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Abstract: Recently, a generalization of the Pearson differential equation has
appeared in the literature, from which a vast majority of continuous proba-
bility density functions (pdf’s) can be generated, known as the generalized
Pearson system of continuous probability distributions. This paper derives
a new family of distributions based on the generalized Pearson differential
equation, which is a natural generalization of the generalized inverse Gaus-
sian distribution. Some characteristics of the new distribution are obtained.
Plots for the cumulative distribution function, pdf and hazard function, tables
with percentiles and with values of skewness and kurtosis are provided. It
is observed that the new distribution is skewed to the right and bears most
of the properties of skewed distributions. As a motivation, the statistical ap-
plications of the results to a problem of forestry have been provided. It is
found that our newly proposed model fits better than gamma, log-normal and
inverse Gaussian distributions. Since many researchers have studied the use
of the generalized inverse Gaussian distributions in the fields of biomedicine,
demography, environmental and ecological sciences, finance, lifetime data,
reliability theory, traffic data, etc., we hope the findings of the paper will be
useful for the practitioners in various fields of theoretical and applied sci-
ences.

Zusammenfassung: Neuerdings ist in der Literatur eine Verallgemeinerung
der Pearson Differentialgleichung erschienen, von der eine große Anzahl
stetiger Dichtefunktionen abgeleitet werden kann, die als generalisiertes Pear-
son System stetiger Verteilungsfunktionen bekannt sind. In diesem Artikel
wird eine neue Familie von Verteilungen hergeleitet, welche auf der general-
isierten Pearson Differentialgleichung beruht und die eine natürliche Verall-
gemeinerung der generalisierten inversen Gauss-Verteilung ist. Einige Eigen-
schaften dieser neuen Verteilung werden hergeleitet. Plots der Verteilungs-
funktion, Dichtefunktion und der Hazardfunktion, Tabellen mit den Perzen-
tilen und mit Werten der Schiefe und der Kurtosis werden angeboten. Es
fällt auf, dass die neue Verteilung rechtsschief ist und die meisten Eigen-
schaften von schiefen Verteilungen aufweist. Als Motivation werden die
Resultate auf ein Problem in der Forstwirtschaft angewandt. Dabei passt
unser neues Modell besser als eine Gamma-, log-normal und inverse Gauss-
Verteilung. Da viele Forscher den Gebrauch von generalisierten inversen
Gauss-Verteilungen in der Biomedizin, Demographie, Umweltwissenschaft,
Finanzwesen, bei Lebensdauer- und Verkehrsuntersuchungen, etc., untersucht
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haben, hoffen wir, dass unsere Ergebnisse für Praktiker in den verschiedenen
Fächern der theoretischen und angewandten Wissenschaften von Nutzen sein
werden.

Keywords: Generalized Inverse Gaussian Distribution, Goodness-of-Fit,
Modified Bessel Function, Pearson Generalized Differential Equation.

1 Introduction
Recently, a generalization of the Pearson differential equation has appeared in the litera-
ture:

dfX(x)

dx
=

a0 + a1x + a2x
2 + · · ·+ amxm

b0 + b1x + b2x2 + · · ·+ bnxn
fX(x) , (1)

where m, n ≥ 1 are arbitrary integers, and the coefficients a and b are real numbers. By
proper choice of the parameters a and b, a vast majority of continuous probability density
functions (pdf’s) can be generated from equation (1), known as the generalized Pearson
system of continuous probability distributions. Note that the classical differential equation
introduced by Karl Pearson during the late 19th century is a special case of (1). For details
on the Pearson system of continuous probability distributions, the interested readers are
referred to Elderton (1953), Stuart and Ord (1994), and Johnson, Kotz, and Balakrishnan
(1994), among others. The well-known families of continuous probability distributions
such as the normal and the Student t distributions (known as Pearson Type VII), beta
distribution (known as Pearson Type I), and gamma distribution (known as Pearson Type
III), introduced by Karl Pearson during the late 19th century can be generated as a solution
to (1) by a proper choice of the parameters. For example, the normal distribution belongs
to the generalized Pearson system of continuous probability distributions when m = 1,
n = 2, a0 = −µ, a1 = 1, b0 = −σ2, b1 = 0, b2 = 0. It appears from the literature
that not much attention has been paid to the study of the family of continuous pdf’s that
can be generated as a solution to the generalized Pearson differential equation (1), except
Dunning and Hanson (1977), Chaudhry and Ahmad (1993), and recently Shakil, Singh,
and Kibria (2010). In Dunning and Hanson (1977), a generalization of the Pearson curves
has been obtained as solution of (1) which best fits a histogram in the mean square sense
and satisfies certain statistical constraints. Chaudhry and Ahmad (1993) have introduced
a distribution with the following pdf as a solution to equation (1)

fX(x) = 2

√
α

π
exp

[
−

{√
αx−

√
βx−1

}2
]

, α > 0, β > 0, x > 0, (2)

when m = 4, n = 3, b0 = b1 = b2 = 0, a4/2b3 = −2α, a0/2b3 = 2β, b3 6= 0, which
defines the root reciprocal inverse Gaussian distribution, that is, the distribution of the
random variable X = 1/

√
Y , where Y has an inverse Gaussian (IG) distribution. The

mode of Chaudhry and Ahmad’s pdf (2) is at x = (β/α)1/4, and is skewed to the right.
This paper derives a new family of continuous pdf’s as a solution to (1), which includes
the p-th root reciprocal of the IG distribution, that is, the distribution of the random vari-
able X = 1/ p

√
Y , where Y has an IG distribution. It will be seen that this new distribution



M. Shakil et al. 261

is more flexible and is a natural generalization of the IG and the generalized inverse Gaus-
sian (GIG) distributions. It has also been observed that a number of other distributions
including those of Chaudhry and Ahmad (1993) and Chou and Huang (2004) are special
cases of this distribution. For some discussions on IG and GIG, the interested readers are
referred to Jørgensen (1982), Johnson et al. (1994), and Chou and Huang (2004), among
others. In what follows, some characteristics of our newly proposed distribution, includ-
ing the expressions for the normalizing constant, pdf, cumulative distribution function
(cdf), k-th moment, Shannon’s entropy and relationships to other probability distribu-
tions, are derived. The plots for the cdf and pdf of the new distribution, including the
percentile points, for some selected values of parameters, have been provided. The in-
finite divisibility property of the newly proposed distribution family is discussed. The
distributional relationships to some distributions are established. The plots for the cdf,
pdf and hazard function, percentile points and tables for Pearson’s measures of skewness
and kurtosis for selected coefficients and parameters have been provided. The estimation
of parameters by maximum likelihood estimation and method of moments are discussed.
It is observed that the new distribution is skewed to the right and bears most of the prop-
erties of skewed distributions. Since many researchers have studied the uses of the IG
and the GIG distributions in the fields of biomedicine, demography, environmental and
ecological sciences, lifetime data, reliability theory, traffic data, etc., we hope the findings
of the paper will be useful for the practitioners in various fields of theoretical and applied
sciences.

The organization of this paper is as follows. In Section 2, the pdf and cdf of the
proposed distribution have been provided. Section 3 discusses some characteristics of
the new distribution. Some distributional relationships are presented in Section 4. The
percentage points of the new distribution are given in Section 5. The statistical applica-
tions of the results are contained in Section 6. Some concluding remarks are provided in
Section 7. The derivations of the cdf, pdf, k-th moment, etc, in this paper involve some
special functions, which are provided in the Appendix.

2 Derivation of the New Probability Distribution
In this section, the new continuous pdf is derived as a solution to the generalized Pearson
differential equation (1). The expression for the cdf of the new distribution is obtained.
Some graphical representations of the pdf and cdf of the new distribution for some se-
lected values of the parameters are provided.

2.1 Expressions for the Normalizing Constant and for the PDF
We consider the generalized Pearson differential equation (1) in the following form

dfX(x)

dx
=

a0 + apx
p + a2px

2p

bp+1xp+1
fX(x) , bp+1 6= 0 , x > 0 , (3)

when m = 2p, n = p + 1, a1 = a2 = · · · = ap−1 = ap+1 = · · · = a2p−1 = 0 and
b0 = b1 = b2 = · · · = bp = 0. The solution to the differential equation (3) is given by

fX(x) = Cxν−1 exp
(−αxp − βx−p

)
, x > 0, α ≥ 0, β ≥ 0, ν ∈ R , (4)
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where α = −(a2p)/pbp+1, β = a0/pbp+1, ν = (ap+bp+1)/bp+1, bp+1 6= 0, p > 0, and C is
the normalizing constant. According to the parameters {α, β, ν, p}, our newly proposed
family of generalized GIG (GGIG) distributions may be classified into the following three
classes, for which, using Lemma 1 and definition of gamma function (see the Appendix),
the respective normalizing constants are also easily evaluated as given below:

1. Class I: α > 0, β > 0, ν ∈ R, and p > 0;

C =
p

2

(
α

β

)ν/2p
1

Kν/p

(
2
√

αβ
) , (5)

where Kν/p(2
√

αβ) denotes the modified Bessel function of third kind (see the
Appendix).

2. Class II: α > 0, β = 0, ν > 0, and p > 0;

C =
p(α)ν/p

Γ(ν/p)
.

3. Class III: α = 0, β > 0, ν < 0, and p > 0;

C =
p

βν/pΓ(−ν/p)
.

Special Cases of the GGIG Distribution:
It is easy to see that, by a simple transformation of the variable x or by taking special
values of the parameters {α, β, ν, p}, a number of distributions such as the IG (with p = 1,
ν = −1/2), GIG (with p = 1), reciprocal IG (with p = 1, ν = 1/2), hyperbolic (with
p = 1, ν = 1), hyperbola (with p = 1, ν = 0), generalized gamma (with α = (1/µ)p,
β = 0, ν = pk, where µ > 0, k > 0, see Achcar and Bolfarine, 1986), and pdf for other
well-known distributions such as chi-squared (with α = 1/2, β = 0, p = 1, ν = k/2,
where k > 0 is an integer), chi (with α = 1/2, β = 0, p = 2, ν = k, where k > 0 is
an integer), Erlang (with β = 0, p = 1, ν = c, where c > 0 is an integer), exponential
(with p = 1, ν = 1, β = 0), gamma (with p = 1, β = 0), Weibull (with p = ν, β = 0,
α = (1/η)ν , where η > 0), Rayleigh (with p = 2, ν = 2, β = 0, α = 1/2η2), Maxwell-
Boltzman (with p = 2, ν = 3, β = 0, α = 1/2η2), half-normal (with p = 2, ν = 1,
β = 0, α = 1/2η2), log-normal (with α = (1/µ)p, β = 0, ν = pk, where µ > 0, k > 0),
and letting k → ∞ (see Lawless, 2003), inverse gamma (with p = 1, α = 0, ν = −τ ,
where τ > 0), inverse half-normal (with p = 2, α = 0, ν = −1, β = θ2/π, where θ > 0),
among others, can be derived as special cases from the equation (4), belonging to one of
the classes as defined above.

It is also worth noting that our family of GGIG distributions is closed under the power
transformation. That is, if X ∼ GGIG(α, β, ν, p), then Y = Xs ∼ GGIG(α, β, ν/s, p/s),
where s > 0. One can use this property in information analysis, for which the interested
readers are referred to Dadpay, Soofi, and Soyer (2007), where similar properties have
been considered in the context of the generalized gamma distribution family. This paper
considers Class I as it is more general than the other two classes. Thus, from (4) and (5),
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for a random variable X , the following continuous pdf in terms of the modified Bessel
function of the third kind is generated from the generalized Pearson differential equation
(3):

fX(x) =
p

2

(
α

β

) ν
2p xν−1 exp (−αxp − βx−p)

Kν/p

(
2
√

αβ
) , (6)

where x > 0, α > 0, β > 0, ν ∈ R, and p > 0. We refer to this as the GGIG distribution
family. Note that ν and p are shape parameters, and α and β denote scale parameters.
Using the definition of the Whittaker function (see appendix A), equation (6) is easily
expressed as

fX(x) =
p√
π

(
α2ν+p

β2ν−p

) 1
4p xν−1 exp(−αxp − βx−p)

W0,ν/p(4
√

αβ)
, α > 0, β > 0, x > 0, p > 0 .

Remark 1: In view of the facts that GIG is used in the area of finance (as mixing distri-
bution) in the context of the generalized hyperbolic distribution family (see e.g. Prause,
1997, 1999), and as our proposed distribution family is a generalization of the GIG dis-
tribution (which we refer to as the GGIG distribution family), it is hoped that one can use
the GGIG in the area of finance and other fields of statistical research.

Remark 2: (Infinite Divisibility of the GGIG Distribution Family) Note that when p = 1
and ν ∈ R, equation (6) reduces to the pdf of the GGIG distribution. The infinite divis-
ibility of the GIG distribution has been determined by Barndorff-Nielson and Halgreen
(1977), for which the interested readers are also referred to Marshall and Olkin (2007,
p. 466) or Theorem 5.22 of Steutel and Harn (2004, p. 361). On the other hand, if p > 1,
then by Theorem 9.1 of Steutel and Harn (2004, p. 115) it follows that fX(x) is not in-
finitely divisible.

2.2 Derivation of the CDF
Suppose X is a random variable with the pdf fX(x) as given in (6). Then, using the def-
initions of exponential and incomplete gamma functions, the cdf of the random variable
X can easily be expressed as

FX(x) = Pr(X ≤ x) =

∫ x

0

fX(x)dx

=
1

2(αβ)ν/2pKν/p(2
√

αβ)

∞∑

k=0

(−1)k(αβ)k

k!
γ

(
ν−pk

p
, αxp

)
, (7)

where α > 0, β > 0, ν ∈ R, p > 0. By direct differentiation of the cdf in (7) and
noting that ∂γ(a, t)/∂t = ta−1e−t, it can be easily verified that dFX(x)/dx = fX(x),
where fX(x) denotes the pdf of the random variable X as given in (6). Using the series
expansion of exp(−bt−1) in the definition of the generalized incomplete gamma function,
the following result easily follows:

γ(η, z; b) =

∫ z

0

tη−1 exp(−t− bt−1)dt =
∞∑

k=0

(−b)k

k!
γ(η − k, z) , (8)
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where γ(η − k, z) denotes the ordinary incomplete gamma function. Thus, using (8) in
equation (7), the following expression for the cdf is obtained:

FX(x) =
γ(ν

p
, αxp; αβ)

2(αβ)ν/2pKν/p(2
√

αβ)
, α > 0, β > 0, ν ∈ R, p > 0 . (9)

Using the definition of Whittaker function, the cdf (9) is easily expressed as

FX(x) =
γ(ν

p
, αxp; αβ)

√
π(αβ)

2ν−p
4p W0,ν/p(4

√
αβ)

, α > 0, β > 0, ν ∈ R, p > 0 . (10)

As a special case of equation (6) for ν = 1, p = 2, by substituting t =
√

z/α in the
following integral, and applying the Lemma 2 (see the Appendix), the cdf of the random
variable X is easily expressed in terms of the generalized incomplete gamma and error
functions as follows:

FX(x) = 2

√
α

π
exp(2

√
αβ)

∫ x

0

exp(−αt2 − βt−2)dt

=
1√
π

exp(2
√

αβ)γ
(

1
2
, αx2; αβ

)
(11)

= 1− 1√
π

exp(2
√

αβ)Γ
(

1
2
, αx2; αβ

)
(12)

= 1− 1

2

[
erfc

(√
αx−

√
βx−1

)
+ exp(4

√
αβ)erfc

(√
αx +

√
βx−1

)]
, (13)

where α > 0, β > 0. Further, applying the equations (2.130) and (2.131) of Chaudhry
and Zubair (2002, p. 53), the cdf of X , given in (12), can easily be expressed in terms of
the incomplete gamma and confluent hypergeometric functions respectively as follows:

FX(x) = 1− 1

2
√

π

[
Γ

(
1
2
, u

)
+ exp(4

√
αβ)Γ

(
1
2
, v

)]
,

and

FX(x) = 1− 1√
π

exp(2
√

αβ) exp(−αx2 − βx−2)
[
ψ

(
1
2
, 1

2
; u

)
+ ψ

(
1
2
, 1

2
; v

)]
,

where u = αx2 + βx−2 − 2
√

αβ, and v = αx2 + βx−2 + 2
√

αβ, x > 0, α > 0, β > 0.
Noting that erfc(z/

√
2) = 1 − 2Φ(z), where Φ(z) denotes the cdf of the standard

normal distribution, the cdf of the random variable X , given by the equations (13), is
easily be expressed in terms of Φ as

FX(x) =
1

2

[
1− exp(4

√
αβ)

]
+ Φ

(√
2
(√

αx−
√

βx−1
))

+ exp(4
√

αβ)Φ
(√

2
(√

αx +
√

βx−1
))

,

where x > 0, α > 0, β > 0. Applying theorem 2.8 of Chaudhry and Zubair (2002, p. 57)
and equation 28 of Erdélyi, Magnus, Oberhettinger, and Tricomi (1953, p. 226), the cdf
of X , given by the equations (11) or (12), is expressed as

FX(x) = 1− 1√
π

exp(2
√

αβ)
[
Γ

(
1
2

)
0F1

(
1
2
; αβ

)− 2
√

αxΓ2

(−1
2
, 1

2
, αx2, βx−2

)]
,

where Γ2(·) denotes Horn’s hypergeometric series of two variables.
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2.3 Plots of the PDF and CDF of the Random Variable X

The possible shapes of the pdf (6) and cdf (9) of X are provided for some selected values
of the parameters in Figures 1 to 4, respectively. The effects of the parameters can easily
be seen from these graphs. For example, it is clear from the plotted Figures 1 to 2, for
selected values of the parameters, the distributions of X are positively (that is, right)
skewed with longer and heavier right tails.

Figure 1: PDF plots of X for α = 1, β = 1, ν = 0, p = 1, 2, 3, 4 (left), and for α = 1,
β = 1/2, p = 1, ν = −1, 0, 1, 2 (right).

Figure 2: PDF plots of X for α = 0.2, ν = 3/2, p = 2, β = 0.2, 0.5, 1, 2 (left), and for
β = 1/2, ν = 0, p = 1, α = 0.2, 0.5, 1, 2 (right).
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Figure 3: CDF plots of X for α = 1, β = 1, ν = 0, p = 1, 2, 3, 4 (left), and for α = 1,
β = 1/2, p = 1, ν = −1, 0, 1, 2 (right).

Figure 4: CDF plots of X for α = 0.2, ν = 3/2, p = 2, β = 0.2, 0.5, 1, 2 (left), and for
β = 1/2, ν = 0, p = 1, α = 0.2, 0.5, 1, 2 (right).

3 Properties of the New Distribution

3.1 Mode
The mode is the value of x for which the pdf fX(x) is maximal. Now, differentiating (6),
we have

dfX(x)

dx
=
−αpxp + βpx−p + ν − 1

x
fX(x) , (14)
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which, when equated to 0, gives the mode of the newly proposed pdf to be

xm =
p

√
ν − 1 +

√
(ν − 1)2 + 4αβp2

2αp
, α > 0, β > 0, p > 0 ,

which is obtained by solving the quadratic equation αp(xp)2 − (ν − 1)xp − βp = 0, and
ignoring the second root since, by our assumption, x > 0. Differentiating (14), we get

d2fX(x)

dx2
=

1

fX(x)

dfX(x)

dx

[
dfX(x)

dx
− x−1

]
− p2x−2(αxp + βx−p) .

By simple arguments, it can easily be seen that

d2

dx2
fX (xm) < 0 .

Thus, the maximum value of the pdf (6) is given by fX (xm). Clearly, the newly proposed
pdf defined by (6) is unimodal.

3.2 Moments
3.2.1 k-th Moment (About the Origin)

Suppose X is a random variable with pdf fX(x) as given in (6). Then, using the Lemma
1, the k-th moment, αk, of X , for some integer k > 0, is easily expressed in terms of
Macdonald function as

αk = E(Xk) =

∫ ∞

0

xkfX(x)dx

=

(
β

α

)k/2p K(k+ν)/p(2
√

αβ)

Kν/p(2
√

αβ)
, α > 0, β > 0, k > 0, p > 0 . (15)

Using the definition of the Whittaker function, αk is expressed as

αk = 2

√
α

π

(
β

α

) 2k+p
4p K(k+ν)/p(2

√
αβ)

W0,ν/p(4
√

αβ)
, α > 0, β > 0, k > 0, p > 0 . (16)

Note: From equations (15) and (16), one can easily obtain the first, second and higher
moments. The moments of different orders when p = 2 and ν = 1 in (15) can be found
in Chaudhry and Ahmad (1993).

3.2.2 k-th Central Moment

It is easy to see that the k-th central moment, βk, of X is

βk = E(X − E(X))k =

∫ ∞

0

(x− E(X))kfX(x)dx

=
k∑

j=0

(−1)j

(
k

j

)
Ej(X)E(Xk−j) , (17)
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where Ej(X) and E(Xk−j) are obtained by the equations (15) and (16). From (17), one
can obtain the second, third, and higher central moments.

Note: Mean, Variance, Coefficients of Skewness and Kurtosis:

• Taking k = 1 in (15) and (16), the mean α1 = E(X) can be obtained.

• Taking k = 2 in (17), the variance β2 = E(X − E(X))2 is obtained.

• The Pearson’s measure of skewness γ1 and the kurtosis γ2 are given by

γ1 =
β3

β
3/2
2

and γ2 =
β4

β2
2

,

where the variance β2 and the third and fourth central moments β3 and β4 are ob-
tained from (17) by taking k = 2, k = 3, and k = 4, respectively.

Using a Maple 11 program, numerical values of the skewness γ1 and the kurtosis γ2

for some selected values of the parameters are provided in the Tables 1 to 3. It is evident
from these computations that the skewness is positive which implies that distribution of
X is positively skewed. Moreover, it is observed from these tables that for all selected
values of the parameters the kurtosis γ2 > 3 implying that the distribution is heavier
tailed, except for the parameters α = 1, β = 1, ν = 2, p = 4, for which γ2 = 2.908 < 3,
implying that the distribution is lighter tailed.

Table 1: Moments for the parameters α = 1, β = 1, ν = −1, p = 1, 2, 3, 4
p β2 β3 β4 γ1 γ2

1 0.3369 0.4513 1.3785 2.3079 12.1449
2 0.0982 0.0300 0.0415 0.9729 4.2984
3 0.0450 0.0060 0.0068 0.6295 3.3795
4 0.0256 0.0019 0.0020 0.4673 3.0864

Table 2: Moments for the parameters α = 1, β = 1, ν = 0, p = 1, 2, 3, 4
p β2 β3 β4 γ1 γ2

1 0.7200 1.1797 4.6966 1.9311 9.0607
2 0.1191 0.0356 0.0560 0.8657 3.9504
3 0.0490 0.0061 0.0078 0.5657 3.2471
4 0.0268 0.0019 0.0022 0.4213 3.0158

Table 3: Moments for the parameters α = 1, β = 1, ν = 2, p = 1, 2, 3, 4
p β2 β3 β4 γ1 γ2

1 2.1450 4.1439 26.0664 1.3190 5.6652
2 0.1598 0.0422 0.0880 0.6600 3.4471
3 0.0560 0.0058 0.0095 0.4403 3.0473
4 0.0289 0.0016 0.0024 0.3303 2.9080
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3.3 Characteristic Function and r-th Cumulant
It is easy to see that the characteristic function of X is given by

MX(it) = E(eitX) =
∞∑

k=0

(it)k

k!
E(Xk) , (18)

where i =
√−1 is the imaginary number (i2 = −1) and E(Xk) denotes the k-th moment

about the origin of X , which can be obtained from (15) and (16). The r-th cumulant κr

of X having the characteristic function (18) is given by

κr =
1

ir

[
dr

dtr
log fX(t)

]

t=0

, r = 1, 2, . . . ,

from which, by successive differentiation, it can be seen that

κ1 = E(X) = α1 , κ2 = var(X) = β2 , κ3 = E(X − E(X)]3 = β3 , etc.

3.4 Entropy
An entropy provides an excellent tool to quantify the amount of information (or uncer-
tainty) contained in a random observation regarding its parent distribution (population). A
large value of entropy implies the greater uncertainty in the data. As proposed by Shannon
(1948), entropy of an absolutely continuous random variable X having pdf φX(x) is de-
fined as

H(X) = E(− log(φX(X)) = −
∫

S

φX(x) log(φX(x))dx , (19)

where S = {x : φX(x) > 0}. Thus, in view of (19), the entropy of X having pdf (6) with
normalizing constant C given by (5) is expressed as

H(X) = E(− log(fX(X)) = −
∫ ∞

0

log(fX(x))fX(x)dx

= αE(Xp) + βE(X−p)− (ν − 1)E(log X)− log(C) . (20)

Special Case: Suppose X is a random variable with pdf fX(x) as given in (6), where
p = 1, ν = 0, α = µ/a, β = µa, [a > 0, Re(µ) > 0]. Then, applying the Equation
(4.356.1), Page 577, in Gradshteyn and Ryzhik (2000), it can be seen that the expression
for the entropy as given in (20) reduces to the following interesting form:

H(X) = log(2aK0(2µ)) + 2µ
K1(2µ)

K0(2µ)
, a > 0, Re(µ) > 0 . (21)

3.5 Survival and Hazard Functions
The survival and hazard functions of the proposed distribution are respectively given by

S(x) = 1− FX(x) = 1−
γ

(
ν
p
, αxp; αβ

)

2(αβ)
ν
2p Kν/p(2

√
αβ)

, (22)
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and

h(x) =
fX(x)

1− FX(x)
=

p

2

(
α

β

) ν
2p xν−1 exp(−αxp − βx−p)

Kν/p(2
√

αβ)

1−
γ

(
ν
p
, αxp; αβ

)

2(αβ)
ν
2p Kν/p(2

√
αβ)

, (23)

where x > 0, α > 0, β > 0, ν ∈ R, and p > 0. The possible shapes of the hazard
function (23) are provided in Figure 5 for some selected values of the parameters.

Figure 5: Plots of the hazard function h(x) defined in (23) for β = 1/2, ν = 1, p = 2,
and α = 0.2, 0.5, 1, 2.

3.6 Estimation of the Parameters

3.6.1 The Method of Maximum Likelihood

Given a sample {xi}, i = 1, . . . , n, the likelihood function corresponding to (6) is given by
L =

∏n
i=1 f(xi). The objective of the likelihood function approach is to determine those

values of the parameters that maximize L. Suppose R = log(L) =
∑n

i=1 log(f(xi)).
Then the maximum likelihood estimates of the parameters α, β, ν, and p are obtained by
solving the maximum likelihood equations

∂R

∂α
= 0 ,

∂R

∂β
= 0 ,

∂R

∂ν
= 0 , and

∂R

∂p
= 0 .
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From these, upon differentiation, the following systems of equations are obtained:

∂R

∂α
=

n∑
i=1

[
ν

2αp
− xp

i −
√

β

α

K ′
ν/p(2

√
αβ)

Kν/p(2
√

αβ)

]
= 0 , (24)

∂R

∂β
=

n∑
i=1

[
ν

2βp
+ x−p

i +

√
α

β

K ′
ν/p(2

√
αβ)

Kν/p(2
√

αβ)

]
= 0 , (25)

∂R

∂ν
=

n∑
i=1

[
1

2p
log

α

β
+ log(xi)− 1

pKν/p(2
√

αβ)

∂

∂(ν/p)
Kν/p(2

√
αβ)

]
= 0 , (26)

∂R

∂p
=

n∑
i=1

[
1

p
− ν

2p2
log

α

β
− αpxp−1

i +βpx−p−1
i +

ν

p2Kν/p(2
√

αβ)

∂Kν/p(2
√

αβ)

∂(ν/p)

]

= 0 , (27)

where the derivatives K ′
λ(·) and ∂Kλ(·)/∂λ of the modified Bessel function Kλ(·) of

the third kind with respect to the argument and index (or order) λ, respectively, may be
computed using the analytical formulas provided in Abramowitz and Stegun (1970) and
Gradshteyn and Ryzhik (2000). Note that when p = 1 and ν = −1/2, the maximum
likelihood estimates of the parameters α and β can be found in Koutrouvelis, Canavos,
and Meintanis (2005). For p = 1 and ν ∈ R, equation (6) reduces to the pdf of the GIG
distribution. For the maximum likelihood estimates of the parameters α, β and ν of the
GIG distribution, the interested readers are referred to Jørgensen (1982). When p = 2
and ν = 1, the maximum likelihood estimates of the parameters α and β can be found
in Chaudhry and Ahmad (1993). When p > 2 and ν ∈ R, the maximum likelihood
estimates of the parameters α, β, ν, and p are determined by solving equations (24) to
(27) following the iteration methods as developed in Lee (2010) and using Maple 11.

3.6.2 The Method of Moments

The first three moments of the random variable X with pdf fX(x) in (6) are given by

αk = E(Xk) =

(
β

α

) k
2p K(k+ν)/p(2

√
αβ)

Kν/p(2
√

αβ)
, (28)

where ν ∈ R, α > 0, β > 0, p > 0, and k = 1, 2, 3, 4. Since the moment equation (28)
depends on the modified Bessel function Kλ(·) of the third kind, the moment estimation
of the parameters α, β, ν, and p are determined by solving the system of equations (28)
following the Newton-Raphson iteration method and using Maple 11.

4 Distributional Relationships
It is easy to see that, by a simple transformation of the variable X or by taking special
values of the parameters α, β, ν, p in equation (6), a number of distributions as given
below, including those of Chaudhry and Ahmad (1993) and Chou and Huang (2004), are
special cases of our proposed distribution. Thus, our distribution defines a new family
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(or a generalization) of GIG distributions. The details of the derivations of the following
distributional relationships can be directly obtained from the authors.

1. p-th root reciprocal IG distribution.

2. Root reciprocal IG distribution.

3. Good’s GIG distribution, see for example Good (1953), Wise (1975), and Jørgensen
(1982), among others.

4. For ν = 1, p = 2 equation (6) reduces to the pdf of the GIG distribution of
Chaudhry and Ahmad (1993).

5. p-th root of the GIG distribution: define X = p
√

Y , the p-th root of the GIG random
variable Y . Then it can be seen that the pdf of X is given by (6), which coincides
with those of Silva, Lopes, and Migon (2006) by suitably changing the parameters.

6. Relationship to GIG distributions in Seshadri and Wesolowski (2001), Wesolowski
(2002), and Chou and Huang (2004): taking p = 1 and ν = −ω, 0 < ω < ∞, in
(6), we obtain the GIG distributions of Wesolowski (2002), and Chou and Huang
(2004), with pdf as follows:

fX(x) =
1

2

α

β

−ω
2 x−ω−1 exp(−αx− βx−1)

K−ω(2
√

αβ)
, x > 0, α > 0, β > 0, ω > 0 ,

which reduces to the Seshadri and Wesolowski (2001) with α = 2a and β = 2b,
where a > 0, b > 0.

7. Relationship to the mixing distribution in Gneiting’s normal scale mixture: Gneiting
(1997) defines a class of normal scale mixtures whose mixing distribution coincides
with our newly proposed distribution by taking p = 1 and suitably changing the
parameters in (6). For more on normal scale mixtures and related literature, the
interested readers are referred to the paper of Gneiting (1997).

8. Relationships to other distributions: It can be shown that by a simple transforma-
tion of the variable x or by taking special values of the parameters α, β, ν, p, the
following product pdf’s are special cases (6):

(a) the product of the pdf’s of half-normal and inverse half-normal distributions,
(b) the product of the pdf’s of Rayleigh and inverse Rayleigh distributions,
(c) the product of the pdf’s of Maxwell and inverse Maxwell distributions
(d) the product of the pdf’s of chi and inverse chi distributions,
(e) the product of the pdf’s of gamma and inverse gamma distributions,
(f) the product of the pdf’s of Weibull and inverse Weibull distributions, and
(g) the product of the pdf’s of root reciprocal exponential and Maxwell distribu-

tions, among others.
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5 Percentiles
This section computes the percentage points of the distribution with pdf given in (6). For
any 0 < q < 1, the 100q-th percentile (also called the quantile of order q) is a number xq

such that the area under fX(x) to the left of xq is q. That is, xq is any root of the equation

F (xq) =

∫ xq

−∞
fX(u)du = q .

By numerically solving the equation for the cdf in (7), percentage points xq associated
with the cdf of X are computed for some selected values of the parameters. These are
provided in the Tables 4 to 7.

Table 4: Percentage points for α = 1, β = 1, ν = 0, p = 1, 2, 3, 4
p 75 % 80 % 85 % 90 % 95 % 99 %
1 1.5677 1.7485 1.9822 2.3137 2.8874 4.2540
2 1.2521 1.3223 1.4079 1.5211 1.6992 2.0625
3 1.1617 1.2047 1.2562 1.3226 1.4240 1.6203
4 1.1190 1.1499 1.1866 1.2333 1.3035 1.4362

Table 5: Percentage points for α = 1, β = 1/2, ν = −1, 0, 1, 2, p = 1
ν 75 % 80 % 85 % 90 % 95 % 99 %
-1 0.6665 0.7590 0.8836 1.0693 1.4135 2.3272
0 1.1945 1.3556 1.5669 1.8712 2.4073 3.7142
1 2.0191 2.2568 2.5599 2.9824 3.6968 5.3359
2 3.0396 3.3439 3.7249 4.2453 5.1033 7.0031

Table 6: Percentage points for α = 0.2, β = 0.2, 0.5, 1, 2, ν = 3/2, p = 2
β 75 % 80 % 85 % 90 % 95 % 99 %

0.2 2.4585 2.6541 2.8892 3.1946 3.6641 4.5866
0.5 2.5858 2.7760 3.0051 3.3033 3.7630 4.6701
1 2.7268 2.9120 3.1353 3.4265 3.8763 4.7672
2 2.9173 3.0970 3.3138 3.5967 4.0345 4.9050

Table 7: Percentage points for α = 0.2, 0.5, 1, 2, β = 0.5, ν = 0, p = 1
α 75 % 80 % 85 % 90 % 95 % 99 %

0.2 3.2941 3.9195 4.7707 6.0456 8.3920 14.4138
0.5 1.8375 2.1258 2.5096 3.0716 4.0804 6.5955
1 1.1945 1.3556 1.5669 1.8712 2.4073 3.7142
2 0.7838 0.8742 0.9911 1.1568 1.4437 2.1270

6 Applications
To illustrate the performance of our distribution, an example of tree circumferences in
Marshall, Minnesota (based on data from Rice, 1999), has been considered in this section.
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The observed values are: 1.8, 1.9, 1.8, 2.4, 5.1, 3.1, 5.5, 5.1, 8.3, 13.7, 5.3, 4.9, 3.7, 3.8,
4.0, 3.4, 5.2, 4.1, 3.7, 3.9.

The mean, median and skewness of this data are 4.535, 3.950 and 2.118 respectively.
We can see that the data is right skewed. Maple 11 has been used for computing the
data moments, estimating the parameter (by employing the method of moments), and
chi-square test for goodness-of-fit. The data moments are computed as µ̂ = 4.5350,
µ̂2 = 27.2425 and µ̂3 = 221.5905. The estimation of the parameters and chi-square
goodness-of-fit test are provided in Table 8 and 9, respectively.

Table 8: Parameter Estimates for the tree measurements data assuming different models
GGIG(ν, α, β, p) IG(ω, ξ) Log-normal(µ, σ) Gamma(θ, r)
ν̂ = p̂ = α̂ = 1 ω̂ = 13.97 µ̂ = 1.373 θ̂ = 0.6793
β̂ = 14.16 ξ̂ = 4.535 σ̂ = 0.530 r̂ = 3.080

Table 9: Comparison criteria (chi-square test for goodness-of-fit)
GGIG IG Log-normal Gamma

Test statistic 2.766 6.378 5.822 7.208
Critical value 7.815 7.815 7.815 7.815
p-value 0.429 0.095 0.121 0.066

From the chi-square goodness-of-fit test we observed that the GGIG, IG, log-normal,
and gamma model fit the tree measurements data reasonably well. However, model GIG
produces the highest p-value and therefore fits better than a IG, log-normal, and gamma
distribution. Also, for the parameters estimated in Table 8, the GGIG, IG, log-normal, and
gamma model have been superimposed on the histogram of the tree measurements data
as in Figure 6 from which we observed that our GGIG model fits the tree measurements
data reasonably well.

7 Concluding Remarks

This paper has derived a new family of distributions based on the generalized Pearson
differential equation and named as GGIG distribution. Some characteristics of the newly
proposed distribution are obtained. The infinite divisibility property of the newly pro-
posed distribution family is discussed. The distributional relationships to some distribu-
tions are discussed. The plots for the cdf, pdf and hazard function, percentile points and
tables for Pearson’s measure of skewness and kurtosis for selected coefficients and pa-
rameters have been provided. The maximum likelihood and method of moment estimates
of the parameters are discussed. It is observed that the new distribution is skewed to the
right and bears most of the properties of skewed distributions. The statistical applications
of the results to a problem of forestry from ecological science have been provided. It is
found that the GGIG distribution fits better than gamma, log-normal and IG distributions.
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Figure 6: Fitting of the pdfs of the GGIG, IG, log-normal, and gamma model to the tree
measurements data
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Appendix: Some Useful Mathematical Functions and Lemmas
For details about these functions and lemmatas, see e.g. Abramowitz and Stegun (1970),
Gradshteyn and Ryzhik (2000), Lebedev (1972), Prudnikov, Brychkov, and Marichev
(1986), and Chaudhry and Zubair (2002), among others. The integrals

γ(α, x) =

∫ x

0

tα−1 exp(−t)dt , and Γ(α, x) =

∫ ∞

x

tα−1 exp(−t)dt , α > 0

are called incomplete gamma and complementary incomplete gamma function. Note that

∂γ(a, t)

∂t
= −∂Γ(a, t)

∂t
= ta−1 exp(−t) .

The integrals

γ(α, x; b) =

∫ x

0

tα−1 exp(−t− bt−1)dt and Γ(α, x; b) =

∫ ∞

x

tα−1 exp(−t− bt−1)dt

are called the generalized incomplete gamma functions, where α, x are complex param-
eters and b is a complex variable. When the argument b = 0, the generalized incomplete
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gamma functions reduce to the ordinary incomplete gamma functions. The functions de-
fined by

erf(x) =
2√
π

∫ x

0

exp(−u2)du and erfc(x) =
2√
π

∫ ∞

x

exp(−u2)du = 1− erf(x)

are called error and complementary error functions, respectively. The function defined by

Kν(z) =
1

2
(
z

2
)ν

∫ ∞

0

t−ν−1 exp(−t− z2/4t)dt , | arg z| < π/2, Re(z2) > 0

is known as the modified Bessel function of the third kind or the Macdonald function) of
index (or order) ν. It is well known that

Kν(z) = K−ν(z) , K±1/2(z) =

√
π

2z
exp(−z) , Kν(z) =

( π

2z

)1/2

W0,ν(2z) ,

where Wκ,ν(·) denotes the Whittaker function.

Lemma 1 Gradshteyn and Ryzhik (2000, equation (3.478.4), p. 342)
For Re(α) > 0 and Re(β) > 0, we have

∫ ∞

0

xν−1 exp(−αxp − βx−p)dx =
2

p

(
β

α

)ν/2p

Kν/p(2
√

αβ) .

Lemma 2 Chaudhry and Zubair (2002, equation (2.120), p. 51).

Γ(1/2, x; b) =

√
π

2

[
exp(−2

√
b)erfc

(√
x−

√
b/x

)
+ exp(2

√
b)erfc

(√
x +

√
b/x

)]
.
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