.CreateIndex("PrimaryKey")
Set ERwinField = ERwinIndex.CreateField("mission-number")
ERwinIndex.Fields.Append ERwinField
Set ERwinField = ERwinIndex.CreateField("pilot-number")
ERwinIndex.Fields.Append ERwinField
Set ERwinField = ERwinIndex.CreateField("aircraft-type")
ERwinIndex.Fields.Append ERwinField
Set ERwinField = ERwinIndex.CreateField("aircraft-number")
ERwinIndex.Fields.Append ERwinField
Set ERwinField = ERwinIndex.CreateField("assignment-time")
ERwinIndex.Fields.Append ERwinField
ERwinIndex.Primary = True
ERwinIndex.Clustered = True
ERwinTableDef.Indexes.Append ERwinIndex

' CREATE TABLE "MISSION"

Set ERwinTableDef = ERwinDatabase.CreateTableDef("MISSION")
Set ERwinField = ERwinTableDef.CreateField("mission-number",
DB_INTEGER)

 99

ERwinField.Required = True
ERwinTableDef.Fields.Append ERwinField
Set ERwinField = ERwinTableDef.CreateField("mission-type",
DB_TEXT, 18)
ERwinTableDef.Fields.Append ERwinField
Set ERwinField = ERwinTableDef.CreateField("mission-priority",
DB_INTEGER)
ERwinTableDef.Fields.Append ERwinField
Set ERwinField = ERwinTableDef.CreateField("mission-creation-
date", DB_DATETIME)
ERwinTableDef.Fields.Append ERwinField
Set ERwinField = ERwinTableDef.CreateField("mission-
objective", DB_TEXT, 18)
ERwinTableDef.Fields.Append ERwinField
Set ERwinField = ERwinTableDef.CreateField("mission-codename",
DB_TEXT, 18)
ERwinTableDef.Fields.Append ERwinField
ERwinDatabase.TableDefs.Append ERwinTableDef

' CREATE INDEX "PrimaryKey"

Set ERwinTableDef = ERwinDatabase.TableDefs("MISSION")
Set ERwinIndex = ERwinTableDef.CreateIndex("PrimaryKey")
Set ERwinField = ERwinIndex.CreateField("mission-number")
ERwinIndex.Fields.Append ERwinField
ERwinIndex.Primary = True
ERwinIndex.Clustered = True
ERwinTableDef.Indexes.Append ERwinIndex

' CREATE TABLE "MODEL"

Set ERwinTableDef = ERwinDatabase.CreateTableDef("MODEL")
Set ERwinField = ERwinTableDef.CreateField("aircraft-type",
DB_TEXT, 18)
ERwinField.Required = True
ERwinTableDef.Fields.Append ERwinField
Set ERwinField = ERwinTableDef.CreateField("top-speed",
DB_INTEGER)
ERwinTableDef.Fields.Append ERwinField
Set ERwinField = ERwinTableDef.CreateField("top-speed-units",
DB_TEXT, 18)
ERwinTableDef.Fields.Append ERwinField
Set ERwinField = ERwinTableDef.CreateField("weapons-capacity",
DB_INTEGER)
ERwinTableDef.Fields.Append ERwinField
Set ERwinField = ERwinTableDef.CreateField("fuel-capacity",
DB_LONG)

 100

ERwinTableDef.Fields.Append ERwinField
Set ERwinField = ERwinTableDef.CreateField("fuel-capacity-
units", DB_TEXT, 18)
ERwinTableDef.Fields.Append ERwinField
ERwinDatabase.TableDefs.Append ERwinTableDef

' CREATE INDEX "PrimaryKey"

Set ERwinTableDef = ERwinDatabase.TableDefs("MODEL")
Set ERwinIndex = ERwinTableDef.CreateIndex("PrimaryKey")
Set ERwinField = ERwinIndex.CreateField("aircraft-type")
ERwinIndex.Fields.Append ERwinField
ERwinIndex.Primary = True
ERwinIndex.Clustered = True
ERwinTableDef.Indexes.Append ERwinIndex

' CREATE TABLE "PILOT"

Set ERwinTableDef = ERwinDatabase.CreateTableDef("PILOT")
Set ERwinField = ERwinTableDef.CreateField("plt_no",
DB_INTEGER)
ERwinField.Required = True
ERwinTableDef.Fields.Append ERwinField
Set ERwinField = ERwinTableDef.CreateField("plt_name",
DB_TEXT, 18)
ERwinTableDef.Fields.Append ERwinField
Set ERwinField = ERwinTableDef.CreateField("plt_rnk",
DB_INTEGER)
ERwinTableDef.Fields.Append ERwinField
Set ERwinField = ERwinTableDef.CreateField("plt_train",
DB_TEXT, 18)
ERwinTableDef.Fields.Append ERwinField
Set ERwinField = ERwinTableDef.CreateField("hrs_fln",
DB_DOUBLE)
ERwinTableDef.Fields.Append ERwinField
Set ERwinField = ERwinTableDef.CreateField("hrs_fln_accy",
DB_DOUBLE)
ERwinTableDef.Fields.Append ERwinField
ERwinDatabase.TableDefs.Append ERwinTableDef
Set ERwinField = ERwinTableDef.Fields("plt_no")
SetFieldProp (ERwinField, "Caption", DB_TEXT, "pilot-number:")
Set ERwinField = ERwinTableDef.Fields("plt_name")
SetFieldProp (ERwinField, "Caption", DB_TEXT, "pilot-name:")
Set ERwinField = ERwinTableDef.Fields("plt_rnk")
SetFieldProp (ERwinField, "Caption", DB_TEXT, "pilot-rank:")
Set ERwinField = ERwinTableDef.Fields("plt_train")

 101

SetFieldProp (ERwinField, "Caption", DB_TEXT, "pilot-
training:")
Set ERwinField = ERwinTableDef.Fields("hrs_fln")
SetFieldProp (ERwinField, "Caption", DB_TEXT, "hours-flown:")

' CREATE INDEX "PrimaryKey"

Set ERwinTableDef = ERwinDatabase.TableDefs("PILOT")
Set ERwinIndex = ERwinTableDef.CreateIndex("PrimaryKey")
Set ERwinField = ERwinIndex.CreateField("plt_no")
ERwinIndex.Fields.Append ERwinField
ERwinIndex.Primary = True
ERwinIndex.Clustered = True
ERwinTableDef.Indexes.Append ERwinIndex

' CREATE RELATIONSHIP "R/4"

Set ERwinRelation = ERwinDatabase.CreateRelation("R/4",
"MODEL", "AIRCRAFT")
Set ERwinField = ERwinRelation.CreateField("aircraft-type")
ERwinField.ForeignName = "aircraft-type"
ERwinRelation.Fields.Append ERwinField
ERwinDatabase.Relations.Append ERwinRelation

' CREATE RELATIONSHIP "R/6"

Set ERwinRelation = ERwinDatabase.CreateRelation("R/6",
"AIRCRAFT", "ASSIGNMENT")
Set ERwinField = ERwinRelation.CreateField("aircraft-type")
ERwinField.ForeignName = "aircraft-type"
ERwinRelation.Fields.Append ERwinField
Set ERwinField = ERwinRelation.CreateField("aircraft-number")
ERwinField.ForeignName = "aircraft-number"
ERwinRelation.Fields.Append ERwinField
ERwinDatabase.Relations.Append ERwinRelation

' CREATE RELATIONSHIP "R/3"

Set ERwinRelation = ERwinDatabase.CreateRelation("R/3",
"MISSION", "ASSIGNMENT")
Set ERwinField = ERwinRelation.CreateField("mission-number")
ERwinField.ForeignName = "mission-number"
ERwinRelation.Fields.Append ERwinField
ERwinDatabase.Relations.Append ERwinRelation

' CREATE RELATIONSHIP "R/2"

 102

Set ERwinRelation = ERwinDatabase.CreateRelation("R/2",
"PILOT", "ASSIGNMENT")
Set ERwinField = ERwinRelation.CreateField("plt_no")
ERwinField.ForeignName = "pilot-number"
ERwinRelation.Fields.Append ERwinField
ERwinDatabase.Relations.Append ERwinRelation

ERwinDatabase.Close
ERwinWorkspace.Close
' Terminating Access Basic DAO Session...

 103

11 Appendix C. IDEF1X Background

 Robert G. Brown originally conceived of IDEF1X in 1979 while working as a

consultant at Lockheed. It was based on evolving relational database theory, as well as work

by early database researchers such as Chen, Codd, Smith, and others. The following year,

Brown brought his ideas to the Bank of America, which was at that time, struggling with

delivery and database applications. A need for information modeling techniques and data-

centered design concepts was identified at the bank, and Brown’s ideas received some healthy

support. Those ideas eventually were named ADAM internally within the bank, and Data

Modeling Technique, or DMT, outside the bank.

 Other organizations began to recognize a need for data modeling standards around that

time. The U. S. Air Force conducted studies known as Integrated Computer Aided

Manufacturing, which identified a set of three graphic methods for defining the functions, data

structures, and dynamics of manufacturing businesses. These three methods became to be

known as the IDEF methods, short for ICAM DEFinition. The function method was dubbed

IDEF0; the data method, IDEF1; and the dynamics method, IDEF2.

 Brown retained the rights to ADAM after his departure from the bank in 1985 through

his company, the Data Base Design Group. ADAM became commercially available through

an arrangement with the D. Appleton Company, otherwise known as DACOM. Later that

same year, DACOM approached the U. S. Air Force, which by then was a major user of the

IDEF methods, to propose extensions to IDEF1 by adding some capabilities available in

ADAM. Instead of extending IDEF1 with ADAM, the Air Force elected to replace IDEF1

completely with ADAM, and the new model came to be known as IDEF1X—the proper

 104

pronunciation of IDEF1X is “eye deaf one ecks,” and the X stands for eXtended. IDEF1X

was accepted as an Air Force standard shortly after. [Bruce, 1992]

 105

12 Appendix D. IDEF1X Notation Conventions

 As a convenience to the reader, the relevant IDEF1X notation explanations are

provided here to aid in the interpretation of the figures that use them. [Adapted from Bruce,

1992] Specifically, the figures that utilize IDEF1X notation are Figures 5.1, 5.2, and 5.3 in

Chapter 5.

IDEF1X has powerful data model expression capabilities. However, a comprehensive

description of all of the abilities of IDEF1X is beyond the scope of this thesis. Readers are

urged to consult [Bruce, 1992] for more information.

12.1 Entity Notation

An entity is said to be an independent entity when it depends on no other entities for its

identification. Such an entity is denoted thus:

Figure 12.1. Independent Entity

An entity is said to be a dependent entity when it does depend on others for its

identification. Such an entity is denoted thus:

data-area

key-area

ENTITY-NAME

 106

Figure 12.2. Dependent Entity

12.2 Attribute Notation

An attribute denoted thus:

has a foreign key associated with it. A primary key of another entity is contributed via a

relationship.

12.3 Relationship Notation

The following figure denotes a one-to-many identifying relationship: one parent, to

zero or more children:

Figure 12.3. One-to-Many Relationship

In such a relationship, the primary key attributes of the parent entity become the primary key

attributes of the child entity.

data-area

key-area

ENTITY-NAME

()FKattribute

PARENT-ENTITY CHILD-ENTITY

verb phrase /
inverse phrase

 107

13 Bibliography

Abiteboul, S., Cluet, S., Milo, T., Mogilevsky, P., Simeon, J., Zohar, S. “Tools for Data

Translation and Integration.” Bulletin of the IEEE Computer Society Technical
Committee on Data Engineering. 1999.

Arens, Y., Knoblock, C. A., and Hsu, C. “Query Processing in the SIMS Information

Mediator.” Advanced Planning Technology. AAAI Press, Menlo Park, CA, 1996.

Batini, C., Lenzerini, M., and Navathe, S. “A comparative analysis of methodology for

database schema integration.” ACM Computing Surveys, Vol. 18, No. 4, 1986.

Benslimane, D., Yetongnon, K., Chraibi, S., Leclercq, E., Abdelwahed, E. H. “DECA: A

Framework for Cooperative Information Systems.” Technique et Science
Informatiques, Vol. 19, No. 7. September, 2000.

Bishr, Y. A., Pundt, H., Ruther, C. “Proceeding on the road of semantic interoperability—

design of a semantic mapper based on a case study from transportation.”
Interoperating Geographic Information Systems. Proceedings from the 2nd
International Conference, INTEROP’99. 1999.

Bouguettaya, A. Ontologies and Databases. Kluwer Academic Publishers, 1999.

Breitbart, Y., Olson, P. L., Thompson, G. R. “Database Integration in a Distributed

Heterogeneous Database System.” IEEE Conference on Data Engineering. February,
1986.

Bressan, S., Goh, C. H. “Answering Queries in Context.” Datalogiske Skrifter, No. 78, 1998.

Bruce, T. A. Designing Quality Databases with IDEF1X Information Models. Dorset House

Publishing, 1992.

Cardiff, J., Catarci, T., and Santucci, G. “Exploitation of Interschema Knowledge in a

Multidatabase System.” In Proceedings of the 4th KRDB Workshop, Athens, Greece,
1997.

Castano, S., and DeAntonellis, V. “Global Viewing of Heterogeneous Data Sources.” IEEE

Transactions on Knowledge and Data Engineering, Vol. 13, No. 2, March-April,
2001.

Codd, E. F. “A Relational Model of Data for Large Shared Data Banks.” Communications of

the ACM, Vol. 13, No. 6. June, 1970.

 108

Cohen, W. “Integration of Heterogeneous Databases Without Common Domains Using
Queries Based on Textual Similarity.” In Proceedings of ACM SIGMOD-98, Seattle,
WA, 1998.

Committee on Innovations in Computing and Communications (CICC): Lessons from

History, National Research Council. “Funding a Revolution: Government Support for
Computing Research.” 1999.

Computer Associates (CA). “ERwin: Features Guide.” Computer Associates International,

Inc., Islandia, NY, 2000.

Cormen, T. H., Leiserson, C. E., and Rivest, R. L. Introduction to Algorithms. MIT Press,

1990.

Coulomb, R. M. “Impact of Semantic Heterogeneity on Federating Databases.” Computer

Journal, Vol. 40, No. 5. Oxford University Press, 1997.

Cui, Z., O’Brien, P. “Domain Ontology Management Environment.” Proceedings of the 33rd

Annual Hawaii International Conference on System Sciences. IEEE Computer
Society, 2000.

Deen, S. M., Amin, R. R., Ofori-Dwumfuo, G. O., and Taylor, M. C. “The Architecture of a

Generalised Distributed Database System—PRECI*.” The Computer Journal, Vol.
28, No. 3. 1985.

Department of Defense (DoD). Software Technology Strategy. Decenber, 1991.

Essmayr, W., Kastner, F., Pernul, G., and Tjoa, A. M. “The Security Architecture of IRO-

DB.” In Proceedings of the Twelfth IFIP Conference on Information Security, Island
of Samos, Greece, May, 1996.

Evans, M. W., and Marciniak, J. Software Quality Assurance and Management. John Wiley

& Sons, Inc., New York, NY, 1987.

Fankhauser, P. “Methodology for Knowledge-Based Schema Integration.” Ph. D. Thesis,

University of Vienna, Austria, December, 1997.

Fahl, G., Risch, T., and Skold, M. “AMOS—An Architecture for Active Mediators.”

Proceedings of the International Workshop on Next Generation Information
Technologies and Systems. Haifa, Israel, June, 1993.

Gardarin, G., Sha, F. “Using Conceptual Modeling and Intelligent Agents to Integrate Semi-

Structured Documents in Federated Databases.” Conceptual Modeling: Current
Issues and Future Directions. 1999.

 109

Gardarin, G., Sha, F., Ngoc, T. D. “XML-Based Components for Federating Multiple
Heterogeneous Data Sources.” Proceedings of the 18th International Conference on
Conceptual Modeling. Paris, France, 1999.

Goodchild, M. F., Egenhofer, M. J., and Fegeas, R. “Interoperating GISs.” Report of a

Specialist Meeting Held Under the Auspices of the Varenius Project Panel on
Computational Implementations of Geographic Concepts, December 1997.

Goh, C., Bressan, S., Madnick, S., and Siegel, M. “Context Interchange: New Features and

Formalisms for the Intelligent Integration of Information.” ACM Transactions on
Information Systems, Vol. 17, No. 3, July 1999.

Goh, C., Madnick, S., and Siegel, M. “Context Interchange: Overcoming the Challenges of

Large-Scale Interoperable Database Systems in a Dynamic Environment.” In
Proceedings of the Third International Conference on Information and Knowledge
Management, 1994.

Gravano, L., Garcia-Molina, H., Tomasic, A. “The Effectiveness of GlOSS for the Text

Database Discovery Problem.” In ACM SIGMOD Record, 1994.

Gupta, A. Integration of Information Systems: Bridging Heterogeneous Databases. IEEE

Press, 1989.

Hall, G. “Negotiation in Database Schema Integration.” Presented at The Inaugural

Association for Information Systems Americas Conference, Pittsburgh, PA, August,
1995.

Hammer, J., Garcia-Molina, H., Ireland, K., Papakonstantinou, Y., Ullman, J., Widom, J.

“Information Translation, Mediation, and Mosaic-Based Browsing in the TSIMMIS
System.” In Proceedings of ACM SIGMOD, San Jose, CA, 1995.

Hammer, J., and McLeod, D. “An Approach to Resolving Semantic Heterogeneity in a

Federation of Autonomous, Heterogeneous Database Systems.” In International
Journal of Intelligent & Cooperative Information Systems, World Scientific, Vol. 2,
No. 1, 1993.

Hammer, J., Breunig, M., Garcia-Molina, H., Nestorov, S., Vassalos, V., Yerneni, R.

“Template-Based Wrappers in the TSIMMIS System.” In Proceedings of the Twenty-
Sixth SIGMOD International Conference on Management of Data, Tucson, Arizona,
May 12-15, 1997.

Hasselbring, W. “Federated Integration of Replicated Information Within Hospitals.”

International Journal on Digital Libraries, Vol. 1, No. 3. November, 1997.

 110

Huang, H. C., Kerridge, J., Chen, S. L. “A Query Mediation Approach to Interoperability of
Heterogeneous Databases.” Proceedings of the 11th Australasian Database
Conference. IEEE Computer Society, 1999.

Hull, R. “Managing Semantic Heterogeneity in Databases: A Theoretical Perspective.”

Proceedings of the Sixteenth ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems. ACM, 1997.

Institute of Electrical and Electronics Engineers (IEEE). IEEE Standard Computer

Dictionary: A Compilation of IEEE Standard Computer Glossaries. New York, NY,
1990.

Jannink, J., Mitra, P., Neuhold, E., Pichai, S., Studer, R., Wiederhold, G. “An Algebra for

Semantic Interoperation of Semistructured Data.” Proceedings of the 1999 Workshop
on Knowledge and Data Engineering Exchange. IEEE Computer Society, 2000.

Jones, S. B., Franklin, J. “Integration of Heterogeneous Biotechnology Databases.”

Proceedings of the 1998 International Chemical Information Conference. Infonortics.
Tetbury, UK, 1998.

Kashyap, V., and Sheth, A. “Semantic Heterogeneity in Global Information Systems: The

Role of Metadata, Context and Ontologies.” In Cooperative Information Systems:
Current Trends and Directions, Papazoglou, M., and Schlageter, G., eds. 1996.

Kedad, Z., Metais, E. “Dealing with Semantic Heterogeneity During Data Integration.”

Proceedings of the 18th International Conference on Conceptual Modeling. 1999.

Keller, A. M. “The Role of Semantics in Translating View Updates.” IEEE Computer.

January, 1986.

Kitakami, H., Mori, Y., Airkawa, M., Sato, A. “Integration Method for Biological Taxonomy

Databases in the Presence of Semantic Heterogeneity.” Transactions of the Institute of
Electronics & Communication Engineers of Japan, Part D. Vol. J82D-I, No. 1.
January, 1999.

Kiyoki, Y., Kitagawa, T., Hitomi, Y. “A Fundamental Framework for Realizing Semantic

Interoperability in a Multidatabase Environment.” Integrated Computer-Aided
Engineering, Vol. 2, No. 1. Wiley, USA, 1995.

Leclercq, E., Benslimane, D., Yetongnon, K. “HORUS: A Semantic Broker for GIS

Interoperability.” First International Workshop on Telegeoprocessing. Lyon, France,
1999.

Lee, J. O., Baik, D. K. “SemQL: A Semantic Query Language for Multidatabase Systems.”

Proceedings of the Eighth International Conference on Information Knowledge
Management. ACM, 1999.

 111

Lee, J. O., Baik, D. K. “Semantic Integration of Information Based on the Multi Aspect

Semantic Model.” Joint Conference on Intelligent Systems. 1999.

Litwin, W., and Abdellatif, A. “Multidatabase Interoperability.” IEEE Computer. December,

1986.

Liu, L., and Pu, C. “An Adaptive Object Oriented Approach to Integration and Access of

Heterogeneous Information Sources.” Distributed and Parallel Databases, Vol. 5,
No. 2. April, 1997.

Masood, N., and Eaglestone, B. “Semantics Based Schema Analysis.” Database and Expert

Systems Applications. Proceedings of the 9th International Conference, DEXA ’98.
1998.

Microtool GmbH. “OOP by Scripting—Customized Code Generation.” Microtool GmbH,

Berlin, 2001.

Miller, R. J. “Using Semantically Heterogeneous Structures.” In ACM SIGMOD ’98.

Seattle, WA, USA, 1998.

Miller, R. J., Ioannidis, Y. E., Ramakrishnan, R. “The Use of Information Capacity in

Schema Integration and Translation.” Proceedings of the 19th VLDB Conference.
Dublin, Ireland, 1993.

Mitra, P., Wiederhold, G., Jannink, J. “Semi-automatic Integration of Knowledge Sources.”

Proceedings of the Second International Conference on Information Fusion.
Mountain View, CA, USA, 1999.

Motz, R., Fankhauser, P. “Propagation of Semantic Modifications to an Integrated Schema.”

Proceedings of the 3rd IFCIS International conference on Cooperative Information
Systems. IEEE Computer Society, 1998.

Ouksel, A. M., and Ahmed, I. “Ontologies are not the Panacea in Data Integration: A Flexible

Coordinator to Mediate Context Construction.” Distributed and Parallel Databases.
Kluwer Academic Publishers, Netherlands, 1999.

Phoha, S. “Information Quality Control for Network Centric Ship Maintenance.”

Proceedings of the 1999 American Control Conference. IEEE, 1999.

Renner, Scott A., and Scarano, James G. “Data Interoperability: Standardization or

Mediation.” DOD Database Colloquium ’95, August 1995.

Renner, Scott. “Data Issues.” AF Architecture Workshop, November 1999.

 112

Richardson, R., Smeaton, A. F. “An Information Retrieval Approach to Locating Information
in Large Scale Federated Database Systems.” Applications of Natural Language to
Information Systems. Proceedings of the Second International Workshop.
Amsterdam, Netherlands, 1996.

Roth, M. T., Arya, M., Haas, L., Carey, M., Cody, W., Fagin, R., Schwarz, P., Thomas, J., and
 Wimmers, E. “The Garlic Project.” In ACM SIGMOD, Montreal, Canada, 1996.

Saake, G., Christiansen, A., Conrad, S., Hoding, M., Schmitt, I., Turker, C. “The Federation

of Heterogeneous Database Systems and Local Data Components for Ensuring
System-Wide Integrity—a Short Introduction to the SIGMA[FDB] Project.”
Databases in Office, Technology, and Science. 1997.

Sciore, E., Siegel, M., and Rosenthal, A. “Using Semantic Values to Facilitate

Interoperability Among Heterogeneous Information Systems.” In ACM Transactions
on Database Systems, Vol. 19, No. 2, June 1994.

Shen, W. M., Zhang, W., Wang, X., and Arens, Y. “Discovering and constructing conceptual

object model from large instances of relational databases.” International Journal on
Data Mining and Knowledge Discovery. January, 1999.

Sheth, A., and Kashyap, V. “So Far (Schematically) yet So Near (Semantically).” In IFTP

TC2/WG2.6 Conference on Semantics of Interoperable Database Systems. Elsevier
Scientific Publisher B. V., November 1992.

Sheth, A. P., and Larson, J. A. “Federated Database Systems for Managing Distributed,

Heterogeneous, and Autonomous Databases.” ACM Computing Surveys, Vol. 22, No.
3, 1990.

Stern, D. “New Search and Navigation Techniques in the Digital Library.” Source and

Technology Libraries, Vol. 17, No. 3-4. 1999.

Templeton, M., Brill, D., Dao, S. K., Lund, E., Ward, P., Chen, A. L. P., and MacGregor, R.

“Mermaid—A Front-End to Distributed Heterogeneous Databases.” Proceedings of
the IEEE, Vol. 75, No. 5. May, 1987.

Vermeer, M. W. W., and Apers, P. M. G. “On the Applicability of Schema Integration

Techniques to Database Interoperation.” In Proceedings of the Fifteenth International
Conference on Conceptual Modelling, Cottbus, Germany. Springer-Verlag, Berlin,
1996.

Vidal, V. M. P. Loscio, B. F. “Solving the Problem of Semantic Heterogeneity in Defining

Mediator Update Translators.” Proceedings of the 18th International Conference on
Conceptual Modeling. 1999.

 113

Winters, Melanie, and Wilczynski, Brian. “Data Interoperability: Foundation of Information
Superiority.” CHIPS, July 2000.

Wood, J. “What’s in a Link?” In Readings in Knowledge Representation. Morgan

Kaufmann, 1985.

Wu, X. “A CORBA-Based Architecture for Integrating Distributed and Heterogeneous

Databases.” Proceedings of the 5 th IEEE International Conference on Engineering of
Complex Computer Systems. IEEE Computer Society, 1999.

Wu, X. “Integrating Heterogeneous Database Systems to an Object Oriented Client/Server

Architecture.” Data Mining, Data Warehousing, and Client/Server Databases.
Proceedings of the 8th International Database Workshop. 1997.

Zisman, A., Kramer, J. “An Architecture to Support Interoperability of Autonomous

Database Systems.” In 2nd International Baltic Workshop on DB and IS. Estonia-
Tallin, June 1996.

