
Reactive Noninterference

Aaron Bohannon
University of Pennsylvania

Benjamin C. Pierce
University of Pennsylvania

Vilhelm Sjöberg
University of Pennsylvania

Stephanie Weirich
University of Pennsylvania

Steve Zdancewic
University of Pennsylvania

ABSTRACT
Many programs operate reactively—patiently waiting for
user input, running for a while producing output, and even-
tually returning to a state where they are ready to accept
another input (or occasionally diverging). When a reactive
program communicates with multiple parties, we would like
to be sure that it can be given secret information by one
without leaking it to others.

Motivated by web browsers and client-side web applica-
tions, we explore definitions of noninterference for reactive
programs and identify two of special interest—one corre-
sponding to termination-insensitive noninterference for a sim-
ple sequential language, the other to termination-sensitive
noninterference. We focus on the former and develop a proof
technique for showing that program behaviors are secure ac-
cording to this definition. To demonstrate the viability of
the approach, we define a simple reactive language with an
information-flow type system and apply our proof technique
to show that well-typed programs are secure.

Categories and Subject Descriptors
F.1.2 [Modes of Computation]: Interactive and reactive
computation

General Terms
Languages, Security, Theory

Keywords
Noninterference, information flow, reactive programming,
web browsers, web applications

1. INTRODUCTION
Reactive programs, which repeatedly perform single-
threaded computations in response to events generated by
external agents (GUI button clicks, commands issued at a
terminal, receipt of network packets, timer events, etc.), are

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCS’09,November 9–13, 2009, Chicago, Illinois, USA.
Copyright 2009 ACM 978-1-60558-352-5/09/11 ...$10.00.

ubiquitous. When a single reactive program may interact
with multiple agents, questions of security and privacy im-
mediately arise.

Web browsers and the client-side web applications they
run are an obvious case in point, because they interact with
both a local user and mutually untrusting, remote agents
(e.g., web servers). Web client security has attracted sig-
nificant interest [18, 15, 10, 11]. However, we still lack the
theoretical tools to answer the question “What does it mean
for a browser, running a web application, to be secure?”

A web client may receive data and programs from many
different servers, and each program may attempt to read
any browser data and communicate with any remote server.
Most browsers adhere to the“same-origin policy” [20], which
is intended to enforce isolation among programs and data
from different servers. However, the same-origin policy is
a policy in name only: in fact, it is a set of rather complex
and subtle rules, with no high-level statement of the security
property they are intended jointly to enforce. Moreover, it
has several practical problems: First, it prevents the client
from calling useful third-party web services. Second, it pre-
vents client-side data integration or collaborative behavior,
even when the data being handled is guaranteed never to
leave the user’s machine. Third, its rules involving subdo-
main relationships are complex and ambiguous [11]. And
finally, because of its rigid restrictions, the same-origin pol-
icy is not applied to browser extensions or plug-ins.

Our goal in this paper is to offer a more principled ap-
proach to the sort of attack scenario that is addressed by
the same-origin policy and to lay a foundation for more flex-
ible enforcement mechanisms. In this scenario, the attacker
is positioned at a remote host and can only communicate
with the user’s client over HTTP. However, the attacker may
have written some or all of the event handlers running on
the client. The goal of the attacker is to retrieve some pri-
vate piece of information that the user would not knowingly
authorize the attacker to have.1

When compared with models of execution that have been
previously studied in the information flow literature, reac-
tive programs possess a novel combination of features: in-
teractivity with buffered, asynchronous communication; in-
cremental output; the requirement that the system respond
in some way to arbitrary inputs; and the possibility of non-
termination in handlers. Web client programs illustrate all

1The same-origin policy also addresses scenarios in which
the attacker wants to corrupt data from other web servers
or to interfere with the functionality of other web pages in
the browser; we are focusing only on confidentiality here.

of these features. They have handlers that wait idly for user
input or responses to HTTP requests. After an event has
occurred, the appropriate event handler runs from start to
completion, possibly sending one or more messages to re-
mote hosts or to the user. (To streamline the model, we can
consider all updates to the browser display as “messages” to
the user.) Outgoing messages are sent as execution proceeds,
so a script need not terminate to produce visible output.
When the browser is idle, any event can be processed (this
feature has been called input-totality [14, 4, 22]), although
it will typically result in a no-op if no handler exists. How-
ever, when the browser is running a script, additional events
cannot be immediately processed because there is no notion
of preemptive multitasking. Instead, additional events must
be buffered and processed when and if the current script
terminates.

Our aim is to find a natural definition of information-flow
security for this execution model and to design a language-
based enforcement technique for reactive programming lan-
guages that execute under this model. Before coming to the
details of our development, though, we briefly summarize its
connections to the most closely related prior work.

Goguen and Meseguer [5, 6] gave one of the first formal
accounts of noninterference, and they did so in a setting of
machines that accept inputs and produce outputs. Their
“MLS property” [6]—informally, “the low-visible outputs of
a system remain unchanged after dropping the high-level
inputs”—offers an attractive template for the sort of suc-
cinct, high-level specification we are looking for here. How-
ever, their model does not apply to nonterminating behav-
iors (they rely on a total function that immediately moves
the system to a new state after each input); adapting the
same intuition to our model involves an entirely new math-
ematical development.

By contrast, some information-flow research [4, 22] has
addressed execution models of concurrent systems with in-
put and output that are somewhat more general than our
reactive model. In stating the security properties for these
systems, the observable behaviors of a system are usually
characterized by a set of traces, each trace being a finite
prefix of some, possibly infinite, sequence of transitions that
might occur. This is a convenient tool for handling nonde-
terministic behavior, and it naturally encompasses nonter-
minating behavior as well. However, sets of traces are too
abstract to capture some distinctions that we would like to
make: in the standard trace representation, a system with
the sole behavior of repeatedly outputting a single message
forever is represented by the same set of traces as a sys-
tem that repeatedly outputs that message until it nondeter-
ministically decides to halt. We address this issue by using
streams rather than sets of traces to represent infinite be-
haviors, leading to a notion of security that is fundamentally
not expressible as a “security property” in the sense of Za-
kinthinos and Lee [22].

Besides articulating a natural information-flow property
for reactive systems, we want to be able to enforce it using
a security type system. There is a large body of research
on such type systems (see Sabelfeld and Myers [19] for an
overview). In particular, Volpano, Smith, and Irvine [21]
develop a basic information-flow type system for sequen-
tial while-programs and prove that it guarantees a high-
level noninterference property. Notably, their noninterfer-
ence property is termination-insensitive, which means that

a program may diverge on some high inputs and terminate
on others. Since this allows the possibility of a covert termi-
nation channel in a program, it is technically less secure than
a termination-sensitive property, but it is more practical for
language-based enforcement because ruling out these termi-
nation channels either requires the elimination of too many
useful, secure programs, or else requires the use of static
termination checking. Thus, a question of particular inter-
est to us is whether there exists a termination-insensitive
definition of security for reactive systems.

While most work on language-based security has ignored
the issue of incremental inputs and outputs, it has been ad-
dressed by some recent work on “interactive programs” [16,
9, 2]. In contrast with our execution model, the execution
model of these interactive programs is based on synchronous
communication that is not input-total: the languages have
explicit input operations that block, waiting for designated
principals to respond. In stating its security properties, this
line of work must tackle some of the same issues that we
do; for instance, Hunt and Sands [9] make use of infinite
streams. However, all of their definitions are termination-
sensitive, and in order to pursue a termination-insensitive
notion of noninterference, we have found it necessary to set
up a more general framework for defining information secu-
rity in the presence of inputs and outputs.

We offer the following contributions. First, we define an
abstract model of execution that is applicable to web client
behavior (and any form of reactive computation that does
not rely on preemptive multitasking). Second, by appealing
to a stream-based semantics of these abstract systems, we
give a generic definition of security for our execution model
that is high-level in the manner of Goguen and Meseguer’s
MLS property; then we show that this generic definition has
specific instantiations corresponding to both termination-
sensitive and to termination-insensitive definitions of non-
interference. Third, we offer an “unwinding lemma” [6] for
our termination-insensitive version of security, which gives
rise to a lower-level, transition-based definition of security.
Finally, we use this unwinding lemma to demonstrate how
a security type system can be used to enforce security in a
simple language with a reactive semantics.

2. REACTIVE COMPUTATION
We use a constrained labeled transition system with input
and output actions to capture our execution model. Al-
though it bears similarity to labeled transition systems in
the information-flow literature [14, 7, 4], the constraints are
notably different.

2.1 Definition: A reactive system is a tuple

(ConsumerState ,ProducerState , Input , Output ,→)

where → is a labeled transition system whose states are
State = ConsumerState ∪ ProducerState and whose labels
are Act = Input ∪ Output , subject to the following con-
straints:

• for all C ∈ ConsumerState , if C
a
→ Q, then a ∈ Input

and Q ∈ ProducerState ,

• for all P ∈ ProducerState , if P
a
→ Q, then a ∈ Output ,

• for all C ∈ ConsumerState and i ∈ Input , there exists

a P ∈ ProducerState such that C
i
→ P , and

• for all P ∈ ProducerState , there exists an o ∈ Output
and Q ∈ State such that P

o
→ Q.

In words, a reactive system is one that takes the next avail-
able input, produces one or more outputs in response, and
repeats the process.

Of course, a reactive system is inert unless it exists in an
environment that can supply and receive messages. We may
view an environment as comprising multiple agents commu-
nicating with the system over different channels by assuming
that all inputs i and outputs o are tagged with some channel
name c. In this scenario, the environment performs the ser-
vice of multiplexing multiple streams of messages into a sin-
gle, buffered stream. In modeling a web application, channel
names for inputs would be used to represent both the ad-
dresses of remote servers (e.g., domain names) and unique
references to the input controls available to the user of the
web client; channel names for outputs would be used to
model server addresses and references to updateable browser
display components.

It is useful to make a few more observations about how
our formal definition relates to the real systems we are try-
ing to model. First, the definition implies that the system
can always make some kind of progress unless it is block-
ing on input, but we note that this does not mean that it
must always return to an input-accepting state: it can get
into a loop producing outputs forever and never try to con-
sume another input. Second, the definition requires every
small step to produce an output. This is a technical device
that does have any practical implications in our particular
setting because, when we talk about security, we will as-
sume that different outputs (and inputs) may be invisible
to different observers, so we can easily model the act of a
machine taking a silent, internal step using a system tran-
sition whose requisite output is invisible to all observers.
This assumption conveniently allows us to assume, in our
theoretical development, that all programs that diverge are
continuously producing output, instead of having to make
a special case for programs that diverge silently. We also
force the system to go to a producer state after every input.
Similarly, this does no harm in a setting where the system
can simply produce a single invisible output in response to
an input; however, it is a technical device that greatly sim-
plifies our proofs because it entails that an infinite stream
of inputs will always generate an infinite stream of outputs.

Now that we have a machine-like notion of reactive sys-
tems, we need a higher-level representation of their behavior
to achieve a high-level definition of security. As mentioned
earlier, we choose a stream-based interpretation instead of a
trace-based interpretation. Formally, we define a stream as
the coinductive2 interpretation of the grammar

S ::= [] | s :: S

where s ranges over stream elements. That is, a stream is
a finite or infinite list of elements. We use metavariables
I and O to range over streams of inputs i and outputs o,
respectively. Now we can view the behavior of a reactive
system in a state Q as a relation between input streams and
output streams.

2See Appendix A for technical background on this way of
presenting coinductive definitions.

2.2 Definition: Coinductively define Q(I) ⇒ O (Q trans-
lates the input stream I to the output stream O) with the
following rules:

C([]) ⇒ []

C
i
→ P P (I) ⇒ O

C(i :: I) ⇒ O

P
o
→ Q Q(I) ⇒ O

P (I) ⇒ o :: O

We observe that this definition associates at least one output
stream with every input stream, given the constraints on our
transition systems.

In order to illustrate how a reactive system might be pro-
grammed, we now introduce the syntax of the simple lan-
guage RIMP—a reactive version of the IMP language of ba-
sic while-programs. The full semantics are given in Sec-
tion 5; here we rely on an intuitive explanation of RIMP’s
operational model. Input messages in RIMP are natural
numbers tagged with their channels, where we let n range
over the set of natural numbers, and ch range over a set of
channels. Outputs are either a natural number sent over a
channel or a “tick” (which will be the default output on an
internal step).

Input ∋ i ::= ch(n)
Output ∋ o ::= ch(n) | •

The syntax of programs, handlers, commands, and expres-
sions is defined as follows:

p ::= · | h; p
h ::= ch(x){c}
c ::= skip | c; c | output ch(e) | r := e

| if e then c else c | while e {c}
e ::= x | n | r | e ⊙ e
⊙ ::= + | − | = | <

A program is a collection of event handlers, each of which
accepts a message (a natural number) on some channel and
runs a simple imperative program in response. The han-
dler code may examine and modify shared global state, send
messages, branch, and loop. When the handler for an input
terminates, the RIMP program returns to a state in which
it can handle another input. Handlers persist after handling
events. Note that, since handlers share a global state, pro-
cessing one input may affect the behavior of handlers in the
future. The global state, called the store, is a mapping from
variables r to natural numbers. We assume that every vari-
able in the global state is initialized to 0 at the start. In the
machine that runs RIMP programs, a consumer state con-
sists of the program text and the shared global state, and
a producer state additionally includes the command that is
currently being executed. If a producer state takes a step
that does not otherwise generate an output message, we as-
sume the label on that transition is •.

Of course, RIMP is a long way from a full-featured web
scripting language. Our goal with RIMP is to model only
the event-handling mechanism of web application program-
ming. Moreover, for the sake of simplicity, there is no mech-
anism for dynamically adding or removing handlers, which
is characteristic of web programming; however, we believe
our work on RIMP in this paper can be extended to account
for this scenario once first-class functions and dynamic allo-
cation are added to the language (which have been studied
before in the context of information-flow type systems [17]).
We leave that for future work. Finally, it is worth noting

that the integration of secure web scripts into web docu-
ments also requires careful consideration, which is another
topic we must defer to our future work.

3. SECURITY OF REACTIVE SYSTEMS
As described earlier, reactive systems may send messages to
and receive messages from multiple agents, which we will call
principals. We assume there is a pre-order of security labels
(L,≤) and that all principals have a label corresponding
to a level of authorization. We also assume that messages
interchanged with the system have a label indicating their
level of confidentiality. We intend to derive this level from
the channel that carries the message, and this can be done
at the point where the message streams are multiplexed. We
assume that principals at a level l may only view messages
at or below the level l. This is reasonable if we assume that
observers would be positioned at the endpoints of HTTP
connections and view the elements of L as based on domain
names.

It is important to remember that, in the particular setting
of web applications, it is the web browser user’s personal se-
crets and the user’s shared secrets with other principals that
are being protected. (We are in no way addressing the issue
of protecting a web server’s secrets from web clients.) As
noted before, there must be some means to associate chan-
nels with user interface components. Since these channels
determine the assigned security level of the data, it is nec-
essary to have a user interface design that allows users of
web applications to view the precise security level of any in-
terface component.3 We assume that any user input control
with a channel labeled by ⊤ (a maximal element of L) can
be used to handle information that should never leave the
user’s computer.

Now we can state an informal definition of information
security: if a principal at one level cannot draw a distinc-
tion between two streams of inputs given to a reactive sys-
tem starting in a particular state, then the same observer
must not be able to draw a distinction between the result-
ing streams of outputs. This is a natural generalization of
standard definitions of noninterference for imperative and
functional languages [21, 17], and corresponds closely to
Goguen and Meseguer’s MLS property [6]. We can state
this definition formally in the following way:

3.1 Definition: A state Q is secure if, for all l, I ≈l I ′

implies O ≈l O′ whenever Q(I) ⇒ O and Q(I ′) ⇒ O′.4

The notation S ≈l S′ is meant to stand for a similarity rela-
tion on streams that is parametrized by a label l—in other
words, the inability of an observer at level l to draw a dis-
tinction between S and S′. Defining this relation precisely is
where things become interesting: it turns out that there are

3Although this raises questions about human interface de-
sign that are quite important in practice, it does not affect
the fundamental theory of browser security that we are de-
veloping here.
4In this definition, we do not assume that the reactive
system under consideration is deterministic, but it can be
shown that this definition does put very stringent restric-
tions on the sorts of nondeterminism that are deemed se-
cure. This definition suffices for our purposes here, but a
more lenient, possibilistic notion of security would demand
an equivalence on the sets of output streams that might be
produced by equivalent input streams.

many natural notions of similarity between streams relative
to an observer who cannot see all of the elements, leading
us to multiple notions of security. Moreover, there are mul-
tiple ways to define each of these notions of similarity, and
it is often difficult to guess which definitions are precisely
equivalent. In the remainder of this section, we present a
definition for four, increasingly-refined notions of similarity,
and consider the technical implications for the correspond-
ing definitions of security.

Preliminaries.To discuss these notions of security pre-
cisely, we need a few auxiliary definitions. To determine
whether a stream element s is visible to an observer at level
l, we use the predicate visiblel(s). We assume that the set
of security labels L has a top element, ⊤, with visible⊤(s)
for all s. In examples, we assume there are labels ⊤ and ⊥
and channels ch⊤ and ch⊥, such that messages on channel
ch⊤ are invisible to an observer at level ⊥.

We also need some auxiliary definitions about streams.
We write fin(S) when S is finite and inf (S) when S is infi-
nite. Next, we need a relation that associates a stream with
its next l-visible element (if such an element exists) and with
the remainder of the stream thereafter.

3.2 Definition: Inductively define S ⊲l s :: S′ (S l-reveals
s followed by S′) with the following rules:

visiblel(s)

s :: S ⊲l s :: S

¬ visiblel(s) S ⊲l s′ :: S′

s :: S ⊲l s′ :: S′

This predicate is inductively defined because we only want
it to hold true if one can find an l-visible element in a finite
prefix of the potentially infinite stream. On the other hand,
we would also like to define a predicate asserting that a
stream contains no more l-visible elements.

3.3 Definition: Coinductively define silent l(S) with the
following rules:

silent l([])

¬ visiblel(s) silent l(S)

silent l(s :: S)

This definition is coinductive because it is asserting a fact
about all of the elements of a potentially infinite stream.

Nonconflicting Security.The first two versions of similar-
ity that we present are each defined by taking the negation
of a definition of stream distinctness. The coarsest version
of similarity, nonconflicting similarity, just requires that the
observer cannot find two distinct stream elements in corre-
sponding positions in the streams. Since a conflict must be
evident from some finite prefixes of two streams, an induc-
tive definition of this notion of distinctness is appropriate.

3.4 Definition: Inductively define conflicting
l
(S, S′) with

the following rules:

S ⊲l s :: S1 S′ ⊲l s′ :: S′

1 s 6= s′

conflicting
l
(S, S′)

S ⊲l s :: S1 S′ ⊲l s :: S′

1 conflicting
l
(S1, S

′

1)

conflicting
l
(S, S′)

3.5 Definition: Define S ≈NC

l S′ (S is NC-similar to S′

at l) to mean ¬ conflicting
l
(S, S′). Define NC-security as

Definition 3.1, instantiated with NC-similarity.

There are other ways of defining NC-similarity. It turns
out that S is NC-similar to S′ at l if the sequence of visible
elements of one stream is a prefix of the visible elements
of the other, which may be a more intuitive way to think
about this relation. Nonconflicting similarity is reflexive and
symmetric, but not transitive—we have [] ≈NC

l S for any l
and S.

3.6 Example: The following program is not NC-secure:

input ch⊤(x) { output ch⊥(x) }

This event handler has an explicit flow, and it is deemed
insecure because the streams [ch⊤(0)] and [ch⊤(1)] are
NC-similar at ⊥ but the corresponding output streams,
[ch⊥(0), •] and [ch⊥(1), •], are not NC-similar at ⊥.

3.7 Example: The following program is not NC-secure:

input ch⊤(x) { r := x }
input ch⊥(x) { if r = 0 then output ch⊥(0)

else output ch⊥(1) }

The second event handler has an implicit flow. It is
deemed insecure because the input streams [ch⊤(0), ch⊥(0)]
and [ch⊤(1), ch⊥(0)] are NC-similar at ⊥ but the
corresponding output streams, [•, •, •, ch⊥(0), •] and
[•, •, •, ch⊥(1), •], are not NC-similar at ⊥.

It may not be immediately clear which • outputs go with
which inputs in the previous example, and the reader may
wonder at this point whether our formalization of security
has an inherent weakness because it handles the input and
output streams separately rather than as one interleaved
stream. In fact, this is a weakness of NC-similarity (but it
will be resolved by stricter notions of similarity).

3.8 Example: The following program is NC-secure:

input ch⊤(x) { r := x }
input ch⊥(x) { if r = 0 then output ch⊥(0)

else (output ch⊥(0); output ch⊥(0)) }

This example is almost the same as the previous ex-
ample. However, this one will map the input streams
[ch⊤(0), ch⊥(0)] and [ch⊤(1), ch⊥(0)] to the output streams
[•, •, •, ch⊥(0), •] and [•, •, •, ch⊥(0), •, ch⊥(0), •], which are
NC-similar at ⊥. We can see that the program is NC-secure,
in general, because the only outputs it can produce are •
and ch⊥(0), and any two streams of these elements are NC-
similar at ⊥. In order to strengthen our notion of security
to deal with the synchronization behavior of inputs and out-
puts, we need a more refined notion of similarity—one that
coincides with the obvious definition on finite streams (i.e.,
dropping invisible items and comparing what remains for
equality) when both streams are finite.

Indistinguishable Security.We modify the previous defi-
nition by adding two inference rules that effectively grant an
observer the power to distinguish finite silent streams from
streams that still have observable elements. We call this
indistinguishable similarity.

3.9 Definition: Define distinguishable
l
(S, S′) inductively

with the following rules:

S ⊲l s :: S1 silent l(S
′) fin(S′)

distinguishable
l
(S, S′)

silent l(S) fin(S) S′ ⊲l s :: S′
1

distinguishable
l
(S, S′)

S ⊲l s :: S1 S′ ⊲l s′ :: S′

1 s 6= s′

distinguishable
l
(S, S′)

S ⊲l s :: S1 S′ ⊲l s :: S′

1

distinguishable
l
(S1, S

′

1)

distinguishable
l
(S, S′)

3.10 Definition: Define S ≈ID

l S′ (S is ID-similar to S′ at
l) to mean ¬ distinguishable

l
(S, S′). Define ID-security as

Definition 3.1, instantiated with ID-similarity.

Note that we defined distinguishable
l
(S,S′) exactly as one

would inductively define distinctness of finite streams, so its
behavior on finite streams is the obvious one that simply fil-
ters out invisible elements and tests the remaining lists for
equality. It immediately renders Example 3.8 insecure be-
cause, in general, if the high inputs differ, the output streams
will not be equal after dropping the • outputs. Although ID-
similarity gives an equivalence relation on finite streams, it
is not transitive, in general, because of its subtle behavior
on infinite streams. Observe that, if inf (S) and silent l(S),
then S ≈ID

l S′ for all l and S′. This observation leads us to
our next example.

3.11 Example: The following program is ID-secure.

input ch⊤(x) { r := x }
input ch⊥(x) { if r = 0 then output ch⊥(0)

else while 1 do skip }

The second event handler creates a termination chan-
nel. Observe that the input streams [ch⊤(0), ch⊥(0)] and
[ch⊤(1), ch⊥(0)] are ID-similar at ⊥ and the correspond-
ing output streams [•, •, •, ch⊥(0), •] and [•, •, •, •, . . .] are,
in fact, also ID-similar at ⊥. Thus, this is a termination-
insensitive definition of security.

Standard definitions of noninterference [21, 17] usually im-
ply some sort of functional dependency between the inputs
and outputs of a program. The same is true here (and this
fact is convenient for proving subsequent properties of our
system).

3.12 Lemma: If a state Q is ID-secure, then for all I ,
Q(I) ⇒ O and Q(I) ⇒ O′ implies O = O′.

To be precise, this does not mean a reactive system must
be deterministic in order to be ID-secure: state transitions
can be nondeterministic as long as they do not affect the
output behavior.

It is straightforward to demonstrate a relationship be-
tween ID-similarity and NC-similarity.

3.13 Lemma: S ≈ID

l S′ implies S ≈NC

l S′.

More interesting is the fact that ID-security is stronger
than NC-security. (This is not as straightforward to show
because ID-similarity appears contravariantly in the defini-
tion of security.)

3.14 Lemma: If a transducer in a state Q is ID-secure,
then it is NC-secure.

From a practical standpoint, we don’t see any setting
where NC-security is preferable to ID-security. We will see
later that ID-security for RIMP programs can be guaranteed
with a simple and flexible type system, and it is not clear
how one would weaken the type system to include programs
that are NC-secure but not ID-secure.

Coproductive Security.ID-security is termination-
insensitive because it does not give the observer the power
to distinguish non-silent output streams from silent but
infinite ones. We can ensure that such streams are always
considered distinct with a more direct, coinductive defini-
tion of similarity, called coproductive similarity, which can
be viewed as a weak bisimulation between the two streams,
in which invisible elements correspond to internal τ actions.

3.15 Definition: Coinductively define S ≈CP

l S′ (S is CP-
similar to S′ at l) with the following rules:

silent l(S) silent l(S
′)

S ≈CP

l S′

S ⊲l s :: S1 S′ ⊲l s :: S′

1 S1 ≈CP

l S′

1

S ≈CP

l S′

Define CP-security as Definition 3.1, instantiated with CP-
similarity.

Unlike the earlier definitions of similarity, this one is an
equivalence relation. It is easy to check that Example 3.11
is not CP-secure, using the same input and output pairs
mentioned above. Although we use a coinductive definition
here, it should be possible to draw a very close correspon-
dence between this definition and the ones used recently for
“interactive programs” [16, 9, 2].

The inductive definitions of NC-similarity and ID-
similarity resemble one another, so it was easy to prove
Lemma 3.13; on the other hand, proving the following lemma
requires a bit more work.

3.16 Lemma: S ≈CP

l S′ implies S ≈ID

l S′.

What is the relationship between CP-security and ID-
security, though? Again, since CP-similarity appears both
co- and contravariantly in the definition of CP-security, their
relationship is not at all obvious. The proof of the following
lemma rests on several auxiliary definitions and lemmas, and
additionally makes use of the bisimulation-based technique
we introduce in Section 4.

3.17 Lemma: If a state Q is CP-secure, then it is ID-
secure.

Coproductive-Coterminating Security.CP-security is
quite strong, but it is possible to go a step further by defin-
ing similarity in such a way that finite and infinite silent
streams can be distinguished (coproductive-coterminating
similarity).

3.18 Definition: Coinductively define S ≈CPCT

l S′ (S is
CPCT-similar to S′ at l) with the following rules:

silent l(S) fin(S)
silent l(S

′) fin(S′)

S ≈CPCT

l S′

silent l(S) inf (S)
silent l(S

′) inf (S′)

S ≈CPCT

l S′

S ⊲l s :: S1 S′ ⊲l s :: S′
1 S1 ≈CPCT

l S′
1

S ≈CPCT

l S′

Here is an example of a program that is secure by every
other definition thus far but is not CPCT-secure.

3.19 Example: The following program is not CPCT-
secure:

input ch⊤(x) { r := x;
if x = 0 then while 1 do skip }

This is the entire program. Low inputs are consumed but
produce no low-visible output because there is no handler for
them. (If this were not the case, then this program would
fail to be CP-secure.)

The definitions of CP-similarity and CPCT-similarity
aren’t too different; so the following results shouldn’t be
too surprising, although the latter one is still not trivial.

3.20 Lemma: S ≈CPCT

l S′ implies S ≈CP

l S′.

3.21 Lemma: If a transducer in a state Q is CPCT-secure,
then it is CP-secure.

CPCT-security guarantees that a reactive system can
never make a choice between entering a input-accepting
state or silently diverging based on a high input. However,
this additional guarantee over CP-security is unimportant
in practice because an attacker does not have the power to
observe the results of such a choice in a CP-secure system.
Consider a CP-secure machine that will silently diverge upon
receiving a high input of 0 but will immediately return to a
consumer state upon receiving a nonzero high input. A low
observer who wishes to determine if the first high input was
nonzero can only send a message to the machine and wait
for a response (in our attack model, there is no other way to
probe the system). A response would not be given to the low
observer if the high input were 0; thus, CP-security guaran-
tees that, even if the machine eventually consumes the low
input, no response will be given to the low observer after
(or even before) any high input. Since there is no possibility
for getting feedback, there is no way for the low observer to
determine if the system accepted the low input or whether
the input is sitting in a buffer while the machine runs for-
ever. Thus, CP-security is weaker than CPCT-security only
on paper.

Summary.We have presented four definitions of security
based on four definitions of similarity. Of these, two appear
to be of practical interest: ID-security and CP-security. En-
forcing CP-security through language-based techniques in-
volves difficult trade-offs. For instance, O’Neill, Clarkson,
and Chong [16] choose to disallow looping over high-level
data, a very severe restriction. Instead, we choose to fo-
cus on termination-insensitive ID-security at this point. Al-
though the type system we’ll use to enforce this looks quite
standard, we first need to break down the definition of ID-
security from a property on the input/output behavior of a
system to a property on the states of a reactive system.

4. PROVING ID-SECURITY
We now present a generic technique for proving the ID-
security of a state in a reactive system. This is an “un-
winding lemma” in the sense of Goguen and Meseguer [6]:
it is a logically sufficient condition on the states of a transi-
tion system to ensure a high-level property of the system’s
input/output behavior. One can alternatively view it as a
bisimulation technique, given that it involves a binary rela-
tion that facilitates the coinductive proof of the unwinding
lemma.

4.1 Definition: An ID-bisimulation on a reactive system is
a label-indexed family of binary relations on states (written
∼l) with the following properties:

(a) if Q ∼l Q′, then Q′ ∼l Q;

(b) if C ∼l C′ and C
i
→ P and C′ i

→ P ′, then P ∼l P ′;

(c) if C ∼l C′ and ¬ visiblel(i) and C
i
→ P , then P ∼l C′;

(d) if P ∼l C and P
o
→ Q, then ¬ visiblel(o) and Q ∼l C;

(e) if P ∼l P ′, then either

• P
o
→ Q and P ′ o

′

→ Q′ implies o = o′ and Q ∼l Q′,
or else

• P
o
→ Q implies ¬ visiblel(o) and Q ∼l P ′, or else

• P ′ o
′

→ Q′ implies ¬ visiblel(o
′) and P ∼l Q′.

We will see below that, if Q ∼l Q for all l, then Q is ID-
secure. We do not use a standard form of bisimulation (as is
done in [4]) because we need a technique that gives rise to a
termination-insensitive security property. Note that, in the
first of the three cases under item (e), if one side can make
a step with an output o, then all steps taken by the other
side must produce the same output o. On the other hand,
the other two cases under item (e) permit one side to take a
silent step without being matched by the other side, which
allows one side to get infinitely far ahead of the other when
this definition is used coinductively.

Before we can prove that this definition gives us the prop-
erty we want, we need to introduce one more definition of
similarity between streams.

4.2 Definition: Coinductively define S ≈VS

l S′ (S is visibly
l-similar to S′) with the following rules:

[] ≈VS

l []
visiblel(s) S ≈VS

l S′

s :: S ≈VS

l s :: S′

¬ visiblel(s) S ≈VS

l S′

s :: S ≈VS

l S′

¬ visiblel(s) S ≈VS

l S′

S ≈VS

l s :: S′

Observe that this is a natural relation to define between
two streams with invisible elements. It is easy to write down
because it does not depend on auxiliary definitions such as
l-reveals. Does this relation give rise to yet another notion
of similarity and security? No, in fact, it coincides exactly
with ID-similarity.

4.3 Lemma: S ≈VS

l S′ iff S ≈ID

l S′.

Visible similarity is an important technical tool in our
development since it gives us a coinduction principle that
can be used to prove the following key lemma.

4.4 Lemma: Suppose that Q ∼l Q′, and that Q(I) ⇒ O
and Q′(I ′) ⇒ O′. Then I ≈VS

l I ′ implies O ≈VS

l O′.

The previous two lemmas lead us directly to our goal.

4.5 Theorem: If Q ∼l Q for all l, then Q is ID-secure.

5. RIMP
Rather than using our technique from Section 4 to prove
programs secure one at a time, we would like to demon-
strate that we can use a type system to show that all of the
well-typed programs in a language are secure, in line with
the previous work on language-based security [19]. To this
end, we complete our technical development with a formal
presentation of the RIMP language, along with a static type
system that will ensure that well-typed programs are secure.
We will prove this result by defining a relation on program
states and showing that it is an ID-bisimulation for which
well-typed programs are related to themselves.

Operational Semantics.We first define consumer and
producer states of the RIMP reactive system. A consumer
state, C, is a store paired with a program. A producer state,
P , also includes the currently executing command and is
tagged by the channel that triggered the execution. Stores,
µ, map global variables to the natural numbers they contain.

C ::= (µ, p)
P ::= (µ, p, c)ch

The transition between states in the RIMP reactive sys-
tem is defined by the following four judgments of the oper-
ational semantics, whose definitions appear below.

1. µ ⊢ e ⇓ n, a big step evaluation of closed expressions
to numeric values, using the store to look up variables.
(This definition is an entirely straightforward one, in
which we use 0 for the boolean value false and nonzero
numbers for true. See Appendix B for the formal def-
inition.)

2. (µ, c)
o
→ (µ′, c′), a small step execution of a closed com-

mand paired with a store, where each step produces an
output.

3. (p)(i) ⇓ c, the response to an input event, producing
the command that will execute next.

4. Q
a
→ Q′, the actual transitions of the reactive system.

The bulk of computation occurs when the commands in
a handler are executed. Each step of computation produces
an output, o, although many of those outputs will be the
trivial output •, which is visible only to the highest-security
observer. The rules below are standard except for the final
rule, which produces output.

5.1 Definition: Inductively define (µ, c)
o
→ (µ′, c′) with

the following rules:

(µ, (skip; c))
•
→ (µ, c)

(µ, c1)
o
→ (µ′, c′1)

(µ, (c1; c2))
o
→ (µ′, (c′1; c2))

µ ⊢ e ⇓ n

(µ, (r := e))
•
→ (µ[r 7→ n], skip)

µ ⊢ e ⇓ n n 6= 0

(µ, (if e then c1 else c2))
•
→ (µ, c1)

µ ⊢ e ⇓ 0

(µ, (if e then c1 else c2))
•
→ (µ, c2)

µ ⊢ e ⇓ n n 6= 0

(µ, (while e {c}))
•
→ (µ, (c; while e {c}))

µ ⊢ e ⇓ 0

(µ, (while e {c}))
•
→ (µ, skip)

µ ⊢ e ⇓ n

(µ, (output ch(e)))
ch(n)
→ (µ, skip)

Next, we need a definition that pairs an input with a pro-
gram and builds the code that will be executed in response
to that event. This will require a substitution of the message
data for the parameter x in the body of the event handler.
We assume a standard definition of substituting a value n
for x in an expression e (written e{n/x}), extended to com-
mands in the obvious way.

5.2 Definition: Inductively define (p)(i) ⇓ c with the fol-
lowing rules:

(ch(x){c}; p)(ch(n)) ⇓ c{n/x}

(p)(ch′(n)) ⇓ c ch 6= ch ′

(ch(x){c}; p)(ch′(n)) ⇓ c (·)(i) ⇓ skip

Finally, we give the labeled transition system correspond-
ing to RIMP’s semantics. This system either transitions a
consumer state to a producer state by looking up the ap-
propriate handler, steps a producer state to a new producer
state (if there is computation remaining), or steps a pro-
ducer state to a consumer state (if the handler has finished
execution).

5.3 Definition: Define Q
a
→ Q′ (where a ::= i | o) with the

following rules:

(p)(ch(n)) ⇓ c

(µ, p)
ch(n)
→ (µ, p, c)ch

(µ, c)
o
→ (µ′, c′)

(µ, p, c)ch
o
→ (µ′, p, c′)ch (µ, p,skip)ch

•
→ (µ, p)

We can easily show that these rules define a reactive sys-
tem, which is really just a matter of confirming that the
RIMP execution will never halt if inputs are available.

Typing of RIMP Programs.Now we give a static type
system to the RIMP language, whose purpose is to identify
a subset of programs that are secure.

We assume there is a function lbl that associates a la-
bel with every channel and program variable, and we define
visiblel(ch(n)) to mean that lbl(ch) ≤ l, for both inputs and
outputs. Define visiblel(•) to hold iff l = ⊤.

Expressions are typed with a single label, which can be
interpreted as an upper bound on the secrecy level of the

components of the expression. The typing judgment for ex-
pressions is parametrized by a mapping Γ from parameters
to labels. (Even though we use only one formal parameter
x in this language, we write it this way for consistency of
notation with standard typing judgments in more expressive
languages.)

5.4 Definition: Inductively define Γ ⊢ e : l with the fol-
lowing rules:

Γ(x) ≤ l

Γ ⊢ x : l Γ ⊢ n : l

lbl(r) ≤ l

Γ ⊢ r : l

Γ ⊢ e1 : l1 Γ ⊢ e2 : l2 l1, l2 ≤ l

Γ ⊢ e1 ⊙ e2 : l

Commands are also typed with a single label, which can
be interpreted as a lower bound on the secrecy of the ef-
fects that could occur during the execution of the command.
Traditionally, this label is called the label of the “program
counter,” so we use pc to range over it. Again, we need
a typing environment Γ for the parameters that might be
present in commands.

5.5 Definition: Inductively define Γ ⊢ c : pc with the fol-
lowing rules:

Γ ⊢ skip : pc

Γ ⊢ c1 : pc1 Γ ⊢ c2 : pc2 pc ≤ pc1, pc2

Γ ⊢ (c1; c2) : pc

Γ ⊢ e : l l ≤ lbl(ch) pc ≤ lbl(ch)

Γ ⊢ output ch(e) : pc

Γ ⊢ e : l l ≤ lbl(r) pc ≤ lbl(r)

Γ ⊢ (r := e) : pc

Γ ⊢ e : l Γ ⊢ c1 : pc1 Γ ⊢ c2 : pc2

l ≤ pc1, pc2 pc ≤ pc1, pc2

Γ ⊢ if e then c1 else c2 : pc

Γ ⊢ e : l Γ ⊢ c : pc1 l ≤ pc1 pc ≤ pc1

Γ ⊢ while e {c} : pc

The typing judgment for programs simply requires that
each handler be well typed at the level of its channel, under
the assumption that the message received is secret at the
level of the channel.

5.6 Definition: Inductively define ⊢ p with the following
rules:

⊢ ·

x : lbl(ch) ⊢ c : lbl(ch) ⊢ p

⊢ ch(x){c}; p

Finally, we may define a typing judgment for producer
and consumer states. Note that typing programs does not
depend on the store. The channel that triggered a producer
state also constrains the type of the command in that state.

5.7 Definition: Define the judgment ⊢ Q with the follow-
ing rules:

⊢ p

⊢ (µ, p)

⊢ p ⊢ c : lbl(ch)

⊢ (µ, p, c)ch

These definitions have the standard type preservation
property.

5.8 Lemma: If ⊢ Q and Q
a
→ Q′, then ⊢ Q′.

The standard progress theorem for well-typed terms is
actually trivial here because by definition every term can
make progress in a reactive system.

Bisimulation on RIMP Programs.We now turn to defin-
ing a label-indexed family of binary relations on program
states and showing that it is a ID-bisimulation. This relation
is built from relations on stores, commands, and programs.

First, two stores are related at label l if the contents visible
to l are identical. This relation is an equivalence relation.

5.9 Definition: Define two stores µ and µ′ to be related at
l (written µ ∼l µ′) if, for all r for which lbl(r) ≤ l, we have
µ(r) = µ′(r).

Next, to define when two commands are related, we must
first define a predicate high

L
(c) stating that the effects of

a command are visible only within a certain upward-closed
set L. In the following, we define the downward closure
of a set of labels L (written LH) as {l | ∃l′ ∈ L. l ≤ l′}.
Similarly, the upward closure of a set of labels L (written
LN) is {l | ∃l′ ∈ L. l′ ≤ l}. (We write lH and lN for {l}H and
{l}N .) L is the complement of L.

5.10 Definition: Inductively define high
L
(c) with the fol-

lowing rules:

L is upward-closed

high
L
(skip)

high
L1

(c1) high
L2

(c2)

high
L1∪L2

(c1; c2)

lbl(ch) ∈ L L is upward-closed

high
L
(output ch(e))

lbl(r) ∈ L L is upward-closed

high
L
(r := e)

high
L1

(c1) high
L2

(c2)

high
L1∪L2

(if e then c1 else c2)

high
L
(c)

high
L
(while e {c})

Now we can define when two commands are related at a
label. Intuitively, the commands must be identical, except
for subcommands whose effects are invisible to an observer
at level l.

5.11 Definition: Inductively define c ∼l c′ as follows:

skip ∼l skip

c1 ∼l c′1 c2 ∼l c′2

(c1; c2) ∼l (c′1; c′2)

⊢ e : l′ l′ ≤ lbl(ch) ≤ l

output ch(e) ∼l output ch(e)

⊢ e : l′ l′ ≤ lbl(r) ≤ l

(r := e) ∼l (r := e)

⊢ e : l′ l′ ≤ l
c1 ∼l c′1 c2 ∼l c′2

if e then c1 else c2 ∼l

if e then c′1 else c′2

⊢ e : l′ l′ ≤ l c ∼l c′

while e {c} ∼l while e {c}

high
L
(c) high

L
(c′) l 6∈ L

c ∼l c′

(This relation is symmetric and transitive; however, it is
not reflexive for untypeable commands. For example, con-
sider c = output ch(r) where lbl(r) 6≤ lbl(ch).)

Next we define when two programs are related. As for
commands, this is a partial equivalence relation.

5.12 Definition: Two programs p and p′ are related at l
(written p ∼l p′) if

• for all ch for which lbl(ch) ≤ l, if (p)(ch(n)) ⇓ c and
(p′)(ch(n)) ⇓ c′, then c ∼l c′, and

• for all ch for which lbl(ch) 6≤ l, if (p)(ch(n)) ⇓ c, then
high

lH
(c), and

• for all ch for which lbl(ch) 6≤ l, if (p′)(ch(n)) ⇓ c, then
high

lH
(c).

Finally, we define when two program states are related. A
consumer state is related to a producer state only when the
outputs of the command in the producer state are invisible
and the stores and programs are related. This relation is
also a partial equivalence relation.

5.13 Definition: Two states Q and Q′ are related at l
(written Q ∼l Q′) with the following inductive definition:

µ ∼l µ′ p ∼l p′

(µ, p) ∼l (µ′, p′)

µ ∼l µ′ p ∼l p′ high
lH

(c)

(µ, p) ∼l (µ′, p′, c)ch

µ ∼l µ′ p ∼l p′ high
lH

(c)

(µ, p, c)ch ∼l (µ′, p′)

µ ∼l µ′ p ∼l p′ c ∼l c′

(µ, p, c)ch ∼l (µ′, p′, c′)ch

Security of RIMP Programs.Now that we have defined a
label-indexed family of relations on program states, we need
to show that it is an ID-bisimulation.

A key lemma is that high commands step to high com-
mands and only produce invisible outputs.

5.14 Lemma: If high
L
(c) and (µ, c)

o
→ (µ′, c′), then

high
L
(c′) and, for all l 6∈ L, we have ¬ visiblel(o) and

µ ∼l µ′.

We use this lemma to verify the conditions of Defini-
tion 4.1 to show that ∼l is an ID-bisimulation. Since we
carefully constructed our binary relation, we can also show
that programs are related to themselves at every label l if
they are well typed.

5.15 Lemma: If ⊢ p, then p ∼l p for all l.

Combining the previous lemma with Theorem 4.5 gives
us the security result we claimed. This result guarantees
us that any well-typed program will be secure when it is
initialized with any store.

5.16 Theorem: If ⊢ p, then (µ, p) is an ID-secure trans-
ducer.

6. ADDITIONAL RELATED WORK
The introduction has already drawn comparisons with the
lines of work most directly relevant to ours. Here, we sur-
vey some more distantly related work that may also be of
interest.

McCullough’s “restrictiveness” property [14] is a security
policy for labeled transition systems with input and out-
put. Rather than defining a “high-level policy” on traces or
streams, he defines restrictiveness with a set of constraints
on transitions. It is therefore comparable with Goguen
and Meseguer’s “unwound policy” [6] or our ID-bisimulation.
McCullough’s restrictiveness property requires input totality
in a strict sense (without an allowance for input buffering)
and is termination-sensitive.

The work of O’Neill, Clarkson, and Chong [16] (hereafter
“OCC”) builds upon Halpern and O’Neill’s Multiagent Sys-
tems Framework [8]. They define noninterference in terms of
user strategies, which are functions that map every history
of l-visible events to the next action for each principal at
level l. This framework allows their security definitions to
consider the possibility of a high user revealing information
to a low user indirectly via choice of strategy. This seems to
be of little practical value in a setting where high users have
more direct means to interact with low users than through
the system in question. For instance, in the setting of the
web client, if a banking application wants to reveal the user’s
account number to a third party, this can be done trivially
on the server’s side of the application rather than through
the code running in the user’s browser. Moreover, Clark and
Hunt [2] demonstrate that the choice of strategy does not
permit covert communication in deterministic programs that
are interactive in the sense of OCC. Although our execution
model is different, the same fact may well hold true in our
setting. (Much of the focus in OCC is actually on dealing
with probabilistic behaviors; since RIMP is deterministic,
this aspect is orthogonal to our aims.)

As mentioned earlier, Hunt and Sands [9] define security of
their interactive programs in terms of infinite input streams,
but don’t use streams for describing their outputs. On the
other hand, Askarov, Hunt, Sabelfeld, and Sands [1] explic-
itly consider potentially infinite sequences of outputs in their
assessment of the weaknesses of termination-insensitive se-
curity, but do not deal with any kind of input. Matos, et.
al. [13] give a type system and a proof of information-flow
security for a notion of “reactive programs” rather differ-
ent from ours. Their programs run (deterministically) to
completion without consuming any intermediate input or
producing any intermediate output.

7. CONCLUSIONS AND FUTURE WORK
We have proposed a formal definition of information-flow
security for programs driven by event handling and have
shown that language-based enforcement is a viable means
to guarantee this property. It is now natural to ask how
well this maps onto the real world of web programming.

The first issue is whether our definitions of security cor-
rectly capture the sort of web browsing confidentiality poli-
cies we desire in practice. Of course, such definitions cannot
guarantee confidentiality in an absolute sense, since there
are covert channels, such as timing channels, that are out-
side of our model. Assessing these channels and taking steps
to mitigate their effects is an important part of any real-

world security implementation. At the same time, like other
definitions of “pure noninterference,” our definitions are too
restrictive, in that they rule out programs that must release
(parts of) secret information to properly function: consider
a mashup that must reveal a private street address to Google
in the course of locating it with a Google Maps component.
Finding appropriate mechanisms for declassification is an
important direction for future work.

Another question is whether our fundamental model of
interaction is flexible enough to account for real-world web
behavior. Real network messages may be structured and
may include different substructures with different security
levels. For the purpose of a noninterference analysis, one
could easily model such a message as a sequence of mes-
sages at different levels. However, a naive labeling of web
page structures and a strict adherence to reactive noninter-
ference can lead to some surprising results. For instance, if
an entire HTTP response containing a web page is given a
non-public security label, then it would not be secure for the
browser to load any images on that page from servers with
incomparable security labels: there would be no direct flow,
but a system input (the HTTP response in this case) at one
security level must only cause system outputs at the same
level or higher. One easy workaround for this scenario is to
give the initial HTTP response a public label and to use a
private label only for the body of the message.

The connection between our model and the user inter-
face is also very important, and the design space is com-
plex. Users need to be able to understand the security
interpretation that the browser assigns to each event they
generate; otherwise they have no way of understanding the
model’s guarantees about the confidentiality of their input
and browsing actions. In particular, users need to under-
stand the precise form of the“pseudo-messages” correspond-
ing to their actions. The message content corresponding to
the action of entering text in a text box is reasonably clear.
However, the action of clicking on an HTML link is much
more subtle: if it is interpreted as a message from the user to
the browser that contains the entire URL of the link destina-
tion, then reactive noninterference actually puts the burden
on the user for verifying that the URL does not contain any
encoding of any piece of secret data. Obviously, the user
cannot do this without assistance from the browser, but it
must be noted that a reactive noninterference policy says
nothing about the correctness of that assistance. In addi-
tion to the contents of these user-generated messages, their
security levels must also be determined. This could be con-
trolled with a global “secrecy mode” setting for the whole
browser, a per-window secrecy mode, a per-DOM-element
secrecy mode, a per-action dialog box, or some combination
of these. Moreover, in principle, it is possible that some
of these modes might cause a single user action, such as a
button press, to be viewed as a sequence of messages with
different security levels (this would be useful for the same
reason that it might be useful to view an HTTP response as
a sequence of messages, as described above). A complex se-
curity interface will be hard to understand; an overly simple
one may not provide enough flexibility to support web pages
that interact with multiple remote sites or may not provide
as much confidentiality as the user would like. There seem
to be fundamental tradeoffs between flexibility, complexity,
and security in this design space.

Since our model rules out preemptive multitasking, one
may wonder whether it can account for timer events, which
are common in web programming. The information secu-
rity of timer events can be understood by modeling them
as AJAX requests to a remote server that sends back a re-
sponse after a fixed amount of time. Of course, concerns
about covert timing channels must still be handled sepa-
rately, and timing channels that exploit timer events may
have a much higher bandwidth than covert channels based
solely upon the timing of real network messages.

An entirely different question is whether language-based
security is the best mechanism for enforcing our nonin-
terference properties in the setting of web browsers. Al-
though its event handling follows the same basic model as
JavaScript, RIMP is a long way from a web scripting lan-
guage. First, one would want to add some of the key features
of JavaScript, such as first class functions, the ability to dy-
namically add and remove handlers, and eval. Second, one
would need to design a security-aware version of the DOM
interface for this language to use. Finally, one would have to
implement a method for type-checking and running secure
scripts in a manner that is reasonably backwards-compatible
with existing web pages and scripts. All of these are impor-
tant topics for future research.

Acknowledgments
Damien Pous made a big contribution to the early discus-
sions that eventually led to this paper. We gratefully ac-
knowledge support from the National Science Foundation
under grant number 0715936, Manifest Security.

8. REFERENCES
[1] A. Askarov, S. Hunt, A. Sabelfeld, and D. Sands.

Termination-insensitive noninterference leaks more
than just a bit. In In Proceedings of the 13th European
Symposium on Research in Computer Security, pages
333–348, Malaga, Spain, Oct. 2008.

[2] D. Clark and S. Hunt. Non-interference for
deterministic interactive programs. In Formal Aspects
of Security and Trust (FAST) ’08, 2008.

[3] Coq Development Team. The Coq Proof Assistant
Reference Manual v8.1. http://coq.inria.fr/.

[4] R. Focardi and R. Gorrieri. A classification of security
properties for process algebras. Journal of Computer
Security, 3(1):5–33, 1995.

[5] J. A. Goguen and J. Meseguer. Security policies and
security models. In Proc. IEEE Symposium on
Security and Privacy, pages 11–20. IEEE Computer
Society Press, Apr. 1982.

[6] J. A. Goguen and J. Meseguer. Unwinding and
inference control. In In Proceedings of the IEEE
Symposium on Security and Privacy, 1984.

[7] I. Gray, J.W. Probabilistic interference. pages
170–179, May 1990.

[8] J. Y. Halpern and K. R. O’Neill. Secrecy in
multiagent systems. ACM Transactions on
Information and Systems Security, 12(1):1–47, 2008.

[9] S. Hunt and D. Sands. Just forget it—the semantics
and enforcement of information erasure. In In
Proceedings of the 17th European Symposium on
Programming (ESOP’08). Springer-Verlag (LNCS),
2008.

[10] C. Jackson, A. Bortz, D. Boneh, and J. C. Mitchell.
Protecting browser state from web privacy attacks. In
WWW ’06: Proceedings of the 15th international
conference on World Wide Web, pages 737–744, New
York, NY, USA, 2006. ACM.

[11] C. Jackson and H. J. Wang. Subspace: Secure
cross-domain communication for web mashups. In
WWW ’07: Proceedings of the 16th international
conference on World Wide Web, 2007.

[12] B. Jacobs and J. Rutten. A tutorial on (co)algebras
and (co)induction. EATCS Bulletin, 62:62–222, 1997.

[13] A. A. Matos, G. Boudol, and I. Castellani. Typing
noninterference for reactive programs. In In
Proceeding of the Workshop on Foundations of
Computer Security, 2004.

[14] D. McCullough. Noninterference and the
composability of security properties. In Proc. IEEE
Symposium on Security and Privacy, pages 177–186.
IEEE Computer Society Press, May 1988.

[15] M. S. Miller, M. Samuel, B. Laurie, I. Awad, and
M. Stay. Caja: Safe active content in sanitized
JavaScript. A Google research project., Jan. 2008.

[16] K. R. O’Neill, M. R. Clarkson, and S. Chong.
Information-flow security for interactive programs. In
In Proceedings of the 19th IEEE Workshop on
Computer Security Foundations, pages 190–201,
Washington, DC, USA, 2006. IEEE.

[17] F. Pottier and V. Simonet. Information flow inference
for ML. ACM Transactions on Programming
Languages and Systems, 25(1):117–158, 2003.

[18] C. Reis, S. D. Gribble, and H. M. Levy. Architectural
principles for safe web programs. Presented at the
Sixth Workshop on Hot Topics in Networks
(HotNets-VI), Nov. 2007.

[19] A. Sabelfeld and A. C. Myers. Language-based
information-flow security. IEEE Journal on Selected
Areas in Communications, 21(1):5–19, 2003.

[20] Same origin policy for JavaScript.
http://www.mozilla.org/projects/security/components/
same-origin.html.

[21] D. Volpano, G. Smith, and C. Irvine. A sound type
system for secure flow analysis. Journal of Computer
Security, 4(2-3):167–187, 1996.

[22] A. Zakinthinos and E. S. Lee. A general theory of
security properties. In In Proceedings of the IEEE
Symposium on Security and Privacy, pages 94–102,
Washington, DC, USA, 1997. IEEE.

APPENDIX

A. COINDUCTIVE DEFINITIONS
We have used the Coq proof assistant [3] to guide our in-
tuition about coinduction and to check many of our defini-
tions and proofs. Following Coq’s type-theoretic notion of
coinduction, we take coinductive definitions as a primitive
notion. We view our inference rules, both inductive and
coinductive, as definitions of logical propositions, although
they have an obvious translation to a set-theoretic definition
of mathematical relations.

A coinductive definition can be understood as taking the
greatest fixed-point interpretation of a grammar or a set of
inference rules. In the case of a grammar, a coinductive def-

inition describes the set of all finite or infinite objects that
can be built with repeated applications of the term con-
structors (instead of just the finite objects). In the case of
a proposition defined by a set of inference rules, a coinduc-
tive definition means that we allow the proposition to be
proved with a finite or infinite derivation. This is often (and
only) necessary when defining predicates on infinite data.
Note that it is also perfectly reasonable to use an induc-
tively defined proposition over coinductively defined data,
which will mean that the truth of the proposition can only
depend on a finite portion of the potentially infinite data.
Inductively defined propositions give rise to a principle of
induction, which can be used to prove a statement in which
such a proposition appears as a hypothesis. On the other
hand, coinductive definitions give rise a principle of coinduc-
tion, which can be used to prove a statement in which such
a proposition appears as a conclusion.

For further background on inductive and coinductive rea-
soning, see the tutorial by Jacobs and Rutten [12].

B. EVALUATION OF RIMP EXPRESSIONS

B.1 Definition: Inductively define µ ⊢ e ⇓ n with the fol-
lowing rules:

µ ⊢ n ⇓ n

µ ⊢ r ⇓ µ(r)

µ ⊢ e1 ⇓ n1 µ ⊢ e2 ⇓ n2 n = n1 + n2

µ ⊢ e1 + e2 ⇓ n

µ ⊢ e1 ⇓ n1 µ ⊢ e2 ⇓ n2 n = n1 − n2

µ ⊢ e1 − e2 ⇓ n

µ ⊢ e1 ⇓ n1 µ ⊢ e2 ⇓ n2 n1 = n2

µ ⊢ e1 = e2 ⇓ 1

µ ⊢ e1 ⇓ n1 µ ⊢ e2 ⇓ n2 n1 6= n2

µ ⊢ e1 = e2 ⇓ 0

µ ⊢ e1 ⇓ n1 µ ⊢ e2 ⇓ n2 n1 < n2

µ ⊢ e1 < e2 ⇓ 1

µ ⊢ e1 ⇓ n1 µ ⊢ e2 ⇓ n2 n1 6< n2

µ ⊢ e1 < e2 ⇓ 0

