Using Transactions in Delaunay Mesh Generation

Milind Kulkarni

Cornell University
milind@cs.cornell.edu

Abstract

Mesh generation is a key step in graphics rendering and
in using the finite-element method to solve partial differ-
ential equations. The goal of mesh generation is to dis-
cretize the domain of interest using polygonal elements
such as triangles (in 2-D) or tetrahedra (in 3-D).

One popular mesh generation algorithm is Delaunay
mesh generation, which produces meshes with certain
quality guarantees that are important for problems in
which the geometry of the problem changes with time.
Delaunay mesh generation works by iterative refinement
of a coarse initial mesh. The sequential algorithm repeat-
edly looks for a “bad” mesh element that does not satisfy
the quality constraints, computes a neighborhood of that
element called its cavity, and replaces the elements in that
cavity with new elements, some of which may not satisfy
the quality guarantees themselves. It can be shown that
the algorithm always terminates and produces a guaran-
teed quality mesh, regardless of the order in which bad
elements are processed.

Delaunay mesh generation can be parallelized in a nat-
ural way because elements that are far away in the mesh
do not interfere with each other as they are being pro-
cessed. We present experimental results showing that in
practice, there is indeed a lot of parallelism that is ex-
posed in this way. However, exploiting this parallelism
in practice can be complicated. Compile-time analysis
and parallelization are infeasible because of the input-
dependent nature of the algorithm. One alternative is op-
timistic parallelization. We show how logical transactions
can be identified in a natural way in this code, argue
that current transactional memory implementations are
inadequate for this application, and suggest an alternative
conception of transactional memory that addresses these
problems.

1. Introduction

Most partial differential equations cannot be solved ex-
actly, so it is necessary to use numerical techniques such

L. Paul Chew

Cornell University
chew@cs.cornell.edu

Keshav Pingali

Cornell University
pingali@cs.cornell.edu

as the finite-element and finite-difference methods to
solve them approximately. The finite-element method
transforms the calculus problem of solving the partial
differential equation into the algebraic problem of solv-
ing systems of linear equations. A key step in this process
is mesh generation.

In general, mesh generation refers to the problem
of discretizing a continuous domain by placing points
in a plane (in the two-dimensional case) or in a space
(in higher dimensions), and forming a mesh over those
points. Mesh generation algorithms are also useful in
graphics, where they are used to tessellate curved sur-
faces so they may be represented as polygons, which
can be rendered more easily. In this paper, we consider
the problem of mesh generation for two-dimensional do-
mains, although most of the ideas discussed here gener-
alize to three dimensions.

In graphics as well as in finite element analysis, mesh
quality is an important consideration. The problem may
require that the mesh meet certain quality guarantees, so
not every tessellation of the domain is adequate. These
guarantees may include bounds on the size of the largest
angle in any triangle or on the size of the largest triangle.

One technique for producing guaranteed quality meshes
is Delaunay mesh generation. Delaunay mesh genera-
tion replaces elements that do not satisfy the constraints
with elements that do, producing new, refined meshes
by inserting new points into the mesh. The basic algo-
rithm was described by Chew [4] and extended by Rup-
pert [13]. They provide the appropriate refinement pro-
cedure, as well as mathematical guarantees regarding the
quality of the mesh upon the termination of the proce-
dure. Shewchuck’s Triangle program [15] is an efficient
implementation of the Delaunay mesh generation algo-
rithm.

In this paper, we argue that the correct approach to par-
allelizing the Delaunay mesh generation refinement is to
use optimistic parallelization. We also discuss the pros

Figure 1. This mesh obeys the Delaunay property. Note
that the circumcircle for each of the triangles does not
contain other points in the mesh.

and cons of using transactional memory for implement-
ing optimistic parallelization for this application.

The remainder of this paper is structured as follows.
Section 2 describes the Delaunay mesh generation al-
gorithm and provides pseudocode listings for the ma-
jor parts of the sequential algorithm. Section 3 discusses
the parallelization opportunities inherent in the algorithm
and shows how optimistic parallelization is essential for
this application. In Section 4, we discuss how existing
transactional memory techniques can be applied to this
algorithm, and discuss their shortcomings, together with
possible solutions, in Section 5. We describe ongoing
work in Section 6.

2. Delaunay Mesh Generation

A Delaunay mesh is a mesh over a set of points which
satisfies the Delaunay property [4]. This property, also
called the empty circle property, states that the circum-
circle of any element (triangle) in the mesh (i.e. the cir-
cle which circumscribes the three vertices of the triangle)
should not contain any other point in the mesh. An exam-
ple of such a mesh is shown in Figure 1. In the absence
of four co-circular points, a given set of points on a sur-
face has only one triangulation that satisfies the Delaunay
property.

In practice, the Delaunay property alone is not suffi-
cient, and it is necessary to impose various quality con-
straints governing element shape and size. To meet these
constraints, Delaunay mesh generation algorithms use an
iterative refinement procedure that fixes elements that do
not satisfy quality constraints.

This refinement procedure is best understood as a
worklist algorithm. In a worklist algorithm, units of work
are placed on a list. When necessary, a unit is removed
from the list and processed. Any additional work units
produced during this step are placed back onto the work-
list. In the case of Delaunay mesh generation, the units of

Mesh m = /* read in mesh */
WorkQueue wq;
wq.enqueue (mesh.badTriangles());
while (!lwq.empty()) {
Element e = wq.dequeue();
if (e no longer in mesh) continue;
Cavity ¢ = new Cavity(e);
c.expand Q) ;
9: c.retriangulate();
10: mesh.update(c);
11: wq.enqueue(c.badTriangles());

00 ~NO O d WN -

Figure 2. Pseudocode of the mesh generation algorithm

work are elements that do not meet the quality constraints
(“bad” elements or triangles). The refinement procedure
terminates when the worklist is empty.

Figure 2 shows the pseudocode for the mesh gener-
ation procedure. The key steps of this procedure are as
follows.

1. Find all the bad elements in the mesh and place them
into a workqueue, which is an implementation of the
worklist [line 3]. Then repeat the following steps until
the queue of bad triangles is empty [line 4].

2. Pick an element from the queue [line 5], such as the
shaded element in Figure 3(a). The processing of other
bad elements may have removed this element from the
mesh. If so, there is no work to be done [line 6].

3. Find the circumcenter of the element. This is the new
point that will be added to the mesh [line 7]. In Figure
3(a), this is the black point.

4. With respect to this new point, several existing ele-
ments will no longer satisfy the Delaunay property
(i.e. the new point lies within their circumcircles). De-
termine the set of elements that are affected by the new
point. The set of elements is called a cavity, and the
process of finding these elements is called cavity ex-
pansion [line 8]. In Figure 3(b), the shaded grey ele-
ments represent the cavity.

5. Calculate a new set of elements which fills the cavity
while incorporating the new point. This is the retrian-
gulation step [line 9].

6. Replace the cavity with the new elements (i.e. remove
the old elements from the mesh, and add in the newly
calculated elements) [line 10]. See Figure 3(c).

7. Because the newly created elements are not guaran-
teed to meet the quality constraints, any new elements

(a)

()

Figure 3. Example of processing a bad element. In (a), we see a “bad triangle” (shaded grey), as well as the new point
that we would like to add to the mesh (placed at the center of the triangle’s circumcircle). In (b), the grey triangles
represent the cavity (elements whose circumcircles contain the new point). In (c), we see the new elements, which fill
the cavity but contain the new point. The new mesh still satisfies the Delaunay property.

that are “bad” must be added to the workqueue [line
11].

From the last step, it might appear that the algorithm
could potentially not terminate. However, it is guaranteed
that no elements can be created whose sides are smaller
than the initial segments in the mesh. Since newly created
elements are smaller than the original elements, the re-
finement process must terminate [4]. Note that this holds
regardless of the order in which bad elements are pro-
cessed.

We now describe how the key steps of the refinement
procedure (expansion, retriangulation and update) work.
A graphical representation of these steps for a single
element is shown in Figure 3.

Expansion: In this step, we determine both the cavity
(the elements affected by the new point) as well as the
border elements of the cavity (the elements immediately
surrounding the cavity). Because a cavity is a connected
region of the mesh, this step can be accomplished with
a simple breadth-first search, starting from the initial bad
element, and adding affected elements to the cavity. The
border of the cavity is defined by the elements we en-
counter that are not affected by the new point (which also
serves as the termination criterion for that direction of
search).

Retriangulation: At this stage, we determine the new
set of elements that will replace the affected elements.
The new elements should fill the same space as the orig-
inal cavity, but include the new point. This is accom-
plished by determining the “boundary” of the cavity (i.e.
the outer edges of the cavity), and creating new elements
whose vertices are the new point and the vertices of a
segment on the border.

Update: Because both the cavity and the new ele-
ments share the same boundary, and hence have the same
border elements, replacing the cavity with the new ele-
ments is straightforward.

Encroachment: There is one special case, called en-
croachment. If the cavity contains a boundary segment
of the overall mesh (i.e. the tightest circumcircle of the
segment contains the new point), we say that the cav-
ity encroaches upon the boundary. We first build a cavity
around the boundary segment by placing a new point at
its midpoint, and perform the complete refinement pro-
cess. After this is done, we return to the original bad ele-
ment and process it again.

3. Parallelization

Two facts are noteworthy about the mesh generation al-
gorithm described in Section 2.

¢ Each cavity is a connected region of the mesh, and is
small compared to the overall mesh.

¢ There is no specific order in which bad elements need
to be processed.

3.1 Parallel Mesh Generation

The first fact leads naturally to a parallel algorithm. Be-
cause the cavities are localized, we note that two bad ele-
ments that are far enough apart on the mesh will have cav-
ities that do not interfere with one another. Furthermore,
the entire refinement process (expansion, retriangulation
and graph updating) for each element is completely in-
dependent. Thus, the two elements can be processed in
parallel, an approach which obviously extends to more
than two elements (see Figure 4).

iiiii ' Hi:::llll|||||nn-

|||ni (A. / |
NV

N

Figure 4. An example of processing several elements in parallel. The left mesh is the original mesh, while the right mesh
represents the refinement. In the left mesh, the dark grey triangles represent the “bad” elements, while the horizontally
shaded are the other elements in the cavity. In the right mesh, the the black points are the newly added points and

vertically shaded triangles are the newly created elements.

3.2 Compile-time Parallelization

Compile-time parallelization approaches perform depen-
dence analysis to determine a partial order of program op-
erations, and schedule operations for parallel execution if
there are no dependences between them. We do not know
of any compile-time parallelization technique that will
succeed in finding parallelism in this problem. Since each
iteration of the while loop of Figure 2 reads and writes the
mesh data structure, any compile-time analysis technique
that treats the entire mesh as a monolithic unit will assert
that there are dependences from every iteration to all suc-
ceeding iterations. Since the mesh is read at the beginning
of each iteration and updated at the end of that iteration,
there is little useful overlap of computations between iter-
ations. A more sophisticated, fine-grained analysis might
try to use techniques like shape analysis [8, 14] to dis-
cern if the reads and writes to the mesh data structure in
different iterations are disjoint. However, such an analy-
sis requires determining whether the cavities of two bad
triangles are disjoint, but this depends on the mesh, and
thus is not a question that can be determined at compile
time. Note also that any compile-time parallelization of
the code in Figure 2 will still process bad triangles in the
same order as the sequential code would, which is unnec-
essarily restrictive.

3.3 Optimistic Parallelization

Since static parallelization will not work, we turn instead
to optimistic parallelization. At this stage, we leverage
the second insight regarding the sequential algorithm: the
elements can be processed in any order. Therefore, we do
not need to adhere to a specific schedule of processing
bad triangles, but can instead expand cavities whenever
we can ensure that they can run in parallel with other

concurrent expansions. To implement this sort of paral-
lelization, we can perform dynamic checks to detect in-
terference during cavity expansion. For example, we can
lock mesh elements during cavity expansion; if some el-
ement needed for a cavity expansion is already locked by
another cavity expansion, there is interference and one of
the cavity expansions must be rolled back. If no interfer-
ence is detected, we make the appropriate changes to the
mesh. In this way, we are able to exploit the inherent par-
allelism in the mesh generation algorithm even without
knowledge of which elements can be processed in paral-
lel, but at the risk of doing useless work in computations
that get rolled back.

3.4 Experimental Results

Optimistic parallelization is useful only if the risk of roll-
backs is small. A priori, it is unclear whether or not
optimistic parallelization is useful for Delaunay mesh
generation. In addition, the amount of parallelism is very
data-dependent and depends on the size of the mesh, the
number of bad triangles, etc. The probability of conflict
between two concurrent cavity expansions depends not
only on these factors but on the scheduling policy for
parallel activities.

Antonopoulos et al. [2] have investigated how many
cavities could be expanded in parallel in a mesh of one
million triangles (see Figure 5). They focused on coarse-
grain parallelization on a distributed-memory computer,
which required mesh partitioning and distribution. They
found that across the entire problem, there were more
than 256 cavities that could be expanded in parallel until
almost the end of execution, and, halfway through exe-
cution, there were between 350 and 800 thousand cav-
ities that could be expanded in parallel. These results

Available Concurrency

1 st o1 151 201 251 301 351 401 48t
Cavities Already Expanded (Thousands)

Figure 5. Feasibility study from [2], examining the num-
ber of concurrently expandable cavities during the execu-
tion of the Delaunay mesh generation algorithm. The x-
axis represents time, while the y-axis shows the number
of expandable cavities. The upper and lower borders of
the shaded area represent upper and lower estimates for
expandable cavities.

Efficiency (%)
N w ~ 3
v o v o

=]

| 2 3 4
Number of Processors

Figure 6. Parallel efficiency results for a lock-based im-
plementation of parallel Delaunay mesh generation.

show that there is adequate potential for parallelism in
this problem for mesh sizes of practical interest.

The study of Antonopoulos et al. provides upper and
lower bounds for potential parallelism because the prob-
ability of conflicts between cavity expansions depends
on the policy for enqueuing and dequeuing bad trian-
gles on the worklist of Figure 2; some orderings will lead
to more parallelism than others. Furthermore, the prac-
tically achievable parallelism is constrained by the is-
sues involved in updating the shared structures (i.e. the
worklist and the mesh) concurrently. Thus, although the
Antonopoulos result shows that the problem exhibits sig-
nificant parallelism theoretically, there are many factors
which may affect the realistic parallelism available in the
problem.

To understand these issues, we built a prototype shared-
memory implementation. Coordination among concur-
rent activities was provided by locking. As the cavity was
expanded, the triangles needed by the cavity were succes-
sively locked. If a triangle needed by a cavity was already
locked by some other cavity, a conflict was recorded
and cavity expansion was aborted. A two-phase locking

1: Mesh m;

2: WorkQueue wq;

3: void process() {

4: while (lwq.empty()) {

5: Element e = wq.dequeue(); //atomic
6: if (e no longer in mesh) continue;
7: startTransaction();

8: Cavity c = new Cavity(e);

9: c.expand () ;

10: c.retriangulate();

11: mesh.update(c);

12: endTransaction();

13: wq.enqueue (c.badTriangles()); //atomic
14: }

15:}

16:void main() {

17: m = /* read in Mesh */

18: wq.enqueue(m.badElements());

19: for (/* size of threadpool */) {
20: spawn_thread (process) ;

21: %}

22:}

Figure 7. Pseudocode for parallel mesh generation

scheme was used to avoid cascading rollbacks. We found
that even this prototype implementation gives fairly good
results, achieving a parallel efficiency (parallel speedup
divided by number of processors) of approximately 75%
on four processors as shown in Figure 6.

These results suggest that optimistic parallelization of
Delaunay mesh generation should work well in practice.

4. Transactional Memory

As is well-known, the use of locks to implement paral-
lel algorithms can be cumbersome since the program-
mer has to focus on proper lock placement, ensure ap-
propriate roll-backs in case of conflicts, etc. In contrast,
transactional memory [1, 5, 6, 7, 12] promises a simple
solution to parallelization, relieving the programmer of
many of these burdens. In this section, we show how the
sequential algorithm can be transformed to run in paral-
lel, using transactions to provide proper synchronization
between concurrent activities. Pseudocode for this algo-
rithm is shown in Figure 7.

Most studies of transactional memory are concerned
with converting parallel code with locks into parallel code
that uses transactions. Our research project is concerned
more with identifying opportunities for optimistic paral-
lelization in sequential code. The use of the transactional
model only provides us with a synchronization mecha-

Parameter Average value
Instructions 730K

Stores 60K

Loads 88K

L1 accesses 80861

L1 misses 7523

Table 1. Performance characteristics of a single transac-
tion in Delaunay mesh generation

nism but does not specify how the program itself should
be parallelized.

In our approach, there is a thread pool in which there
are several threads, each of which draws work from the
workqueue of Figure 2. Because we want to ensure that
concurrent cavity expansions do not interfere, we see that
each iteration of the loop in Figure 2 naturally maps to
a single transaction. The interference detection provided
by transactional memories can detect when two cavities
overlap, and hence serve as the trigger for rolling back ex-
pansion. The buffering and rollback mechanisms inherent
in transactional memory implementations allow for roll-
backs without any additional programmer input.

There are a few issues that arise during this type of
parallelization. First, we must perform all modifications
to the workqueue (both choosing which elements to pro-
cess as well as enqueueing newly created bad elements)
outside the transactions. This is because modifications to
shared structures made by a transaction are not visible to
other transactions until that transaction commits. Thus, to
avoid multiple transactions choosing the same element,
we move these operations outside the transaction, and
synchronize them using standard mechanisms such as
monitors or locks. The second point is that all reads and
writes that touch shared structures (which are any that
read/create elements or update the mesh) must use trans-
actional reads and writes. This may require rewriting the
data structures in terms of transactional operations.

An important note is that, unlike many of the bench-
marks that transactional memories are applied to, the
transactions in this problem are long running and access
relatively large amounts of memory. Table 1 provides
some data about the average performance characteristics
of a single transaction in this problem when executed on
an Itanium 2.

We see that the transaction executes for far longer than
most microbenchmarks. Also, the number of memory op-
erations is significantly higher than the number of opera-
tions involved in the microbenchmarks of, e.g., [5]. Note

also that although the number of L1 cache misses is not
necessarily representative of working set size, it indicates
that the actual working set is likely to be much larger than
the 250 lines of L1 cache on our target system, meaning
that hardware transactional memories may overflow their
transactional caches.

These characteristics make simple hardware transac-
tional memories [7] unsuitable for our purposes. How-
ever, software transactional memories, such as [5, 6], or
more advanced hardware approaches [1, 12] may suffice,
although their efficiency in the context of long-running
transactions must still be studied.

5. Transactional Memory Limitations

While transactions are an intuitive approach to the opti-
mistic parallelization demands of the mesh generation al-
gorithm, current implementations of transactional mem-
ory (both software and hardware) exhibit a few problems
that may adversely affect the performance of the parallel
Delaunay mesh generation algorithm. These two issues
are scheduling of conflicting transactions and conserva-
tive interference detection.

5.1 Scheduling of Conflicting Transactions

Consider two concurrent cavity expansions whose cavi-
ties overlap. If these transactions attempt to commit si-
multaneously, it is possible for both to be rolled back [5].
This is because most realistic implementations of trans-
actional memory do not commit the modified state of a
transaction in a single step, so it is possible that both
transactions attempt to update shared state in inconsistent
ways. If both transactions are immediately re-executed,
they are likely to conflict again. This type of livelock is
a common issue with transactional memories. The tra-
ditional solution to this problem is some form of ran-
dom back-off, to allow some forward progress. From an
efficiency standpoint, this is not ideal; a better solution
would be to abort one of the transactions and to use the
now-idle resources to execute a different transaction. This
solution avoids livelock while not incurring the overhead
of back-off.

However, as we noted above, the isolation of concur-
rently executing transactions means we must select the el-
ements to process outside of the transactions (otherwise
we risk two transactions choosing to work on the same
element). Unfortunately, this means that the default ap-
proach is to continue attempting to process a single ele-
ment until the transaction successfully commits, preclud-
ing our use of a more efficient scheduling policy as de-
scribed above.

One solution is to use a transactional memory sys-
tem which provides user-specified abort handlers, such
as LogTM [10]. Thus, on abort, rather than simply rolling
back the transaction, one could re-enqueue the current el-
ement and dequeue a new element before restarting the
transaction, thus ensuring that the next execution of the
transaction will operate on a different element than the
previous execution.

Open Nesting

A more general solution may be provided by the open
nesting approach as discussed in [11]. Nested transac-
tions that are performed in an “open” manner within a
parent transaction are allowed to modify shared memory
without waiting for the enclosing transaction to commit.
Thus, it is possible for a transaction to make changes that
are immediately visible to other transactions, rather than
waiting until commit.

This would allow the operations on the worklist to ap-
pear within the transaction. We can execute the worklist
dequeue to obtain an element to process as an open trans-
action. Because the open nested transaction modifies the
worklist before the outer transaction commits, concurrent
transactions will see the results of previous dequeues and
hence choose distinct elements to work on.

Because shared memory is modified directly, it is nec-
essary to provide “undo” actions to reverse the effects
of an open nested transaction in the case of an abort. In
this case, a worklist dequeue is undone with an enqueue.
On abort, a transaction will re-enqueue the element it is
working on, providing the desired rollback behavior as
described above.

While this seems like a natural solution, there are
many constraints that must be placed on open nested
transactions for them to behave properly within the trans-
actional model. Care must be taken that modifications
can always be undone and that modifications will not
affect the isolation and atomicity of the overall transac-
tion. Current implementations of open nesting, such as
ATOMOS [3], do not provide the necessary guarantees
to ensure that open nesting is performed safely, choos-
ing instead to relax the isolation guarantees provided by
transactions. Thus, the burden falls upon the programmer
to utilize open nesting correctly.

We feel that as currently realized, open nesting is
overly complex; using it correctly requires the program-
mer to reason about concurrent effects and potential race
conditions. Further investigation is warranted to design
an open nesting system that provides the functionality we

Transaction 1 ED"ED_’ECD C\B

¢ T
p

)

\

ST
/|”T’\ \’f’Tﬂ\
N ke - T

Figure 8. Concurrent insertions into a list

desire while maintaining the programmability of normal
transactions.

5.2 Conservative Interference Detection

The second drawback of current transactional memories
is that they are too conservative; they may detect in-
terference and trigger unnecessary rollbacks. This is an
odd charge to level against transactional memory, since
one of the motivations for the transactional model is the
conservative synchronization enforced by many locking
schemes, an issue that transactional memories attempt to
avoid.

Consider the example of insertion into a sorted linked
list, as seen in Figure 8. Here we see two transactions
attempting to insert new nodes into the list at different
points. Ideally, these two insertions can proceed in par-
allel, as they will not interfere with one another. How-
ever, the first transaction, in traversing the list to reach the
insertion point, has read locations that the second trans-
action will attempt to modify. A standard transactional
memory will detect interference between these two trans-
actions and eventually determine that the only safe course
of action is serialization, despite the “high-level” inde-
pendence of the two transactions.

At a high level, the problem is that there are certain in-
variants on the abstract data type that must be preserved
for correct execution of the program. Ensuring that there
are no conflicting reads and writes to the concrete data
structures that implement the abstract data type is suffi-
cient but not necessary to ensure that the high level invari-
ants are respected. In the transactional code shown in Fig-
ure 7, two transactions interfere if and only if their cav-
ities overlap. However, the transactional memory merely
enforces that they do not perform incompatible reads and
writes to memory locations of the concrete data structure,
which might result in false positives which detect spuri-
ous interference.

Let us consider how these false positives could arise
in the mesh generation problem. At the abstract level, we
can treat the mesh as a graph. Each node of the graph
represents an element in the mesh, and adjacency in the

graph models adjacency in the mesh (so each element
has at most three neighbors). In this high level view of
the structure, we see that we want to detect interference
(and hence trigger a roll back) only if two transactions
access the same nodes in the graph (e.g., one reads an
element which is then removed from the graph by another
transaction).

However, transactional memory does not detect inter-
ference at this high level. Rather, it focuses on conflicts
that occur when accessing specific memory locations —
a fundamentally low-level view of interference. Because
transactional memory operates at a low level, the amount
of interference detected is highly dependent on the con-
crete implementation of the mesh data structure. How-
ever, regardless of the concrete implementation, it is not
possible to avoid false positives.

Adjacency list: The simplest implementation of a
graph is as an adjacency list. The adjacency list maintains
a map from each node in the graph to a list of its neigh-
bors. If this structure is implemented using a standard li-
brary such as STL, it will be based around balanced-trees
(the default STL map). Thus, any additions or removals
of nodes from the graph will result in large portions of
the data structures being accessed and modified (due to
procedures such as tree rebalancing). Furthermore, be-
cause the edges are stored in an adjacency list, steps such
as expand in the algorithm will require reading large por-
tions of this data structure (to find neighbors). The upshot
is that even if two transactions do not access the same el-
ements of the mesh, they will access large parts of the
mesh data structure, and are likely to cause low level
interference, leading to a high number of false positives.

Local edge information: One technique that could be
used to prevent some low level interference is moving
the adjacency information from a global adjacency list
down to the nodes themselves. Thus, each node maintains
a list of its neighbors, but this information is not globally
visible. Instead, the only globally visible portion of the
graph is a “membership set” which keeps track of which
nodes are in the graph. Thus, operations that require find-
ing neighbors (such as expand) no longer require read-
ing from a global structure. Although this implementa-
tion still suffers from false positives, they are less likely
for two reasons. One is that two transactions that access
different elements will not interfere in an adjacency list
(since there isn’t one), instead only potentially interfer-
ing in the membership set. The second is that elements
are only added and removed from the mesh at the end of
a transaction, meaning that the potential interference ex-

posed by modifying the data structure is only “active” for
a short period of time.

Hash set: A final optimization that may reduce the
number of false positives is to implement the member-
ship set with a hash set instead of an STL set (which uses
a balanced tree). This will reduce interference as transac-
tions will no longer access the structure extensively for
operations such as tree rebalancing. However, even the
use of a hash set does not eliminate the potential for false
positives. Note that if two distinct elements hash to the
same bucket, transactional memory will still detect inter-
ference even if the two transactions access disjoint sets of
elements and therefore should not interfere. This problem
is exacerbated because, in general, a transaction adds and
removes several elements from the mesh (as it removes
all the elements in the cavity and inserts all the newly
created elements), increasing the likelihood of low level
interference.

High Level Transactional Memory

As we see, regardless of the concrete implementation of
the mesh data structure, transactional memory still has
the potential to detect irrelevant interference and hence
trigger unnecessary roll backs.

We believe that what may be necessary is a transac-
tional memory implementation that is aware of high level
abstractions. Thus, to this implementation, it would be
apparent that the insertion and removal of distinct ele-
ments from the mesh should not trigger interference, even
if at the low level a typical transactional memory imple-
mentation would have detected interference. Implement-
ing such a transactional memory may require significant
work, as the transactional memory should ensure that the
operations on the structure that do not trigger interference
still complete correctly when executed concurrently.

6. Conclusion

We presented Delaunay mesh generation, an algorithm
for producing guaranteed-quality meshes. We showed
how this algorithm can be easily parallelized by pro-
cessing multiple elements from the set concurrently.
However, this approach requires that the cavities cre-
ated during processing do not interfere with each other.
We demonstrated how optimistic parallelism, and specifi-
cally the transactional model, provides a straightforward,
easily implemented way to guarantee that the parallel ex-
ecution is correct.

We also discussed shortcomings in current transac-
tional memory implementations that may hinder parallel
efficiency: inefficient handling of conflicting transactions

as well as overly conservative interference detection. We
feel that addressing these issues is an important avenue
of exploration in transactional memory research.

We believe there are many other algorithms that have
the properties similar to those of the Delaunay mesh gen-
eration algorithm — a worklist structure with infrequent
dependences between work units, which cannot be de-
termined statically. One example, also from the same
general domain, is advancing front mesh generation [9].
In this scheme, the mesh is “grown” inwards from the
boundaries by selecting segments on the boundary and
adding a new point on the interior to create a new ele-
ment. Effectively, this requires placing all the segments
of the boundary into a queue, and as segments are pro-
cessed, updating the queue with the new boundary seg-
ments. Advancing front mesh generation can be paral-
lelized in much the same way as Delaunay mesh genera-
tion, and the use of a similar transactional approach holds
promise.

References

[1] C. Scott Ananian, Krste Asanovic, Bradley C. Kuszmaul,
Charles E. Leiserson, and Sean Lie. Unbounded
transactional memory. In HPCA ’'05: Proceedings of
the 11th International Symposium on High-Performance
Computer Architecture, pages 316-327, Washington,
DC, USA, 2005. IEEE Computer Society.

[2] Christos D. Antonopoulos, Xiaoning Ding, Andrey
Chernikov, Filip Blagojevic, Dimitrios S. Nikolopoulos,
and Nikos Chrisochoides. Multigrain parallel delaunay
mesh generation: challenges and opportunities for mul-
tithreaded architectures. In ICS ’05: Proceedings of the
19th annual international conference on Supercomput-
ing, pages 367-376, New York, NY, USA, 2005. ACM
Press.

[3] Brian D. Carlstrom, Austen McDonald, Hassan Chafi,
JaeWoong Chung, Chi Cao Minh, Christos Kozyrakis,
and Kunle Olukotun. The ATOMOS transactional
programming language. In PLDI '06: Proceedings of
the Conference on Programming Language Design and
Implementation, 2006.

[4] L. Paul Chew. Guaranteed-quality mesh generation for
curved surfaces. In SCG ’'93: Proceedings of the ninth
annual symposium on Computational geometry, pages
274280, New York, NY, USA, 1993. ACM Press.

[5] Tim Harris and Keir Fraser. Language support for
lightweight transactions. In OOPSLA "03: Proceedings
of the 18th annual ACM SIGPLAN conference on
Object-oriented programing, systems, languages, and
applications, pages 388—402, New York, NY, USA, 2003.
ACM Press.

[6] Maurice Herlihy, Victor Luchangco, Mark Moir, and III

William N. Scherer. Software transactional memory
for dynamic-sized data structures. In PODC ’03:
Proceedings of the twenty-second annual symposium
on Principles of distributed computing, pages 92—-101,
New York, NY, USA, 2003. ACM Press.

[7] Maurice Herlihy and J. Eliot B. Moss. Transactional
memory: architectural support for lock-free data struc-
tures. In ISCA ’93: Proceedings of the 20th annual in-
ternational symposium on Computer architecture, pages
289-300, New York, NY, USA, 1993. ACM Press.

[8] S. Horwitz, P. Pfieffer, and T. Reps. Dependence analysis
for pointer variables. In Proceedings of the SIGPLAN
'89 Conference on Program Language Design and
Implementation, Portland, OR, June 1989.

[9] P. Ivanyi. Finite Element Mesh Generation. Saxe-Coburg
Publishers, 2004.

[10] Kevin E. Moore, Jayaram Bobba, Michelle J. Moravan,
Mark D. Hill, and David A. Wood. Logtm: Log-based
transactional memory. In HPCA ’06: Proceedings of
the 12th International Symposium on High Performance
Computer Architecture, 2006.

[11] J. Eliot B. Moss and Antony L. Hosking. Nested trans-
actional memory: Model and preliminary architectural
sketches. In SCOOL ’05: Sychronization and Concur-
rency in Object-Oriented Languages, 2005.

[12] Ravi Rajwar, Maurice Herlihy, and Konrad Lai. Virtual-
izing transactional memory. SIGARCH Comput. Archit.
News, 33(2):494-505, 2005.

[13] Jim Ruppert. A new and simple algorithm for quality 2-
dimensional mesh generation. In SODA "93: Proceedings
of the fourth annual ACM-SIAM Symposium on Discrete
algorithms, pages 83-92, Philadelphia, PA, USA, 1993.
Society for Industrial and Applied Mathematics.

[14] M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape
analysis via 3-valued logic. ACM Transactions on
Programming Languages and Systems, 24(3), May 2002.

[15] Jonathan Richard Shewchuk. Triangle: Engineering a 2D
Quality Mesh Generator and Delaunay Triangulator. In
Applied Computational Geometry: Towards Geometric
Engineering, volume 1148 of Lecture Notes in Computer
Science, pages 203-222. Springer-Verlag, May 1996.

