
A Reusable Process Control System Framework for the Orbiting Carbon
Observatory and NPP Sounder PEATE missions

Chris A. Mattmann, Dana Freeborn, Dan Crichton, Brian Foster,
Andrew Hart, David Woollard, Sean Hardman, Paul Ramirez,

Sean Kelly, Albert Y. Chang, Charles E. Miller
Jet Propulsion Laboratory

California Institute of Technology
Pasadena, CA 91109, USA

mattmann@jpl.nasa.gov

Abstract

We describe a reusable architecture and implementation
framework for managing science processing pipelines for
mission ground data systems. Our system, dubbed “PCS”,
for Process Control System, improves upon an existing soft-
ware component, the OODT Catalog and Archive (CAS),
which has already supported the QuikSCAT, SeaWinds and
AMT earth science missions. This paper focuses on PCS
within the context of two current earth science missions: the
Orbiting Carbon Observatory (OCO), and NPP Sounder
PEATE projects.

1 Introduction

Data volume and computational needs for Earth science
missions at NASA are growing by orders of magnitude. The
low cost of disk storage space and the increasing power
and pervasiveness of high performance computing have en-
gendered an era in which previously unimaginable science
questions can be answered in years rather than decades.
These science questions range from the study of sea surface
temperatures to observe maritime pollution, to measuring
atmospheric chemical composition for weather forecasting,
to obtaining a better understanding of the Earth’s global car-
bon cycle and climate change as a whole.

A significant portion of any space-based NASA earth
science mission is a Ground Data System (GDS). The GDS
is responsible for receiving raw spacecraft data as deliv-
ered from a ground station1, and processing the informa-
tion through several focused series of steps with the goal of

1A strategically placed data center on Earth with ample ground-to-
space bandwidth and connectivity for receiving satellite data.

delivering the scientific value encoded in the data to inter-
ested scientists, both locally at an instrument team center,
and then to universities, decision makers, and the broader
science community. The processing that a GDS must per-
form ranges from mundane activities including data (un-
)marshalling (removal of special space “header” informa-
tion), and subsetting, to more involved processes includ-
ing temporal and spatial positioning, calibration, and statis-
tical analysis, to complex scientific assimilation including
prospective and retrospective physical modeling of a scene.

Beginning with Automated Multi-Mission Operations
System (AMMOS) Multi-mission Ground Data System
(MGDS) in the early 1990s, our work has focused on build-
ing reusable software components for GDS systems. As
an example, the Central Data Base (CDB) Subsystem of the
MGDS included data base management software comprised
of metadata and file management, file transfer capabilities,
user interfaces and data storage facilities to support multi-
mission telemetry data streams for current and future plan-
etary missions. This demanded that the CDB architecture
adhere to the architectural principles of extensibility, scala-
bility, and reusability. Because the CDB was and is part of
a larger system that included controlled, centralized hard-
ware, these architectural principles of CDB were satisfied
for AMMOS by simply ensuring that the CDB was data and
policy driven.

Our ensuing work on the Alaska SAR Facility (ASF) and
NASA Scatterometer (NSCAT) projects, made clear two
significant trends: 1) neither of these missions were part
of the controlled, centralized system for which the CDB
was developed and 2) the data management requirements
for these two missions were different from each other and
AMMOS. This meant that 1) hardware and platform choices
could not be assumed and 2) additional capabilities not orig-
inally required for AMMOS had to be developed. In or-



der to meet mission schedule and cost constraints, develop-
ers for each project independently employed a method we
coined “rapid adaptation” of the original CDB software that
resulted in two very successful mission data systems with
ultimately very few similarities or shared code.

At the time the NSCAT follow-on mission (SeaWinds on
ADEOS II) was ramping up, a technology task originally
funded by the NASA Office of Space Science was focused
on architecting and developing a common, standards-based
software framework dubbed Object Oriented Data Technol-
ogy (OODT) [12]. OODT provided “out of the box” core
data management software services while remaining adapt-
able to address the (potentially evolving) requirements that
are unique from mission to mission.

Several authors of this paper supporting SeaWinds and
the OODT technology task decided to collaborate to cre-
ate a platform- and database-independent service for man-
aging files and tasks. The result of this collaboration was
the OODT Catalog and Archive Service component that
was architected to be reusable, reliable and scalable. The
SeaWinds (on QuikSCAT and ADEOS II) and Advanced
Communications Technology Satellite (ACTS) Mobile Ter-
minal (AMT) projects benefited greatly from employing
the CAS component to support their science data systems.
QuikSCAT is in its 10th year of a planned 2-year mission
and is continuing to function in a nearly lights out mode.
Hardware has been added to the system to support the un-
planned data and processing volumes (reprocessing of 7
years of data completed in 6 months, simultaneous with
daily operations) by simply changing the software config-
uration. No software engineers were required to extend the
system.

While the CAS component successfully supported Sea-
Winds and AMT, the following JPL earth missions, Orbit-
ing Carbon Observatory (OCO) and NPP Sounder PEATE,
needed to support far more complex processing (greatly in-
creased data volumes and processing throughput) and vari-
ous hardware and platform configurations. This forced us to
rethink the CAS component implementation which resulted
in 1) the refactoring of the CAS component into two distinct
components, the File Manager and the Workflow Manager
and 2) the development of a third component to provide a
standard interface to various hardware and platform config-
urations, the Resource Manager.

The refactoring of the CAS into the File Manager and the
Workflow Manager components solved several issues. First,
it decoupled the initiation of a workflow from the ingestion
of a file. Therefore, while workflows can be initiated based
on the ingestion of a particular file or file type, they can also
be initiated based on other events such as a specific time of
day, an operator request or a software request. Second, the
refactoring provides developers and system designers the
ability to utilize only the components they need. And third,

the refactoring supports independent evolution of the com-
ponents, and thus capabilities. The combination of these
three refactored CAS components have come to be known
as the Process Control System, or PCS.

In addition to the File Manager, Workflow Manager
and Resource Manager components that provide common
reusable capabilities for file and metadata management,
pipeline processing and job submission, we have also de-
veloped reusable interfaces to these components to provide
additional commonly required capabilities for science data
management systems. To support the automation of file in-
gestion, we have developed a configurable push-pull frame-
work and crawler framework. To provide easy integration
of science code in order to support all phases of algorithm
development (testbed, operations and science computing fa-
cility), the PCS Task Wrapper has been developed.

In this paper we will describe our core PCS components,
their architecture, how they helped us solve problems on
OCO and NPP Sounder PEATE, and how they are position-
ing us for the future of Earth science mission work. We be-
lieve such work will necessitate the same spirt of architec-
tural reuse, understanding and mission specific adaptation
that led to the genesis of the modern PCS and that will ulti-
mately lead to its future evolution. We will argue in this pa-
per that our PCS uniquely positions us in the state of the art
in constructing large-scale, distributed, data-intensive GDS
software for NASA Earth science missions.

The rest of this paper is organized as follows. Section 2
provides further background and related efforts in the areas
of grid computing, workflow systems and science data sys-
tems. Section 3 describes the core PCS architectural com-
ponents in greater detail. Section 4 presents our experience
leveraging the PCS on OCO and NPP Sounder PEATE. Sec-
tion 5 rounds out the paper with conclusions and highlights
our planned future work.

2 Background and Related Work

Since the development of the computational grid [8] as
a means for the virtualization and sharing of processing
and storage resources across organizational and geographic
boundaries, many groups and organizations have recog-
nized the power of the grid as an enabler of large-scale sci-
entific research. In this paper, we discuss ongoing software
projects and research initiatives relevant to the PCS.

2.1 Grid Systems

The Globus toolkit [9], developed by The Globus Al-
liance, is a collection of open-source software tools for de-
veloping distributed computing systems and applications.
The toolkit provides users with a suite of software compo-
nents and libraries that can either be used individually or



packaged together to implement the many aspects of a dis-
tributed, service-oriented infrastructure including security,
resource and data discovery, access, and management, and
communication modules customized for a particular grid-
based effort.

2.2 Workflow Systems

The past ten years have witnessed an explosion in the
number of workflow languages and software systems de-
veloped to support scientific workflows. Yu and Buyya [15]
attempted to taxonomize these scientific workflow systems,
largely according the underlying technologies with which
they were built. In addition to this taxonomy, Woollard, et.
al., presented a characterization of workflow systems based
the intended scientific use [14]. Specifically, the authors
classified certain workflow systems as Production Systems,
of which both the OCO and NPP Sounder PEATE ground
data systems are examples.

2.2.1 Condor

Condor [11] is a grid-based job scheduling system devel-
oped at the University of Wisconsin Madison which aims,
among other things, to improve the effective usage of avail-
able distributed computing and storage resources by detect-
ing and exploiting machine idle cycles. Condor provides
mechanisms for job queuing, setting scheduling policies,
and general resource management and monitoring. Condor
insulates users from the particulars of the details of the un-
derlying infrastructure by transparently handling decisions
about when and where jobs will be scheduled, monitoring
their execution, and producing notifications of completion.
While originally designed to operate in a workstation envi-
ronment, a variant of Condor, Condor-G [10], leverages the
Globus toolkit to provide a Condor implementation that is
interoperable with Globus-based grids.

2.2.2 Pegasus

Pegasus [7] is similar to Condor in that it provides a layer of
abstraction between the jobs to be processed and the hard-
ware that they will eventually be processed on. Developed
at the USC Information Science Pegasus is capable of dy-
namically assigning computational workflows with multiple
processing steps to a large number of grid-based compute
nodes based on resource availability. In addition to generat-
ing an initial workflow mapping, Pegasus offers the ability
to transparently remap a workflow, increasing the reliability
of the system in the event of failure in a small number of
compute nodes.

2.3 Science Data Processing Systems

Science Data Processing Systems provide the base level
of service needed to effectively manage the vast quantities
of intermediate and final data products generated by large-
scale, computationally intensive research tasks. While there
are a large number of systems in operation, we focus our
discussion on those which provide services distinctly simi-
lar to the PCS.

2.3.1 S4PA

The Simple, Scalable, Script-based Science Product
Archive (S4PA) [3], is a storage architecture developed and
deployed at NASAs Goddard Space Flight Center in sup-
port of the operation of the Goddard Earth Science Data
and Information Services Center (GES DISC). As cost was
a primary factor in the development of S4PA, the develop-
ers have taken pains to streamline the system. Hosting the
primary copy of all data online reduced the need for costly
physical media distribution, and utilizing the UNIX direc-
tory structure, in combination with metadata-encoded file-
names, provides a simplified mechanism for archive and re-
trieval.

As its name implies, the S4PA is primarily a data archive
service. The PCS, as described in this paper, addresses data
archiving, but takes a more architecturally grounded ap-
proach, eschewing scripts in favor of first-class architectural
components and connectors to implement complete, end-
to-end data processing pipelines. Furthermore, as complete
science data processing pipelines are composed of a large
number of complimentary, interconnected services, a for-
mal architectural underpinning helps to provide unity and
cohesion among the constituent components.

2.4 Standards

Grid-based science data processing systems have ma-
tured sufficiently for common themes, lessons, and chal-
lenges to emerge among the many participants. As a result,
there are several ongoing efforts to codify the shared knowl-
edge and experience into formal standards. We discuss the
Open Grid Framework and the Open Archives Initiatives
Protocol for Metadata Harvesting.

2.4.1 OGF

The Open Grid Forum [2] is actively developing standards
and specifications with the goal of spreading the adoption
of grid-based software systems. The OGF is comprised
of business, government, scientific, and academic organiza-
tions and focuses on interoperability as the key to expanding



the utilization of grids. Through both advocacy and pol-
icy, the OGF represents an independent voice on the role of
grids, and their potential to aid modern research.

2.4.2 OAI

The Open Archives Initiative [1] also promotes standards
for interoperability and has developed, among others, the
Protocol for Metadata Harvesting (OMI-PMH). The goal
of the OMI-PMH is to improve application interoperability
by enabling consistency in the way metadata (data about
data) is exposed, accessed, and interpreted. By provid-
ing a flexible, extensible standard interface to the rich ar-
ray of application-specific metadata currently stored in non-
uniform, distributed repositories, the OAI hopes to facilitate
the broader accessibility and usability of distributed data re-
sources.

3 PCS Core Architecture

In this section, we describe the PCS core components.
The three PCS manager components, File Manager, Work-
flow Manager, and Resource Manager, are daemon-like web
service components responsible for answering basic ques-
tions regarding file locations, metadata, task control and
data flow, and resource availability, monitoring, and us-
age. The three PCS frameworks together implement one of
two critical higher level services in data processing systems:
(1) managing the ingestion and acquisition of remotely ac-
quired datasets, handled via the Crawler Framework and
Push Pull components ; and (2) managing pipeline process-
ing, product ingestion and data production, handled via the
PCS Task Wrapper. We will describe each component in
greater detail below. The overall PCS architecture described
in this architecture is given in Fig. 1.

3.1 File Manager

The File Manager component is responsible for track-
ing, ingesting and moving file data and metadata between a
client system and a server system. The File Manager is an
extensible software component that provides an XML-RPC
external interface, and a fully tailorable Java-based API for
file management. The critical objects managed by the File
Manager include:

Products - Collections of one or more files, and their asso-
ciated Metadata.

Metadata - A map of key to multiple values of descriptive
information about a Product.

References - Pointers to a Product file’s original location,
and to its final resting location within the archive con-
structed by the File Manager.

Product Type - Descriptive information about a Product
that includes what type of file Uniform Resource Iden-
tifier (URI) [5] generation scheme to use, the root
repository location for a particular Product, and a de-
scription of the Product.

Element - A singular Metadata element, such as “Author”,
or “Creator”. Elements may have additional metadata,
in the form of the associated definition and even a cor-
responding Dublin Core [4] attribute.

Versioner - A URI generation scheme for Product Types
that defines the location within the archive (built by
the File Manager) where a file belonging to a Product
(that belongs to the associated Product Type) should be
placed.

Each Product contains one or more References, and one
Metadata object. Each Product is a member of a single
Product Type. The Metadata collected for each Product is
defined by a mapping of Product Type to one or more Ele-
ments. Each Product Type has an associated Versioner.

3.2 Workflow Manager

The Workflow Manager component is responsible for de-
scription, execution, and monitoring of Workflows, using a
client, and a server system. Workflows are typically con-
sidered to be sequences of tasks, joined together by con-
trol flow, and data flow, that must execute in some ordered
fashion. Workflows typically generate output data, perform
routine management tasks (such as email, etc.), or describe
a business’s internal routine practices [14]. The Workflow
Manager is an extensible software component that provides
an XML-RPC external interface, and a fully tailorable Java-
based API for workflow management. The critical objects
managed by the Workflow Manager include:

Events - are what trigger Workflows to be executed. Events
are named, and contain dynamic Metadata informa-
tion, passed in by the user.

Metadata - a dynamic set of properties, and values, pro-
vided to a WorkflowInstance via a user-triggered
Event.

Workflow - a description of both the control flow, and data
flow of a sequence of tasks (or stages that must be ex-
ecuted in some order.

Workflow Instance - an instance of a Workflow, typically
containing additional runtime descriptive information,
such as start time, end time, task wall clock time, etc.
A WorkflowInstance also contains a shared Metadata
context, passed in by the user who triggered the Work-
flow. This context can be read/written to by the under-
lying WorkflowTasks, present in a Workflow.



Workflow Tasks - descriptions of data flow, and an under-
lying process, or stage, that is part of a Workflow.

Workflow Task Instances - the actual executing code, or
process, that performs the work in the Workflow Task.

Workflow Task Configuration - static configuration
properties, that configure a WorkflowTask.

Workflow Conditions - any pre (or post) conditions on the
execution of a WorkflowTask.

Workflow Condition Instances - the actual executing
code, or process, that performs the work in the Work-
flow Condition.

Each Event initiates one or more Workflow Instances,
providing a Metadata context (submitted by an external
user). Each Workflow Instance is a run-time execution
model of a Workflow. Each Workflow contains one or
more Workflow Tasks. Each Workflow Task contains a sin-
gle Workflow Task Configuration, and one or more Work-
flow Conditions. Each Workflow Task has a correspond-
ing Workflow Task Instance (that it models), as does each
Workflow Condition have a corresponding Workflow Con-
dition Instance.

3.3 Resource Manager

The Resource Manager component is responsible for ex-
cecution, monitoring and traacking of jobs, storage and net-
working resources for an underlying set of hardware re-
sources. The Resource Manager is an extensible software
component that provides an XML-RPC external interface,
and a fully tailorable Java-based API for resource manage-
ment. The critical objects managed by the Resource Man-
ager include:

Job - an abstract representation of an execution unit, that
stores information about an underlying program, or ex-
ecution that must be run on some hardware node ,in-
cluding information about the Job Input that the Job
requires, information about the job load, and the queue
that the job should be submitted to.

Job Input - an abstrct representation of the input that a Job
requires.

Job Spec - a complete specification of a Job, including its
Job Input, and the Job definition itself.

Job Instance - the physical code that performs the under-
lying job execution.

Resource Node - an available execution node that a Job is
sent to by the Resource Manager.

Each Job Spec contains exactly one Job, and Job Input.
Each Job Input is provided to a single Job. Each Job de-
scribes a single Job Instance. And finally, each Job is sent
to exactly one Resource Node.

3.4 Crawler Framework

The Crawler Framework was an effort to standardize the
common ingestion activities that occur both in data acqui-
sition and archival, as well as those that occur in pipeline
processing. These types of activities regularly involve iden-
tification of files and directories to crawl (based on e.g.,
mime type, regular expressions, or direct user input), satis-
faction of ingestion pre-conditions (e.g., the current crawled
file has not been previously ingested), followed by metadata
extraction. After metadata extraction, crawled data follows
a standard three state lifecycle: (1) preIngestion - where
e.g., a file may be unzipped or pre-processed prior to in-
gestion; (2) postIngest success, indicating a successful in-
gestion has occurred and e.g., the origin data file from the
ingest area should be deleted; and (3) postIngest failure, in-
dicating that ingestion was not successful and some correc-
tive action, e.g,. moving the failed file to a failure area for
later examination, should occur.

To date, we have identified three types of Product
Crawlers, where each Crawler varies along the lines of cus-
tomized precondition verification, crawilng strategy, and
need for metadata extraction. The StdProductCrawler as-
sumes that a Metadata object has already been generated
and included with a Product prior to ingestion, so no fur-
ther work is required to generate Metadata from a Product –
the Product is ready to be ingested. The MetExtractorPro-
ductCrawler is responsible for generating a Metadata ob-
ject dynamically, as files are encountered during the crawl-
ing process. Finally, the AutoDetectCrawler uses a content
type identification and regular-expressions to identify Prod-
uct Types dynamically, and then defaults to the behavior of
the MetExtractorProductCrawler for Product Types identi-
fied via content detection. The critical objects managed by
the Crawler Framework are:

Crawler Action - is attached to one or more of the three
phases, and when a ProductCrawler enters a given
phases, all the CrawlerActions attached to that phase
are executed. The valid phases are: preIngest,
postIngestSuccess and postIngestFailure.

Precondition Comparator - is used by MetExtractorPro-
ductCrawler and AutoDetectProductCrawler. They are
part of those ProductCrawlers customized implemen-
tation of precondition verification that identify appro-
priate times to stifle or allow metadata extractor and
ultimately ingestion, to occur.



Metadata Extractor - is run by the MetExtractorPro-
ductCrawler and the AutoDetectProductCrawler to
generate Metadata for a Product file based on some
business rules and logic.

3.5 Push Pull Framework

The Crawler Framework supports many generic inges-
tion services, including metadata extraction, crawling, and
ingestion, however, one service that necessitated further
work was the development of a protocol layer allowing
a ProductCrawler to obtain content using protocol plug-
ins that download content using implementations of remote
protocols such as HTTP, FTP, WinNT file system, HTTPS,
etc.

The Push Pull Framework is responsible for remote data
acquisition and acceptance over modern web protocols,
such as those mentioned above. The Push Pull Framework
is flexible in that it provides the ability to plug in differ-
ent Metadata Extractors, Data Protocols, Content Types,
etc. The framework supports parallel file transfers and data
downloads, email-based push data acceptance using IMAP,
SMTP protocols, and the ability to configure “Virtual” re-
mote directories (based on Metadata such as Date/Time)
from which files can be downloaded.

The critical objects managed by the Push Pull Frame-
work are:

Retrieval Method - defines the manner in which files are
retrieved from remote sites. It is given a configuration
file, a the Parser for the file, and a FileRetrievalSystem
(which handles all the complexities of multi-threaded
file downloading). There are currently two out-of-the-
box RetrievalMethods: RemoteCrawler and ListRe-
triever. RemoteCrawler is a configurable remote site
directory and file regular expression filterable crawler.
ListRetriever will download a given list of file URIs
[5].

Parser - parses a given configuration file into a Virtual-
FileStructure which is use to filter URIs to download.

Protocol - handles file transfer and communication via
some transfer protocol. Currently implemented Pro-
tocols include: sftp, ftp, http, imaps, file (localhost).

3.6 PCS Task Wrapper

The PCS Task Wrapper framework is responsible for
standardizing the setup, process initiation, execution and
file management tasks surrounding execution of NASA
Product Generation Executives, or PGEs. PGEs codify a
scientific algorithm, some step in the overall scientific pro-
cess involved in a mission science workflow.

The PCS Task Wrapper provides a stable operating en-
vironment to the underlying PGE during its execution life-
cycle. If the PGE requires a file, or metadata regarding the
file, the PCS Task Wrapper is responsible for delivering that
information to the PGE in a manner that meets its require-
ments. If the PGE requires knowledge of upstream or down-
stream PGEs in a sequence of executions, that information
is also made available, and finally if information regarding
disk space, node information such as CPU availability, etc.,
is required the PCS Task Wrapper provides this informa-
tion to the underlying PGE. After this information is col-
lected, the PGE is executed and its output Product file and
Metadata generation is managed via the PCS Task Wrap-
per framework. The PCS Task Wrapper is responsible for
marshalling output Products and Metadata back to the File
Manager for use in downstream data processing and pedi-
gree. In support of this, the PCS Task Wrapper leverages
the Crawler Framework to ingest (during pipeline process-
ing) the output Product files and Metadata produced by the
PGE.

As can be gleaned from the above discussion, the PGE
Task Wrapper is really the unifying bridge between the ex-
ecution of a step in the overall processing pipeline, and the
available PCS component services and the information that
they collectively manage.

The critical objects managed by the PCS Task Wrapper
are:

PGETaskInstance - an abstract class which contains a
generalized set of actions usually performed when run-
ning PGEs. Every variable and method is protected,
thus allowing subclasses to easily modify just those
generalized actions which need to be customized for
different PGE.

Pge Config File Builder - builds a PgeConfig object and
set additional Metadata which codifies the information
necessary for orchestrating a PGE through its lifecy-
cle. The PCS Task Wrapper is based on a simple but
powerful XML syntax which allows a scientist to sim-
ply fill out an xml file to describe the necessary steps
to execute a PGE.

Config File Property Adder - builds the Pge Config file
object and sets custom PGE Metadata. This allows
for a general PgeConfigBuilder with different Config-
FilePropertyAdders for setting PGE specific fields in
the PgeConfig object.

Science Pge Config File Writer - passes a PGE run in-
formation via configuration files. This object allows
for any number of config files in any desired format
to be generated describing PGE input and those files
to be delivered to the PGE. The PCS Task Wrap-
per provides existing implementations, including a de-



Figure 1. Component Interaction Within the PCS

fault XML Stylesheet Language (XSL) Transforma-
tion based SciPgeConfigFileWriter.

Pcs Met File Writer - aids in generating Metadata objects
associated with PGE output products.

4 Experience and Evaluation

We have successfully applied the Process Control Sys-
tem (PCS) to existing NASA missions: the Orbiting Carbon
Observatory (OCO) mission, and the NPP Sounder PEATE
mission. Both systems involve tasks such as high through-
put job processing, terabyte-scale data management, and
science computing facilities.

4.1 Orbiting Carbon Observatory Mission

On OCO, the mission is using the File Manager to in-
gest MODIS, CloudSat and other ancillary data products
for use in the high performance Level 2 Science Algorithm.
To date, OCO has already used the PCS software to pro-
cess over four terabytes of Fourier Transform Spectrometer
(FTS) data provided by ground-based instruments located
around the country (e.g., Park falls, Montana, and Darwin,
Australia), and has used the software to support Instrument
Thermal Vacuum (TVAC) testing, processing 100% of all

data taken by the OCO instrument during TVAC. Also, the
PCS supports a science computing facility in which variants
of scientific software can be excursive prior to inclusion in
an operations Pipeline.

4.2 NPP Sounder PEATE Mission

Specifically NPP Sounder PEATE has already used the
File Manager and Workflow Manager to ingest and process
hundreds of gigabytes of IASI data (and is in preparation to
accept CRIMS data). Also on PEATE, the PCS is currently
being used to re-catalog over fifteen million existing sci-
ence data products from the NASA AIRS missions TLSCF.
In addition, the Resource Manager will be used on NPP to
support job processing across an eighty-node cluster.

4.3 Further Applications

In addition to the two aforementioned NASA missions,
the PCS framework is being leveraged on reimbursable
work for the National Cancer Institute (NCI)’s Early De-
tection Research Network (EDRN) [6]. JPL leads the infor-
matics efforts on EDRN, and the PCS framework is being
used in the collection, annotation and dissemination of raw
scientific data supporting the early detection of cancer to
scientists across the country.



In the next year, PCS will also be used to support a new
JPL-led NASA mission, the Soil Moisture Active Passive
(SMAP) mission. The science computing facility designs
on OCO and NPP have been used to create an algorithm
testbed for SMAP scientists early in the design phase of the
mission so that software integration risks can be mitigated
during mission development [13].

5 Conclusions and Future Work

While the norm for earth science missions has been for
each mission to develop their own one-off science data sys-
tem from scratch, the continual decrease in mission funding
combined with the exponential increase in mission com-
plexity (data volume and processing throughput) over the
last decade has made this approach passé and risky. It was
clear that the need for a new approach was eminent.

To this end, we have developed a standards-based soft-
ware framework to provide common science data system
services that yields the benefits of reuse while remaining
adaptable to address the requirements that are unique to the
customer. This reusable software is centered around the
most basic science data system functions that support file
and metadata management, workflow management, and re-
source management. Additional frameworks augment the
core capabilities to provide automation for remote data ac-
quisition, data ingestion and standard pipeline processing.
This reusable software framework is the Process Control
System (PCS) we have described in this paper.

While the PCS has successfully supported the Orbit-
ing Carbon Observatory (OCO) and NPP Sounder PEATE
missions, upcoming missions in NASAs Decadal Survey
present additional challenges. The JPL-led Soil Moisture
Active Passive (SMAP) Mission (currently in formulation
phase) will be using the PCS not only for operations, but
also for the algorithm testbed and the science computing fa-
cility. Providing the operational infrastructure to the algo-
rithm team early in the mission lifecycle will greatly reduce
the cost and risk of development-to-operations for the most
costly and risky aspect of most earth science data systems,
the algorithms. However, this also means that easy inte-
gration of algorithms and dynamic workflow specification
are our current focus for extending the PCS capabilities.
Not far behind SMAP is another JPL-led mission, Defor-
mation, Ecosystem Structure and Dynamics of Ice (DES-
DynI) Mission. The challenges of DESDynI are requiring
us to consider the deployment of PCS components to sup-
port a grid architecture, supporting distributed file manage-
ment and processing capabilities supported by centralized
access to a virtual science data system.

Acknowledgements

This effort was supported by the Jet Propulsion Labo-
ratory, managed by the California Institute of Technology
under a contract with the National Aeronautics and Space
Administration.

References

[1] Open archives initiative, http://www.openarchives.org.
[2] Open grid forum, http://www.ogf.org.
[3] S4pa, http://daac.gsfc.nasa.gov/techlab/s4pa/index.shtml.
[4] Dublin core metadata element set, 1999.
[5] T. Berners-Lee, R. Fielding, and L. Masinter. Uniform re-

source identifiers (uri): Generic syntax. Technical Report
RFC 2396, 1998.

[6] D. Crichton, S. Kelly, C. Mattmann, Q. Xiao, J. S. Hughes,
J. Oh, M. Thornquist, D. Johnsey, S. Srivastava, L. Esser-
mann, and W. Bigbee. A distributed information services
architecture to support biomarker discovery in early detec-
tion of cancer. In e-Science, page 44, 2006.

[7] E. Deelman, J. Blythe, Y. Gil, C. Kesselman, G. Mehta,
S. Patil, M.-H. Su, K. Vahi, and M. Livny. Pegasus: Map-
ping Scientific Workflows onto the Grid. 2004.

[8] I. Foster. The anatomy of the grid: Enabling scalable virtual
organizations. pages 6–7, 2001.

[9] I. Foster. Globus toolkit version 4: Software for service-
oriented systems. pages 2–13. 2005.

[10] J. Frey, T. Tannenbaum, M. Livny, I. Foster, and S. Tuecke.
Condor-g: A computation management agent for multi-
institutional grids. Cluster Computing, 5(3):237–246, July
2002.

[11] M. J. Litzkow, M. Livny, and M. W. Mutka. Condor-a hunter
of idle workstations. pages 104–111, 1988.

[12] C. Mattmann, D. J. Crichton, N. Medvidovic, and
S. Hughes. A software architecture-based framework for
highly distributed and data intensive scientific applications.
In ICSE, pages 721–730, 2006.

[13] D. Woollard, O. ig Kwoun, T. Bicknell, S. Dunbar, and
K. Leung. A science data system approach for the smap
mission. In IEEE Radar, 2009.

[14] D. Woollard, N. Medvidovic, Y. Gil, and C. A. Mattmann.
Scientific software as workflows: From discovery to distri-
bution. Software, IEEE, 25(4):37–43, 2008.

[15] J. Yu and R. Buyya. A taxonomy of workflow management
systems for grid computing, Apr 2005.


