Reactive Noninterference

Aaron Bohannon
University of Pennsylvania

Stephanie Weirich
University of Pennsylvania

ABSTRACT

Many programs operate reactively—patiently waiting for
user input, running for a while producing output, and even-
tually returning to a state where they are ready to accept
another input (or occasionally diverging). When a reactive
program communicates with multiple parties, we would like
to be sure that it can be given secret information by one
without leaking it to others.

Motivated by web browsers and client-side web applica-
tions, we explore definitions of noninterference for reactive
programs and identify two of special interest—one corre-
sponding to termination-insensitive noninterference for a sim-
ple sequential language, the other to termination-sensitive
noninterference. We focus on the former and develop a proof
technique for showing that program behaviors are secure ac-
cording to this definition. To demonstrate the viability of
the approach, we define a simple reactive language with an
information-flow type system and apply our proof technique
to show that well-typed programs are secure.

Categories and Subject Descriptors

F.1.2 [Modes of Computation]: Interactive and reactive
computation

General Terms
Languages, Security, Theory

Keywords

Noninterference, information flow, reactive programming,
web browsers, web applications

1. INTRODUCTION

Reactive programs, which repeatedly perform single-
threaded computations in response to events generated by
external agents (GUI button clicks, commands issued at a
terminal, receipt of network packets, timer events, etc.), are

Permission to make digital or hard copies of all or part o twork for

personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

CCS’09,November 9-13, 2009, Chicago, lllinois, USA.

Copyright 2009 ACM 978-1-60558-352-5/09/11 ...$10.00.

Benjamin C. Pierce
University of Pennsylvania

Vilhelm Sj6berg

University of Pennsylvania

Steve Zdancewic
University of Pennsylvania

ubiquitous. When a single reactive program may interact
with multiple agents, questions of security and privacy im-
mediately arise.

Web browsers and the client-side web applications they
run are an obvious case in point, because they interact with
both a local user and mutually untrusting, remote agents
(e.g., web servers). Web client security has attracted sig-
nificant interest [18, 15, 10, 11]. However, we still lack the
theoretical tools to answer the question “What does it mean
for a browser, running a web application, to be secure?”

A web client may receive data and programs from many
different servers, and each program may attempt to read
any browser data and communicate with any remote server.
Most browsers adhere to the “same-origin policy” [20], which
is intended to enforce isolation among programs and data
from different servers. However, the same-origin policy is
a policy in name only: in fact, it is a set of rather complex
and subtle rules, with no high-level statement of the security
property they are intended jointly to enforce. Moreover, it
has several practical problems: First, it prevents the client
from calling useful third-party web services. Second, it pre-
vents client-side data integration or collaborative behavior,
even when the data being handled is guaranteed never to
leave the user’s machine. Third, its rules involving subdo-
main relationships are complex and ambiguous [11]. And
finally, because of its rigid restrictions, the same-origin pol-
icy is not applied to browser extensions or plug-ins.

Our goal in this paper is to offer a more principled ap-
proach to the sort of attack scenario that is addressed by
the same-origin policy and to lay a foundation for more flex-
ible enforcement mechanisms. In this scenario, the attacker
is positioned at a remote host and can only communicate
with the user’s client over HI'TP. However, the attacker may
have written some or all of the event handlers running on
the client. The goal of the attacker is to retrieve some pri-
vate piece of information that the user would not knowingly
authorize the attacker to have.!

When compared with models of execution that have been
previously studied in the information flow literature, reac-
tive programs possess a novel combination of features: in-
teractivity with buffered, asynchronous communication; in-
cremental output; the requirement that the system respond
in some way to arbitrary inputs; and the possibility of non-
termination in handlers. Web client programs illustrate all

The same-origin policy also addresses scenarios in which
the attacker wants to corrupt data from other web servers
or to interfere with the functionality of other web pages in
the browser; we are focusing only on confidentiality here.

of these features. They have handlers that wait idly for user
input or responses to HTTP requests. After an event has
occurred, the appropriate event handler runs from start to
completion, possibly sending one or more messages to re-
mote hosts or to the user. (To streamline the model, we can
consider all updates to the browser display as “messages” to
the user.) Outgoing messages are sent as execution proceeds,
so a script need not terminate to produce visible output.
When the browser is idle, any event can be processed (this
feature has been called input-totality [14, 4, 22]), although
it will typically result in a no-op if no handler exists. How-
ever, when the browser is running a script, additional events
cannot be immediately processed because there is no notion
of preemptive multitasking. Instead, additional events must
be buffered and processed when and if the current script
terminates.

Our aim is to find a natural definition of information-flow
security for this execution model and to design a language-
based enforcement technique for reactive programming lan-
guages that execute under this model. Before coming to the
details of our development, though, we briefly summarize its
connections to the most closely related prior work.

Goguen and Meseguer [5, 6] gave one of the first formal
accounts of noninterference, and they did so in a setting of
machines that accept inputs and produce outputs. Their
“MLS property” [6]—informally, “the low-visible outputs of
a system remain unchanged after dropping the high-level
inputs”—offers an attractive template for the sort of suc-
cinct, high-level specification we are looking for here. How-
ever, their model does not apply to nonterminating behav-
iors (they rely on a total function that immediately moves
the system to a new state after each input); adapting the
same intuition to our model involves an entirely new math-
ematical development.

By contrast, some information-flow research [4, 22] has
addressed execution models of concurrent systems with in-
put and output that are somewhat more general than our
reactive model. In stating the security properties for these
systems, the observable behaviors of a system are usually
characterized by a set of traces, each trace being a finite
prefix of some, possibly infinite, sequence of transitions that
might occur. This is a convenient tool for handling nonde-
terministic behavior, and it naturally encompasses nonter-
minating behavior as well. However, sets of traces are too
abstract to capture some distinctions that we would like to
make: in the standard trace representation, a system with
the sole behavior of repeatedly outputting a single message
forever is represented by the same set of traces as a sys-
tem that repeatedly outputs that message until it nondeter-
ministically decides to halt. We address this issue by using
streams rather than sets of traces to represent infinite be-
haviors, leading to a notion of security that is fundamentally
not expressible as a “security property” in the sense of Za-
kinthinos and Lee [22].

Besides articulating a natural information-flow property
for reactive systems, we want to be able to enforce it using
a security type system. There is a large body of research
on such type systems (see Sabelfeld and Myers [19] for an
overview). In particular, Volpano, Smith, and Irvine [21]
develop a basic information-flow type system for sequen-
tial while-programs and prove that it guarantees a high-
level noninterference property. Notably, their noninterfer-
ence property is termination-insensitive, which means that

a program may diverge on some high inputs and terminate
on others. Since this allows the possibility of a covert termi-
nation channel in a program, it is technically less secure than
a termination-sensitive property, but it is more practical for
language-based enforcement because ruling out these termi-
nation channels either requires the elimination of too many
useful, secure programs, or else requires the use of static
termination checking. Thus, a question of particular inter-
est to us is whether there exists a termination-insensitive
definition of security for reactive systems.

While most work on language-based security has ignored
the issue of incremental inputs and outputs, it has been ad-
dressed by some recent work on “interactive programs” [16,
9, 2]. In contrast with our execution model, the execution
model of these interactive programs is based on synchronous
communication that is not input-total: the languages have
explicit input operations that block, waiting for designated
principals to respond. In stating its security properties, this
line of work must tackle some of the same issues that we
do; for instance, Hunt and Sands [9] make use of infinite
streams. However, all of their definitions are termination-
sensitive, and in order to pursue a termination-insensitive
notion of noninterference, we have found it necessary to set
up a more general framework for defining information secu-
rity in the presence of inputs and outputs.

We offer the following contributions. First, we define an
abstract model of execution that is applicable to web client
behavior (and any form of reactive computation that does
not rely on preemptive multitasking). Second, by appealing
to a stream-based semantics of these abstract systems, we
give a generic definition of security for our execution model
that is high-level in the manner of Goguen and Meseguer’s
MLS property; then we show that this generic definition has
specific instantiations corresponding to both termination-
sensitive and to termination-insensitive definitions of non-
interference. Third, we offer an “unwinding lemma” [6] for
our termination-insensitive version of security, which gives
rise to a lower-level, transition-based definition of security.
Finally, we use this unwinding lemma to demonstrate how
a security type system can be used to enforce security in a
simple language with a reactive semantics.

2. REACTIVE COMPUTATION

We use a constrained labeled transition system with input
and output actions to capture our execution model. Al-
though it bears similarity to labeled transition systems in
the information-flow literature [14, 7, 4], the constraints are
notably different.

2.1 Definition: A reactive system is a tuple
(ConsumerState, ProducerState, Input, OQutput, —)

where — is a labeled transition system whose states are
State = ConsumerState U ProducerState and whose labels
are Act = Input U Output, subject to the following con-
straints:

e for all C € ConsumerState, if C % Q, then a € Input
and @ € ProducerState,

e for all P € ProducerState, if P % Q, then a € Output,

e for all C' € ConsumerState and i € Input, there exists
a P € ProducerState such that C - P, and

e for all P € ProducerState, there exists an o € Output
and Q € State such that P > Q.

In words, a reactive system is one that takes the next avail-
able input, produces one or more outputs in response, and
repeats the process.

Of course, a reactive system is inert unless it exists in an
environment that can supply and receive messages. We may
view an environment as comprising multiple agents commu-
nicating with the system over different channels by assuming
that all inputs ¢ and outputs o are tagged with some channel
name c. In this scenario, the environment performs the ser-
vice of multiplexing multiple streams of messages into a sin-
gle, buffered stream. In modeling a web application, channel
names for inputs would be used to represent both the ad-
dresses of remote servers (e.g., domain names) and unique
references to the input controls available to the user of the
web client; channel names for outputs would be used to
model server addresses and references to updateable browser
display components.

It is useful to make a few more observations about how
our formal definition relates to the real systems we are try-
ing to model. First, the definition implies that the system
can always make some kind of progress unless it is block-
ing on input, but we note that this does not mean that it
must always return to an input-accepting state: it can get
into a loop producing outputs forever and never try to con-
sume another input. Second, the definition requires every
small step to produce an output. This is a technical device
that does have any practical implications in our particular
setting because, when we talk about security, we will as-
sume that different outputs (and inputs) may be invisible
to different observers, so we can easily model the act of a
machine taking a silent, internal step using a system tran-
sition whose requisite output is invisible to all observers.
This assumption conveniently allows us to assume, in our
theoretical development, that all programs that diverge are
continuously producing output, instead of having to make
a special case for programs that diverge silently. We also
force the system to go to a producer state after every input.
Similarly, this does no harm in a setting where the system
can simply produce a single invisible output in response to
an input; however, it is a technical device that greatly sim-
plifies our proofs because it entails that an infinite stream
of inputs will always generate an infinite stream of outputs.

Now that we have a machine-like notion of reactive sys-
tems, we need a higher-level representation of their behavior
to achieve a high-level definition of security. As mentioned
earlier, we choose a stream-based interpretation instead of a
trace-based interpretation. Formally, we define a stream as
the coinductive? interpretation of the grammar

Su=|s=S

where s ranges over stream elements. That is, a stream is
a finite or infinite list of elements. We use metavariables
I and O to range over streams of inputs i and outputs o,
respectively. Now we can view the behavior of a reactive
system in a state () as a relation between input streams and
output streams.

2See Appendix A for technical background on this way of
presenting coinductive definitions.

2.2 Definition: Coinductively define Q(I) = O (Q trans-
lates the input stream I to the output stream O) with the
following rules:

c=10
cLpP PI)=0 P%Q QUI)=0
Ci=I)=0 P(I)=0:0

We observe that this definition associates at least one output
stream with every input stream, given the constraints on our
transition systems.

In order to illustrate how a reactive system might be pro-
grammed, we now introduce the syntax of the simple lan-
guage RIMP—a reactive version of the IMP language of ba-
sic while-programs. The full semantics are given in Sec-
tion 5; here we rely on an intuitive explanation of RIMP’s
operational model. Input messages in RIMP are natural
numbers tagged with their channels, where we let n range
over the set of natural numbers, and ch range over a set of
channels. Outputs are either a natural number sent over a
channel or a “tick” (which will be the default output on an
internal step).

Input > i u= ch(n)
Output > o == ch(n)|e

The syntax of programs, handlers, commands, and expres-
sions is defined as follows:

pou= | hp

h == ch(z){c}

¢ == skip | ¢ ¢ | output ch(e) | r:=e
| if e then celsec | whilee {c}

e = z|n|r|lede

O == +| -] =<

A program is a collection of event handlers, each of which
accepts a message (a natural number) on some channel and
runs a simple imperative program in response. The han-
dler code may examine and modify shared global state, send
messages, branch, and loop. When the handler for an input
terminates, the RIMP program returns to a state in which
it can handle another input. Handlers persist after handling
events. Note that, since handlers share a global state, pro-
cessing one input may affect the behavior of handlers in the
future. The global state, called the store, is a mapping from
variables r to natural numbers. We assume that every vari-
able in the global state is initialized to 0 at the start. In the
machine that runs RIMP programs, a consumer state con-
sists of the program text and the shared global state, and
a producer state additionally includes the command that is
currently being executed. If a producer state takes a step
that does not otherwise generate an output message, we as-
sume the label on that transition is e.

Of course, RIMP is a long way from a full-featured web
scripting language. Our goal with RIMP is to model only
the event-handling mechanism of web application program-
ming. Moreover, for the sake of simplicity, there is no mech-
anism for dynamically adding or removing handlers, which
is characteristic of web programming; however, we believe
our work on RIMP in this paper can be extended to account
for this scenario once first-class functions and dynamic allo-
cation are added to the language (which have been studied
before in the context of information-flow type systems [17]).
We leave that for future work. Finally, it is worth noting

that the integration of secure web scripts into web docu-
ments also requires careful consideration, which is another
topic we must defer to our future work.

3. SECURITY OF REACTIVE SYSTEMS

As described earlier, reactive systems may send messages to
and receive messages from multiple agents, which we will call
principals. We assume there is a pre-order of security labels
(£,<) and that all principals have a label corresponding
to a level of authorization. We also assume that messages
interchanged with the system have a label indicating their
level of confidentiality. We intend to derive this level from
the channel that carries the message, and this can be done
at the point where the message streams are multiplexed. We
assume that principals at a level [may only view messages
at or below the level [. This is reasonable if we assume that
observers would be positioned at the endpoints of HTTP
connections and view the elements of £ as based on domain
names.

It is important to remember that, in the particular setting
of web applications, it is the web browser user’s personal se-
crets and the user’s shared secrets with other principals that
are being protected. (We are in no way addressing the issue
of protecting a web server’s secrets from web clients.) As
noted before, there must be some means to associate chan-
nels with user interface components. Since these channels
determine the assigned security level of the data, it is nec-
essary to have a user interface design that allows users of
web applications to view the precise security level of any in-
terface component.® We assume that any user input control
with a channel labeled by T (a maximal element of £) can
be used to handle information that should never leave the
user’s computer.

Now we can state an informal definition of information
security: if a principal at one level cannot draw a distinc-
tion between two streams of inputs given to a reactive sys-
tem starting in a particular state, then the same observer
must not be able to draw a distinction between the result-
ing streams of outputs. This is a natural generalization of
standard definitions of noninterference for imperative and
functional languages [21, 17], and corresponds closely to
Goguen and Meseguer’s MLS property [6]. We can state
this definition formally in the following way:

3.1 Definition: A state Q is secure if, for all I, I ~; I’
implies O =4 O’ whenever Q(I) = O and Q(I') = O'.*

The notation S ~; S’ is meant to stand for a similarity rela-
tion on streams that is parametrized by a label [—in other
words, the inability of an observer at level [to draw a dis-
tinction between S and S’. Defining this relation precisely is
where things become interesting: it turns out that there are

3 Although this raises questions about human interface de-
sign that are quite important in practice, it does not affect
the fundamental theory of browser security that we are de-
veloping here.

“In this definition, we do not assume that the reactive
system under consideration is deterministic, but it can be
shown that this definition does put very stringent restric-
tions on the sorts of nondeterminism that are deemed se-
cure. This definition suffices for our purposes here, but a
more lenient, possibilistic notion of security would demand
an equivalence on the sets of output streams that might be
produced by equivalent input streams.

many natural notions of similarity between streams relative
to an observer who cannot see all of the elements, leading
us to multiple notions of security. Moreover, there are mul-
tiple ways to define each of these notions of similarity, and
it is often difficult to guess which definitions are precisely
equivalent. In the remainder of this section, we present a
definition for four, increasingly-refined notions of similarity,
and consider the technical implications for the correspond-
ing definitions of security.

Preliminaries. To discuss these notions of security pre-
cisely, we need a few auxiliary definitions. To determine
whether a stream element s is visible to an observer at level
[, we use the predicate visible;(s). We assume that the set
of security labels £ has a top element, T, with visibleT(s)
for all s. In examples, we assume there are labels T and L
and channels chT and ch, such that messages on channel
chT are invisible to an observer at level L.

We also need some auxiliary definitions about streams.
We write fin(S) when S is finite and inf(S) when S is infi-
nite. Next, we need a relation that associates a stream with
its next [-visible element (if such an element exists) and with
the remainder of the stream thereafter.

3.2 Definition: Inductively define S >; s :: S" (S I-reveals
s followed by S’) with the following rules:

- visible;(s) Sy s S
s8>y s 8

visible;(s)
su:Spp s S

This predicate is inductively defined because we only want
it to hold true if one can find an [-visible element in a finite
prefix of the potentially infinite stream. On the other hand,
we would also like to define a predicate asserting that a
stream contains no more [-visible elements.

3.3 Definition: Coinductively define silent;(S) with the
following rules:

— visiblei(s) silenti(S)
silent; (s :: S)

silenti ([])

This definition is coinductive because it is asserting a fact
about all of the elements of a potentially infinite stream.

Nonconflicting SecurityThe first two versions of similar-
ity that we present are each defined by taking the negation
of a definition of stream distinctness. The coarsest version
of similarity, nonconflicting similarity, just requires that the
observer cannot find two distinct stream elements in corre-
sponding positions in the streams. Since a conflict must be
evident from some finite prefixes of two streams, an induc-
tive definition of this notion of distinctness is appropriate.

3.4 Definition: Inductively define conflicting,(S,S’) with
the following rules:
S s St S b s S s#s
conflicting, (S, S")

S > s St S by s S) conflicting,(S1, S1)

conflicting, (S, S")

3.5 Definition: Define S ~;° S’ (S is NC-similar to S’
at) to mean — conflicting,(S,S’). Define NC-security as
Definition 3.1, instantiated with NC-similarity.

There are other ways of defining NC-similarity. It turns
out that S is NC-similar to S’ at [if the sequence of visible
elements of one stream is a prefix of the visible elements
of the other, which may be a more intuitive way to think
about this relation. Nonconflicting similarity is reflexive and
symmetric, but not transitive—we have [| ~,° S for any [
and S.

3.6 Example: The following program is not NC-secure:
input cht(x) { output chy(x) }

This event handler has an explicit flow, and it is deemed
insecure because the streams [chT(0)] and [chT(1)] are
NC-similar at L but the corresponding output streams,
[ch1(0),e] and [ch (1), e], are not NC-similar at L.

3.7 Example: The following program is not NC-secure:

input chr(z) {r = =z }
input ch, (z) { if r = 0 then output ch (0)
else output ch (1) }

The second event handler has an implicit flow. It is
deemed insecure because the input streams [chT(0), ch1 (0)]
and [chT(1),ch.(0)] are NC-similar at L but the
corresponding output streams, [e, e, ch)(0),e] and
[e,e,0 chi(1),e], are not NC-similar at L.

It may not be immediately clear which e outputs go with
which inputs in the previous example, and the reader may
wonder at this point whether our formalization of security
has an inherent weakness because it handles the input and
output streams separately rather than as one interleaved
stream. In fact, this is a weakness of NC-similarity (but it
will be resolved by stricter notions of similarity).

3.8 Example: The following program is NC-secure:

input chr(z) {r = = }
input ch, (z) { if r = 0 then output ch (0)
else (output ch (0); output chy(0)) }

This example is almost the same as the previous ex-
ample. However, this one will map the input streams
[ch7(0), ch1(0)] and [chT(1), ch1(0)] to the output streams
[e,0,0 chi(0),e] and [e,e, e ch (0),e, chy(0),e], which are
NC-similar at 1. We can see that the program is NC-secure,
in general, because the only outputs it can produce are e
and ch (0), and any two streams of these elements are NC-
similar at L. In order to strengthen our notion of security
to deal with the synchronization behavior of inputs and out-
puts, we need a more refined notion of similarity—one that
coincides with the obvious definition on finite streams (i.e.,
dropping invisible items and comparing what remains for
equality) when both streams are finite.

Indistinguishable SecurityWe modify the previous defi-
nition by adding two inference rules that effectively grant an
observer the power to distinguish finite silent streams from
streams that still have observable elements. We call this
indistinguishable similarity.

3.9 Definition: Define distinguishable,(S,S’) inductively
with the following rules:
Sy s St silent;(S")
distinguishable, (S, S")

fin(8)

silent; (S) fin(S) S by s Sy
distinguishable, (S, S")

S s St S’ >y s’ Sy s# s
distinguishable, (S, S")

S s St S’ > s S
distinguishable,(S1, S1)
distinguishable, (S, S")

3.10 Definition: Define S ~” S’ (S is ID-similar to S’ at
1) to mean — distinguishable,(S,S"). Define ID-security as
Definition 3.1, instantiated with ID-similarity.

Note that we defined distinguishable, (S, S") exactly as one
would inductively define distinctness of finite streams, so its
behavior on finite streams is the obvious one that simply fil-
ters out invisible elements and tests the remaining lists for
equality. It immediately renders Example 3.8 insecure be-
cause, in general, if the high inputs differ, the output streams
will not be equal after dropping the e outputs. Although ID-
similarity gives an equivalence relation on finite streams, it
is not transitive, in general, because of its subtle behavior
on infinite streams. Observe that, if inf(S) and silent;(S),
then S ~” S8’ for all [and S’. This observation leads us to
our next example.

3.11 Example: The following program is ID-secure.

input chr(z) {r = = }
input ch, (z) { if r = 0 then output ch (0)
else while 1 do skip }

The second event handler creates a termination chan-
nel. Observe that the input streams [chT(0), chi(0)] and
[chT(1),chy(0)] are ID-similar at L and the correspond-
ing output streams [o, e, e ch (0),0] and [e,e e e ...] are,
in fact, also ID-similar at L. Thus, this is a termination-
insensitive definition of security.

Standard definitions of noninterference [21, 17] usually im-
ply some sort of functional dependency between the inputs
and outputs of a program. The same is true here (and this
fact is convenient for proving subsequent properties of our
system).

3.12 Lemma: If a state @ is ID-secure, then for all I,
Q(I) = O and Q(I) = O’ implies O = O'".

To be precise, this does not mean a reactive system must
be deterministic in order to be ID-secure: state transitions
can be nondeterministic as long as they do not affect the
output behavior.

It is straightforward to demonstrate a relationship be-
tween ID-similarity and NC-similarity.

3.13 Lemma: S ~;” S’ implies S ~'¢ §’.

More interesting is the fact that ID-security is stronger
than NC-security. (This is not as straightforward to show
because ID-similarity appears contravariantly in the defini-
tion of security.)

3.14 Lemma: If a transducer in a state @ is ID-secure,
then it is NC-secure.

From a practical standpoint, we don’t see any setting
where NC-security is preferable to ID-security. We will see
later that ID-security for RIMP programs can be guaranteed
with a simple and flexible type system, and it is not clear
how one would weaken the type system to include programs
that are NC-secure but not ID-secure.

Coproductive SecuritylD-security is termination-
insensitive because it does not give the observer the power
to distinguish non-silent output streams from silent but
infinite ones. We can ensure that such streams are always
considered distinct with a more direct, coinductive defini-
tion of similarity, called coproductive similarity, which can
be viewed as a weak bisimulation between the two streams,
in which invisible elements correspond to internal 7 actions.

3.15 Definition: Coinductively define S ~{" S’ (S is CP-
similar to S’ at I) with the following rules:

silent;(S) silent; (S")
S %[CP S/
S > s St S' > s S S~ 8]
S~ s’

Define CP-security as Definition 3.1, instantiated with CP-
similarity.

Unlike the earlier definitions of similarity, this one is an
equivalence relation. It is easy to check that Example 3.11
is not CP-secure, using the same input and output pairs
mentioned above. Although we use a coinductive definition
here, it should be possible to draw a very close correspon-
dence between this definition and the ones used recently for
“interactive programs” [16, 9, 2].

The inductive definitions of NC-similarity and ID-
similarity resemble one another, so it was easy to prove
Lemma 3.13; on the other hand, proving the following lemma
requires a bit more work.

3.16 Lemma: S ~{” S’ implies S ~” 5.

What is the relationship between CP-security and ID-
security, though? Again, since CP-similarity appears both
co- and contravariantly in the definition of CP-security, their
relationship is not at all obvious. The proof of the following
lemma rests on several auxiliary definitions and lemmas, and
additionally makes use of the bisimulation-based technique
we introduce in Section 4.

3.17 Lemma: If a state @ is CP-secure, then it is ID-
secure.

Coproductive-Coterminating SecuritgP-security is
quite strong, but it is possible to go a step further by defin-
ing similarity in such a way that finite and infinite silent
streams can be distinguished (coproductive-coterminating
stmilarity).
3.18 Definition: Coinductively define S ~;{"“" S’ (S is
CPCT-similar to S’ at 1) with the following rules:
silent;(S) fin(S) silent;(.S) inf(S)
silent; (S") fin(S") silent; (S") inf(S")

S %lCPCT S/ S ,\N_,IUPUT Sl

S ;s Sy S’ >y s S)

S %lCPCT Sl

CPCT U
Sl ~ Sl

Here is an example of a program that is secure by every
other definition thus far but is not CPCT-secure.

3.19 Example: The following program is not CPCT-
secure:

input cht(z) {r = =z;
if £ =0 then while 1 do skip }

This is the entire program. Low inputs are consumed but
produce no low-visible output because there is no handler for
them. (If this were not the case, then this program would
fail to be CP-secure.)

The definitions of CP-similarity and CPCT-similarity
aren’t too different; so the following results shouldn’t