The Abstract Data I nterface
by
Brian T. Wong
Submitted to the Department of Electrical Engineering and Computer Science
in Partid Fulfillment of the Requirements for the Degree of
Master of Engineering in Electrica Engineering and Computer Science
at the Massachusetts I ndtitute of Technology
May 23, 2001

Copyright 2001 Massachusetts Indtitute of Technology. All rights reserved.

AULNOT ..« e e
Department of Electrical Engineering and Computer Science

May 23, 2001

(@0 11 11 o o PP
Dr. Amar Gupta

Thes's Supervisor

00 0= o o P
Arthur C. Smith

Chairman, Department Committee on Graduate Students

The Abstract Data Interface

by
Brian T. Wong

Submitted to the
Department of Electrical Engineering and Computer Science

May 23, 2001

in Partid Fulfillment of the Requirements for the Degree of
Master of Engineering in Electrica Engineering and Computer Science
at the Massachusetts Indtitute of Technology

ABSTRACT

Daa interoperability between computer systems is a critical god for businesses. This thess
attempts to address data interoperability by proposing a design in which data producers
produce an Abstract Data Interface to expose data. The interface alows data consumers to
determine semantic matches, after which data producers and consumers can provide input to
an Interface Generator that resolves the schematic differences. The result of the Interface
Generator is an Interface that enables unfettered, interoperable data exchange between a data
producer-data consumer pair.

Thes's Supervisor: Dr. Amar Gupta

Title Co-Director, Productivity From Information Technology (PROHT) Initigtive, Soan
School of Management

Acknowledgements

| would like to begin by taking a moment to thank, in no particular order, al the people who
helped me to accomplish awork of this magnitude. Without their patience and advice | would
not have been able to persevere and succeed in this endeavor.

| could not have darted, let done finish, this thesis without the guidance of severd people at
the MITRE Corporation in Bedford. Scott Renner lent me his invauable knowledge and
direction that hdped me to nall down my thoughts. As my supervisor, he adso provided me
with al the resources | needed to get the job done, as well as a productive work environment.
Ed Housman gave me an essentid introduction to the data engineering fidd. Arnie Rosentha
and Frank Manola provided me with bountiful braingtorming sessons that filled my heed full
of wonderful idess. And of course, Beth Roberts put up with me as her officemate. You dl
have my gratitude.

| am dso indebted to Dr. Amar Gupta, who made this entire project possble. He gave me
indispensable insghts into improving my research techniques and formaizing my idess. His
leadership ensured that | never lost Sight of my goals.

Last but certainly not least, | would like to thank my family and friends, who were so patient
and supportive of me through it dl. They gave me the strength to endure through the stressful
times and the happiness to enjoy the good times. Thank you.

Cambridge, Massachusetts BTW
May 23, 2001

Table of Contents

1

3

FEFOTUCTION ...t bbbttt bbb e 9
1.1 History of Data Interoperability RESEArCh........ccccoeevenirireeeee e, 10
1.2 Data Interoperability ... 13
1.3 SEMANtiC HEErOgENEITY.oiviiesterieeeceieeee ettt 15
1.4 Schematic HEterOgENEITY........cceiiieriiririeie et 17
1.5 Typesof SchematiC HEter OgENEILY........coviiirieie et 19

151 NaMING CONTHTEScoviiiiiiiieieseee e 19

1.5.2 HOomoNymM CONflICES.......ccoiveieiieie e 20

1.5.3 Synonym COoNnfliCES.......c.ooiieiiiiiiicee st 20

154 PreciSon CONlICES......coiieiieiesieseee e 20

155 SCAING CONTHCES ...oiveeieeeeiiicie et ens 20

1.5.6 StUCIUral CONFIICES.oiiiiiieisiieeriieeee e 21

157 TYPE CONMTHCES. ..ccueiueeeeiiitesieete et 21

158 Ke&Y CONICIS ..uuiiuiiieeeeeeiese e ens 21

159 Cardinality Ratio CONTIICES......ccccuriiiriiiriirierie s 21

1.5.10 INterface CONIICESocviieieieee e e 22
1.6 TheSISOrQganiZAtiON.........coueiveruerterieeieeieeee e see st st sbe st e e e seesr e b e b sae e e e ens 22

Approachesto Achieving Data Interoperability.........cccoceveeiecceieerece e 24
2.1 HUMBN INEENVENTION. ...ttt 24
2.2 PoINt 1O POINE INEITACEScveeieieeesieeie s ee sttt sre e e 25

221 SANUATIZALON.coiiieieierieeiieeee e b 27
G o = o = 1 o] o RO 29

231 Tightly-Coupled FEOEration..........cccooerererierinereeeeeee e 29

2.3.2 Loosay-Coupled FEeration............cccorerererenenieneeeeeesee e 30
P2 S © 01 o] oo V2SS 31
ARSI Y/ [o = L[] o PSSR 31
2.6 COMPAITSON...c.tiuiiuieueetesteste sttt sttt e e se e e et e se e b e sbesaeeseese e e e e et e ssesbesaesbeseeeneeneennas 33

ACtIVE DALA INLENTACE. ..ottt 34
3.1 Active Data INnterface CONCEDLoceruireeiiirie et 34
3.2 Abgract Data Interface Architecture SpecifiCation...........ccceeveeererenereseseseseees 38

3.2.1 Database Contents PUDIICALION.........ccooiiirerenerereeee s 40

3.2.2 Database ACCESS DESCIIPLON........iceeciieie ettt 43

3.2.3 Application Requirements DESCIPLON.covrerereeieeeeesees e 45

3.24 Trandator Library Preparation...........coevereienenenenieeeeee e 48

325 IO aCE GONEIHON «..eeeeeee et e e e et e e e e e e e e e e e eeeaeeeeaans 50

3.2.6 INterface OPEIELION........coiueieerieeie ettt r e e 51

4 Goalsof the Abstract Data Interface ArChiteCture.........ccooveceeeereeceveeseeceseeens 52
4.1 SCAlADIITY ..ottt 52
AV =TT g 7= T = o1 /PR 54
G T Vo = o = | o | 56

5 Sample Component CONSIIUCLIONccciveiieeieereeie e eie e sae e sre e 60
I R D 1072 =TSSR 60
5.2 Abgiract Data INtErface........ceeueieeiieesieeee e 62
5.3 Database ACCESS DESCIIPLION.ccieereieerieeiesieeseeeeesee e see e sre e sseesaesseesreeseens 64
o3 A A\ o o[11 o TS 67
5.5 Application REQUITEIMENTS......cciiiiiieiesiesie ettt s 68
5.6 Trandator LIDIary........coocoooiirinenieieeeieesie sttt s 70
5.7 INErTACE GENEIALONoiuiiviriestieieeieeee ettt b bt be e ne e 74
5.8 INEEITACE......eoieee e et r e ne s 74

G V= S 76
6.1 Timeand Labor EXPENditUre..........ccocveieeiereese ettt 76
6.1.1 ADI and Database Access Description CONStruCtioneccveecveeveecieesieesnne. 76
6.1.2 Application Requirements CONSITUCHION.coeruerererieiereeie s 77
6.1.3 Trandator Library MaintenanCe..........cccceveeieeiesierie e seeses et ee e 77
6.1.4 Interface MOGIfICAONcciiiiirieeeeee s 78

6.2 INErfaCe EEM.o e e 78

A 2 .= =0 YL o o S 80
% T o 1010’2 T B 1= = (o PSPPSR 80
7.2 Tightly-Coupled Feeration............cccoeeieeiereenenesee e 81
7422 T 1 S 81
T7.2.2 VHDBS ..ottt sttt b et 82
7.2.3 ADI and Tightly-Coupled Federationsccccoeveeiee e 82

7.3 Mediated and Loosely-Coupled FEJerations............cuoererereeieerienesiesiese e 83
4 25 L G 1 ST 83
7.3.2 TSIMMIS .. .o et enes 84
7.3.3 ODMG-OQL and SQL Query Mediation...........ccecvueeieeiiieeieecieeseecire e 85
T34 SIMS...oo ettt nre e ne e ne s 85
7.35 YAT AN TIaNSCM...ccueiiiiiiesiesie ettt sttt enes 86

B CONCIUSION et e e e e e e e e e e e et e e e e e e e e e e e eeeeeeeeeeseaaanneeeeens 88

8.1 EPIOQUE.... .ot bbbt naeen e 88

S A B (U= Y1V o S 89
8.2.1 IMPIEMENIALIONcceeeceieie ettt 89
8.2.2 Alternate IMplemENtalioNS........ccccoiieiirie e 89
8.2.3 Rdaxation of SMplifying ASSUMPLIONS.......cccoreriererieieiesese s 90
8.24 APPICAION FOCUS.......ccteeieciesieeie ettt esre e 91

8.3 ConcludiNg REMAIKS.cciuieiieiieeie ettt r e enre e 92
9 Appendix A. Glossary Of ACTONYMS.......ccoiirieiieierene st 93
10 Appendix B. Sample DDL for the MAP Example.........cccoovevvvevieiecceeeeeeee 96
11 Appendix C. IDEF1X Background.........cccccceieeieeieeeiese e 103
12 Appendix D. IDEFL1X Notation CONVENLIONS..........ccoveerierieereenieneesee e 105
12,1 ENtLY NOBHON ...ttt 105
122 ALFIDULE NOALION.eiieiesiesierieeceee e 106
12.3 Reationship NOALON.cceeiiieierierieeeee e e ee s 106
13 BibliOGraphy ..c..coeceeieeeee e 107

Tableof Figures

Figure 2.1. Point-to-Point Interface, Two Databases. Only OneInterfacetoBuild 25

Figure2.2. Point-to-Paint Interface, Many Databases. Even Morelnterfacesto Build 27

Figure3.1. Scheduler and Payroll EXample..........ccooeoieiieieeeeiecce e 35
Figure3.2. Single Application-Single Database ADI Architecture...........ccocvcevvreeene. 39
Figure 3.3. Scheduler and Payroll Example, Interface 1........ccccooevvviveccecien e, 50
Figure4.1. ADI Architectureis Scalable..........cccooveieiieieeie e 53
Figure4.2. ADI ArchitectureisMaintainable............ccocooiiiriiieicicne e 56
Figure5.1. ADI for the MAP Database EXample..........ccceevveeeiecieieceere e 63
Figure5.2. Database Access Description for MAP Database Example...........ccoceveeeee. 66
Figure5.3. Application RequirementsDeclaration............ccocceeveeiiiecsinscieesee e 69
Figure5.4. Trandator Library Provides Trandatorsto Interface Generator 73
Figure12.1. Independent ENitY.........ccooiireeiiieieree et 105
Figure 12.2. Dependent ENLity........ccccceeiieieiiciece e 106
Figure12.3. One-to-Many REatioNSNiP.......ccceiiriiiininenereeeeeee s 106

1 Introduction

With the information age and the accompanying rgpid advances in information
technology has come an overwheming abundance of data. However, storage of these data are
far from the only chalenge in deding with these plentiful data. Perhgos more importantly, a
greater chdlenge is the ability to share and exchange this data with others. Although the
development of database management systems has increased the utility of a large store of data,
such systems have not solved the problem of having a great number of separate such stores in
a large company or community. Users would like to access and manipulate data from severd
databases, and applications may require data from a wide variety of databases. Since these
databases ae generdly crested and administered independently, physicd and logicd
differences are common between databases [Hammer and McLeod, 1993].

Solutions to these chdlenges have a wide aea of gpplicability, including
telecommunications [Wu, 1999, digitd libraries [Stern, 1999], finance [Bressan and Goh,
1998], taxonomy [Kitakami et al., 1999], biotechnology [Jones and Franklin, 1998],
geoinformation [Leclercq et al., 1999, transportation [Bishr et al., 1999], shipping [Phoha,
1999], and medicine [Hasselbring, 1997]. As a result, a great ded of research has been
focused on changing the way in which data are accessed from databases. Instead of accessing
and manipulaing individud databases in isolation, the computing environment should support
interoperation, permitting data consumers to access information from a variety of data sources.
The interoperability should be supported without modifying the databases or reducing the
autonomy of the databases, and in such a way that is ratively transparent to users and

gpplications [Zisman and Kramer, 1996).

In this section, a brief history of research in the fidd of data interoperability is

presented. Approaches to solving some of the problemsin thisfield will aso be discussed.

1.1 History of Data I nteroperability Research

In the early days of computing, there was no formaized notion of a database.
However, by the 1960's, people had begun to notice the difficulty of having thousands of
programs access information held in externd files. 1t had become clear that a set of utility
functions placed between the programs and the data would help control the complexity
resulting from this kind of data access. These utility functions came to be known as access
methods and represented a first step towards removing the responsibility for managing data
from the application program. [Bruce, 1992]

Computing technology progressed through a series of steps in which each achieved an
increasing degree of separation between the program functions and the data access functions.
Hardware- specific condraints came to be removed from the tasks of programmers. The term,
“database,” emerged to capture the notion that information stored within a computer could be
conceptudized, structured, and manipulated independently of the specific machine on which it
resided. [CICC, 1999]

A dgnificant amount of database research during this period caused the database to
evolve quickly. The hierarchicad modd, network mode, and rdlaiona mode, dong with a
host of other types of database models, were invented. In 1970, Dr. Edgar “Ted” Codd of
IBM research wrote alandmark paper that spawned the birth of the relationa database model.
The paper, entitled, A Relational Model of Data for Large Shared Data Banks, outlined away

to use rdationd cdculus and dgebra to dlow non-technica users to store and retrieve large

10

amounts of information. Codd envisioned a database system where a user would access data

usng Engliglike commands, and where information would be stored in tables. [Codd, 1970]

In the late 1970's and 1980’s, severd projects and prototype development efforts to
support access to heterogeneous, distributed databases were started, mostly focusng on
providing methodologies for relationd database design. This work addressed methodologies
and mechaniams to support the integration of individua, user-oriented schemas into a single
globa conceptud schema 1n 1986, Batini, Lenzerini, and Navathe wrote an important paper
entitled, A Compar ative Analysis of Methodologies for Database Schema Integration. This
paper described some of the causes for schema diversity, and then investigated twelve of the
integration methodologies and compared them on the basis of five commonly accepted
integration activities. pre-integration, comparison of schemas, conforming of schemeas,
merging, and restructuring. [Hammer and McLeod, 1993] However, the paper did not
incdude any of the exising specidized languages or data Sructures for autometing these
integration activities, and s0 the survey does not directly address the diversty problem
described. Also, only a few of the methodologies presented specific tools or procedures to
cary out the process of resolution beyond renaming, redundancy dimination, and
generdization; more difficult resolution tasks such as trandating integrity condrants,
language, and data Structure incompatibilities were not addressed. Furthermore, as stated by
the authors:

“None [of the methodologies] provide an andyss or proof of the

completeness of the schema transformation operations from the standpoint of

being able to resolve any type of conflict that can arise” [Batini, Lenzerini,
and Navathe, 1986]

11

The absence of such andlysis or proof suggests that none of the methodologies is based on any
established mathematica theory; indtead, they are a result of a consensus on schemas achieved
by changing the view of some users.

Subsequent research data heterogeneity used varying leves of mathematica
grounding and formal database theory. Severd papers provided an intuitive classfication of
types of semantic data heterogeneity, schematic data heterogeneity, and metadata. [Kashyap
and Sheth, 1996] Although not backed by formal proofs, these classifications provide a useful
contribution to the study of the data heterogeneity problem because they dlow researchers to
focus on smdler ingances of the problem. Other researchers eventualy came to use more
theoretical designs to specify and solve the data interoperability problem. One team of
researchers invedtigated the use of information capecity equivdence to determine the
correctness of transformed schemas by examining common tasks that require schema
integration and trandation, based on a st of forma definitions. [Miller, loannidis, and
Ramakrishnan, 1993] Another approach investigated used a logic that reasons about the
gmilarity of names in locd domains usng datisicd methods and a set of forma logic
axioms. [Cohen, 1998]

Of the more recent methodologies to solving data heterogeneity, the tightly-coupled
federation and loosdly-coupled federation approaches are among the most well known. In a
tightly-coupled federation, the adminigtrator or administrators are responsible for creating and
maintaning the federation and actively controlling the individud component databases.
[Sheth and Larson, 1990] In aloosaly-coupled federation, the user bears the responsbility of

creating and maintaining the federation and no contral is enforced by the federated system or

12

by any of the administrators. The main differences between the two drategies involve who
resolves conflicts and when. [Goh, 1997]

Creeting a tightly-coupled federation requires schema integration. Accessing datain a
loosdaly-coupled federation requires that a view over multiple databases be defined, or that a
query usng a multi-database language be defined. Schema integration, multiple database
view definition, and multi- database language query definition are al affected by the problems
of semantic and schematic heterogeneity.

More concrete examples of federated database systems will be presented in a later
chapter. The next sections will discuss the data interoperability problem, and then the
problems of semantic and schematic heterogeneity, which are subsats of the data

interoperability problem.

1.2 Data Interoperability

Formaly defined, data interoperability is the ability to correctly interpret data that
Ccrosses system or organizationd boundaries. [Renner, 1995] From this definition, one could
conclude that data interoperability problems are obstacles that frudtrate efforts to correctly
interpret data that crosses system or organizationad boundaries. However, not dl such
problems ae drictly data interoperability problems. Indeed, the definition of data
interoperability can be judifidbly vague because it must include many different kinds of
interoperability, al of which are necessary.

Congder a computer user unable to download a paper containing needed information
due to impared network servicee The impared network service qudifies as a data

interoperability problem because it hampers the ability of the user to interpret the data that he

13

or she is transferring from an outside entity, across a system boundary, to himsdf or hersdf.
However, this problem is primarily a communication interoperability problem, which can be
solved if the viahility of the underlying communications network is established.

In the same example, the computer user discovers that the paper he or she downloaded
does not contain the information he actudly needed. The incomplete information aso
qudifies as a data interoperability problem for the same reasons that the impaired network
sarvice did. However, it can be cast as a process interoperability problem, which can be
solved if the user and the author of the paper properly communicate their requirements and
resources.

These examples demondrate that data interoperability includes other kinds of
interoperability. Therefore, any solution that ams to solve data interoperability problems
must dso provide for a solution of other types of interoperability problem as wdl. At a
minimum the solution should specify how solutions to other interoperability problems would
work aongdde it; a the other extreme, the overdl solution could include the solutions of the
other interoperability problems within itsdf. For ingance, an interoperability solution for the
example of the user downloading the paper may include assumptions of religble network
services and predetermined agreement on what is required and what will be delivered.

In solving the data focus of the data interoperability problem, the fundamentd
question is that of identifying objects in different data sources that are semanticaly related,
and then of resolving the schematic differences among the semanticdly related objects. Two
sub-problems of data interoperability are semantic heterogeneity and semantic heterogeneity.
In this theds, the term semantic heterogeneity will be used to refer to the identification of

semantically or conceptudly related objects in different databases, whereas the term schematic

14

heterogeneity will be used to refer to the resolution of differences and smilarities among
semantically related objects. A solution for data interoperability must address these two
criticd problems. [Kashyap and Sheth, 1996]

It should be noted that, in the literature, different researchers have assigned various
definitions to the terms semantic heter ogeneity and schematic heterogeneity. Some of those
definitions may differ from the ones used in this thess. What is referred to in this thesis as
semantic heterogeneity has been cdled fundamental semantic heterogeneity, process
interoperability, and semantic mismatch. [Coulomb, 1997; Renner, 1999] What isreferred to
as schematic heterogeneity has been caled semantic heterogeneity, domain incompatibility,
and data interoperability. [Hammer and McLeod, 1993; Sheth and Kashyap, 1996]
Neverthdess, this thesis will consstently use the terms as described in the previous paragraph,
unless specified otherwise,

The next section will discuss semantic heterogeneity and schematic heterogeneity in

turn, followed by approaches to each of these problems.

1.3 Semantic Heterogeneity

The semantic heterogeneity problem is the problem of identifying semanticaly related
objects in different databases. Intuitively, two objects are semanticaly related if they
represent the same real-world concept. A digtinction between the real world and the model
world helps in characterizing semantic heterogeneity. Objects in the modd world are
representations of things in the red world. Therefore, a semantic match is present between
two objects in the model world if both objects correspond to the same rea world object; a

semantic mismatch is present insteed if the two objects correspond to different rea world

15

objects. [Sheth and Kashyap, 1992] However, it turns out that determining presence of
semantic maich or semantic mismeaich is not as sraghtforward as one might think from this
description.

One smple example of semantic heterogeneity is a type of search problem known as
the text database discovery problem. With the avalability and popularity of online document
stores, such as Dialog, Mead Data Centra, Archie, WAIS, and World Wide Web, users do not
have the problem of finding documents; rather, they have the problem of deciding which
documents are the most relevant. Nai' ve search methods that depend on word frequency can
be hepful in some cases, but in other cases they fall completely. For example, a document
can have a high frequency for a particular word that a user is searching for. However, the
semantic meaning that the user is searching for might not match the semantic meaning of the
word as used in that document, in which case the document would have little or no relevance.
[Gravano, Garcia-Malina, and Tomasic, 1994]

One gpproach recognizes description overlap, which occurs when two different
databases contain descriptions of identical real-world properties, and contends that a property
equivalence assertion must be defined when description overlap occurs. In this approach,
when a property equivalence assertion occurs between two different domains, a conversion
function must be defined to map the two domains to each other, and then adecision functionis
applied to choose between the two properties when the values from each database disagree.
[Vermeer and Apers, 1996]

Another gpproach defines a vaue known as semantic proximity that measures the
degree to which two objects are semanticaly smilar. In this gpproach, the semantic proximity

of two objects is a function of the respective contexts of the objects, the abstraction used to

16

map the domains of the objects, the domains of the objects themsalves, and the dtates of the
objects. Using a more formd definition of semantic proximity, this gpproach can help to
identify the strongest semantic relationships to the weskest ones semantic equivaence,
semantic redionship, semantic relevance, semantic resemblance, and semantic
incompatibility. [Sheth and Kashyap, 1992]

For the purposes of this thesis, the semantic heterogeneity problem will be treated
largely as a process problem. As such, the implicit assumption is made that people, not
automated computer systems, will be held responsible for resolving the problem of semantic
heterogeneity. The assumption, however, does alow for the use of computer systems to help

people to make better or more informed choices about semantic heterogeneity.

1.4 Schematic Heter ogeneity

From the viewpoint of an gpplication or other data consumer, identifying the data that
are required for application operation is the first step in enabling data interoperability. After
discovering a data source containing data that semantically matches the needed data, then the
schematic differences between the needed data and the database data must be resolved. This
resolution problem is known as schematic heterogeneity. A subtle point regarding the scope
of schemétic heterogeneity is that it necessxrily dso includes the problem of identifying
schematicaly smilar objects that are semantically unrdated, because this problem can
produce other confounding problems smilar to those produced by schematicaly dissmilar yet
semantically related objects.

Schematic heterogeneity is a result of severa factors. One of the most pervasive and

universal complications is that different data engineers, programmers, and users think about

17

data in different ways. As a result, schema implementations, which tend to capture the
idiosyncrasies of individud thought processes, have a high chance of exhibiting corresponding
idiosyncratic differences. As one researcher Sates:

“Schematic heterogeneity arises frequently since names for schema congtructs

(labds within schemas) often cgpture some intuitive semantic information.

...Even within the rdaiond modd it is more the rule than the exception to

find data represented in schema congtructs. Within semantic or object-based

datamodelsit is even more common.” [Miller, 1998]
Most often, this phenomenon occurs during the design phase of a database schema. However,
its effects can linger to confound schema and data integration efforts long after the design
phaseisover.

Ancther factor is data mode heterogendty. For example, in an Entity-Reationship
(ER) modd, a generdization hierarchy may be represented using is-a reationships, while in
an extended ER modd, the same condruct might be modded usng generdization
reaionships, and in the reationa modd, there is no specific congruct for modding such
abdtractions. [Hall, 1995] Numerous other data models have adso been introduced into the
literature as well, each with its own congtructs for representing data and data relationships.
Some researchers have suggested solving ingtances of schematic heterogeneity due to data
model heterogeneity by converting dl data into the terms of one data model before trying to
reconcile any differences, however, this goproach has the potentid to violate individud
schema condraints as well as component schema autonomy. Data mode heterogeneity
remains a sgnificant chalenge to solving schematic heterogeneity problems.

Yet another maor cause of schematic heterogeneity is incompatible design

gpecifications between data sources. It is not often the case that two databases share the same

exact purpose even though they may be reated. As a result there is no reason for the two

18

databases to necessarily have compatible design specifications. Even if two databases do
share the same purposg, it is not necessarily the case that designers choose designs that are
compatible with each other, Snce in mogt cases there is a virtudly unlimited number of ways
to create adesign. For example, atravel agency reservation system could be supported by two
databases. One database imposes a cardindity constraint between travelers and bookings,
such that each cusomer can have only one booking a a time, while the other dlows
cusomers to have severd reservations a once. These design specifications could be
completely judtified in each database' s individud case, yet ther incompatibilities will frustrate

interoperability efforts. [Batini, 1986; Hammer and McLeod, 1993]

1.5 Typesof Schematic Heterogeneity
Schemdic heterogenaty conflicts fal roughly into one of the following categories
naming conflicts, structura conflicts, or interface conflicts. [Sciore, Siegd, and Rosenthd,

1994; Sheth and Kashyap, 1992; Cardiff, Catarci, and Santucci, 1997]

151 Naming Conflicts

Schemas for data modes include names for the various entities, attributes, and
relationships. Data engineers naturdly use their own terminology when designing schemeas if
there are no requirements to do otherwise. Of course, there is no guarantee that people from
different organizations will happen to use the same conventions. Naming conflicts refer to the
redundancies and inconsstencies resulting from people incorporeting their own names,

terminology, and conventionsinto their schemas. Naming conflicts include the following:

19

152 Homonym Conflicts

Schemas may use the same name to describe two different concepts, resulting in
incongstency between the moddls. For example, one schema could use the word "tank” to
refer to a container used to hold a certain amount of liquid, whereas another schema may use

the same word to refer to alarge, armored war vehicle.

153 Synonym Conflicts

Schemas may use different names to describe the same concept, resulting in redundant
names. For example, one schema could describe a four-wheded passenger vehicleasacar,”

whereas another could describe the same object as an "automobile.”

154 Precison Conflicts

Schemas have different conventions for the number of decima places used to
represent numerica values. For example, one schema could call require dl numerica vaues
to be exact to 10 places, whereas another could require al numerica vaues to be rounded to

the nearest integer.

155 Scaling Conflicts

Schemas may attach different units of measure to numerica vaues. For instance, one

schema could describe distances in terms of feet, whereas another could describeit in meters.

20

156 Structural Conflicts

Jus as data engineers create different names when not restricted to particular
requirements, they aso choose different modding condructs. Data engineers from different
organizations can and often do think about the same data in different ways. The schemeas that
result from the heterogeneous methodologies may exhibit differences in modding condructs.

These differences are referred to as structurd conflicts, and include the following:

157 TypeConflicts

Schemas may utilize different modeling congtructs to represent the same concept. For
instance, ore schema could use an entity to represent a tank while another could use an

attribute.

158 Key Conflicts

Schemas may assign different keys to the same concept. For example, the keys pilot-

name and pilot-number could both be conceivably used to identify pilot records.

159 Cardinality Ratio Conflicts

Schemas may relate a group of concepts anong themsdves with different cardinality
ratios. For example, one schema may cal for a one-to-oneratio between "ship” and "captain,”
with the rationae that each ship has anly one captain, whereas another schema may cdl for a
one-to-many ratio for the same concepts, accounting for al of the officers who have ever

captained that ship.

21

1.5.10 Interface Conflicts

Databases can be and often are designed to work with specific gpplications, and vice
versa When systems are designed in this way, they can be highly optimized to do the things
they were specificdly desgned for. Unfortunately, with no regard for other potentid
consumers, this methodology aso results in data that is difficult, if not impossble, to use with
additiond applications.

Sngle-purpose data systems continue to exist today. In the pagt, this type of system
was easer to judify since response-time requirements and relaively dow database
performance left no choice but to optimize based on a single purpose. However, such systems
have much less judtification today, snce the underlying technology is now able to give better
database performance and most enterprises have a requirement to share data at least within
ther interna organization, if not with externa organizationsaswel. [Bruce, 1992]

Even if a database is not built with a specific gpplication in mind, it often requires an
gpplication to use a specific interface to access the data it contains. Interface conflicts refer to
the problems that occur when an application cannot interoperate with a database because the

application does not use that database's specific interface.

1.6 ThesisOrganization

This chapter discussed the problem of data interoperability, described severd of the
associated sub-problems of data interoperability, and provided motivations for solutions. The
next chapter will provide a description of the related work that has been done towards

achieving solutions to data interoperability. Severa chapters afterwards will discuss the

22

proposed ADI architecture, specification, advantages, condruction, and metrics. After a
thorough background is given on the ADI, a comparison of the ADI with other data
interoperability gpproaches is provided. The find chapter ends with conclusons and

suggestions for future research.

23

2 Approachesto Achieving Data I nter oper ability

The previous section discussed various types of data interoperability problems. The
next section explores some of the gpproaches that have been researched or tried towards
achieving better data interoperability. These gpproaches include human intervention, point-to-

point interfaces, standardization, federation, ontologies, and mediation.

2.1 Human Intervention

One approach that solves data interoperability problems is human intervention. In this
goproach, two or more systems experiencing difficulty in exchanging data can resolve
differences through communication by the owners of the sysems—people who design,
maintain or otherwise have a responghility for the sysem. Such communication can be in a
face to face meeting, through an indant messaging system, or by way of POTS (Plain Old
Telephone Service).

Such an approach has the advantage thet it is fast and inexpendve, a least in some
cases. This approach does not require hardware beyond that which is dready typicaly
available in a computing environment. Also, if the owners are sufficiently knowledgegble
about their systems or if the data conflict is of a type such that it can be easly resolved, then
the human intervention gpproach can be quicker to implement and yidd results than other,
more automated, solutions. However, this solution is not effective when scded for large
environments that may potentidly encounter a large number of data conflicts, because the
human intervention will be needed for every ingance of conflict. Therefore, this thesis will

focus on more automated approaches, which will yield more scaable results. Nevertheless, it

24

is important to include the human intervention approach because there are cases where it will

be an effective solution.

2.2 Point to Point Interfaces

Another way to endble data interoperability is through the use of point-to-point
interfaces. To connect any two systems, a piece of specia software or interface can be written
to negotiate data and facilitate communication between the two systems. Such software is
known as a point-to-point interface. The advantage of the point-to-point interfaceisthat it is
amog dways the amplest, fastest, and cheapest way to connect two systems in the short run.
However, the benefits of this gpproach are outweighed by disadvantages when considering a
large environment and long term effects. [Renner, 1999]

Building a point-to-point interface may or may not be easy depending on the
gpplication and database involved, but in the general case it should be considered as a nor+
trivid task. [Hammer et d., 1997] However, Stuations exist where this approach is the most
cost-effective one. For example, if it is known that there will be only two systems that need to
exchange and interpret data, then a point-to-point interface is dmogt certainly the best

candidate to solve the interoperability need.

=k =k
Interface E

Database Database

Figure2.1. Point-to-Point I nterface, Two Databases. Only One Interfaceto Build

25

Point-to-point interfaces can work wel for an environment composed of a smadl
number of individua sysems. However, the number of interfaces does not grow linearly with
the number of sysems. In an environment conggting of n sysems, the number of interfaces

needed to inter-connect al of the n systems requires

gli _ n(n2- 1) — O(nz)

totd interfaces, which grows with the square of the number of sysems. Clearly, the point-to-
point interface gpproach becomes infeasible when applied to large environments because of
the sheer number of interfaces that must be built. [Renner, 1999]

Although a point-to-point interface can be constructed easily and chesgply to connect
two sysems, the maintenance of an environment full of interfaces is codly in the long run.
Changes, for example, become difficult to ded with. In an environment conssing of n
interfaces, a change to a single system requires a change in each of the up to n - 1 interfaces

that connectsto that system. (In the following diagram, each line represents an interface.)

26

=0 lll =0
E J " Database "v‘il.l
Database <> Database
| AN
Dﬁa ‘,4’ Dase

—a
—Hl
Database II Database

Database

Figure2.2. Point-to-Point Interface, Many Databases. Even More I nterfacesto Build

2.3 Standardization

A way to avoid the data interoperability problem atogether, where feasible, is through
dandardization. Requiring the set of dl intercommunicating systems to use the same data
models and structure to represent data assures any system within the set that it will be ale to
communicate with any other sysem within the st Unfortunately, there are potentia

sgnificant pitfals with the standardization approach.

27

Congructing a single, comprehensive data standard is difficult or even impossible. If
every sysem isto be able to conform to a data standard, that slandard must include the union
of the requirements of the individud systems, if the requirements of any one system are left
out, that system will not be able to conform to the standard. The complexity associated with
condructing and maintaining a monolithic slandard can easlly exceed reasonable human limits
even in modestly large environments. [Renner, 1999]

Assuming that a standard can be established for some set of systems, maintenance is
dill a difficult problem in its own right. Because of changing requirements, changing
regulations, changing technology, or other reasons, systems adways must be prepared to
change. Maintaining a dandard over a large number of sysems implies a high rate of
occurrence of changes since the changes propagate from the individud systems into the
dandard. Assuming that an individud sysem averages one change every three years a
gtandard that accommodates 300 individua systems must undergo 100 changes per year, or
two changes per week. [Goh, 1994] Unfortunately, standards are by nature resistant to
change. Once a dtandard is established, it is much more difficult to make the standard change
around the systems than it is to make the systems conform to the sandard. Maintaining a
gandard over a large number of systems is clearly a difficult problem because of the conflict
between inevitable, frequent changes, and the tendency of stlandards to resist change.

When the standard is changed for whatever reason, compatibility poblems can be
introduced. To ensure compatibility when a sandard is changed, dl of the individua systems
mugt aso change. However, it is often impossible for dl of the individuad systems to change

smultaneoudy, especidly with a sandard that encompasses a large number of systems, giving

28

rise to interoperability problems between systems that have changed and systems that have
not. [Renner, 1995]

Standardization is infeasble when al communication is not sdf-contained. It is rare
that systems never encounter outside interaction. Communication with sysems outside the
gandard will necessarily be more difficult than with sysems within the standard.

Standardization is not an optima gpproach in an environment that conssts of many
independent systems. Even though systems may be independent there can be a requirement to
share data, for example, in an environment where many systems combine vast data stores to
enable decison-making. In such an environment, the sandard would be seen as intrusive to
the individua sysems. The specid requirements of one particular syssem may be detrimentd

to another system, yet the standard must accommodate both systems.

24 Federation

As described earlier, the congtruction of a federation can ad in data interoperability.
Individual databases can join in a federation, where each database extends its schema to
incorporate subsets of the data held in the other member databases. Federations can be tightly-
coupled or loosely-coupled. Both approaches yield a schema againgt which data consumers
can make queries, the former placing the burden of creating and maintaining the schema on

adminigrators, the latter placing that burden on users.

241 Tightly-Coupled Federation

In the tightly-coupled federation, a shared globa schema, which is maintained by an

authoritative adminidration, represents dl of the daa avalable in a heterogeneous

29

environment. Tightly-coupled federations require the identification and resolution of data
conflicts in advance. Once this task has been accomplished, queries can be made againgt the
reulting globd schema Examples of tightly-coupled federation approaches include
Multibase [Smith et dl., 1981], PRECI* [Deen et a., 1985], ADDS [Breitbart et dl., 1986], and
Mermaid [Templeton et d., 1987]; more recent examples include IRO-DB [Gardarin and Sha,
1997], SIM [Motz and Fankhauser, 1998], GIM [Akoka et al., 1999], VHDBS [Wu, 1997],
and SIGMA(FDB) [Saske et al., 1997].

The criticd task in the credtion of a tightly-coupled federation--the creation of a globd
schema--depends heavily on an ability to determine semantic matches between data Structures.
In the padt, efforts to diminate semantic ambiguities were mostly empirica, resulting in
categorizations of semantic heterogeneity problems. While useful, such research does not
address on a formd level what a semantic maich is or is not. However, recent trends in the
research of tightly-coupled federations have been amed a formdizing notions of semantic
gmilaity or afinity between different data modds. Formad mahematicd modes or
definitions help to better define the logic behind crestion of a global schema [Jannink et d.,

1999; Cagtano and DeAntonellis, 2001; Kiyoki et a., 1995; Hull, 1997]

24.2 Loosely-Coupled Federation

In the loosaly-coupled federation, the component databases do not share a global
schema; rather, they attempt to detect and resolve data conflicts during data exchanges
between systems. While this gpproach avoids the overhead of maintaining a globa schema
characterigic of tightly-coupled approaches, it places an extra burden of data conflict

resolution on the individua data stores and data consumers, a burden that is not present in

30

tightly-coupled approaches. Examples of loosdy-coupled gpproaches in the literature include
MRDSM [Litwin and Abddlatif, 1986], FEDDICT [Richardson and Smeaton, 1996], and
MASM [Lee and Bak, 1999]. Mogt of the research pertaining to loosely-coupled federations

focuses on the creetion or refinement of query languages and query transformations.

2.5 Ontology

An ontology organizes the knowledge about data elements, such as tables and classes,
in a data domain a a higher abgtraction level into concepts and relationships among concepts.
The lower level data dements are often ambiguous or heterogeneous, preventing data
consumers from understanding the contents of a data store. Ontologies permit a data
consumer to query severa didributed databases in a uniform way, overcoming possible
heterogeneity. [Castano and DeAntonellis, 1998] Examples of ontology-based approaches
include DOME [Cui, 2000], SKAT [Mitra et d., 1999], and Linguistic Dictionaries [Kedad
and Metais, 1999]. Much of the research relaing to ontologies is closdly related to the
research on tightly-coupled federations: A common need for data interoperability approaches
that rely on ontologies is the need to merge two different, yet possibly overlapping ontologies.
Therefore, the need to identify semantic similarities and differences is dso an important area

of research.

2.6 Mediation
In the traditional mediation approach, an integrated view of data that resdes in
multiple databases is created and supported. The basic architecture for such an gpproach

utilizes a component known as a mediator that typicaly resdes on a sysem separate from the

31

individud databases. A schema for the integrated view can be made avalable from the
mediator, and queries can be made againg that schema. More generdly, a mediaor is a
sysem that supports an integrated view over multiple sources. [Masood and Eaglestone,
1998] According to this definition, mediators hdp enable tightly-coupled federation
drategies.

The first gpproaches to mediation permitted read-only views of the data through the
mediator. A natural extenson that was developed was to support updates as well as read-only
queries from the mediators. In its most generd form, the update capability raises the view
update problemrmaintaining a vaid view even after updates to component databases have
taken place. However, updates can be supported againgt the integrated view provided
gopropriate limitations are utilized. [Kdler, 1986] Different sysems usng the mediation
gpproach feature a variety of techniques to ensure that the integrated view conditutes a vaid
schema. A mediator may involve data from a variety of information sources, including other
mediators, in order to support the proper view. [Masood and Eaglestone, 1998]

Newer architectures utilizing mediaiors have not dways drictly followed the
traditional definition of mediator. Such systems have combined ideas from the other
previoudy mentioned architectures. For example, the COIN approach [Goh, 1997] utilizes
mediators that rely on data producers and consumers having explicit contexts. This gpproach
combines eements of point-to-point interfaces and ontologies, as wel as reducing the data
reconciliation efforts of both tightly-coupled and loosely-coupled federation approaches.
Other approaches involving mediators include AMOS [Fahl et d., 1993], TSIMMIS [Hammer
and McLeod, 1993], DECA [Bendimane et a., 2000], XMLMedia [Gardarin et d., 1999],

and DIOM [Liu and Pu, 1997].

32

2.7 Comparison

For the purposes of comparison to the ADI, severa of the approaches to data
interoperability will be revisted in a later chapter. The next chapter will introduce the
architecture and specifications of the Abstract Data Interface. After a discussion of the ADI, a
more detailed discussion of the approaches will be presented dong with a comparison to the

ADI.

33

3 Active Data Interface

The previous chapter introduced data interoperability and discussed various
gpproaches to achieving it. This chapter introduces the Active Data Interface (ADI) concept,

architecture, and design.

3.1 ActiveData Interface Concept

The ADI concept arose from the following observation: In a large-scae distributed
environment condgting of physcdly disparate applications and databases, many different
sysems utilize different data models and interfaces, but the same functiondity is often
replicated by interfaces that trandate data between the various sysems. An andogy in terms
of previous gpproaches is that the point-to-point interfaces in a non-standardized environment
often achieve the same purposes, even though the specific implementations are different. The

following figure provides an example.

Application E

Scheduler Payroll

Aoolicati Precision: Integer Precision: Float
R pplca |ont Request: CGI Request: RPC

equirements Units: Metric Units: English
Custom-Built Interface 1 Interface 2 Interface 3 Interface 4

Interface
Data F t Access: SOAP Access: MTF

ata Forma Units: English Units: English

Flyers and

Database Pilots and

Training Missions

Figure 3.1. Scheduler and Payroll Example

In this example, there are two applications, a Scheduler application and a Payroll
gpplication, that need to communicate with two databases in order to produce correct reports.
The diagram indicates the agpplication requirements and data format. Application
requirements are the assumptions about the data that the gpplication developers make when
cregting the application. Data format indicates the way in which the rdevant data are stored in
the databases. Oftentimes the application requirements and the data format are not conceived
with each other in mind, and therefore custom built interfaces that alow the gpplication and
databases to work together properly must be built and inserted between the database and

gpplication layers.

35

Together, gpplication requirements and data format indicate the functionaity required
by the four interfaces in the center. Both databases contain raw data in English units. The
Pilots and Training Database assumes that it will be queried through a Smple Object Access
Protocol (SOAP) access mechanism. The Flyers and Missions Database assumes that it will
be queried viarequests in Message Text Format (MTF).

The Scheduler application communicates with the Pilots and Training Database via
Interface 1, and with the Flyers and Missions Database via Interface 2. The Scheduler expects
to communicate to a database through the CGI protocol, and assumes thet it will receive data
about pilots in metric units, rounded to the nearest integer. Interface 1 needs to trandate CGlI
goplication requests into SOAP queries to communicate with the PFilots and Training
Database, and convert the data from that database from English to metric units and round to
the nearest integer. Similarly, Interface 2 needs to convert CGI application requests into MTF
queries to communicate with the Fyers and Missions Database, and convert the data from that
database from English to metric units, rounded to the nearest integer.

The Payroll application aso requires interaction with custom interfaces. It
communicates with the Pilots and Training Database via Interface 3, and with the Hyers and
Missons Database via Interface 4. The Payrall gpplication expects to communicate with
databases through Remote Procedure Calls (RPC), and assumes that it will recelve data about
pilots in English units, with as much floating-point precision as possble. Therefore, Interface
3 needs to convert RPC application requests into SOAP queries to communicate with the
Pilots and Training Database, and interpret data from that database with floating-point
precison. Ladly, Interface 4 needs to convert RPC application requests into MTF queries to

communicate with the Fyers and Missons Database, and interpret data from that database

36

with floating-point precison. With the Payroll application there happens to be no conflict
between systems of units of measuremen.

This example demondrates the repetition inherent in condructing a st of custom
interfaces for communication and interaction between these applications and databases. For
example, Interfaces 1 and 2 only differ in that they require different ways for the application to
access the data in the databases, while the rest of the functiondity is the same. As another
example, Interfaces 3 and 4 dso exhibit different ways to permit gpplication access to data, but
the functiondlity provided by the floating-point conversion is the same in both interfaces. This
observation leads one to conclude that it should be possible to congtruct an interface generator
that automatically produces customized interfaces between individud systems in the
environment, without duplicating the work usudly associated with congtructing customized
interfaces.

Such an interface generator would only be possble with the proper input. The
required input includes what would be analogous to the Application Requirements and Data
Format layers in the above example. In smpler language, the interface generator would have
to know (1) what is needed by the gpplication; and (2) what is available in the database. These
two inputs, in some sense, form the bass of the Abdract Data Interface. Along with these
inputs, the interface generator would aso have to have the proper mediation tools to perform
any necessary trandations between gpplication requirements and database data. These three
categories of input—application requirements, database content description and mediation
tools—are necessary for interface generation.

It should be noted that dthough these inputs are necessary, they might not be

aufficient. Even though an eventud god of a sysem that automaticaly generates these

37

interfaces might be to operate without any human intervention, a system that would overcome
such problems as process interoperability might need more inputs. However, a successful
implementation of the Abstract Data Interface concept does not require that interfaces be fully
automatically generated. Interface programmers would be pleased to have an interface
generator that could generate even a portion of an interface, as long as it is able to prevent

some amount of work from being duplicated.

3.2 Abstract Data I nterface Architectur e Specification

The ADI is not intended to act as a stand-aone device. Rather, it is designed to be a
pat of a framework that could include new applications and databases as wdl as legacy
systems. This section describes the generd architecture that includes the ADI, specifies what
requirements are needed for each component, and explains how the ADI functions dongside

other interoperability components.

38

@‘ Application

| Requirements

A

Application @

Translator
Library

S

e
T

L4 I -
=
Interface @ A==

Interface
Generator

Database

Access
Description

Figure 3.2. Single Application-Single Database ADI Architecture

This diagram shows an interface being generated for a single applicationdatabase

par. The generation is accomplished through the following genera steps:

1 Database Contents Publication. The database contents are published

through the ADI.

39

2. Database Access Description. The information and methods needed
to access the database are described via a database model or other
vehicle

3. Application Requirements Description. The gpplication
requirements are selected from the ADI.

4, Trandator Library Preparation. A collection of trandation tools is
mede available.

5. Interface Generation. The inteface generator produces an
gpplication-to-database interface.

6. Interface Operation. The application and database communicate

using the newly generated interface.

The following sections will explain each of these requirements in further detall.

3.2.1 Database Contents Publication

Publishing the contents of the database is accomplished through the Abstract Data
Interface (ADI). The person who maintains the database—in most cases she will be known as
the Database Adminigtrator (DBA)—is the person best equipped to construct the ADI, since
she both decides what data should be published or not published, and has the knowledge to
assemble such an interface.

The purpose of the ADI isthregfold:

40

1 To dlow a DBA to decide what data she wishes to expose, or make
available to applications and other data consumers;

2. To dlow interface programmers or gpplication developers to easly
select the data that is required by an application; and

3. To provide te Interface Generator with information that will alow it
to relate the selected data to particular access methods, and access the

data needed.

In order for the ADI to achieve the god of providing an abstract data interface for
programmers, the ADI must be easy to read and understand. To this end, the ADI itsdf will
consist of adescription of the data, and the relationships between that data, in the database. To
the extent possible, supporting data details, that do nothing to describe what the data actudly
is, ae to be omitted from the abdtraction. Some detals can in generd be left out, such as
numeric precison, units of measure, and vaue integrity condraints. In other cases, the DBA
will need to make a judgment as to whether a particular attribute should or should not be
included in the ADI. In addition, the names of the data fields should be changed to describe
the data in as human a language as possible. Data fidld names that resemble human language,
e. g, “Number of Aircraft,” lend an ntuitive notion of the data and help to better understand
what data is available. In contrast, database names for data fields are frequently cryptic, e. g.,
“2b noa _acf,” and have no meaning except to the database designer or DBA. In the end, the
ADI should be decriptive enough to dlow an interface programmer or an application
developer to sdect the data objects needed for a particular application, yet smple enough so

that the same person does not see any of the underlying data storage implementation details.

41

To hdp formdize the notion of an ADI, the following sructure, known as a Data

Descriptor Set or DDS, isdefined. A DDS s defined to be a set of tuples:
ppse {1,,T,.T,.,....T.}

for some number of tuplesn. Eachtuple T isdefined by:
T ° <di , R|> = <di ’ril""’rij>

for any tuple i and some number of references j. Each d represents some finite piece of data.
The corresponding r’s represent a reference to the d with which they are grouped. The
rationae for the existence of the r'sistha in generd a sngle piece of data d cannot be ussful
on its own. The data must have a frame of reference or context to be useful, e. g. a ligt of
heights is usdess unless one knows which individuads each height describes. Also, there may
be multiple references r, Snce users may have many different ways to reference the data.

An ADI is defined to be an instance of a Data Descriptor Set, or DDS. In addition, the

ADI dso hasthe following congraints for each piece of datad:
" i.description(d;) = min{ |_J description, (d,)}
b

"1, j.description(r;;) = min{ Udescriptionb(rij)}
b

These congtraints capture the concept that the ADI ought to avoid cryptic descriptions. They
require that the description of the data and references to be the smplest (minimum)

descriptions possible.

42

322 Database Access Description

Although it is not important to include database detals in an ADI—in fact it is
disadvantageous to the ADI to do so—in order for an interface to function properly, it will
have to have some means of providing the actud data specified in the ADI. In the ADI
architecture, the Interface Generator generates the interface, and so the Interface Generator
will dso require this access. The DBA should be held responsible for the task of constructing
the Database Access Description.

In order for the Database Access Description to accomplish the goa of providing a
data consumer with any piece of data included in the ADI, the Database Access Description
will need to provide access to the contents of the database. That is, for any piece of abstract
data specified in the ADI, the description must contain al of the information needed to
provide that data. Many or dl of the database details that were omitted from the ADI will be
needed in the Database Access Description in order to enable this access.

The DBA, having created the ADI, and having intimate knowledge of the workings of
the database he maintains, should understand the relation between any piece of information in
the ADI and the methods needed in order to access that information. As an example, assume
that the atribute, “Person’s Height,” is a piece of data that could be selected from an ADI.
The Database Access Details would include not only the “ht” (height) data field, but adso the
data-fidds “ht-accy” (the accuracy of the height measurement) and “ht-um” (the units of
measure for the height).

In more forma language, the Database Access Description (DAD) is defined to be
another ingtance of a DDS. The relationship between the DAD and the ADI can be described

thus

43

DDS,, | DDS,,,

The ADI is a subset of the DAD. This rdationship must be true since an ADI by itself cannot
contain more than the quantity of information required to retrieve data from the database.
After dl, the ADI omits database details that must be provided in order to access database
data.

This subset rdationship dso entails the following condraints. Fird, let ADI and DAD
each be an ingance of a DDS. Then the number of tuplesin ADI is less than or equa to the

number of tuplesin DAD, or:

|ADI| £ |DAD|

This rdatiionship must be true because the DAD may need auxiliary data in order to answer
queries. Let i bethe index of sometuplein ADI and DAD such that the corresponding d'sin
each tuple are equa. Then the number of references in the tuple i of ADI islessthan or equa

to the number of referencesin thetuplei of DAD:

Ti,ADI = {dl ’ril""’ rij}
T om0 :{di’ril""’rik}
j £k
The comparisons in these definitions are not defined to be drict, & in dtrict subset or drictly
less than. However, in practice the ADI is virtualy guaranteed to be a gtrict subset—not only

isit true that the ADI cannot contain more than the quantity of information required to retrieve

data from the database, it should in practice contain less because of the omitted data.

In theory, the Database Access Description needs to be responsble for providing
access to at least the data that is specified in the ADI. However, providing access to more data
than is necessary may or may not be something a DBA will want to do. There are advantages
and disadvantages to providing more than the minimum amount of access that will be
discussed later.

In summary, the Database Access Description provides a way for an ADI component
to access data from the database. Database details need to be known in order to enable proper
access. It gives the interface generator the information it needs to creste functiona interfaces

to communicate with the database.

323 Application Requirements Description

The Application Requirements (ARD) description indicates the data, and the format
for that data, that is required by the application. The Scheduler and Payroll example
mentioned earlier provides a couple of good examples. In that example, the requirements of
the Scheduler application are that it must work with data that is expressed in metric units,
rounded to the nearest integer, and returned via CGl. The requirements of the Payroll
goplication are that it must work with data that is expressed in English units, measured as
exactly as possble with floating point numbers, and returned via RPC. The Application
Requirements description should be able to express the requirements of these two examplesin
this manner.

The ADI facilitates the congruction of the Application Requirements because the

goplication developer or interface programmer should be able to more easly establish a

45

semantic match. That is, he can make a quick and accurate assessment as to whether the data
that needed by the application is contained within a particular database. Once a semarntic
match is established, the Application Requirements dictate how the data is to be transferred
between gpplication and database. The interface generator can then use the information
contained in this description to create an interface that is tailored to the gpplication’ s needs.

To define the Application Requirements more formaly, an extenson of the DDS
cdled aData and Format Descriptor Set, or DFDS, isdefined. A DFDS dso consists of aset

of tuples.

DFDS° {T,,T,,T,...., T.}

for some number of tuples n. However, the structure of each tuple T is extended to include a

description of format:
Ti © <di 7Ri ’ Fi> = <di ’ ril""’rij ’ fil""’ fik>

for some number of references j and some number of formats k. The Application
Requirements are defined in terms of a DFDS. As before, a piece of data is specified through
the use of its associated references R In addition, an Application Requirements also specifies
for each piece of data the way in which an gpplication needs to receive that data, through each
data s associated set of formats F.

The definition of an ARD can be refined through the inspection of its associated DDS.

Sincean ARD isa proper extenson of aDDS, the following structure can be defined:

DDSARD ° {Tl¢—r2¢ qu; " an

46

where the following relationship holds

"T1 DFDS,qn, T =T&{f, ..., f,}

fordl | suchthat 1 £ | £ n, and for the number of factorsk corresponding to tuple T at index |.
In other words, a DDS for the ARD includes dl of the data and references included in the
DFDS for that ARD, and does not include any of the factors from the DFDS.

The raionship between the DDS of the Application Requirements and the ADI can

then be described thus:

DDS,., I DDS,,

The DDS of the Application Requirements (the set on the left-hand Sde) are a subset of the
ADI. This rdationship must be true since an Application Requirement set can never exceed
the data that is adlowed to be queried or viewed through the ADI. In other words, an
gpplication cannot request data from a database that is not included in that database’s ADI.
The subsat relaionship is not a Strict-subset relation because it is possible for an gpplication to
request the entire set of data.

It should be noted that, in principle, it should be possible to create an actud description
or language to represent the Application Requirements description such as the one just
described. However, in practice it will probably make more sense to implement the
description as a process rather than an actual description. The process might consst of a
person working through some sort of graphica user interface (GUI) representing an ADI, to

sdlect the desred qudlities of the interface. The program containing the GUI can then relay

47

the selections to the appropriate interface generator. Although such a process does not appear
to explicitly declare a description of the gpplication requirements, it does implicitly describe
the gpplication requirements. Such an implicit description may or may not suffice. This

process will be described in further detall in alater section.

324 Trandator Library Preparation

In order to enable the interface generator to generate interfaces, a library of trandator
tools must be provided. The trandator library conssts of individud trandators—programs
that perform some kind of trandation from one data format or paradigm into another. These
trandators can be assembled to produce an interface between some gpplication and some
database. The trandators represent the building blocks of the interfaces that the interface
generator produces.

More formdly, a trandator is defined to be a function f that imposes a particular

format f on some piece of data d:

f(f,d)= f{d}

where the notation f{d} indicates the format f imposed on d. An example of aformat imposed
on a piece of data is the following: Assume the existence of the format f for meters, and of a
piece of data d that corresponds to the distances between the bases in a baseball diamond,
which are usudly measured in feet. However, the format f imposed on d in this ingance

yields an exact measurement of those distances in metersingtead.

48

A trandator library, or TL, isaset of thesef functions
TL={f,,...f,}

where d is the number of functions in the Trandator Library. A Trandator Libray may
contain any number of individua trandators, and should be able to be expanded to include
more trandators as the need arises.

The Scheduler and Payroll example can be used to demongrate the trandator library
concept. In order to implement Interface 1 in the example, a st of specific trandators are
required. The Scheduler requires that al numeric data be rounded to the nearest integer. The
interface will require a trandator that rounds the numeric data to the nearest integer. It
accesses data via CGI cdls, whereas the database interacts with other programs via SOAP
cdls. The interface will therefore aso require trandators that convert CGI calls to SOAP cdls
and vice versa. Findly, the Scheduler requires that quantitative data be presented in metric
units, whereas the database dores data in English units. The interface will dso require
trandators that convert various metric units to English units and vice versa, e. g., feet to meters

and metersto fedt, kilograms to pounds and pounds to kilograms, etc.

49

Application I:

=

Scheduler

Precision: Integer

Application

ot) Request: CGlI

equirements Units: Metric

Custom-Built Interface 1
Interface

Access: SOAP

Data Format Units: English

Database Pilots and
Training

Figure 3.3. Scheduler and Payroll Example, Interface 1

It is easy to see how this example could be expanded to include the required

trandatorsfor dl of the other interfaces in the Scheduler and Payroll example as well.

325 Interface Generation

The Interface Generator takes in as input the ADI, the Database Access Description of
the database, the Application Requirements, and the Trandator Library, and produces an
interface that will dlow the gpplication and database to interoperate with each other. The
Database Access Description provides the necessary access to the database, including any

required specific metadata information. The ADI fadlitates the condruction of the

50

Application Requirements, which in turn dictate how the data is to be exchanged between the
goplication and the database. Findly, the Trandator Library provides the tools necessary to
perform the various trandations between the specific data paradigms of the database and the
required formats of the gpplication.

The interface generator is defined as a function G that yields an output |, which isaso
a function. The function G takes in as input an ADI represented by a DSS, a DAD,
represented by another DSS, an ARD, represented by a DFDS, and a Trandator Library,

represented by a set of functions. More formdly,

G(ADI ,DAD, ARD,TL) = I(d)

such that

"T1 ARD,"d 1 T,"f 1 T.I(d,) %¥® f o..0f {d}

where the input d to the function | is a query for some piece of data. This requirement on G
dates that for any data in the ARD, the interface | should be able to output the data in the

format pecified in the ARD.

3.2.6 Interface Operation

An interface created by the Interface Generator alows an application and a database to
exchange information with each other. Transactions between the application and database
occur through the newly generated interface. Together, that application, database, and

interface are capable of interoperation without further intervention from other devices.

51

4 Goalsof the Abstract Data | nterface Ar chitecture

The ADI ams to foster improved data interoperability in a scalable, maintainable, and

adaptable manner:

1 Scalability. The ADI concept should be gpplicable in large
environments congsting of many gpplications and many databases.

2. Maintainability. A system that utilizes the ADI concept should be
easy to maintain rdative to other solutions.

3. Adaptability. Changes to an individud component within the

architecture should have minima impact on other components,

The following sections will discuss the ability of the proposed ADI architecture to meet these

gods.

4.1 Scalability

Scaability refers to the ease with which a sysem can be modified to fit the problem
area. The ADI concept extends well beyond one gpplicationdatabase pair. For each database
in a set of databases, Detailed Abstractions can be easlly created from logica design modes.
Each database can add its own individuad abstract data description to the ADI that
encompasses the set of databases. This comprehensve ADI facilitates congtruction of
Application Requirements descriptions as before, but with the added feature that data can be

retrieved from any of the individua databases, without necessarily having knowledge of

52

individua databases. This feature is remarkable, since the ability to treet the set of databases

as adngle logicd unit smplifies the tasks and thought processes of the application developer

or interface programmer.

Application
Requirements

Application
Requirements

Application
Requirements

A

A

A

Application

Interface

Application

Interface

Application

y

7

Interface

Interface

Interface

\

\

Database

Access
Description

ADI

Interface

Database

Access
Description

ADI

Interface

|

Database

Access
Description

ADI

Translator
Library

Interface
Generation
Tool

Figure4.1. ADI Architectureis Scalable

53

Once the ADI and Database Access Descriptions of each database, the Application
Requirements of each agpplication, and the Trandator Library with appropriate trandators are
made avallable as input to the Interface Generator, interfaces between any application:

database pair within the entire system can be automatically generated.

4.2 Maintainability

Maintainability is defined as the ease with which a software system or componert can
be modified to correct faults, improve performance, or other attributes, or adapt to a changed
environment. [IEEE, 1990] The ADI concept and architecture dlow for a highly
maintainable system, since less maintenance work relative to previous gpproaches is reduced
in the event individua databases and applications need to be changed.

The modularity inherent in the ADI architecture dlows for dgnificant maintenance
ease. The ADI architecture provides for the automated generation of interfaces, which can
eadly be modified after generation as needed, without impacting the operations between other
gpplications and databases or the rest of the ADI architecture. If faults are discovered in an
individual application, database or interface, the componerts in the ADI architecture are
aufficiently modular and separable that they can be modified individudly to meet the new
need, with minima impact on the rest of the architecture. While the point-to-point approach
described earlier features this kind of maintainability, standardization does not, Snce standards
are more closely coupled with the individua applications and databases that they support.

The ADI architecture requires maintenance atention to a significantly smdler fraction

of intefaces as compared to an architecture that utilizes point-to-point interfaces. If

maintenance efforts are required, they are amed a the ADIs and Database Access
Descriptions associated with each database, and the Application Requirements. In the case of
maintenance efforts that require attention to individua databases, the number of interfaces that
must be ingpected is in the worst case linear in the number of individua databases and
goplications. In a point-to-point mode, maintenance efforts must be aimed at each individud
interface, which in the worst case could require that maintenance work be performed on an
exponentiad number of interfaces compared to the number of databases or gpplications. For
any szable number of changes, the ADI approach offers a consderable reduction in the
amount of work that needs to be done. This reduction in work is possible because, in the ADI
modd, the interface generator performs the maintenance work for each interface by generating
anew interface, whereas in a point-to- point mode, each interface must be modified by hand.

In the diagram below, components in marked in bold (applications and databases) are
targets of mantenance efforts but al shaded components (interfaces) are generated
automdicaly by the Interface Generator and do not require extra maintenance work.
Although it can be seen from the diagram that a sgnificant amount of work is saved, it should
be noted that an even more overwhelming amount of work would be saved in an environment
with only a few more databases or gpplications. In such an environment, there could be an

exponentia number of interfaces, all of which would be automaticaly generated.

55

Application
Requirements

Application
Requirements

Application
Requirements

A

A

A

Application

Interface

Application

Application

Translator
Library

Y :
Interface Interface | .~ Interface
|
A \ o™ \
Interf Interf Interface
ertace ertace Generation
Tool
= =10
— =0
Database Database Database
N— 1
Access Access Access
Description Description Description
ADI ADI
— _—
T\ T\

Figure4.2. ADI ArchitectureisMaintainable

4.3 Adaptability
Adaptability is defined as the ease with which software stidfies differing sysem and

user condraints. [Evans 87] In this section the ability of the ADI to respond to the chalenge

56

of adding new gpplications or databases is examined. It will be seen that the ADI should be
able to handle the challenge effectivdly.

The ADI architecture can enable a new gpplication to exchange information with the
dready exigting set of databases. In order to enable the exchanges, the application developer
or interface programmer uses the ADI database absiractions to create anew set of Application
Reguirements, which are then passed to the Interface Generator. The Interface Generator, in
turn, creates a new interface that could be smilar to, but is independent of, any previous
interface created.

The ADI architecture can adso accommodate the addition of new databases. One who
wants to add a new database to the architecture publishes the database using both the ADI
abgtraction as well as the Detailed Abstraction. The ADI of the new database is added to the
Comprehensve ADI, while the Detalled Abdraction is made avaldble to the Interface
Generator. Application developers or interface programmers can now use the Comprehensive
ADI to creste interfaces that will exchange information with a logical database that includes

the newly added one. Already-exigting interfaces will be affected in one of two ways:

1. They will not be affected. This case occurs when the newly added database
includes no data that affects the application that connects to the interface.

2. They will require changes. This case occurs when the newly added database
includes some data that conflicts or otherwise intermingles with previoudy

exigting databases.

57

The firg case is easy to ded with. If the new data does not have any reation to the
gpplication, the application developer or interface programmer should not need to do anything,
and he should ingtead smply adlow the interface to continue to retrieve the same data as
before. No further action is necessary to ensure smooth operation.

The second case is somewhat harder to deal with because there is a requirement to
expend additiona resources to accommodate the change. If the new data serves as a better
subdtitute for the previoudy used data, or if a combination of the new data and the old data
saves the purposes of the application better, then a new Applications Requirements
description should be created. The new Applications Requirements description alows the
Interface Generator to create a new interface for operation between the goplication and the
new set of databases.

At first glance, the extra work required to make the gpplication work again seems to
offer a serious disadvantage. Assuming that there is a requirement to change many of the
goplications as a result of adding a new database, then work will have to be done on a linear
number of gpplications, in the form of a new Applications Requirements description for each
goplication. A system of point-to-point interfaces under the same assumption, on the other
hand, would require programming work to be done on each of the interfaces for each
goplication, which can be the number of applications, squared. The Interface Generator in the
ADI architecture reduces the programming work necessary.

It would be highly convenient if the ADI architecture were robust enough to
accommodate these kinds of changes automaticaly. However, the gpplication developer or
interface programmer must make a choice that dictates the change. The choice can be thought

of as a new indance of deciding whether a semantic match exists between the gpplication and

58

the new database. Therefore, the problem of accommodating these kinds of changes is a

process problem, and cannot be automated.

59

5 Sample Component Construction

The previous section discussed the architecture specification, operation, and
advantages of the ADI. The next section is concerned with the congtruction of the individud

components of the ADI. The components that need to be considered are;

1. Database

2. Abdtract Data Interface

3. Database Access Definition
4, Application

5. Application Requirements
6. Trandator Library

7. Interface Generator

8. Interface

In the next section, each of these components will be discussed and demongtrated with
exanples The accompanying examples will assume for smplicity that there are two

applications and one database.

5.1 Database
According to one definition, a database is “a collection of logicaly related data stored
together in one or more computerized files” [IEEE, 1990] According to another definition, it

is “an eectronic repogitory of information accessible via a query language” [DoD, 1991]

60

These definitions characterize a a high levd what a database is, but it is one particular
characteristic that helps to apply the ADI concept over databases in generd: the fact hat
databases are based on some kind of information mode.

Information modding is a technique used to understand and document the definition
and dructure of data. A logica information model is a specification of the data structures and
business rules needed to support a business area. A physicd information modd represents a
solution to these requirements. Databases utilize information models for a variety of reasons,
including education, planning, andyss, design, documentation, standardization, policy, and
Speed.

Because the ADI concept relies on generd information modeling practices that apply
to al databases rather than on specific types of databases, virtudly dl kinds of databases
should be digible for incluson in the ADI architecture. There exist many kinds of databases,
induding fla-file text databases, associdive flat-file databases, network databases, object
databases, hierarchical databases, and relationa databases. Relationa databases are by far the
most useful type commonly available, and so this thess will for the most part assume a focus
on relationa databases. However, it should be stressed that the concepts presented here do not
depend on any particular type of database, and that any bias in the examples is merely due to
the convenience of asmplifying assumption.

The ADI architecture will accommodate any database. Such databases do not need
any modification to interact with the ADI architecture. The discusson of ADI architecture
congtruction assumes that the databases it interacts with will be provided by an outside source.

The examples in this pgper ae drawvn from a fictiona SQL-based database containing

61

misson, arcraft, and pilot information, which will heregfter be referred to as the MAP

database, or smply the MAP.

5.2 Abstract Data I nterface

As stated previoudy, the Abstract Data Interface of a database is aview, created by a
DBA, which enables the application developer or interface programmer to easily ascertain the
contents of a database without being hampered by unnecessary details. It will remove
attributes that are not necessary for determining semantic maich, and it will rename data to
help bring out intuitive meanings.

The DBA can implement an ADI by assembling a modified IDEFLX information
modd. (See appendix for background information on IDEF1X.) An IDEF1X modd is

composed of three main building blocks: [Bruce, 1992]

1. Entities, which refer to any distinguishable person, place, thing, event,
or concept about which information is kept;
2. Attributes, which refer to properties of entities, and

3. Relationships, which refer to connections between two entities.

An ADI will capture most entities and relationships in a database, and a portion of the

attributes—the attributes that are not essentia to determining semantic matches are omitted

from the ADI. An example rdating to the MAP database is given below:

62

MISSION MODEL

mission-number aircraft-type
migsion-type. top-speed
mission-priorty Weapons-capacity

PILOT mission-creation-date fuel-capacity

. mission-ohjective

pilot-number | mission-codename

pilot-name G

pilot-rank

pilot-training

tirme-flown

ASSIGNMENT ®
(mission-number (Fk) B AIRCRAFT

pilot-number (FK) aircraft-type (FIK) &
aircraft-type (Fk) aircraft-number |
aircraft-number (FI) E
—— ¥ assignment-time :

assignment-objective
start-time
caompletion-time

fuel-level
ammunition
general-caondition

Figure5.1. ADI for the MAP Database Example

This diagram attempts to convey in as clear a manner as possible the contents of the database
that the DBA has decided to expose. Schema details have been omitted, and names have been
sdected to give an intringc, intuitive meaning.

In brief summary, this ADI exposes data about Pilots, Missons, and Planes. Missons
are composed of individua Assgnments, which individud Pilots are assigned to. An aircréft,
which can be one of severd modds, can be assgned to an Assgnment as well. These fidlds
can be indexed by various identifying keys, including unique pilot numbers, arrcraft numbers,
and misson numbers.

A note on the sdection of IDEF1X for the ADI isthis caseisin order. The choice of

IDEF1X is related to the fact that the database that is of the relationa variety; IDEF1X is

63

paticulaly effective @& modeing reaiond databases, dthough other choices, such as a
modified Entity-Relationship (ER) modd, do exist. However, the assertion that the ADI is not
dependent on a particular type of database ill holds. The database literature contains logical
data models suited to represent any type of database; a database textbook should provide a
good darting point. Any such logica data modd should be able to be modified in a amilar

way that the IDEF1X modd was modified in this example to provide agood ADI.

5.3 Database Access Description

The Database Access Description is an access mechanism for the Interface Generator,
and ultimaely, the individud generated Interfaces. It alows a component to execute
commands to actudly retrieve data from the database, which cannot be done through the ADI
aone.

It was mentioned earlier that the amount of access permitted through the Database
Access Description could be varigble. There must be at least the minimum amount to access
al of the data contained in the ADI. If there were not, then an interface programmer could
select some piece of data from the ADI to be incorporated into a generated Interface, but not
actually be able to create an interface that correctly accessed and manipulated that data.

If the Access Destription were to contain the minimum amount of information
available, then the DBA has two advantages. She has not |essened her degree of data security
by publishing a document that would permit access to her database in unwanted ways. Also,
creating a minima Access Description would in generd imply that she would have to spend
less effort in assembling such a description. On the other hand, there are advantages to

including more information. If the complete st of information needed for data access is

included in the data model, then the Access Description the DBA creates could serve as a
complete database model for that database. Such a product could serve as a useful document;
after al, in generd most database design documents are created to be useful only during the
design phase, and then are left to become either lost or obsolete.

In the MAP example, a sraightforward method the DBA could use to implement a
Database Access Description would be to create a SQL Data Definition Language (DDL) file
corresponding to the MAP ditabase. For each entry in the ADI, the DBA will understand
how the data is assembled from the database to creste that entry. Note that there may not
necessarily be a one-to-one correspondence between ADI and Access Description data fields.
After dl, the ADI is smplified representation of what data is in the database, and a set of more
complex pieces of datamay combine to yield one smple piece of data.

As an example, an expanded IDEF1X mode corresponding to sample SQL DDL for

the MAP database is shown below. The DDL isincluded in the appendices.

65

WIS SI0N
mission-nurmber: Integer

MWODEL
aircraft-type: Text(18)

mission-type: Text(18)
mission-priority: Integer
mission-creation-date: Date/Time
mission-objective: Text(18)
mission-codenarme: Text(18)

top-speed: Integer
top-speed-units: Text(18)
weapons-capacity: Integer
fuel-capacity: Long Integer
fuel-capacity-units: Text(18)

ASSIGNMENT

(mission-number Integer
pilot-number; Integer
aircraft-type: Text(18)
aircraft-number: Integer
assignment-time:; Date/Time

ADBJ: Text(18)
=T DatedTime
CT: DatedTime

AIRCRAFT
L

aircraft-type: Text(18)
aircraft-number. Integer

fuel-level: Long Integer
fuel-level-units: Text(18)
amma; Integer
genl-cond: Text(18)

FILOT
plt_no: Integer

plt_name: Text(18)
plt_mk; Integer
plt_train: Text{18)
hrs_fln: Double
hrs_fln_accy: Double

Figure5.2. Database Access Description for MAP Database Example

As can be seen in the @ove diagram, there is some extra information in this diagram
that was not included in the ADI. The fuel-level-units atribute in the AIRCRAFT entity, as
well as the top-speed-units and fuel-capacity-units attributes in the MODEL entity denote what
kind of units of measure are associated with some of the other attributes. Also, the

hrs_fln_accy dtribute in the PILOT entity denotes the margin of error when pilot logged his

66

flying time. Further, note that while there are attributes that correspond to the data given in the
ADI, some of the names are not the Englishtlike names seen in the ADI. After dl, in order to
communicate with the database, one must use the database data fiedld names, which may not
be as user-friendly as one might like.

As in the ADI example, the choice of SQL DDL is influenced by the fact that this
example is based on arelationa database. However, other database types have other ways of
accessing data, and this access is not dependent on the use of SQL DDL. If other database
types are to be used, then a different database access method should be used—it should not be

difficult to find one that will work well for any given database type.

5.4 Application
The agpplication is the data consumer in the ADI architecture. Intuitively, the ADI
enables an gpplication, or any other data consumer, to specify the data that it needs, and then

specify theway inwhich it needstha data. Consder the following gpplications:

1 Real-Time Fueling.
This gpplication takes data about vehicles from a variety of sources
and determines which vehicles need fuding most urgently. The
information will be used by a specid team that ddivers fud in the
most urgent Situations.
Requires Input: Aircraft, indexed by an identification number, and
corresponding fuel levels, measuredin liters. Data expected to bein

CORBA IDL.

67

2. Personnel Assignment.
This application takes data from personnd databases and determines
whether a person has had enough experience and training to be
scheduled on specid missons.
Requiresinput: Pilots, identified by their identification number, along
with the number of hours they have flown, and the training courses
they have taken. Data should be returned in SOAP.

3. NASA Scheduler.
This application takes data about space satellite missions, checks for
changes in priority on each probe’'s misson, and decides the next
course of action for that probe, which is one of promote priority,
demote priority, or leave priority unchanged.
RequiresInput: Missions, identified by unique identification number,
along with probe identification number and probe status. Requires

data to be returned via RPC.

55 Application Requirements

The application developer or interface programmer must date the gpplication
requirements and pass this information to the Interface Generator in order for the proper
interface to be generated. The interface programmer accomplishes this task by examining the
ADI and deciding what data is needed. Because the ADI contains so little specific
information about the data, the interface programmer is not able to think about the data details.

He should not have to; after dl, schematic differences can be resolved.

68

The interface programmer begins with the Red-Time Fuding application. He
examines the ADI for the data he needs, and finds that aircraft-number and fuel-level should
auit his purposss. For the Personnd Assgnment gpplication, he performs another
examination, and discovers that pilot-number, pilot-training, and time-flown, should be the
correct inputs. Findly, for the NASA Scheduler application, he determines that mission-

number and mission-priority is the data he needs.

WA= S0 MODEL
Application 3 < mission-number aircraft-type

rigsior-type top-speed
] m!ssu:un-pru:untj,f weapons-capacity
BILOT mission-creation-date fuel-capacity

. mission-objective
pilot-number | ™ mission-codename
pilot-name

pilot-rank
filat-training
time-flawn

J

]

Applc aon 2

C

ASSIGNMENT
(mission-number (Fl) &
pilat-number (FK) |
aircraft-type (FK)
aircraft-number (FI)
——® azsignment-time

Applcation 1

&
AIRCRAFT

5
aircraft-type (F
| aircraft-number

Tuellevel

AFTITTTO
general-condition

assignment-objective
start-time
completion-time

Figure5.3. Application Requirements Declaration

An important step for the interface programmer now is to verify that the items picked

from the ADI do indeed conditute a semantic maich. The degree of rigor used in this

69

veification should be tantamount to the task a hand; for mission criticad operations, the
verification should be very rigorous indeed. For example, if the interface programmer did
such verification at this point, she would discover that the data she thought was appropriate for
the NASA application was, in fact, no good at dl; it is rdevant only to airplane missons. Itis
an important point that the ADI architecture treats the semantic heterogeneity problem as a
process problem, and so manua verification is necessary.

An implementation of the Application Requirements component can teke at least two
forms. One form would be that of a specidized language designed for submitting sdlected
vaues. Mog likely, the language, while specidized for sdlecting items from the ADI, should
actudly be as neutrd as possble so that interactions with the Interface Generator are not
affected by the particulars of one specific programming language or ancther. The Interface
Generator needs to be able to generate a wide variety of Interfaces. UML shows promising
potentia for this gpplication, and other researchers have worked on assembling specidized
toolkits or languages for smilar purposes. [Hammer et d., 1997]

An even more intuitive Application Requirements implementation cdls for a
Graphicd User Interface (GUI) o that interface programmers or gpplication developers can
look at the ADI diagram and work off of it. Of course, such an gpproach would require that
an implementation of the language described in the previous paragreph, or a smilar

functiondity, be available before a GUI can be implemented over the logic.

5.6 Trandator Library

The Trandator Library serves as a repodtory for tools that the Interface Generator

needs in order to generate Interfaces. In the generd case, an application requires a piece of

70

data from a database; the data must be converted or trandated into aform that the application
can use if the information exchange is to be successful. Of course, an information exchange
can, and often will, involve the exchange of numerous pieces of data; each individud piece
may require one or more trandations.

The Red-Time Fuding and Pesonnd Assgnment gpplication examples will
demondrate the vitd function of the trandator library. The Red-Time Fuding applicaion
requires information about specific arcraft and their respective fud levels in meters.
According the ADI for the MAP database, the fud levels for arcreft is available. However, if
the fud levels are measured in gdlons in the database, then a trandator is required to convert
the units of measure from gallons to liters. Also, the MAP database returns answers as a SQL
database; however, the application requires that data be returned via CORBA IDL. Therefore
another trandator is necessary to return the answer to the query through an IDL stub.

The Personnd Assgnment gpplication requires information about Rilots and thelr
repective flying experience and combat training. The application requires that the flying
experience be measured by hours flown, but fortunately the MAP database includes the time
in hours aready. Note that athough the database provides an attribute denoting the precision
or accuracy of the figure for hours flown, an Interface generated by the Interface Generator is
not required to use this figure because the gpplication does not require it. If the Stuation were
reversed, that is, the gpplication required a smilar kind of metadata but the database did not
include it, then there is no solution; this Stuation is tantamount to asemantic mismeich, since
the data consumer is seeking something that the data producer smply does not have. In the

end, the only trandation needed for the Personnd Assgnment gpplication is the trandation of

71

the access mechanism—the way in which the gpplication retrieves the information. In this
case, the gpplication requires interaction via SOAP.

If the required trandators just described are provided to the Interface Generator, an
Interface should be able to be produced. For the purposes of reuse and efficiency, the ADI
architecture utilizes a Trandator Library to store trandators that have aready been created.
Thus, if a trandator has been written once, another Interface requiring the same trandator can
make use of a previoudy created instance of the trandator rather than requiring that a new
trandator be written every time the same ingtance of trandation occurs. Further, trandators

should be written in amodular way so as to promote their reuse.

72

T
S

Translator Library

CORBA IDL
Wrapper

SOAP
Wrapper

@ Metric-English

7 1= APARARA

Interface

Generator o
Precision Scaler

Context-Name
Conflict
Resolver

Integrity Constraint
Relation

N~

Figure54. Trandator Library Provides Trandatorsto I nterface Generator

A full description of the implementation of the Trandator Library would be well
beyond the scope of this thesis, however, a brief specification is provided: The Library must
have a way to interact with the Interface Generator in such away so that the correct trandators
are retrieved when needed. The Library should store the trandators in a neutra form so that
the Interface Generator, which needs to generate Interfaces in arbitrary languages and formats,
can make use of the trandator in a code generator. Again, UML is a strong candidate for this
purpose, as COTS UML code generators adready exist for other applications. [Microtool,

2001] Findly, the Library should also make use of efficient sorting and search dgorithmsin

73

the literature [Cormen, Leiserson, and Rivest, 1990], since such a device could grow to a

consderable sizeif many trandators are crested and retained.

5.7 Interface Generator

The Interface Generator assembles the four inputs, Abstract Data Interface, Database
Access Description, Application Requirements, and Trandator Library, into an Interface. The
Abstract Data Interface declares what kinds of data are available. The Database Access
Dexcription dlows it to actudly access the data in the database. The Application
Requirements state what data, out of the available data, is needed, and how that data should be
presented. The Trandator Library provides the tools that convert the data that is needed into a
form ussble by the application. The result is an Interface that is cgpable of enabling
interoperable communication between an application and database.

This task can be implemented via code generators. An interface generator essentidly
packages the trandators that the firgt three inputs determined were required in an interface.
After sdlection of the appropriate trandators, the assembly process should be able to be
automated via UML code generation techniques. The find step is to automate the assembly of

the actud interface that will be used to trandate between the application and database.

5.8 Interface

The Interface is the output of the Interface Generator, when presented with inputs of
Database Access Description, Abdtract Data Interface, Application Requirements, and
Trandator Library. Once the Interface is generated and enabling effective communication

between application and database, then the rest of the ADI Architecture components no longer

74

need to interfere. The only time the ADI would come into play again would be if the
gpplication requirements, the application itsdlf, or the database underwent changes. In this
case, the Interface Generation process should start anew to generate a new Interface that meets

the new condraints.

75

6 Metrics

In this section, metrics that could be used to determine the success of the ADI
architecture are discussed. These metrics should be measured using quditative as wdl as

quantitative means, Snce in many cases, thereis no standard to test the hypotheses againg.

6.1 Timeand Labor Expenditure

One hypothess of the ADI architecture is that use of the ADI architecture and
methods will provide sgnificant savings in terms of time and labor spent in enabling and
maintaining an interoperable sysem. Therefore the ADI approach should be evauated in
terms of the number of man-hours required to accomplish a smilar level of interoperability as
in other approaches. Severa areas where effort may need to be gpplied are identified, and

thar evauation in terms of this metric is discussed.

6.1.1 ADI and Database Access Description Construction

An assumption of the ADI architecture is that DBAs will be responsble for the
congruction of two vital parts, the ADI and the Database Access Destription. The rationale
behind this assumption is that the DBA is the individua responsble for deciding how access
to the database should be granted in most organizations, further, he should be capable of
accomplishing this task easlly. However, there exist Stuations that have the potentid to
undermine the utility of this assumption. For example, an organization that does not recognize

the need for, or have the funds to afford, a DBA may assgn the task of congtructing the ADI

76

and DAD to others who do not have the required expertise. Excessive effort spent in
congtructing these components will undermine the utility of the ADI, and therefore such

efforts should be accounted for as ametric.

6.1.2 Application Requirements Construction

The effort required to construct an Application Requirements Description should be
minimd, because the ADI is intended to make the contents of the database as clear as
possible. However, actud implementations of the tools used to creaste an ARD can complicate
meatters for the interface or maintenance programmer, who would be the individua charged
with the task of congructing an ARD. For ingtance, one suggested way to facilitate ARD
condruction is a scripting language that dlows one to specify the data and format that is
needed by some application. However, poorly implemented or overly complicated scripting
languages could make it difficult for the interface programmer to congruct the ARD. Effort is

expended to construct this component, and so that effort should be measured.

6.1.3 Trandator Library Maintenance

At firg glance it may seem tha a lot of effort is spent to maintain the Trandator
Library. Every time the Interface Generator encounters a data trandation that it is unable to
accommodate, a new trandator must be constructed and added to the Trandator Library.
However, it should ke emphasized that such effort results in components that can be reused.
Therefore, such effort can optiondly be included in the metric. The argument for including it

is that the metric should account for dl effort expended in condructing an interface. The

77

argument againg is that the metric should account for only the efforts that must be undertaken
every time an interface is crested; in other words, the metric should account only for recurring
costs. However, the effort spent writing a trandator can be treated as a sunk cost because the
trandator can be reused. The organization evauating its data interoperability initiatives must

make a decison between the two that will depend on its particular environment and Situation.

6.1.4 Interface Modification

Once an interface is created, there may or may not be extra effort required to ensure
seamless operation. Mogt likdly interface or maintenance programmers would be responsible
for this task if proves to be necessary. If modifications must be made before the interface can
be deployed as an autonomous unit, then the effort spent to achieve those modifications must

be accounted for.

6.2 Interface Speed

Idedly, interfaces generated by the ADI architecture's Interface Generator will not
only enable interoperability, but aso operates quickly a runtime. However, it might be
expected that a generated interface would be dower than an interface custom coded by hand.
The automatically generated one depends on automated congtruction that must apply equaly
well to congruction of different interfaces, whereas a handcrafted interface has the possbility
of being optimized based on details of a particular database-gpplication data exchange. The
operating time between the two should be compared for the purposes of evaduating the ADI

architecture.

78

The quedion of interface speed will depend heavily on the rdative vaue of
interoperable data The organization concerned with these issues will need to make an
engineering decison to determine the tradeoff between having interfaces that operate quickly
and data that works with many applications a low cost (in terms of time and effort spent). An
organization that depends on a smdl set of independent data consumers and producers, knows
with a high degree of certainty that the data environment is stable, and has no desire to work
with outsde parties, may decide that it is more cod-effective to cusom-code dl of the
necessary interfaces. Many organizations, however, are not of this type, and so it is expected
that the value of having interoperable data a low cost will outweigh the disadvantage of
having interfaces that do not operate as quickly.

An dternative to evaluaing a drict tradeoff between interface operating speed and
interoperable data is to evduate the peformance of an interface that, after automatic
generation, is tweaked by hand for better speed. In this case, however, the effort necessary to

incorporate the optimizations must also be accounted for.

79

7 Related Work

In this section, severd of recent gpproaches from the data interoperability literature
introduced in the earlier chapter on data interoperability approaches are discussed, compared,

and contrasted with the ADI approach.

7.1 Human Intervention

Some aspects of human intervention are present in the ADI, and it is important to
recognize them because typicdly there is a high cost associated with human labor rdative to
automated computer work. A DBA or equivdent person must congtruct the ADI and
Database Access Destription. Interface programmers or gpplication developers must
congruct the Application Requirements. Together, these people are aso respongble for
maintaining the Trandator Library. Findly, the interface programmer may be caled upon yet
again to make adjustments or tweaks to the generated interface.

As described, the ADI architecture gtill contains opportunities to further minimize the
amount of human intervention necessary. It was suggested that the ADI be created purely
from the DBA's concepts of what should and should not be accessed. However, a potentialy
labor-saving dterndive is to employ a method of generdting a database modd from the
database itsdf. One such method can discover conceptua object modds from instances of
relational databases. [Shen et d., 1999] Another potentid savings could result from careful
accounting and reuse practices for the Trandator Library, to ensure the highest possble

chances of reusability of trandators contributed to the Library.

80

7.2 Tightly-Coupled Federation

Although the ADI bears more resemblance to a loosdly-coupled federation rather than
a tightly-coupled federation, a discusson of some tightly-coupled federations is provided here
to describe the characteristics of such an approach, as well as to convey recent research trends

inthisarea

721 SIM

SIM, or Schema Integration Methodology, accomplishes the integration of schemas
by resolving a set of equivalence correspondences between arbitrarily complex loca sub-
schemas. From such a set of correspondences, SIM semi-automaticaly derives schema
transformations, termed schema augmentations, from each locad schema to the integrated one.
The transformation is conducted in such a way that corresponding data among the locd
databases is mapped to the same dructure in the integrated database. The generated schema
augmentations enhance the schemas with classes and paths, resulting in an integrated nor:
redundant schema. [Fankhauser, 1997]

Efforts have been made to enhance SIM with the capability of resolving some
semantic heterogeneity problems as well, through the incrementd integration of schemas.
During incrementa integration, SIM admits the dedaation of new equivdence
correspondences between sub-schemas, but only in cases that do not lead to ambiguity or
inconsstency with respect to previous integration steps. SIM's augmentation congtraints alow
it to identify inconsstent correspondences within the schema dructure, as sub-schemas are

incorporated, and regject them. [Motz and Fankhauser, 1998]

81

722 VHDBS

VHDBS is a federated database system based on a client/server architecture. In this
approach, federated data is stored in an object-oriented data model, which is an extension of
the ODMG-93 object modd. Objects are organized into repositories and unified by a schema
that includes the types of al objects, ther inheritances, and the repodtory schemas. A
federated view is achieved ather by viewing the repostories, or manipulating the data types

such that only the desired methods or attributes of these types are seen.

7.2.3 ADI and Tightly-Coupled Federations

Compared to the ADI, tightly-coupled federations have the advantage of a centrd
focus for the purposes of resolving conflicts between data models. If there are overlaps
between the data models of two different data sources, then resolution efforts will be amed
towards the integrated schema. In contrast, the ADI approach |leaves the data consumer or
gpplication with the problem of resolving such conflicts. If the data consumer needs to query
many overlapping sources, resolution efforts will have to be amed over dl of the overlaps.
For a large number of overlaps, the ADI gpproach will have a more complex overlap
resolution process.

The ADI approach permits more reslience to changes than the tightly-coupled
federation approach. In the federated database system, the ability to exchange data between
data producers and consumers hinges on the integrity of the integrated schema. If one sub-
schema in the integrated schema changes, the effects could be propagated through the entire
environment. On the other hand, the ADI facilitates data exchanges between data consumer-

data producer pars. In the ADI approach, the response to a change in a single component

82

within the environment is to generate a new interface for that pair. The impact on the data

interoperability of the environment as awhole isminimd.

7.3 Mediated and L oosely-Coupled Federations
The ADI is architecturdly more smilar to a mediation or a loosely-coupled federation
gpproach. The next section investigates some of these gpproaches found in the literature in

more detail and again compares them to the ADI agpproach.

731 COIN

In the Context Interchange approach, semantic interoperation is accomplished by
making use of declarative definitions that correspond to source and receiver contexts. Each
paty in the data exchange expresses is own condgrants, choices, and preferences for
representing and interpreting data. A context mediator can then automaticaly identify and
resolve any potentid semantic conflicts. [Bressan and Goh, 1998]

The mgjor difference between the COIN and ADI approaches is the choice of target
for automation. Under the COIN approach, schematic details particular to data producers and
consumers are declared, and then the semantic differences are automaticaly resolved by the
mediator. However, COIN has been shown to exhibit some falures in determining proper
semantic correspondences. [Ouksd and Ahmed, 1999] In contrast, in the ADI approach,
semantic matches are determined firs, and then schematic differences are automaticaly

resolved by the interface generated.

83

732 TSIMMIS

The Stanford-IBM Manager of Multiple Information Sources, otherwise known as the
TSIMMIS System, is an approach to data interoperability developed by researchers at
Stanford Universty and IBM. The TSIMMIS sysem enables access to multiple
heterogeneous information sources by trandating source informetion into a common sdf-
describing object model known as the Object Exchange Modd, or OEM. Source specific
wrappers and "intdligent” modules known as mediators provide the integrated access to the
heterogeneous sources. The wrappers convert queries over information in the common OEM
modd that into requests that the source can execute, and the data returned by the source is
converted back into the common mode. The mediators collect information from one or more
sources, process and combine that information, and export the resulting information to the end
user or application program. Users or applications can choose to interact either directly with
the trandators or indirectly via one or more mediators. [Hammer et d., 1995]

Later work on the TSIMMIS project resulted in the development of a wrapper
implementation toolkit for quickly building wrappers. The work was motivated by the fact
that building a wrapper is a task tha requires a lot of effort and time, thus diminishing the
usefulness and gpplicability of writing wrappers in Stuations where it is important or desrable
to gain access to new data sources quickly. The work was based on an observation that only a
relatively small part of the code deds with the specific access details of the source. [Hammer
et d., 1997] Indeed, the integration wrapper implementation toolkit developed by the
researchers at Stanford University is andogous in some sense to the Trandator Library in the
ADI. The difference between the two is that in the base case, the TSIMMIS wrapper

implementation toolkit alows many data sources to be made to conform to a single

goplicaion's native query, whereas the ADI provides interfaces for many applications to

interoperate with a single database.

7.3.3 ODMG-0OQL and SQL Query Mediation

An approach based on two query languages, ODMG-OQL and SQL, has been
proposed to dlow query transformation as a mediator for deta interoperability. [Huang et d.,
2000] In this gpproach, the mediation architecture provides a way of accessng underlying
heterogeneous databases without using an integrated modd. Automated query
transformations permit data consumers to use native query languages to access heterogeneous
databases without acquiring or adapting to the target schema and syntax.

The ODMG-0OQL/SQL query mediation architecture is dso a complement of the ADI
architecture. This gpproach permits one data consumer to query a set of heterogeneous data
sources in the consumer's native language and congructs, whereas the ADI architecture
permits many applications to exchange data with a sngle database, through an interface that

provides the interoperability.

734 SIMS

The SIMS information mediator [Arens et d., 1996], dso complements the ADI in the
same way as the TSIMMIS and Query Mediation approaches mentioned above. However,
SIMS offers optimizations in its mediators in that they are able to take domain-level queries
and dynamicdly sdect only the gppropriate information sources based on content and

availability. Then the mediator generates a query access plan that specifies the operations and

85

their order for processing the data. Semantic query optimizations are performed to minimize
the overd| execution time.

The SIMS method offers some features that differentiate it from other architectures.
Fird, the SIMS architecture provides optimizations to the queries as they are being
formulated. Second, the mediator must contain amode of its own domain of expertise, which
provides the terminology for interacting with the mediator as well as the modeds of dl the
individual data tores available to it. These components have their andogues in the ADI
architecture: the former is anadogous in some sense to the Trandator Library, wheress the
latter is analogous to the Database Access Descriptions of the individua databases. However,
in the ADI architecture there is no redriction that a mediator ded only with a "domain of
expertise” snce modular components can adways be added if a greater breadth of
functiondity is desired. Further, because the mediator contains a modd of its own domain of
expertise, it is expected that changes to the environment might be hard to maintain. When
individuad systems are removed from or added to the SIMS environment, the mediator model
must change along with it. On the other hand, the ADI gpproach would call for the addition or
deletion of an individud interface that does not interact with any other interface, and thus such

achange would have minimal impact.

735 YAT and TranScm

YAT is a data model that conssts of named ordered labeled trees that may be
assembled to form a pattern. A set of patterns forms a model that is used to represent real-
world data. The interesting characterigtic of YAT models is that they can be mapped from one

format into another, while retaining the equivaent data modd. Furthermore, the YAT

86

language, or YATL, can be used to customize the data modd to a specific need. [Abiteboul et
a., 1999

YAT can be seen as amodd or even a candidate for implementation of the Interface
Generation portion of the ADI. A ussful feature of YAT data models is tha a significant
portion of YAT modd trandations can be generated automaticaly using the TranScm system.
In the context of the ADI, the YAT modd is andogous to the data description inputs to the
Interface Generator (but is not analogous to the Trandator Library). The TranScm system
should be capable of doing most of the work that the Interface Generator will do. Any extra

work that needs to be done by interface programmers can be accomplished through YATL.

Having discussed the architecture of the ADI as well as comparisons to gpproaches

found in the literature, this thesis closes with conclusions and future work in the next section.

87

8 Conclusion

8.1 Epilogue

Chapters 1 and 2 introduced the data interoperability problem, motivations, history,
and approaches. Chapters 3 through 6 discussed the proposed ADI architecture, Specification,
advantages, examples, and metrics. Chapter 7 compared and contrasted the ADI approach
with some of the previous gpproaches in detail. All of the background presented suggests that
the ADI approach has the potentia to be a viable solutionto data interoperability problems.

The ADI has the mogt gpplicability in large didributed environments where a high
vaue is placed on the ability of the data interoperability solution to adgpt to changes and
mantan itsdf. In generd, larger environments will derive more vaue from the ADI than
amaller ones since there are a higher potential number of interfaces that would have to be built
in its sead. Environments that need to change frequently yet gracefully will aso derive more
vdue from the ADI than environments that are more dable. The environment undergoing
ggnificant changes can take advantage of the fact that the ADI can smply discard old
interfaces that have been made obsolete due to changes. Organizations that depend on
distributed evironments will aso appreciate the fact that ADI dlows maintenance efforts to
be directed & a smdl set of targets while preserving autonomy of the data producers and

consumers.

88

8.2 FutureWork
In this section, future work that builds on the research presented in this thess is
described. Possble future research projects include implementation, dternate

implementations, relaxation of smplifying assumptions, and a converse gpplication focus.

821 Implementation

While the architecture described in this thess is based on sound principles and the
most recent research in the fidld of data interoperability, a concrete implementation and
demondration would provide a more convincing argument for the feasbility of the ADI and
its architecture. The chapter regarding component congtruction provides a good dart, and
performance of such a demongtration could be measured according to the chapter regarding

metrics.

8.2.2 Alternate Implementations

Although the chapter regarding component condruction provides one way to
implement the ADI architecture, the methods described therein are not the only way to
implement it. As an example, one possble variation is to reverse the order of congtruction of
the ADI and the Database Access Description. In some cases, a data source will have up to
date documentation or methodology for accessto dl of its data within. In such a case, it might
be advantageous for the DBA to create the ADI based on the Database Access Description.
Rather than first deciding what data will be exposed, and then trying to reverse engineer

methods to provide that data, she could examine a database modd that determines the

89

comprehensive st of what data could be provided. Then the task of producing an ADI is

reduced to a problem of sdlecting a subset of data from that mode!.

8.2.3 Redaxation of Smplifying Assumptions

The examples in this thess made amplifying assumptions so that the concepts could
be clearly explained. One such assumption is that of semantic heterogeneity as a process
problem. Although a geat ded of focus has been on schematic heterogendty in the padt,
semantic heterogenety is beginning to emerge in the minds of researchers as a problem with
equd, if not more, ggnificance. A future task is to incorporate methods of solving semantic
heterogeneity to help automate the generation of Application Requirements within the ADI
architecture.

A second amplifying assumption made in this thess was an environment congsting
of multiple gpplications and one database. The ADI concept theoreticdly extends to many
gpplications and many databases. However, there are even more complicated semantic
heterogeneity issues that need to be considered when attempting to alow an application to
access and work with data from two different data sources, such as determining overlaps
between domains of data, and then resolving and unifying the overlapping indances. Another
future task is to gpply the ADI architecture to environments with multiple data sources and
consumers.

A third amplifying assumption was the assumption that the data source was a
relational database. This assumption was made for the purposes of the examples, because of
the popularity and convenience of the relational moddl. Some of the examples appear the way

that they do because of the choice of this assumption. Nevertheless, it should be stressed that

90

the examples do not depend on the assumption of a relationd modd. Ingtead, different
database modds will require dightly different but andogous ADI components. A future task

is to explicitly specify what models and congtructs are analogous to the examples presented in

this thes's, and then to implement those model's and congtructs.

824 Application Focus

The ADI differs from some of the approaches discussed in the previous chapter
induding the TSIMMIS System, the SIMS information mediator, and the Query Mediation
techniques in that it focuses on dlowing multiple applications to access a sSngle data source.
These gpproaches, on the other hand, focus on dlowing an application to access multiple data
sources. Future work should investigate the possibility of an Abstract Application Interface,
an gpproach that would attempt the converse of the focus taken with the ADI, asin these other
approaches. Afterwards, a study could be conducted to see which cases of data
interoperability problems were solved more efficiently when usng ather focus It is

conceivable that such astudy could yield a hybrid gpproach.

91

8.3 Concluding Remarks

Achieving data interoperability is well recognized as a problem that currently has no
ided solution: tradeoffs must dways be made between qudity and cost of information. The
ADI architecture represents a step towards improved data interoperability that should be
implemented and evauated in a red-world environrment. Although much research has been
conducted, and many advances made, researchers need to continue to work on this problem,

lest the growing amount of digitd information completely overwhem the data sysems of the

future.

92

9 Appendix A. Glossary of Acronyms

Acronyms can be convenient to use, and the computer world is brimming with them.
However, they can dso befuddle readers who are not aware of their meaning. This table of

the various acronyms used in this thesisis provided as an ad to the reader.

ACM Association for Computing Machinery

ADI Abdtract Data Interface

ADDS Amoco Digtributed Database System

ARD Application Requirements Description

CaGl Common Gateway Interface

COIN COntext INterchange

CORBA Common Object Request Broker Architecture
COTS Commercid Off-the- Shelf

DAD Database Access Description

DBA DataBase Adminisirator

DBMS Data Base Management System

DFDS Data and Format Descriptor Set

DDL Data Definition Language

DDS Data Descriptor Set

DIOM Distributed Interoperable Object Model
DoD Department of Defense

DOME Domain Ontology Management Environment

93

ER Entity Rdaionship

FAM Fully Attributed Mode

GIM Generic Integration Model

GUI Graphica User Interface

HTML Hyper Text Markup Language

ICAM Integrated Computer Aided Manufacturing
IDEF1X ICAM DEFinition 1 eXtended

IDL Interface Definition Language

|EEE Ingtitute of Electrical and Electronics Engineers
IRO-DB Interoperable Relationa & Object-oriented DataBases
MAP MissonAircraft-Pilot database

MASM Multi- Aspect Semantic Model

MRDSM Multics Relationa Data Store Multidatabase

MTF Message Text Format

OoQL Object Query Language

ODMG Object Data Management Group

POTS Plan Old Telephone Service

PRECI* Prototype of a RElational Canonical Interface
RPC Remote Procedure Call

SIGMA[FDB] Schema Integration & Globa Integrity Maintenance Approach for Federated

Databases
SIM Schema Integration Methodology
SKAT Semantic Knowledge Articulation Tool

94

SOAP
SQL
TSIMMIS
TL
VHDBS
XML
XQL

XSL

Simple Object Access Protocol

Structured Query Language

The Stanford-1BM Manager of Multiple Information Sources
Trandator Library

Verteiltes Heterogenes DatenBankSystem

eXtensble Markup Language

XML Query Language

eXtensble Stylesheet Language

95

10 Appendix B. Sample DDL for the MAP Example

This gppendix includes the sample DDL for the MAP example. This DDL was
generated usng ERwin verson 352, ERwin is a database dedgn tool that permits the
creation of a visual blueprint or data model. Among its many features are the ability to draw
various data models including IDEF1X, |IE, and ER modds; and reverse and forward engineer

between data models and DBM S code. [CA, 2000]

map.l

Starting Access Basic DAO Session...

Di m ERwWi nWor kspace As Wor kspace
Di m ERwW nDat abase As Dat abase
Di m ERwW nTabl eDef As Tabl eDef

Di m ERwW nQuer yDef As QueryDef

Di m ERwi nl ndex As | ndex

Dim ERwW nField As Field

Di m ERW nRel ation As Rel ati on

Set ERwi nWor kspace = DBEngi ne. Wor kSpaces(0)

Set ERw nDat abase =
ERwW nWor kspace. OpenDat abase(sERw nDat abase)

CREATE TABLE " Al RCRAFT"

Set ERwi nTabl eDef = ERw nDat abase. Cr eat eTabl eDef (" Al RCRAFT")
Set ERwi nField = ERwW nTabl eDef . CreateFi el d("aircraft-type",
DB_TEXT, 18)

ERwW nFi el d. Required = True

ERwW nTabl eDef . Fi el ds. Append ERw nFi el d

Set ERwW nField = ERwi nTabl eDef. CreateFi el d("aircraft-nunber”,
DB_| NTEGER)

ERwW nFi el d. Required = True

ERwW nTabl eDef . Fi el ds. Append ERw nFi el d

96

Set ERwi nField = ERwi nTabl eDef. Creat eFi el d("fuel -l evel ",
DB_LONG)

ERwW nTabl eDef . Fi el ds. Append ERw nFi el d

Set ERw nFi el d = ERwi nTabl eDef. Creat eFi el d("fuel -1evel -units”,
DB_TEXT, 18)

ERwW nTabl eDef . Fi el ds. Append ERw nFi el d

Set ERwi nField ERwW nTabl eDef . Cr eat eFi el d("ammo", DB_| NTEGER)
ERwW nTabl eDef . Fi el ds. Append ERw nFi el d

Set ERwi nField = ERwW nTabl eDef. Creat eFi el d("genl -cond",

DB _TEXT, 18)

ERwW nTabl eDef . Fi el ds. Append ERw nFi el d

ERwW nDat abase. Tabl eDef s. Append ERw nTabl eDef

Set ERwi nField = ERw nTabl eDef. Fi el ds("anmmp")

Set Fi el dProp (ERwW nField, "Caption", DB _TEXT, "ammunition:")
Set ERwi nField = ERw nTabl eDef. Fi el ds("genl -cond")

Set Fi el dProp (ERw nField, "Caption", DB _TEXT, "general -
condition:")

' CREATE | NDEX " Pri maryKey"

Set ERwi nTabl eDef = ERw nDat abase. Tabl eDef s(" Al RCRAFT")
Set ERwi nl ndex = ERw nTabl eDef. Creat el ndex(" Pri maryKey")
Set ERwi nField = ERwWi nl ndex. CreateField("aircraft-type")
ERw nl ndex. Fi el ds. Append ERwW nFi el d

Set ERw nField = ERw nl ndex. CreateField("aircraft-nunber")
ERwW nl ndex. Fi el ds. Append ERwi nFi el d

ERwW nl ndex. Primary = True

ERW nl ndex. Cl ustered = True

ERwW nTabl eDef . | ndexes. Append ERw nl ndex

' CREATE TABLE " ASS| GNMENT"

Set ERw nTabl eDef = ERwW nDat abase. Cr eat eTabl eDef (" ASSI GNVENT")
Set ERwW nFi el d = ERw nTabl eDef . Creat eFi el d(" m ssi on-nunber”,
DB_| NTEGER)

ERwW nFi el d. Required = True

ERwW nTabl eDef . Fi el ds. Append ERw nFi el d

Set ERw nFi el d = ERwWi nTabl eDef. Creat eFi el d(" pi | ot - nunber ",
DB_| NTEGER)

ERwW nFi el d. Required = True

ERwW nTabl eDef . Fi el ds. Append ERw nFi el d

Set ERwi nField = ERwW nTabl eDef. CreateFi el d("aircraft-type",
DB_TEXT, 18)

ERwW nFi el d. Required = True

ERwW nTabl eDef . Fi el ds. Append ERw nFi el d

Set ERw nFi el d = ERwW nTabl eDef . Creat eFi el d("ai rcraft-nunber”,
DB_| NTEGER)

97

ERwi nFi el d. Required = True

ERwW nTabl eDef . Fi el ds. Append ERw nFi el d

Set ERwW nFi el d = ERw nTabl eDef . Cr eat eFi el d("assi gnnent-tine",
DB_DATETI ME)

ERwW nFi el d. Required = True

ERwW nTabl eDef . Fi el ds. Append ERw nFi el d

Set ERwi nFi el d = ERwW nTabl eDef. Creat eFi el d("AOBJ", DB_TEXT,
18)

ERw nTabl eDef . Fi el ds. Append ERw nFi el d

Set ERw nField = ERw nTabl eDef . Creat eFi el d("ST", DB_DATETI MVE)
ERwW nTabl eDef . Fi el ds. Append ERw nFi el d

Set ERw nField = ERw nTabl eDef. Creat eFi el d("CT", DB _DATETI ME)
ERwW nTabl eDef . Fi el ds. Append ERw nFi el d

ERwW nDat abase. Tabl eDef s. Append ERw nTabl eDef

Set ERwi nField = ERw nTabl eDef. Fi el ds("AOBJ")

Set Fi el dProp (ERwi nField, "Caption", DB TEXT, "assignment-
obj ective:")

Set ERwi nField = ERw nTabl eDef. Fi el ds(" ST")

SetFi el dProp (ERwW nField, "Caption", DB TEXT, "start-time:")
Set ERwi nField = ERwWi nTabl eDef. Fi el ds("CT")

Set Fi el dProp (ERwi nField, "Caption", DB_TEXT, "conpletion-
time:")

' CREATE | NDEX " Pri maryKey"

Set ERw nTabl eDef = ERw nDat abase. Tabl eDef s(" ASSI GNVENT")
Set ERw nl ndex = ERw nTabl eDef. Creat el ndex(" Pri maryKey")
Set ERwi nFi el d = ERw nl ndex. Creat eFi el d("m ssi on- nunber")
ERwW nl ndex. Fi el ds. Append ERw nFi el d

Set ERw nFi el d = ERw nl ndex. Creat eFi el d("pil ot - nunber")
ERwW nl ndex. Fi el ds. Append ERw nFi el d

Set ERwi nField = ERw nl ndex. CreateField("aircraft-type")
ERwW nl ndex. Fi el ds. Append ERw nFi el d

Set ERw nField = ERw nl ndex. Creat eFi el d("aircraft-nunber")
ERwW nl ndex. Fi el ds. Append ERw nFi el d

Set ERwi nFi el d = ERw nl ndex. Creat eFi el d("assi gnnent-tine")
ERw nl ndex. Fi el ds. Append ERw nFi el d

ERwW nl ndex. Primary = True

ERW nl ndex. Cl ustered = True

ERwW nTabl eDef . | ndexes. Append ERw nl ndex

' CREATE TABLE "M SSI ON"
Set ERwi nTabl eDef = ERw nDat abase. Creat eTabl eDef ("M SSI ON")

Set ERw nFi el d = ERwW nTabl eDef . Creat eFi el d(" m ssi on- nunber",
DB_| NTEGER)

98

ERwi nFi el d. Required = True

ERwW nTabl eDef . Fi el ds. Append ERw nFi el d

Set ERwi nField = ERw nTabl eDef . Creat eFi el d(" m ssi on-type",
DB_TEXT, 18)

ERw nTabl eDef . Fi el ds. Append ERw nFi el d

Set ERwi nField = ERM nTabl eDef . Creat eFi el d("m ssion-priority",
DB | NTEGER)

ERwW nTabl eDef . Fi el ds. Append ERw nFi el d

Set ERwW nField = ERw nTabl eDef. Creat eFi el d("m ssi on-creati on-
date", DB_DATETI ME)

ERwW nTabl eDef . Fi el ds. Append ERw nFi el d

Set ERw nFi el d = ERwi nTabl eDef. Creat eFi el d(" m ssi on-

obj ective", DB_TEXT, 18)

ERwW nTabl eDef . Fi el ds. Append ERw nFi el d

Set ERwi nFi el d = ERwW nTabl eDef . O eat eFi el d(" m ssi on- codenane”,
DB_TEXT, 18)

ERwW nTabl eDef . Fi el ds. Append ERw nFi el d

ERwW nDat abase. Tabl eDef s. Append ERw nTabl eDef

' CREATE | NDEX " Pri mar yKey"

Set ERwi nTabl eDef = ERw nDat abase. Tabl eDef s("M SSI ON")
Set ERw nl ndex = ERwi nTabl eDef. Creat el ndex("Pri maryKey")
Set ERwi nField = ERwW nl ndex. Creat eFi el d("m ssi on- nunmber")
ERwW nl ndex. Fi el ds. Append ERw nFi el d

ERwW nl ndex. Primary = True

ERW nl ndex. Cl ustered = True

ERwW nTabl eDef . | ndexes. Append ERw nl ndex

' CREATE TABLE " MODEL"

Set ERw nTabl eDef = ERw nDat abase. Cr eat eTabl eDef (" MODEL")
Set ERwi nField = ERw nTabl eDef. CreateField("aircraft-type",
DB_TEXT, 18)

ERwi nFi el d. Required = True

ERwW nTabl eDef . Fi el ds. Append ERw nFi el d

Set ERwi nField = ERw nTabl eDef . Creat eFi el d("top-speed”,
DB_| NTEGER)

ERw nTabl eDef . Fi el ds. Append ERw nFi el d

Set ERwi nField = ERw nTabl eDef . Creat eFi el d("t op-speed-units"”,
DB _TEXT, 18)

ERwW nTabl eDef . Fi el ds. Append ERw nFi el d

Set ERwi nField = ERw nTabl eDef. Cr eat eFi el d("weapons-capacity"”,
DB_| NTEGER)

ERwW nTabl eDef . Fi el ds. Append ERw nFi el d

Set ERwi nFi el d = ERw nTabl eDef. Creat eFi el d("fuel -capacity",
DB_LONG)

99

ERwWi nTabl eDef . Fi el ds. Append ERw nFi el d

Set ERwi nField = ERw nTabl eDef . Creat eFi el d("fuel -capacity-
units", DB_TEXT, 18)

ERwW nTabl eDef . Fi el ds. Append ERw nFi el d

ERw nDat abase. Tabl eDef s. Append ERw nTabl eDef

' CREATE | NDEX " Pri maryKey"

Set ERw nTabl eDef = ERw nDat abase. Tabl eDef s(" MODEL")

Set ERw nl ndex = ERw nTabl eDef . Creat el ndex(" Pri maryKey")
Set ERwi nField = ERw nlndex. CreateField("aircraft-type")
ERw nl ndex. Fi el ds. Append ERw nFi el d

ERwW nl ndex. Primary = True

ERwW nl ndex. Cl ustered = True

ERwW nTabl eDef . | ndexes. Append ERw nl ndex

CREATE TABLE " PI LOT"

Set ERwi nTabl eDef = ERw nDat abase. Cr eat eTabl eDef (" PI LOT")
Set ERw nField = ERwi nTabl eDef. CreateField("plt_no",

DB_| NTEGER)

ERwW nFi el d. Required = True

ERwW nTabl eDef . Fi el ds. Append ERw nFi el d

Set ERwW nField = ERwW nTabl eDef. CreateFi el d("plt_name",
DB_TEXT, 18)

ERwW nTabl eDef . Fi el ds. Append ERw nFi el d

Set ERw nField = ERw nTabl eDef. CreateFiel d("plt_rnk",

DB_| NTEGER)

ERwW nTabl eDef . Fi el ds. Append ERw nFi el d

Set ERwi nField = ERw nTabl eDef. CreateField("plt_train",
DB_TEXT, 18)

ERwW nTabl eDef . Fi el ds. Append ERw nFi el d

Set ERwi nField = ERw nTabl eDef. CreateField("hrs_fln",
DB_DOUBLE)

ERwi nTabl eDef . Fi el ds. Append ERw nFi el d

Set ERwi nField = ERwW nTabl eDef. CreateField("hrs_fln_accy",
DB_DOUBLE)

ERwW nTabl eDef . Fi el ds. Append ERw nFi el d

ERw nDat abase. Tabl eDef s. Append ERw nTabl eDef

Set ERwi nField = ERw nTabl eDef. Fields("plt_no")
SetFieldProp (ERM nField, "Caption", DB TEXT, "pilot-nunber:")
Set ERw nField = ERwi nTabl eDef. Fi el ds("plt_nane")

SetFi el dProp (ERwW nField, "Caption", DB TEXT, "pilot-nanme:")
Set ERwi nField = ERwW nTabl eDef. Fi el ds("plt_rnk")

SetFi el dProp (ERwW nField, "Caption", DB TEXT, "pilot-rank:")
Set ERwi nField = ERwi nTabl eDef. Fields("plt _train")

100

Set Fi el dProp (ERw nField, "Caption", DB _TEXT, "pilot-
training:")

Set ERwi nField = ERw nTabl eDef. Fields("hrs_fln")

SetFi el dProp (ERw nField, "Caption", DB TEXT, "hours-flown: ")

' CREATE | NDEX " Pri maryKey"

Set ERw nTabl eDef = ERw nDat abase. Tabl eDef s("PI LOT")

Set ERw nl ndex = ERw nTabl eDef. Creat el ndex(" Pri maryKey")
Set ERwi nField = ERw nl ndex. CreateField("plt_no")

ERwW nl ndex. Fi el ds. Append ERwi nFi el d

ERwW nl ndex. Primary = True

ERwW nl ndex. Cl ustered = True

ERwW nTabl eDef . | ndexes. Append ERw nl ndex

' CREATE RELATIONSHI P "R/ 4"

Set ERwi nRel ati on = ERw nDat abase. Creat eRel ati on("R/ 4",
"MODEL", " Al RCRAFT")

Set ERwi nField = ERwWi nRel ati on. CreateField("aircraft-type")
ERwW nFi el d. Forei gnName = "aircraft-type"

ERW nRel ati on. Fi el ds. Append ERw nFi el d

ERw nDat abase. Rel ati ons. Append ERw nRel ati on

' CREATE RELATIONSHI P "R/ 6"

Set ERw nRel ati on = ERw nDat abase. Creat eRel ati on("R/ 6",

" Al RCRAFT", " ASSI GNMVENT")

Set ERwinField = ERWM nRel ati on. CreateField("aircraft-type")
ERwW nFi el d. Forei gnName = "aircraft-type"

ERwW nRel ati on. Fi el ds. Append ERw nFi el d

Set ERWM nField = ERM nRel ation. CreateFi el d("aircraft-nunber")
ERwW nFi el d. Forei gnName = "aircraft-nunber”

ERwW nRel ati on. Fi el ds. Append ERw nFi el d

ERwi nDat abase. Rel ati ons. Append ERwi nRel ati on

' CREATE RELATIONSHI P "R/ 3"

Set ERw nRel ati on = ERw nDat abase. Creat eRel ati on("R/ 3",
"M SSI ON', " ASSI GNVENT")

Set ERwW nField = ERwW nRel ati on. Creat eFi el d(" m ssi on- nunber")
ERwW nFi el d. Forei gnNanme = "ni ssi on- nunber"”

ERw nRel ati on. Fi el ds. Append ERw nFi el d

ERwW nDat abase. Rel ati ons. Append ERw nRel ati on

' CREATE RELATIONSHI P "R/ 2"

101

Set ERw nRel ati on = ERw nDat abase. Creat eRel ati on("R/ 2",
"PILOT", "ASSI GNMVENT")

Set ERwi nField = ERw nRel ation. CreateField("plt_no")
ERwW nFi el d. Forei gnName = "pil ot-nunber"™

ERwW nRel ati on. Fi el ds. Append ERw nFi el d

ERwW nDat abase. Rel ati ons. Append ERw nRel ati on

ERw nDat abase. Cl ose

ERwW nWbr kspace. Cl ose
' Term nating Access Basic DAO Session...

102

11 Appendix C. IDEF1X Background

Robet G. Brown origindly conceived of IDEF1X in 1979 while working as a
consultant at Lockheed. It was based on evolving relationa database theory, as well as work
by early database researchers such as Chen, Codd, Smith, and others. The following year,
Brown brought his idess to the Bank of America, which was a that time, struggling with
delivery and database applications. A need for information modeling techniques and data
centered design concepts was identified at the bank, and Brown's ideas received some hedlthy
support. Those ideas eventudly were named ADAM interndly within the bank, and Data
Modeling Technique, or DMT, outside the bank.

Other organizations began to recognize a need for data modeling standards around that
time. The U. S. Air Force conducted studies known as Integrated Computer Aided
Manufacturing, which identified a s&t of three graphic methods for defining the functions, data
dructures, and dynamics of manufacturing businesses. These three methods became to be
known as the IDEF methods, short for ICAM DEFinition. The function method was dubbed
| DEFO; the data method, IDEF1; and the dynamics method, IDEF2.

Brown retained the rights to ADAM after his departure from the bank in 1985 through
his company, the Data Base Design Group. ADAM became commercidly avallable through
an arangement with the D. Appleton Company, otherwise known as DACOM. Later that
same year, DACOM approached the U. S. Air Force, which by then was a mgor user of the
IDEF methods, to propose extensions to IDEF1 by adding some capabilities available in
ADAM. Ingead of extending IDEF1 with ADAM, the Air Force elected to replace IDEF1

completely with ADAM, and the new modd came to be known as IDEF1X—the proper

103

pronunciation of IDEF1X is “eye deaf one ecks,” and the X stands for eXtended. IDEF1X

was accepted as an Air Force standard shortly after. [Bruce, 1992]

104

12 Appendix D. IDEF1X Notation Conventions

As a convenience to the reader, the rdlevant IDEF1X notaion explanations are
provided here to ad in the interpretation of the figures that use them. [Adapted from Bruce,
1992] Specificdly, the figures that utilize IDEF1LX notation are Figures 5.1, 5.2, and 5.3 in
Chapter 5.

IDEF1X has powerful data modd expression capabilities. However, a comprehensive
description of al of the abilities of IDEF1X is beyond the scope of this thess. Readers are

urged to consult [Bruce, 1992] for more information.

12.1 Entity Notation
An entity is said to be an independent entity when it depends on no other entities for its

identification. Such an entity is denoted thus:

ENTITY-NAME
key-area

data-area

Figure12.1. Independent Entity

An entity is said to be a dependent entity when it does depend on others for its

identification. Such an entity is denoted thus:

105

ENTITY-NAME

(key-area W
data-area

Figure12.2. Dependent Entity

12.2 Attribute Notation

An dtribute denoted thus:

attri bute(FK)

has a foreign key associated with it. A primary key of another entity is contributed via a

relationship.

12.3 Relationship Notation
The following figure denotes a one-to-many identifying relationship: one parent, to

zero or more children:

PARENT-ENTITY CHILD-ENTITY

verb phrase / | |
inverse phrase

Figure 12.3. One-to-Many Relationship

In such a relationship, the primary key attributes of the parent entity become the primary key

atributes of the child entity.

106

13 Bibliography

Abiteboul, S., Cluet, S, Milo, T., Mogilevsky, P., Smeon, J., Zohar, S. “Tools for Data
Trandation and Integration.” Bulletin of the IEEE Computer Society Technical
Committee on Data Engineering. 1999.

Arens, Y., Knoblock, C. A., and Hsu, C. “Query Processing in the SIMS Information
Mediator.” Advanced Planning Technology. AAAI Press, Menlo Park, CA, 1996.

Batini, C., Lenzerini, M., and Navathe, S. “A comparative andyss of methodology for
database schemaintegration.” ACM Computing Surveys, Vol. 18, No. 4, 1986.

Bendimane, D., Yetongnon, K., Chraibi, S, Leclercq, E., Abddwahed, E. H. “DECA: A
Framework for Cooperative Information Sysems” Technique et Science
Informatiques, Vol. 19, No. 7. September, 2000.

Bighr, Y. A., Pundt, H., Ruther, C. “Proceeding on the road of semantic interoperability—
desgn of a semantic mapper based on a case sudy from trangportation.”
Interoperating Geographic Information Systems. Proceedings from the 2™
International Conference, INTEROP'99. 1999.

Bouguettaya, A. Ontologies and Databases. Kluwer Academic Publishers, 1999.

Breitbart, Y., Olson, P. L., Thompson, G. R. “Database Integration in a Didributed
Heterogeneous Database System.” |EEE Conference on Data Engineering. February,
1986.

Bressan, S., Goh, C. H. “Answering Queriesin Context.” Datal ogiske Skrifter, No. 78, 1998.

Bruce, T. A. Desgning Qudity Databases with IDEF1IX Information Modds. Dorset House
Publishing, 1992.

Cardiff, J, Catarci, T., and Santucci, G. “Exploitation of Interschema Knowledge in a
Multidatabase System.” In Proceedings of the 4" KRDB Workshop, Athens, Greece,
1997.

Cagtano, S., and DeAntondllis, V. “Globa Viewing of Heterogeneous Data Sources.” |EEE
Transactions on Knowledge and Data Engineering, Vol. 13, No. 2, March-April,
2001.

Codd, E. F. “A Relaiona Modd of Datafor Large Shared DataBanks.” Communications of
the ACM, Val. 13, No. 6. June, 1970.

107

Cohen, W. “Integration of Heterogeneous Databases Without Common Domains Using
Queries Based on Textud Similarity.” In Proceedings of ACM SSGMOD-98, Setttle,
WA, 1998.

Committee on Innovations in Computing and Communications (CICC): Lessons from
History, National Research Council. “Funding a Revolution: Government Support for
Computing Research.” 1999.

Computer Associates (CA). “ERwin: Features Guide” Computer Associates Internationd,
Inc., Idandia, NY, 2000.

Cormen, T. H., Lesarson, C. E.,, and Rivest, R. L. Introduction to Algorithms. MIT Press,
1990.

Coulomb, R. M. “Impact of Semantic Heterogeneity on Federating Databases” Computer
Journal, Vol. 40, No. 5. Oxford University Press, 1997.

Cui, Z., O'Brien, P. “Domain Ontology Management Environment.” Proceedings of the 33"
Annual Hawaii International Conference on System Sciences. |EEE Computer
Society, 2000.

Deen, S. M., Amin, R. R., Ofori-Dwumfuo, G. O., and Taylor, M. C. “The Architecture of a
Generdised Digtributed Database System—PRECI*.” The Computer Journal, Vol.
28, No. 3. 1985.

Department of Defense (DoD). Software Technology Strategy. Decenber, 1991.

Essmayr, W., Kastner, F., Pernul, G., and Tjoa, A. M. “The Security Architecture of IRO-
DB.” InProceedingsof the Twelfth IFIP Conference on Information Security, Idand
of Samos, Greece, May, 1996.

Evans, M. W., and Marciniak, J. Software Qudity Assurance and Management. John Wiley
& Sons, Inc., New York, NY, 1987.

Fankhauser, P. “Methodology for Knowledge-Based Schema Integration.” Ph. D. Thess,
University of Vienna, Audtria, December, 1997.

Fahl, G., Risch, T., and Skold, M. “AMOS—AnN Architecture for Active Mediators.”
Proceedings of the International Workshop on Next Generation Information
Technologies and Systems. Haifa, Isragl, June, 1993.

Gardarin, G., Sha, F. “Usng Conceptud Modeling and Intelligent Agents to Integrate Semi-

Structured Documents in Federated Databases.” Conceptual Modeling: Current
Issues and Future Directions. 1999.

108

Gardarin, G., Sha, F., Ngoc, T. D. “XML-Based Components for Federating Multiple
Heterogeneous Data Sources.” Proceedings of the 18" International Conference on
Conceptual Modeling. Paris, France, 1999.

Goodchild, M. F., Egenhofer, M. J, and Fegeas, R. “Interoperating GISs.” Report of a
Soecialist Meeting Held Under the Auspices of the Varenius Project Panel on
Computational Implementations of Geographic Concepts December 1997.

Goh, C., Bressan, S, Madnick, S., and Siegel, M. “Context Interchange: New Features and
Formdiams for the Intdligent Integration of Information.” ACM Transactions on
Information Systems, Vol. 17, No. 3, July 1999.

Goh, C., Madnick, S., and Siegd, M. *“Context Interchange: Overcoming the Chalenges of
Large-Scde Interoperable Database Sysems in a Dynamic Environment.” In
Proceedings of the Third International Conference on Information and Knowledge
Management, 1994.

Gravano, L., Garda-Moalina, H., Tomadic, A. “The Effectiveness of GIOSS for the Text
Database Discovery Problem.” In ACM SGMOD Record, 1994.

Gupta, A. Integration of Information Systems. Bridging Heterogeneous Databases. |EEE
Press, 1989.

Hadl, G. “Negatiation in Database Schema Integration.” Presented a The Inaugural
Association for Information Systems Americas Conference, Pittsourgh, PA, August,
1995.

Hammer, J, Garcia-Moalina, H., Irdand, K., Papakongtantinou, Y., Ullman, J., Widom, J.
“Information Trandation, Mediation, and Mosaic-Based Browsing in the TSMMIS
System.” In Proceedings of ACM SGMOD, San Jose, CA, 1995.

Hammer, J, and McLeod, D. “An Approach to Resolving Semantic Heterogeneity in a
Federation of Autonomous, Heterogeneous Database Systens.” In International
Journal of Intelligent & Cooperative Information Systems World Scientific, Vol. 2,
No. 1, 1993.

Hammer, J, Breunig, M., Garcia-Moalina, H., Nestorov, S, Vassaos, V., Yerneni, R.
“Template-Based Wrappersinthe TSIMMIS System.” | nProceedings of the Twenty-
Sxth SGMOD International Conference on Management of Data, Tucson, Arizona,
May 12-15, 1997.

Hassdbring, W. “Federated Integration of Replicated Information Within Hospitas”
International Journal on Digital Libraries, Vol. 1, No. 3. November, 1997.

109

Huang, H. C., Kerridge, J,, Chen, S. L. “A Query Mediation Approach to Interoperability of
Heterogeneous Databases” Proceedings of the 11 Australasian Database
Conference. |EEE Computer Society, 1999.

Hul, R. “Managing Semantic Heterogeneity in Databases. A Theoreticd Pergpective.”
Proceedings of the Sxteenth ACM S GACT-SGMOD-SGART Symposium on
Principles of Database Systems. ACM, 1997.

Ingtitute of Electricd and Electronics Engineers (IEEE). |EEE Standard Computer

Dictionary: A Compilation of IEEE Standard Computer Glossaries. New York, NY,
1990.

Jannink, J., Mitra, P., Neuhold, E., Picha, S., Studer, R., Wiederhold, G. “An Algebra for
Semantic Interoperation of Semistructured Data.” Proceedings of the 1999 Wor kshop
on Knowledge and Data Engineering Exchange. |EEE Computer Society, 2000.

Jones, S. B., Franklin, J. “Integration of Heterogeneous Biotechnology Databases.”
Proceedings of the 1998 I nter national Chemical Information Conference. Infonortics
Tetbury, UK, 1998.

Kashyap, V., and Sheth, A. “Semantic Heterogeneity in Globd Information Systems. The
Role of Metadata, Context and Ontologies.” In Cooperative Information Systems:
Current Trends and Directions, Papazoglou, M., and Schlageter, G., eds. 1996.

Kedad, Z., Metais, E. “Deding with Semantic Heterogeneity During Data Integration.”
Proceedings of the 18" International Conference on Conceptual Modeling. 1999.

Kdler, A. M. “The Role of Semantics in Trandating View Updates” |EEE Computer.
January, 1986.

Kitakami, H., Mori, Y., Airkawa, M., Sato, A. “Integration Method for Biological Taxonomy
Databasesin the Presence of Semantic Heterogeneity.” Transactions of the I nstitute of
Electronics & Communication Engineers of Japan, Part D. Vol. J82D-1, No. 1.
January, 1999.

Kiyoki, Y., Kitagawa, T., Hitomi, Y. “A Fundamenta Framework for Redizing Semantic
Interoperability in a Multidatabase Environment.” Integrated Computer-Aided
Engineering, Vol. 2, No. 1. Wiley, USA, 1995.

Leclercg, E., Bendimane, D., Yetongnon, K. “HORUS. A Semantic Broker for GIS
Interoperability.” First International Workshop on Telegeoprocessing. Lyon, France,
1999.

Lee J. O, Bak, D. K. “SemQL: A Semantic Query Language for Multidatabase Systems.”

Proceedings of the Eighth International Conference on Information Knowledge
Management. ACM, 1999.

110

Lee J. O, Bak, D. K. “Semantic Integration of Information Based on the Multi Aspect
Semantic Modd.” Joint Conference on Intelligent Systems. 1999.

Litwin, W., and Abddllatif, A. “Multidatabase Interoperability.” |EEE Computer. December,
1986.

Liu, L., and Pu, C. “An Adaptive Object Oriented Approach to Integration and Access of
Heterogeneous Information Sources.” Distributed and Parallel Databases, Vol. 5,
No. 2. April, 1997.

Masood, N., and Eaglestone, B. * Semantics Based Schema Analysis.” Database and Expert
Systems Applications. Proceedings of the 9" International Conference, DEXA ' 98.
1998.

Microtool GmbH. “OOP by Scripting—Customized Code Generation.” Microtool GmbH,
Berlin, 2001.

Miller, R. J “Usng Semanticaly Heterogeneous Structures” In ACM SGMOD '98.
Sesttle, WA, USA, 1998.

Miller, R. J, loannidis, Y. E., Ramakrishnan, R. “The Use of Information Capacity in
Schema Integration and Trandation.” Proceedings of the 19" VLDB Conference.
Dublin, Ireland, 1993.

Mitra, P., Wiederhold, G., Jannink, J. *“Semi-automatic Integration of Knowledge Sources.”
Proceedings of the Second International Conference on Information Fusion.
Mountain View, CA, USA, 1999.

Motz, R., Fankhauser, P. “Propagation of Semantic Modifications to an Integrated Schema.”
Proceedings of the 3" IFCISInternational conference on Cooper ative | nformation
Systems. |EEE Computer Society, 1998.

Ouksd, A. M., and Ahmed, |. “Ontologies are not the Panacea in Data Integration: A Flexible
Coordinator to Mediate Context Construction.” Distributed and Parallel Databases.
Kluwer Academic Publishers, Netherlands, 1999.

Phoha, S “Information Qudity Control for Network Centric Ship Maintenance.”
Proceedings of the 1999 American Control Conference. 1EEE, 1999.

Renner, Scott A., and Scarano, James G. “Data Interoperability: Standardization or
Mediation.” DOD Database Colloquium’ 95, August 1995.

Renner, Scott. “Datalssues.” AF Architecture Workshop, November 1999.

111

Richardson, R., Smeaton, A. F. “An Information Retrieval Approach to Locating Information
in Large Scde Federated Database Systems.” Applications of Natura Language to
Information Systems. Proceedings of the Second International Workshop.
Amgterdam, Netherlands, 1996.

Roth, M. T., Arya, M., Haeas, L., Carey, M., Cody, W., Fagin, R., Schwarz, P., Thomeas, J., and
Wimmers, E. “The Garlic Project.” In ACM SGMOD, Montreal, Canada, 1996.

Saske, G., Chrigtiansen, A., Conrad, S., Hoding, M., Schmitt, I., Turker, C. “The Federation
of Heterogeneous Database Systems and Loca Data Components for Ensuring
SysemWide Integrity—a Short Introduction to the SIGMA[FDB] Project.”
Databases in Office, Technology, and Science. 1997.

Sciore, E., Segd, M., and Rosenthd, A. “Usng Semantic Vdues to Facilitate
Interoperability Among Heterogeneous Information Systems.” In ACM Transactions
on Database Systems Val. 19, No. 2, June 1994.

Shen, W. M., Zhang, W., Wang, X., and Arens, Y. “Discovering and constructing conceptual
object model from large instances of relationd databases.” International Journal on
Data Mining and Knowledge Discovery. January, 1999.

Sheth, A., and Kashyap, V. “So Far (Schematicdly) yet So Near (Semanticdly).” In IFTP
TC2/WG2.6 Conference on Semantics of Interoperable Database Systems. Elsevier
Scientific Publisher B. V., November 1992.

Sheth, A. P, and Larson, J. A. “Federated Database Systems for Managing Digtributed,
Heterogeneous, and Autonomous Databases.” ACM Computing Surveys, Vol. 22, No.
3, 1990.

Sern, D. “New Search and Navigation Techniques in the Digitd Library.” Source and
Technology Libraries, Vol. 17, No. 3-4. 1999.

Templeton, M., Brill, D., Dao, S. K., Lund, E., Ward, P., Chen, A. L. P., and MacGregor, R.
“Mermaid—A Front-End to Disgtributed Heterogeneous Databases.” Proceedings of
the IEEE, Vol. 75, No. 5. May, 1987.

Vermeer, M. W. W., and Apers, P. M. G. “On the Applicability d Schema Integration
Techniquesto Database Interoperation.” 1n Proceedings of the Fifteenth I nter national
Conference on Conceptual Modelling, Cottbus, Germany. Springer-Verlag, Berlin,
1996.

Vidd, V.M. P. Loscio, B. F. “Solving the Problem of Semartic Heterogeneity in Defining

Mediator Update Transators.” Proceedings of the 18" International Conference on
Conceptual Modeling. 1999.

112

Winters, Mdanie, and Wilczynski, Brian. “Data Interoperability: Foundation of Information
Superiority.” CHIPS July 2000.

Wood, J. “What's in a Link? In Readings in Knowledge Representation. Morgan
Kaufmann, 1985.

Wu, X. “A CORBA-Based Architecture for Integrating Distributed and Heterogeneous
Databases.” Proceedingsof the 5 | EEE I nter national Conference on Engineering of
Complex Computer Systems. |EEE Computer Society, 1999.

Wu, X. “Integrating Heterogeneous Database Systems to an Object Oriented Client/Server
Architecture” Data Mining, Data Warehousing, and Client/Server Databases.
Proceedings of the 8" International Database Workshop. 1997.

Zisman, A., Kramer, J. “An Architecture to Support Interoperability of Autonomous

Database Systems.” In 2" International Baltic Workshop on DB and IS Estonia-
Tdlin, June 1996.

113

