
International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-3, Issue-5, November 2013

75

Abstract— Although the enormous growth of Internet, Social

Network, Cloud Computing, etc. has brought the world closer and

faster, major concern for computer experts is how to store such

enormous amount of data especially in form of graphs. Further,

data structure used for storage of such type of data should provide

efficient format for fast retrieval of data as and when required.

Although adjacency matrix is an effective technique to represent a

graph having few or large number of nodes and vertices but when

it comes to analysis of huge amount of data from site likes like

face book or twitter, adjacency matrix cannot do this. This paper

provides a special kind of data structure, skip graph which can be

efficiently used for storing such type of data resulting in optimal

storage, space utilization and retrieval.

Index Terms—Advanced Data Structure, Skip List, Skip

Graph, Efficient and fast search.

I. INTRODUCTION

 1.1 Skip List

 A skip list [3] is an ordered data structure based on a

succession of linked lists with geometrically decreasing

numbers of items. The deterministic versions of skip list have

guaranteed properties where as randomized skip lists only

offer high probability performance. This height (Hn) is the

maximum length of a search path for any key from the top of

the skip list. Devroye has proved that this height Hn is of

order log n [10].

Figure 1 - Example of Skip List[13]

1.2 Skip Graph

 The skip graph, introduced by Aspnes and Shah in [2,

4], is a variant of the skip list, designed to perform better in a

distributed environment. In a skip graph, the whole data

structure can be distributed among a large number of nodes,

and the structure provides good load balancing and fault

tolerance properties.

Manuscript received November, 2013.

Dr. Shalini Batra received M.E. Degree from BITS, Pilani, Rajasthan

India and Ph.D. Degree from Thapar University in area of semantics in 2012.

She is currently working as Assistant Professor with Computer Science

Department at Thapar University, Punjab, India.

Amritpal Singh, He is presently working as Assistant Professor at

Chandigarh University Gharuan . His research interests include Machine

Learning and Big Data. Received M.E. Degree from Thapar University,

Punjab, India.

As defined by author in [6] Skip graphs are data structures

with similar functionality to binary trees or skip lists,

permitting efficient insertion, removal and searches among

elements, but they are best suitable for P2P distributed

environments. Skip Graphs are composed of tower of

increasingly refined linked lists in various levels, each one

with no head and doubly linked. shown in fig from [6].

Skip graphs provide the full functionality of a balanced tree

in a distributed system where elements are stored in separate

nodes that may fall at any time as described in [3]. They are

designed for use in searching peer-to-peer networks, and by

providing the ability to perform queries based on key

ordering, they improve on existing search tools that provide

only hash table functionality.

As per analysis done by James and Shah in [2, 3] on skip

lists or other tree data structures, skip graphs are highly

resilient, tolerating a large fraction of failed nodes without

losing connectivity. In addition, constructing, inserting new

elements into, searching a skip graph and detecting and

repairing errors in the data structure introduced by node

failures can be done using simple and straightforward

algorithms. During past years interesting variants of skip

graphs have been studied, like skip nets [7], skip webs [1] or

rainbow skip graphs [6].

Figure 2 - Example of Skip Graph [13]

II.MODELS AND NOTATIONS

In a skip graph, each node represents a resource to be

searched where node x holds two fields: the first is a key,

which is arbitrary and may be the resource name. Nodes are

ordered according to their keys. For notational convenience

the keys are the considered to be integers 1, 2, . . . , n. Since

the keys have no function in the construction other than to

provide an ordering and a target for searches there is no loss

of generality. The second field is a membership vector m(x)

which is for convenience treated as an infinite string of

random bits chosen independently by each node. In practice,

it is enough to generate an O(log n)-bit prefix of this string

with overwhelming probability. The nodes are ordered

lexicographically by their keys in a circular doubly-linked list

 A short survey of Advantages and Applications of

Skip Graphs

Shalini Batra, Amritpal Singh

A short survey of Advantages and Applications of Skip graphs

76

S_ so that node i is connected to i −1 mod n and i +1 mod n.

For each finite bit-vector σ, an additional circular

doubly-linked list Sσ is constructed by taking all nodes whose

membership vectors have σ as a prefix, and linking adjacent

nodes in the lexicographic key order.

2.2 Algorithms for Skip Graph.

The search operation:

The search operation is identical to the search in a skip list

with only minor adaptations to run in a distributed system.

The search is started at the topmost level of the node seeking a

key and it proceeds along each level without overshooting the

key, continuing at a lower level if required, until it reaches

level 0. Either the address of the node storing the search key,

if it exists, or the address of the node storing the largest key

less than (or the smallest key greater than) the search key is

returned. In Figure 3 we show steps required to search

Alphabet "W" in given Skip Graph.

 Figure 3. Steps to search "W" node

The insert operation

A new node ‘u’ knows some introducing node ‘v’ in the

network that will help it to join the network. Node ‘u’ inserts

itself in one linked list at each level till it finds itself in a

singleton list at the topmost level. The insert operation

consists of two stages:

(1) Node ‘u’ starts a search for itself from ‘v’ to find its

neighbours at level 0, and links to them.

(2) Node ‘u’ finds the closest nodes ‘s’ and ‘y’ at each level W

_ 0, s < u < y, such that

m(u) _ (W + 1) = m(s) & (W + 1) = m(y) _ (W + 1), if they

exist, and links to them at level W + 1.

Because each existing node ‘v’ does not require

m(v)(W+1) unless there exists another node ‘u’ such that m(v)

_ (W + 1) = m(u) _ (W + 1), it can delay determining its value

until a new node arrives asking for its value; thus at any given

time only a finite prefix of the membership vector of any node

needs to be generated.

In Figure 4 (a) new node is inserted into given example of

Skip graph and Figure 4(b) shows required updates after

insertion [13].

Figure 4(a). Steps required to Insert "J" node

Figure 4(b). Skip graph after Insertion

The delete operation

When node ‘u’ wants to leave the network, it deletes itself

in parallel from all lists above level 0 and then deletes itself

from level 0.

III. BENEFITS OF SKIP GRAPHS

Correctness under concurrency

As discussed in section 2, both insertion and deletion can

be comfortably done on skip graph and search operations

eventually find their target node or correctly report that it is

not present in the skip graph. So any search operation can be

linearized with respect to insertion and deletion. In effect, the

skip graph inherits the atomicity properties of its bottom

layer, with upper layers serving only to provide increased

efficiency.

 Fault Tolerance

James and Udi describe some of the fault tolerance

properties of a skip graph [4]. Fault tolerance of related data

structures, such as augmented versions of linked lists and

binary trees, has been well-studied by Munro and Poblete

[11]. The main question is how many nodes can be separated

from the primary component by the failure of other nodes, as

this determines the size of the surviving skip graph after the

repair mechanism finishes. It has been clearly proved that

even a worst-case choice of failures by an adversary can do

only limited damage to the structure of the skip graph. With

high probability, a skip graph with n nodes has an tQ(1/logn)

expansion ratio, implying that at most O(f log n) nodes can be

separated .

Random failures

For random failures, the situation appears even more

promising, experimental results presented in [4,7,9] show that

for a reasonably large skip graph nearly all nodes remain in

the primary component until about two-thirds of the nodes

fail, and that it is possible to make searches highly resilient to

failure even without using the repair mechanism by use of

redundant links.

Fast Search and Fault Tolerance

The average search in skip graph involves only O(logn)

nodes that most searches succeed as long as the proportion of

failed nodes is substantially less than O(logn) [1,8,9] . By

detecting failures locally and using additional redundant

edges, one can make searches highly tolerant to small

numbers of random faults. In general, results cannot make as

strong guarantees as those provided by data structures based

on explicit use of expanders [6,7], but this is compensated for

by the simplicity of skip graphs and the existence of good

distributed mechanisms for constructing and repairing them.

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-3, Issue-5, November 2013

77

Load balancing

In addition to fault-tolerance, a skip graph provides a

limited form of load balancing, by smoothing out hot spots

caused by popular search targets. The guarantees that a skip

graph makes in this case are similar to the guarantees made for

survivability. Just as an element stored at a particular node

will not survive the loss of that node or its neighbours in the

graph, many searches directed at a particular element will lead

to high load on the node that stores it and on nodes likely to be

on a search path. However, James has shown that this effect

drops off rapidly with distance elements that are far away

from a popular target in the bottom-level list produce little

additional load on average [4]. Further author has provided

two characterizations of this result. The first shows that the

probability that a particular search uses a node between the

source and target drops off inversely with the distance from

the node to the target. This fact is not necessarily reassuring to

heavily-loaded nodes. Since the probability averages over all

choices of membership vectors, it may be that some

particularly unlucky node finds itself with a membership

vector that puts it on nearly every search path to some very

popular target. Second characterization addresses load

balancing issue by showing that most of the load-spreading

effects are the result of assuming a random membership

vector for the source of the search.

Low hitting times

Random walks on expanders done in [7] have the property

of hitting a large set of nodes fast and with high probability.

This can be used for a variety of applications such as load

balancing, gathering statistics on the nodes of the skip graph

and for finding highly replicated

IV. SUCCESSFUL IMPLEMENTATION OF SKIP GRAPH

IN DIFFERENT APPLICATIONS

 Due to the rise in popularity of peer-to-peer systems

dynamic overlay networks have recently received a lot of

attention [5]. An overlay network is a logical network

formed by its participants over a wired or wireless

routing network. The number of computers and users in

such a network may reach millions. Therefore, research

in this area has focused on improving scalability and

efficiency of overlay networks. Two usual optimization

properties are the speed of searching for items in the

network and the speed of topology updates. Another

popular parameter is expansion.

 In open peer-to-peer systems [participants may

frequently enter and leave the overlay network either

voluntarily or due to failures [5,9]. In a peer-to-peer

system of large scale, faults and inconsistencies are the

norm rather than as an exception. Moreover, interaction

of such faults may leave the system in an unpredictable,

possibly system-wide failure. Hence, overlay networks

require mechanisms that continuously counter such

disturbances. Paper [5] shows the successful

implementation of Skip Graph in such problem.

 Hammurabi , Cristina shows that Skip graphs show better

results in multithreaded multiprocessor or distributed

systems , where many entities access the shared pool

concurrently [6]. In such cases manual control of

concurrency is required in all operations, and use of Skip

graph show good results.

 The results shown by James , Wieder represent that high

probability in a skip graph provide quality and more

connectivity in expanding networks [7]. So these

properties help them to construct unstructured P2P

system, making it a good candidate for a hybrid P2P

system.

 Cloud computing has evolved as a popular computing

environment [10]. In data centric applications hosted on

the cloud, data is accessed and updated in a purely

distributed manner. The distributed data structures used

for dynamic storage of the data for such applications

require two fundamental qualities, authentication and

persistence, which are not completely met by existing

distributed data structures. Authentication is a crucial

requirement for data structures used on the cloud, as

users need to be convinced about the validity of the data

they receive. Moreover the data structure has to be

persistent, so that changes can be made to the data

structure without losing old data, or old versions of the

data structure, which may be required by different users

in the distributed environment. In [10] authors have

shown that use of Skip graph in all basic models perform

better from many existing models.

 The problems of Web Services where main issue is to

support the reuse and interoperation of software

components on the web are receiving ever increasing

interests from e-commerce, science, and research

communities across different areas. A fundamental

problem of Web Services is service discovery. Web

Services discovery is the process of finding a Web

Service that is capable to deliver a particular service, or

integrating several Web Services in order to achieve a

particular goal by means like IR (Information Retrieval).

In all alternatives Skip graph shows the better results for

this problem [12].

 Skip graph shows the properties of Fast queries and

updates and they also support for ordered data [8]. These

feature allows for a richer set of queries than a simple

dictionary that can only answer membership queries,

including those arising in DNA databases, location-based

services, and prefix searches for file names or data titles

and helpful in communication by fast message exchange.

V. CONCLUSIONS AND FUTURE SCOPE

A short survey of skip graph provided in this paper, clearly

indicate the usage and advantages of using skip graphs in

various distributed and graph based applications. Since skip

graphs provide the full functionality of a balanced tree in a

distributed system they can be designed for use in searching

peer-to-peer networks, and by providing the ability to perform

queries based on key ordering, they improve on existing

search tools that provide only hash table functionality. There

are still many unexplored areas where skip graphs can fine

many useful applications and one such domain is Social

Network Analysis (SNA). Skip graphs can be used to store the

data in graphs and cluster the data and above all retrieval will

be very efficient and fast.

A short survey of Advantages and Applications of Skip graphs

78

REFERENCES

[1] L. Arge, D. Eppstein, and M.T. Goodrich. Skip-webs: efficient

distributed data structures for multi-dimensional data sets.

Proceedings of the annual ACM SIGACT-SIGOPS symposium on

Principles of distributed computing, pages 69–76, 2009.

[2] J. Aspnes and G. Shah. Skip graphs. Proceedings of the fourteenth

annual ACM-SIAM symposium on Discrete algorithms, pages 384–

393, 2003.

[3] James Aspnes and Gauri Shah. Skip graphs. ACM Transactions on

Algorithms, 3(4):37, November 2007.

[4] James Aspnes and Udi Wieder. The expansion and mixing time of skip

graphs with applications. In SPAA ’05: Proceedings of the seventeenth

annual ACM symposium on Parallelism in algorithms and

architectures, pages 126–134, New York, NY, USA, 2005. ACM.

[5] Thomas Clouser, Mikhail Nesterenko, Christian Scheideler : Tiara: A

self-stabilizing deterministic skip list and skip graph . 2012 Elsevier

[6] Hammurabi Mendes , Cristina G. Fernandes - A Concurrent

Implementation of Skip graphs . Electronic Notes in Discrete

Mathematics 35 (2009) page no .-263-268 .

[7] James Aspnes , Udi Wieder -The expansion and mixing time of skip

graphs with applications. page no 385-394 , Springer-Verlag 2008

[8] Michael T. Goodrich, Michael J. Nelson , Jonathan Z. Sun -The

Rainbow Skip Graph: A Fault-Tolerant Constant-Degree P2P Relay

Structure . ArXiv - 2009

[9] Fuminori Makikawa, Tatsuhiro Tsuchiya, Tohru Kikuno - Balance

and Proximity-Aware Skip Graph Construction. 2010 First

International Conference on Networking and Computing .

[10] Shabeera T P, Priya Chandran, Madhu Kumar S D - Authenticated and

Persistent Skip Graph: A Data Structure for Cloud Based Data-Centric

Applications . CHENNAI, India , 2012 , ACM

[11] Ian Munro and Patricio V. Poblete. Fault tolerance and storage

reduction in binary search trees. Information and Control,

62(2/3):210-218, August 1984.

[12] Jianjun Yu, Hao Su, Gang Zhou, Ke Xu - SNet: Skip Graph based

Semantic Web Services Discovery . Seoul, Korea. 2007 ACM

[13] James Aspnes, Guari Shah, ppt in SODA 2003."

http://www.cs.yale.edu/homes/aspnes/papers/skip-graphs-soda03.ppt"

 Dr. Shalini Batra received M.E. Degree from BITS,

Pilani, Rajasthan India and Ph.D. Degree from Thapar

university in area of semantics in 2012. She is currently

working as Assistant Professor with Computer Science

Department at Thapar University, Punjab, India. She

has guided 30 M. E. and currently guiding 4 Ph. D.

students. She has more than 50 publications in National

and International conferences and journals. Her research interest includes

Machine Learning, Semantics, Big data and Social Networks.

 Amritpal Singh, received M.E. Degree from Thapar

University , Punjab, India , with a minor in Big Data

and advanced data Sturtures , in 2013. He is

presently working as Assistant Professor at

Chandigarh University Gharuan . His research

interests include Machine Learning and Big Data.

