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Biological inspirations 

• “oŵe Ŷuŵďers… 
– The human brain contains about 10 billion nerve cells 

(neurons) 

– Each neuron is connected to the others through 10000 
synapses 

 

• Properties of the brain  
– It can learn, reorganize itself from experience 

– It adapts to the environment  

– It is robust and fault tolerant 

 
 



Biological neuron 

• A neuron has 
– A branching input (dendrites) 

– A branching output (the axon) 

• The information circulates from the dendrites to the axon via 
the cell body 

• Axon connects to dendrites via synapses 
– Synapses vary in strength 

– Synapses may be excitatory or inhibitory  

axon

cell body

synapse

nucleus

dendrites



What is an artificial neuron ? 

• Definition : Non linear, parameterized function with 

restricted output range 
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Neural Networks 

• A mathematical model to solve engineering problems 

– Group of highly connected neurons to realize compositions of non 
linear functions 

• Tasks 

– Classification 

– Discrimination 

– Estimation  

• 2 types of networks 

– Feed forward Neural Networks 

– Recurrent Neural Networks  



Feed Forward Neural Networks 

• The information is 
propagated from the inputs 
to the outputs 

• Computations of No non 
linear functions from n 
input variables by 
compositions of Nc 
algebraic functions 

• Time has no role (NO cycle 
between outputs and 
inputs) 

x1 x2 xn ….. 

1st hidden  

layer 

2nd hidden 

layer 

Output layer 



Recurrent Neural Networks 

• Can have arbitrary topologies 

• Can model systems with internal 
states (dynamic ones) 

• Delays are associated to a specific 
weight 

• Training is more difficult 

• Performance may be problematic 

– Stable Outputs may be more 
difficult to evaluate 

– Unexpected behavior (oscillation, 
Đhaos, …Ϳ 

x1 x2 

1 

0 
1 0 

1 
0 

0 
0 



Learning 

• The procedure that consists in estimating the parameters of neurons so 
that the whole network can perform a specific task 

 

• 2 types of learning 

– The supervised learning 

– The unsupervised learning 

 

• The Learning process (supervised) 

– Present the network a number of inputs and their corresponding outputs 

– See how closely the actual outputs match the desired ones 

– Modify the parameters to better approximate the desired outputs 

 



Supervised learning 

• The desired response of the neural network in 

function of particular inputs is well known. 

• A ͞Professor͟ ŵaǇ proǀide eǆaŵples aŶd 
teach the neural network how to fulfill a 

certain task 

 



Unsupervised learning 

• Idea : group typical input data in function of 
resemblance criteria un-known a priori 

• Data clustering 

• No need of a professor 

–  The network finds itself the correlations between the data 

– Examples of such networks : 

• Kohonen feature maps 

   



Properties of Neural Networks 

• Supervised networks are universal approximators (Non 
recurrent networks) 

• Theorem : Any limited function can be approximated by a 
neural network with a finite number of hidden neurons to an 
arbitrary precision 

• Type of Approximators 

– Linear approximators : for a given precision, the number of parameters 
grows exponentially with the number of variables (polynomials) 

– Non-linear approximators (NN), the number of parameters grows 
linearly with the number of variables  



Other properties 

• Adaptivity 

– Adapt weights to environment and retrained easily 

• Generalization ability 

– May provide against lack of data  

• Fault tolerance 

– Graceful degradation of performances if damaged => The 

information is distributed within the entire net. 



• In practice, it is rare to approximate a known function 

by a uniform function 

• ͞ďlaĐk ďoǆ͟ ŵodeliŶg : ŵodel of a proĐess  
• The y output variable depends on the input variable x           

with k=1 to N 

• Goal : Express this dependency by a function, for 

example a neural network 

Static modeling 
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• If the learning ensemble results from measures, the noise 
intervenes 

• Not an approximation but a fitting problem 

• Regression function 

• Approximation of the regression function : Estimate the 
more probable value of yp for a given input x 

• Cost function:  

 

• Goal: Minimize the cost function by determining the right 
function g 
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Example 



Classification (Discrimination) 

• Class objects in defined categories 

• Rough decision OR 

• Estimation of the probability for a certain 

object to belong to a specific class 

Example : Data mining  

• Applications : Economy, speech and patterns 

recognition, sociology, etc.  



Example 

Examples of handwritten postal codes  

drawn from a database available from the US Postal service 



What do we need to use NN ? 

• Determination of pertinent inputs 

• Collection of data for the learning and testing phase 
of the neural network 

• Finding the optimum number of hidden nodes 

• Estimate the parameters (Learning) 

• Evaluate the performances of the network 

• IF performances are not satisfactory then review all 
the precedent points 



Classical neural architectures 

• Perceptron 

• Multi-Layer Perceptron 

• Radial Basis Function (RBF) 

• Kohonen Features maps 

• Other architectures 

– An example : Shared weights neural networks 

 

 



Perceptron 

• Rosenblatt (1962) 

• Linear separation 

• Inputs :Vector of real values 

• Outputs :1 or -1   
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Learning (The perceptron rule) 
• Minimization of the cost function : 

 

• J(c) is always >= 0 (M is the ensemble of bad classified 

examples) 

•         is the target value  

• Partial cost 

– If          is not well classified : 

– If           is well classified 

•  Partial cost gradient 

• Perceptron algorithm 
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• The perceptron algorithm converges if 

examples are linearly separable 



Multi-Layer Perceptron 

• One or more hidden 

layers 

• Sigmoid activations 

functions 

1st hidden  

layer 

2nd hidden 

layer 

Output layer 

Input data 



Learning 
• Back-propagation algorithm 
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Structure 
Types of 

Decision Regions 

Exclusive-OR 

Problem 

Classes with 

Meshed regions 

Most General 

Region Shapes 

Single-Layer 

Two-Layer 

Three-Layer 

Half Plane 

Bounded By 

Hyperplane 

Convex Open 

Or 

Closed Regions 

Abitrary 

(Complexity 

Limited by No. 

of Nodes) 

A 

A B 

B 

A 

A B 

B 

A 

A B 

B 

B 
A 

B 
A 

B 
A 

Different non linearly separable 

problems 

Neural Networks – An Introduction Dr. Andrew Hunter 

 



Radial Basis Functions (RBFs) 

• Features 
– One hidden layer 

– The activation of a hidden unit is determined by the distance between the 
input vector and a prototype vector 

Radial units 

Outputs 

Inputs 



• RBF hidden layer units have a receptive field 

which has a centre 

• Generally, the hidden unit function is 

Gaussian 

• The output Layer is linear 

• Realized function 
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Learning 

• The training is performed by deciding on 

– How many hidden nodes there should be 

– The centers and the sharpness of the Gaussians 

• 2 steps 

– In the 1st stage, the input data set is used to determine 

the parameters of the basis functions 

– In the 2nd stage, functions are kept fixed while the second 

layer weights are estimated ( Simple BP algorithm like for 

MLPs) 

 



MLPs versus RBFs 

• Classification 

– MLPs separate classes via 
hyperplanes 

– RBFs separate classes via 
hyperspheres 

• Learning 

– MLPs use distributed learning 

– RBFs use localized learning 

– RBFs train faster 

• Structure 

– MLPs have one or more hidden 
layers 

– RBFs have only one layer 

– RBFs require more hidden 
neurons => curse of 
dimensionality 

X2 

X1 

MLP 

X2 

X1 

RBF 



Self organizing maps 

• The purpose of SOM is to map a multidimensional input space 
onto a topology preserving map of neurons 

– Preserve a topological so that neighboring neurons respond to « 
similar »input patterns 

– The topological structure is often a 2 or 3 dimensional space 

• Each neuron is assigned a weight vector with the same 
dimensionality of the input space 

• Input patterns are compared to each weight vector and the 
closest wins (Euclidean Distance) 



• The activation of the 
neuron is spread in its direct 
neighborhood =>neighbors 
become sensitive to the 
same input patterns 

• Block distance 

• The size of the 
neighborhood is initially 
large but reduce over time 
=> Specialization of the 
network 

First neighborhood 

2nd neighborhood 



Adaptation 

• During training, the 
͞ǁiŶŶer͟ ŶeuroŶ aŶd its 
neighborhood adapts to 
make their weight vector 
more similar to the input 
pattern that caused the 
activation 

• The neurons are moved 
closer to the input pattern 

• The magnitude of the 
adaptation is controlled via 
a learning parameter which 
decays over time 



Shared weights neural networks: 

Time Delay Neural Networks (TDNNs) 

• Introduced by Waibel in 1989 

• Properties 

– Local, shift invariant feature extraction 

– Notion of receptive fields combining local information into 
more abstract patterns at a higher level 

– Weight sharing concept (All neurons in a feature share the 
same weights) 

• All neurons detect the same feature but in different position 

• Principal Applications 

– Speech recognition 

– Image analysis  



TDNNs ;ĐoŶt’dͿ 
• Objects recognition in an 

image 

• Each hidden unit receive 
inputs only from a small 
region of the input space : 
receptive field 

• Shared weights for all 
receptive fields => 
translation invariance in the 
response of the network 

 

 Inputs 

Hidden 

Layer 1 

Hidden 

Layer 2 



• Advantages 

– Reduced number of weights 

• Require fewer examples in the training set 

• Faster learning 

– Invariance under time or space translation 

– Faster execution of the net (in comparison of full 

connected MLP) 



Neural Networks (Applications) 

• Face recognition 

• Time series prediction 

• Process identification 

• Process control 

• Optical character recognition 

• Adaptative filtering 

• EtĐ… 



Conclusion on Neural Networks 

• Neural networks are utilized as statistical tools 

– Adjust non linear functions to fulfill a task 

– Need of multiple and representative examples but fewer than in other 
methods 

• Neural networks enable to model complex static phenomena (FF) as well 
as dynamic ones (RNN) 

• NN are good classifiers BUT 

– Good representations of data have to be formulated 

– Training vectors must be statistically representative of the entire input space 

– Unsupervised techniques can help 

• The use of NN needs a good comprehension of the problem 
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