
A3: An Extensible Platform for Application-Aware Anonymity

Micah Sherr∗ Andrew Mao† William R. Marczak‡

Wenchao Zhou∗ Boon Thau Loo∗ Matt Blaze∗

∗University of Pennsylvania †Harvard University ‡University of California, Berkeley
{msherr,wenchaoz,boonloo,blaze}@cis.upenn.edu, mao@seas.harvard.edu, wrm@berkeley.edu

Abstract

This paper presents the design and implementation of
Application-Aware Anonymity (A3), an extensible plat-
form for deploying anonymity-based services on the In-
ternet. A3 allows applications to tailor their anonymity
properties and performance characteristics according to
specific communication requirements.

To support flexible path construction, A3 exposes a
declarative language (A3LOG) that enables applications
to compactly specify path selection and instantiation
policies executed by a declarative networking engine.
We demonstrate that our declarative language is suffi-
ciently expressive to encode novel multi-metric perfor-
mance constraints as well as existing relay selection
algorithms employed by Tor and other anonymity sys-
tems, using only a few lines of concise code. We exper-
imentally evaluate the A3 system using a combination
of trace-driven simulations and deployment on Planet-
Lab. Our experimental results demonstrate that A3 can
flexibly support a wide range of path selection and in-
stantiation strategies at low performance overhead.

1 Introduction
In the past decade, there has been intense research [9,

31, 30, 13, 39, 44, 32, 23, 38, 4, 10, 36, 40, 24] into
designing systems that enable parties to communicate
anonymously in the presence of eavesdroppers. Typ-
ically, these systems achieve anonymity by sending a
message through a path of relays before delivering it to
its final destination. Broadly speaking, recent innova-
tions have improved relay selection [8, 40, 24, 36]) –
choosing a path of relays to provide high anonymity and
good performance – and path instantiation – establish-
ing necessary state at each relay to enable anonymous
communication.

Despite the proliferation of proposed techniques, we
note that no one-size-fits-all anonymity system exists.
The appropriate relay selection and path instantiation
strategy can vary according to application requirements,
performance characteristics, and additional constraints
imposed by the underlying network. For example, in
the context of relay selection, an anonymous video con-
ferencing system may be willing to achieve weaker
anonymity in exchange for a path that meets its high-
bandwidth, low-latency performance demands. In con-
trast, an anonymous email system may require very
strong anonymity guarantees while imposing no con-
straints on bandwidth or latency.

Similarly, several path instantiation approaches exist.
Onion Routing [30] and Tor’s telescoping scheme [9]
build paths by recursively encrypting and shipping key
material to their constituent nodes. The former con-
structs anonymous paths that have constant length over
their lifetime, while the latter adds the ability to ex-
tend existing anonymous paths. On the other hand, the
Crowds [31] approach relies on the network to make
routing decisions on behalf of the source. Crowds is
best suited for an environment where source routing is
not available and intermediate relay nodes can be trusted
with the identity of the receiver.

In this paper, we present the Application-Aware
Anonymity (A3) framework: an anonymity system that
enables tradeoffs between anonymity and performance
through highly customizable relay selection and path in-
stantiation strategies. A3 aims to support a wide range
of anonymity-based networked services with different
application-specific constraints. Applications can lever-
age A3 in a policy-driven fashion by specifying path in-
stantiation and relay selection techniques that meet their
performance and anonymity requirements.

One important element of A3 is the use of declarative
networking [20, 19], a declarative logic-based frame-

work that can efficiently execute a high-level protocol
specification using orders of magnitude less code than
an imperative implementation. A3 utilizes a declarative
networking system as a policy engine for specifying and
executing relay selection and path instantiation policies.

Our proposed A3LOG declarative language extends
previous declarative networking languages with con-
structs that are added specifically to enable the speci-
fication of anonymity systems. For example, we have
integrated the ability to specify user-defined crypto-
graphic primitives for secure communication. We have
also adapted recently proposed extensions for declara-
tive network composition [22] to enable us to develop
reusable components ideal for specifying and customiz-
ing anonymous routing. We demonstrate how these ex-
tensions enable the concise expression of relay selection
and path instantiation algorithms.

A3 is sufficiently extensible to support both tradi-
tional node-based as well as recently proposed link-
based [36, 35] relay selection strategies. Node-based
strategies select relays with desirable node properties
(usually bandwidth), whereas link-based strategies bias
relay selection in favor of link characteristics such as la-
tency, AS hop count, or jitter. We demonstrate that both
link- and node-based relay selection strategies, includ-
ing those used by Tor and other systems, can be con-
cisely represented in a few lines of A3LOG code. We also
show how A3LOG compactly encodes the path instanti-
ation algorithms used by these systems. By providing
a flexible framework for realizing both relay selection
and path instantiation policies, A3 enables the rapid de-
velopment, deployment, and testing of both existing and
novel anonymity protocols.

We experimentally evaluate the A3 system through
both trace-driven simulations and a deployment on Plan-
etLab. Our results demonstrate that the A3 system can
flexibly support a wide range of path selection and in-
stantiation strategies at low performance overhead.

2 Related Work
To support diverse applications, the Internet uses a

simple routing scheme in which packets are forwarded
on a best-effort basis towards their intended destinations.
The end-to-end (e2e) performance of Internet paths is
dictated by policies enforced by routers along the path
from source to sink. With the exception of fragmented
portions of the Internet that support IP quality-of-service
features, applications usually have little control over the
performance aspects of their network connections.

An overlay network built on top of the Internet rout-
ing infrastructure can allow users to exercise greater

control over the manner in which their messages are re-
layed, as forwarding can be based on application layer
information. When combined with source-routing, these
networks allow applications the ability to select paths
that meet their specific requirements (e.g. RON [2] for
robustness).

Overlay networks may also enable anonymous rout-
ing on the Internet. For example, Tor [9], Onion
Routing [30], Crowds [31], Tarzan [13], Hordes [39],
JAP [10], and MorphMix [32] (among many others) uti-
lize application-layer overlay routing. These anonymity
systems exploit two features of overlay networks: (i) the
ability to obfuscate the addresses of the initiator (sender)
and responder (receiver) while still providing reliable
message delivery; and (ii) in some instances, the abil-
ity to produce anonymous paths that achieve some de-
sirable property (usually high bandwidth) [9, 13, 40].
This paper is principally concerned with the latter as-
pect: We provide mechanisms that allow anonymity sys-
tems to produce desirable paths.

A large volume of existing literature examines meth-
ods for generating high performance anonymous paths.
Tor [9, 8] attempts to achieve high bandwidth paths by
imposing a probability distribution over the set of po-
tential anonymous relays. The probability of a relay
being selected is proportional to its advertised band-
width. Murdoch and Watson have demonstrated that
such a strategy delivers both performance and strong
anonymity [24]. Snader and Borisov offer refinements
to Tor’s strategy, allowing an initiator to tune the per-
formance (quantified in their work as bandwidth) of its
anonymous paths [40] by defining the degree to which
relay selection is biased in favor of bandwidth. At
one extreme, initiators consistently choose relays with
the highest bandwidth, achieving very high bandwidth
paths at the expense of allowing a small subset of re-
lays to view a significantly disproportionate amount of
anonymous traffic [3, 26, 36]. At the other extreme,
initiators may opt to favor anonymity while disregard-
ing performance by selecting relays uniformly at ran-
dom. Given the bandwidth requirements of the partic-
ular application, Snader’s and Borisov’s technique en-
ables the sender to select a point in this anonymity-
vs-performance spectrum. Similarly, we previously in-
troduced tunable link-based routing [36], where initia-
tors can weigh relay selection based on the expected
e2e cost computed using link performance indicators
such as latency, AS hop count, and jitter. We showed
that biasing selection on link characteristics offers some
anonymity benefits over node-based (i.e., bandwidth-
weighted) techniques, since link-based routing reduces

“hotspot nodes” in the network that appear attractive to
all initiators.

This is the first paper of which we are aware that
addresses the related problem of extensible anonymous
routing: given the variety of relay selection algorithms
along with their individual performance and anonymity
properties, how should applications produce anonymous
paths that meet their specific needs? Rather than provid-
ing hardcoded relay selection policies, our proposed A3

anonymity architecture allows applications to load rout-
ing policies at runtime. We show in Section 5 that ex-
isting anonymous routing techniques – including those
described above – may be compactly represented in a
few lines of declarative code. This allows applications to
tune the degree of anonymity-vs-performance, and to se-
lect (and combine) different relay selection techniques.

This work extends our earlier proposal [38] in which
we introduce the concept of using coordinate embed-
ding systems [6, 5] – decentralized algorithms that effi-
ciently map pairwise network distances into virtual coor-
dinates – to produce anonymous paths with low latency.
In contrast to our proposal, this paper presents a com-
plete implementation of the A3 anonymity system and
describes techniques for combining multiple sources of
information (including coordinate embedding systems)
to form high performance paths. This paper also extends
our recent work in which we introduce link-based rout-
ing [36]. In contrast to that work, the A3 anonymity
infrastructure proposed in this paper combines support
for both node- and link-based relay selection strategies.
Additionally, this work introduces the use of declarative
networking [20] to both represent relay selection poli-
cies as well as instantiate anonymous paths.

3 Background on Declarative Networking
Given our use of declarative networking in A3, we

begin by providing some background. The high level
goal of declarative networking is to enable the construc-
tion of extensible architectures that achieve a good bal-
ance of flexibility, performance, and safety. One speci-
fies a declarative networking protocol as a set of queries
in a high-level language. Because such a specification
expresses what a program achieves as opposed to how it
operates (the latter style is referred to as imperative pro-
gramming), declarative queries are a natural and com-
pact way to implement a variety of applications – espe-
cially routing protocols and overlay networks, which of-
ten may be expressed as a set of recursive queries. For
example, path-vector and distance-vector routing proto-
cols can be expressed in only a few lines of code [20],
and the Chord [41] distributed hash table in 47 lines of

code [19]1. When compiled and executed, these declar-
ative specifications perform efficiently relative to imper-
ative implementations.

3.1 Datalog

Our A3LOG declarative language is primarily based
on Datalog [29]. A Datalog program consists of a set of
possibly recursive declarative queries, also referred to
as rules. Each rule has the form q :- p1, p2, ...,

pn., which can be read informally as “p1 and p2 and
... and pn implies q”. Here, q is the head of the rule
and p1, p2, ..., pn is a list of literals that constitutes
the body of the rule. Literals are either predicates (also
called relations) with attributes (variables or constants)
or boolean expressions that involve function symbols
(including arithmetic) applied to attributes. A3LOG ex-
tends Datalog by allowing the specification of rules with
multiple head literals, i.e. rules of the form q1, q2,

..., qm :- p1, p2, ..., pn. A rule of this form is
short-hand for the set of m rules where the ith rule is of
the form qi :- p1, p2, ..., pn. A Datalog program
is said to be recursive if a cycle exists through any pred-
icate – such as when a predicate that appears once in a
rule’s body appears in the head of the same rule. A re-
cursive Datalog program is continuously executed until
a fixpoint is reached, i.e. no new facts are derived.

The order in which the rules are presented in a pro-
gram is semantically immaterial; likewise, the order
predicates appear in a rule is not semantically mean-
ingful. Conventionally, the names of predicates, func-
tion symbols, and constants begin with a lowercase let-
ter, while variable names begin with an uppercase let-
ter. Function calls are prepended by f . An aggregate
construct, which defines an operation on multiple results
from the rule body, is represented as a special function
in the rule head with its attribute variables enclosed in
angle brackets (<>). To support anonymous relay se-
lection and path instantiation, A3LOG enhances Data-
log with cryptographic functions, random and ranking
aggregates, and composability. We defer discussion of
these additions to Sections 5- 6.

3.2 First Example: All Pairs Reachability

We illustrate A3LOG using a simple example of two
rules that compute all pairs of reachable nodes in a net-
work.

r1 reachable(S,N) :- neighbor(S,N).
r2 reachable(@N,D) :- neighbor(S,N), reachable(S,D).

1In contrast, MIT’s imperative implementation of Chord is several
orders of magnitude larger.

Rules r1 and r2 specify a distributed transitive clo-
sure computation that derives all pairs of nodes that can
reach each other through paths of neighbors. The rules
take as input a local neighbor table stored at each node
S (each fact in the neighbor(S,N) relation denotes that
N is a neighbor of S). Rule r1 is a regular Datalog rule
(i.e. executed locally at a node to derive local facts);
it computes all pairs of nodes reachable within a single
hop from all input neighbor links. Rule r2 expresses
that “if N is the neighbor of S, and S can reach D, then
N can reach D.” The output of interest is the set of all
reachable(S,D) facts, representing reachable pairs of
nodes from S to D. By modifying this simple example,
we can construct more complex routing protocols, such
as the distance vector and path vector routing protocols.

Rule r2 introduces the location specifier – the argu-
ment prefixed with the @ symbol – which denotes the
location of each fact derived by the rule head. In rule
r2, all derived reachable(N,D) facts are exported based
on the address encoded in their first attribute, (@N). This
means that the execution of rule r2 results in each node
propagating its reachability information to its neighbors
until a distributed fixpoint (i.e. no new facts being de-
rived) is reached.

A3LOG queries are compiled and executed either lo-
cally – such as a regular Datalog rule like r1 – or in a
distributed fashion, as in r2. In A3, initiators specify re-
lay selection policies using local rules (Section 5), and
path instantiation using distributed rules (in fact, a series
of distributed recursive queries as we show in Section 6).

A3LOG shares a similar execution model with the
Click modular router [18], which consists of elements
that are connected together to implement a variety of
network and flow control components. In the case of
A3LOG, these elements include database operators (such
as joins, aggregation, selections, and projections) that
are directly generated from queries. Reference [19] pro-
vides more details on the compilation process and ex-
ecution model used in declarative networking that A3

adopts.

3.3 Materialized Soft-state Tables and Events

Declarative networking incorporates a soft-state stor-
age model, where each relation has an explicit “time to
live” (TTL) or lifetime. All facts in the relation must be
periodically updated before their TTL expires, or they
are deleted.

A3LOG supports soft-state through the
materialize [19] directive, which specifies the TTL
of each relation. A materialize directive has the form:
materialize(Relation, Timeout, Max entries,

Keys), where Relation is the name of the relation,
Timeout is the maximum time in seconds that any
fact in the relation may persist, Max entries is the
maximum facts allowed in a relation before facts are
ejected according to a FIFO policy, and Keys specifies
the relation’s primary keys. If a fact is derived with
the same primary keys as an existing fact in the same
relation, the new fact replaces the old one, and the TTL
is restored.

If a relation has no corresponding materialize di-
rective, it is treated as an event predicate with zero life-
time. Event predicates – whose names are prefixed with
an “e” – are used to denote transient tables used as input
to rules.

4 A3 Design Goals and Architecture
A3 is a flexible and extensible anonymity system in

which protocol designers publish their particular relay
selection and path instantiation algorithms along with
a description of their corresponding performance and
anonymity tradeoffs. In contrast to existing anonymity
systems in which an immutable relay selection algo-
rithm is hardcoded into the anonymity service, A3 al-
lows the sender to provide a relay selection policy that
precisely specifies the manner in which relays are cho-
sen for its anonymous paths. The A3LOG policy lan-
guage (Section 5) enables the application to not only in-
telligently tune relay selection in favor of performance
or anonymity [40, 36], it also allows the application to
easily define its individual characterization of perfor-
mance in terms of bandwidth, latency, loss, jitter, etc.,
or some combination of the above. In addition to sup-
porting flexible relay selection, A3 also permits the cus-
tomization of path instantiation policies (Section 6).

A3’s use of declarative networking provides the ca-
pability for applications to rapidly customize and refine
the policies that best meet their application constraints.
However, our system does not preclude similar tuning
outside the use of declarative languages. A user of A3

who is not familiar with declarative policy languages
can, for example, simply download and install an A3LOG

policy that produces low latency and low jitter paths for
his VoIP application, while using a different policy to
deliver high downstream throughput for anonymous web
browsing.

Since the anonymity offered by an anonymous path
depends in no small part on the mechanisms for relay
selection [24, 36, 26] and path instantiation, policies
should be used with extreme caution until their security
properties can be fully understood. A thorough review
of the performance and anonymity properties of various

relay selection and path instantiation algorithms is out-
side the scope of this paper. Our goal in this paper is
to provide a flexible architecture for developing, test-
ing, and studying path strategies and implementations
(though A3 constitutes a very useful tool for conducting
security evaluations).

System Overview. An application, or a proxy acting
on the application’s behalf, provides relay and path in-
stantiation policies that reflect the application’s commu-
nication requirements. Figure 1 shows the architecture
of the A3 client running on the initiator’s host. The Re-
lay Selection Engine interprets the initiator’s relay se-
lection policy and applies that policy to produce (but not
instantiate) an anonymous path consisting of relays from
the Local Directory Cache. To populate the cache, the
A3 instance periodically contacts a Directory Server to
ascertain membership information – that is, a listing of
available relays – and, optionally, one or more Informa-
tion Providers. Information Providers are data aggre-
gating services that report performance characteristics
of relays (e.g., bandwidth) and links (e.g., the latency
between two relays). The Relay Selection Engine uses
cached data to generate paths that conform to the pro-
vided relay selection policy.

Once the Relay Selection Engine produces a path, the
Forwarding Engine instantiates that path according to
the provided path instantiation policy. After path es-
tablishment, a Proxy Service on the local machine in-
tercepts the application’s traffic and relays it through
the anonymous path. Likewise, incoming data from the
anonymous channel is transparently forwarded through
the Proxy Service to the application. To forward up-
stream and downstream packets, each relay also includes
a Forwarding Engine.

Below, we describe each component of A3 in more
detail.

4.1 Information Providers

To support non-trivial relay selection policies, A3

makes use of Information Providers (also referred to as
Providers) that aggregate node and/or link performance
data. Policies may utilize such information to more pre-
cisely define their requirements (e.g., “include only re-
lays that have been online for at least an hour”).

A3 imposes few restrictions on the types of Infor-
mation Providers. Each Information Provider is inter-
faced through an adapter that resides on the A3 relay.
Adapters are small programs or scripts that periodically
query a Provider for new information, storing the results

in the Local Directory Cache. Our current implemen-
tation includes adapters for the Vivaldi [6] embedded
coordinate system (described below) and CoMon [27],
although others can be easily constructed.

Network Coordinate Information Providers Tradi-
tional anonymous relay selection algorithms (most no-
tably Tor [9], and the refinement proposed by Snader and
Borisov [40]) bias selection in favor of relays that ad-
vertise high bandwidths. However, in addition to band-
width, an application may also prefer paths that exhibit
low latency. Unlike bandwidth, latency is not a node
characteristic that can be associated with an individual
relay. Rather, latency is a link characteristic that has
meaning only when defined in terms of a connection be-
tween a pair of relays.

Given that there are
(
N
2

)
links in a network composed

of N relays, maintaining link characteristics for all re-
lays in the anonymity network is infeasible. One prac-
tical solution to succinctly capture pairwise link laten-
cies is via the use of virtual coordinate embedding sys-
tems (also called network coordinate systems). These
distributed algorithms enable the pairwise latencies be-
tween all participating relays to be estimated to high ac-
curacy with low overhead. Network coordinate systems,
such as Vivaldi [6], PIC [5], NPS [25], and Big Bang
Simulation [34] map each relay to multidimensional co-
ordinates such that the Euclidean distance between any
two relays’ coordinates corresponds to the latency be-
tween the pair. By representing pairwise distances us-
ing N virtual coordinates, these systems effectively lin-
earize the information that must be stored and main-
tained by the Information Provider.

Coordinate systems use distributed algorithms in
which each participant periodically measures the dis-
tance between itself and a randomly selected peer. By
comparing the empirical measurement with the Eu-
clidean distance between the two nodes’ coordinates, the
relay can adjust its coordinate either towards (in the case
of over-estimation) or away from (for under-estimation)
the neighbor’s coordinate. Although network distances
cannot be perfectly represented in Euclidean space due
to the existence of triangle inequality violations on the
Internet, virtual coordinate systems efficiently estimate
pairwise distances with very low error [6]. Since net-
work coordinate systems require only periodic measure-
ments (on the order of a single ping every 15 seconds),
participation in the system does not incur a significant
bandwidth cost.

A Network Coordinate Information Provider main-
tains the current coordinates of the relays in the A3 net-

Application

Relay
Selection
Engine

Forwarding
Engine

Relay
Selection

Policy

Path
Instantiation

Policy

A3 Client
Local

Directory Cache

Proxy Service

Initiator Internet

Information
Provider

Directory
Service

Adapter

Figure 1. The A3 architecture.

work. Relays periodically send updates to the Provider
whenever its coordinate changes from its last reported
value (e.g., by more than 10ms).

Unfortunately, the distributed nature of coordinate
systems make them particularly vulnerable to insider
manipulation. Recent studies [16] on Vivaldi have
shown that when 30% of nodes lie about their coordi-
nates, Vivaldi’s accuracy decreases by a factor of five.
Attacking the coordinate system provides a vector for
an adversary to either prevent high performance rout-
ing or bias routing decisions in favor of relays under
their control. Fortunately, practical coordinate protec-
tion techniques may be applied on top of the embed-
ding system to protect the veracity of advertised coordi-
nates [5, 33, 15, 43, 37]. Often, these coordinate security
techniques rely on spatial and temporal heuristics to spot
false coordinate advertisements [43], utilize a small set
of trusted surveyor nodes [33, 15], or assess coordinate
accuracy using a distributed voting protocol [37]. Net-
work Coordinate Information Providers should employ
such services to ensure that the coordinate information
it provides to A3 nodes is trustworthy.

Relay-Assisted Information Providers Relays have
access to a significant number of local performance in-
dicators. For instance, a relay can measure its current
upstream and downstream throughput, processor usage,
and available memory, and estimate its bandwidth ca-
pacity. Such information can be collected and stored in a
Relay-Assisted Information Provider. The CoMon Mon-
itoring Infrastructure [27] that operates on the PlanetLab
testbed [28] is one such example.

As has been pointed out by Øverlier [26] and oth-
ers [40, 3, 36], malicious relays may purposefully at-
tract a large fraction of anonymous traffic by falsely ad-
vertising favorable performance, consequently increas-
ing their view of traffic in the anonymous network. To

mitigate such attacks, Snader and Borisov propose the
use of opportunistic measurements in which relays re-
port the observed throughput of their network peers. The
Provider (or in their case, the directory service) reports
the median of the reported measurements [40]. Sim-
ilar protection schemes are applicable to A3 Informa-
tion Providers. Here, relays report the bandwidth and
responsiveness of peer relays with whom they interact.
Certain metrics (e.g., memory usage) cannot easily be
probed by remote parties, and if reported by Informa-
tion Providers, should be treated with some degree of
skepticism by the relays that make use of them.

Other Potential Information Providers There have
been a number of proposals (e.g. iPlane [21],
IDMaps [11], OASIS [12], and Meridian [42]) that
attempt to succinctly map the structure of the Inter-
net and provide estimates of latency and (in some
cases) bandwidth between arbitrary Internet hosts.
Such systems have typically been deployed to pro-
vide proximity-based routing [38], neighbor selection in
overlays [7], network-aware overlays, and replica place-
ment in content-distribution networks. However, these
systems are also applicable to anonymity services in
which the initiator is interested in discovering the cost
of routing through a particular relay. By constructing
adapters that access the interfaces to these systems, ini-
tiators can construct relay selection policies that take ad-
vantage of such services. The mechanism for inserting
polled information into the Local Directory Cache is de-
scribed in the following section.

4.2 Other Components of A3

We briefly describe the other components of the A3

system, namely the directory service, local directory
cache, relay selection engine, and forwarding engine.

4.2.1 Directory Service

Node discovery is facilitated by a Directory Service (or
simply Directory) that maintains membership informa-
tion on all the relay nodes currently participating in the
A3 platform. Relays that join the A3 network publish
their network address and public key to the Directory
Service. Initiators periodically poll the Directory to dis-
cover peer nodes that may potentially be used as routers
in anonymous paths.

The Directory Server represents a central point of
failure in the network. If the server becomes unavail-
able, then initiators cannot discern the network ad-
dresses of available relays. If the Directory is malicious
or becomes compromised, then it can answer queries
with only the identities of misbehaving relays.

Tor reduces this risk by establishing multiple semi-
trusted directory authorities [1]. The authorities period-
ically vote on a summary of the network (that is, the re-
lays that constitute the network), and disseminate signed
consensus documents to Tor routers. The routers further
redistribute this network information to other routers and
to clients. Clients verify signatures on consensus doc-
uments based on certificates shipped with the Tor bi-
nary. Although our current implementation uses a single
Directory Service, such protections can be straightfor-
wardly applied to A3.

4.2.2 Local Directory Cache

The Local Directory Cache periodically queries and
stores performance data from Information Providers.
The rate at which the cache polls Providers affects both
the freshness of cached data as well as the relay’s com-
munication overhead. The tradeoff between update in-
tervals and bandwidth costs depends on the rate at which
performance characteristics change in the network, and
is explored in more detail in Section 7.

The Local Directory Cache uses adapters to query the
various Information Providers, storing the results in ta-
bles that are accessible by the Relay Selection Engine.
Adapters define tables using the materialize keyword
as described in Section 3. For example, given the fol-
lowing A3LOG statements,

materialize(tBandwidth, Infinity, Infinity, keys(1)).
materialize(tVivaldiCoordinates, Infinity,

Infinity,keys(1)).
tBandwidth("10.0.0.1", 1000, 500, 3000).
tVivaldiCoordinates("10.0.0.1", [10,-6]).

the Local Directory Cache will create two tables:
tBandwidth and tVivaldiCoordinates. The former
holds the address of a remote node, its upstream band-
width, downstream bandwidth, and bandwidth capacity.

The keys(1) argument specifies that an existing tuple
should be replaced if a new tuple arrives with the same
first field (the network address). Similarly, the latter ta-
ble stores the coordinates of a remote node. The two
example tBandwidth and tVivaldiCoordinates state-
ments insert data into the respective table. Such state-
ments are executed by the adapter as new data is polled
from Information Providers.

4.2.3 Relay Selection Engine

The Relay Selection Engine provides the flexibility that
enables applications to communicate their routing re-
quirements. At runtime, applications provide relay se-
lection policies that specify their individual routing cri-
teria. Using the information stored in the Local Direc-
tory Cache, the Relay Selection Engine forms routes ac-
cording to the specified policy. The participants of gen-
erated paths are relayed to the Forwarding Engine (see
below) that instantiates the path. Relay selection is ex-
plored in more detail in Section 5.

4.2.4 Forwarding Engine

The Forwarding Engine consists of a declarative net-
working engine enhanced with low-level cryptographic
primitives. The Forwarding Engine provides methods
for composing these primitives to form high-level op-
erations. For example, the one-way authentication and
symmetric key-exchange primitives used in Tor path in-
stantiation are constructed by composing RSA digital
signatures with Diffie-Hellman key exchange.

The Forwarding Engine instantiates the anonymous
path provided by the Relay Selection Engine according
to rules specified in the path instantiation policy. Ad-
ditionally, the Forwarding Engine supports message re-
lay over instantiated anonymous paths. That is, the For-
warding Engine is used both to construct paths as well as
to relay application messages over the anonymous route.
In the case of Onion Routing, Tor, and Crowds, the rules
for path instantiation and message relay are distributed
recursive queries. We revisit the routing engine in Sec-
tion 6.

5 Relay Selection Policies

In this section, we demonstrate how a variety of
strategies used by the relay selection engine can be ex-
pressed using the declarative framework. These rules
are then executed by a declarative networking engine to
implement the selection policies. In presenting the relay

Algorithm Reference Description Benefits Example Usage
RANDOM Section 5.1 Relays selected uniformly at random Produces low node prevalences Email mixing
TOR [9] Section 5.1.1 Relays biased proportionally to band-

width
High bandwidth and network utiliza-
tion [24]

Web browsing

SNADER-
BORISOV [40]

Section 5.1.2 Tunable bias towards bandwidth Tunable anonymity and performance File transfer

CONSTRAINT Section 5.2.1 Specification of end-to-end perfor-
mance requirements

Expresses communication require-
ments

VoIP

WEIGHTED [36, 35] Appendix A Bias relay selection in favor of link-
properties

Extends support to multiple metrics
(latency, jitter, etc.)

Streaming multicast

HYBRID Section 5.2.3 Combines above techniques Supports highly flexible routing poli-
cies

Video conferencing

Table 1. Example relay selection policies

selection examples in A3LOG, we also highlight exten-
sions we have made to canonical declarative languages,
including customizable random aggregates, ranking ag-
gregates, and a tuple list type convenient for selecting
and manipulating relays and coordinates.

Our goal in this section is to highlight the flexibility,
ease of programming, and ease of reuse afforded by a
declarative query language. We show that routing pro-
tocols can be expressed in a few A3LOG rules, and addi-
tional protocols can be created by simple modifications
to previous examples. We present examples of well-
known node-based and link-based strategies, as well as
hybrid strategies that select relays based on a combina-
tion of node and link metrics. In addition to the specific
rules shown, users of A3 can also maintain several sets
of rules, as well as dynamically specify rule parameters
in new path requests. This allows for extremely flexible,
on-the-fly path generation tuned for specified parameters
without additional modification to A3LOG code.

In all our examples below, we assume that each A3

node has a background process that periodically polls
the Directory Server to gather candidate nodes. At each
node, the returned information is stored in a node ta-
ble, indexed by the IP address of the node. Additional
attributes obtained from Information Providers are in-
cluded in this table (for example, the network coordinate
of the node, its bandwidth measurements, etc.)2. These
node and measurement data are then used as input to
A3 for executing A3LOG rules that will select candidate
relays. In all our example programs, the output of in-
terest is an ePathResult(Src,Dst,P) tuple, where P is
the list of relay node tuples (which includes their ad-
dresses, bandwidth, coordinates or any other attributes
relevant to the query) from Src to Dst. The properties of
the example relay selection policies are summarized in
Table 1.

2Note that these attributes correspond to the attributes in
tBandwidth and tVivaldiCoordinates tables described in
Section 4.2.2. For ease of exposition, we refer to them as attributes
in the node materialized table.

5.1 Node-based Relay Selection
As its name suggests, node-based relay selection pri-

marily selects nodes based on node characteristics, typ-
ically bandwidth. The following rule r1 shows an ex-
ample A3LOG program being executed by an A3 node.
Given a request to generate a path from Src to Dst, the
program randomly selects three relay nodes other (ex-
cluding Src and Dst).

r1 ePathResult(Src, Dst, RAND(3)<IP>) :-
ePathRequest(Src, Dst), node(IP),
Src != IP, Dst != IP.

Rule r1 takes as input a path request, in the form of an
event tuple ePathRequest(Src,Dst), where Src is typi-
cally the address of the node that issued the request, and
Dst is the address of the responder. Rule r1 is essentially
a typical database query with group-by attributes (IP in
this case) and a random aggregate.

Unlike a regular aggregate that computes, for
instance, the minimum and maximum value,
a random aggregate is a function of the form
RANDAGG(a1, a2, ..., am)〈p1, p2, ..., pn〉 that takes in
(a1, a2, ..., am) as m argument parameters, and n
arguments in 〈p1, p2, ..., pn〉 that denote the output
(projection) attributes of the resulting group-by value.
Given result tuples generated in the rule body, for each
group-by value, RANDAGG performs the appropriate ran-
dom selection algorithm based on its function definition,
and then returns a list of tuples with the appropriate n
attributes being projected from the results.

For instance, in rule r1, RAND(3)<IP> is a random
aggregate with argument 3 and projecting by IP. With
these parameters, the aggregate will return 3 randomly
selected nodes without replacement from the result of
executing the rule body. The output of executing the rule
r1 is the ePathResults(Src,Dst,P) event tuple, where
P is a list of tuples each containing the IP address field of
the selected relay nodes from Src to Dst. The additional
selection predicates in r1 ensure that neither Src or Dst
are selected as relay nodes.

5.1.1 Bandwidth-weighted Selection

The above selection strategy randomly chooses three
nodes as relays without taking into consideration their
node characteristics. As an enhancement, the follow-
ing rules implement Tor’s relay selection [8] and selects
nodes with probability weighted by their bandwidth. A
node with higher bandwidth has a greater probability of
being selected, and the likelihood of selection relative to
other nodes is linearly proportional to bandwidth.

t1 eCandidateRelay(Src, Dst, PathsSoFar,
RANDWEIGHTED(1,BW)<IP>) :-

ePathRequest(Src, Dst, PathsSoFar),
node(IP,BW), Src != IP, Dst != IP.

t2 ePartialPath(Src, Dst, PathNew) :-
eCandidateRelay(Src,Dst,PathsSoFar,Relay),
PathsSoFar.inPath(Relay[0]) = false,
PathNew = f_append(PathsSoFar, Relay[0]).

t3 ePartialPath(Src, Dst, PathsSoFar) :-
eCandidateRelay(Src,Dst,PathsSoFar,Relay),
PathsSoFar.inPath(Relay[0]) = true.

t4 ePathRequest(Src, Dst, P) :-
ePartialPath(Src, Dst, P), f_size(P) < 3.

t5 ePathResult(Src, Dst, P) :-
ePartialPath(Src, Dst, P), f_size(P) = 3.

The initial route request is triggered by the re-
questing event ePathRequest(Src,Dst,()), where the
last attribute is the current path initially initialized to
the empty list (). Rule t1 is similar to the ear-
lier rule r1, except that it uses the aggregate function
RANDWEIGHTED(1,BW)<IP> which selects one tuple ran-
domly from the tuples derived from executing the rule
body, with probability linearly weighted by the band-
width attribute BW. (To bias the selection using another
metric such as average node load, one would simply
have to modify the parameter to RANDWEIGHTED.) The re-
sulting output is a list containing one tuple, which can
be retrieved as the first element of the list (indicated by
the index [0]) followed by a projection on the IP field.

Rules t2 and t3 generate a new ePartialPath if the
chosen Relay is not already in the current partial path;
otherwise, they add the relay’s IP to the path. The pro-
cess repeats in t4 if the number of relays selected is less
than three. Eventually, the resulting path ePathResult

is returned via rule t5 when three relay nodes have been
chosen.

5.1.2 Tunable Performance/Anonymity Selection

Snader’s and Borisov’s recent proposal [40] introduces
a tunable weighting system that allows the initiator to
trade between anonymity and performance. Briefly,
their proposal defines the family of functions

fs(x) =
{

1−2sx

1−2s if s 6= 0
x if s = 0

(1)

where s is a parameter chosen by the initiator that allows
for a tradeoff between anonymity and performance. Af-
ter ranking the relays by bandwidth, the initiator chooses
the relay with index bn · fs(x)c, where x is chosen uni-
formly at random from [0, 1), and n is the number of
nodes. By applying higher values of s, the initiator is
able to more heavily bias her selections towards band-
width. On the other hand, for s = 0, a relay is chosen
uniformly at random [40]. Each relay is selected inde-
pendently and without replacement according to the dis-
tribution imposed by Eq. 1.

Snader and Borisov’s algorithm may be represented
in A3LOG by modifying the t1 rule from above into two
rules:
s1 eRelayList(Src,Dst,PathsSoFar,S,SORT(BW)<IP>) :-

ePathRequest(Src,Dst,PathsSoFar,S), node(IP,BW),
Src != IP, Dst != IP.

s2 eCandidateRelay(Src,Dst,PathsSoFar,Relay) :-
eRelayList(Src,Dest,PathsSoFar,S,SortedRelayList),
sbRand = (1 - 2ˆ(S * f_rand01())) / (1 - 2ˆS)),
Relay = f_selectIndex(SortedRelayList,sbRand).

SORT(BW)<IP> is a ranking aggregate which follows
a similar syntax as the random aggregates. It takes
all the resulting tuples derived from executing the rule
body, performs a sort using the BW attribute, and then re-
turns the projected field IP as a nested tuple based on
the sort order. Hence, the SortedRelayList attribute of
eRelayList will include a sorted list of IP tuples. Rule
s2 applies Eq. 1 to generate a biased random variable
which is then used to index into the list and select a re-
lay.

5.2 Link-based Selection
The previous examples have focused exclusively on

node characteristics – performance metrics (i.e., band-
width) that may be attributed to individual relays. In
link-based path selection [36], the e2e performance of a
path is computed by aggregating the cost of all links that
comprise the path, where cost is defined in terms of link
characteristics such as latency, loss, and jitter. (While
bandwidth is a node-based characteristic, it can also be
represented as a link characteristic by considering the
measured available bandwidth on a link connecting two
nodes.) The use of link rather than node characteris-
tics enables not only more flexible routing (since initia-
tors can construct anonymous routes that meet more spe-
cific communication requirements), but also offers bet-
ter protection of the identities of the communicating par-
ties [36].

In these examples, the table of node information
gathered from the directory service and Information
Providers is stored in the format node(IP, Coord) and
includes nodes’ network addresses and virtual coordi-
nates.

5.2.1 End-to-end Constraint-Based Selection

The simplest form of link-based selection is based on
selecting paths that meet e2e constraints. Rules c1-c4

result in the selection of three relay nodes where the e2e
latency is less than Limit.

c1 eCandidatePath(Src,Dst,Limit,
RAND(3)<IP,Coord>) :-
ePathRequest(Src, Dst, Limit),
node(IP, Coord), Src!=IP, Dst!=IP.

c2 ePathCost(Src, Dst, Limit, P, Cost) :-
eCandidatePath(Src, Dst, Limit, P),
Cost =
f_coorddist(Src.Coord, P[0].Coord) +
f_coorddist(P[0].Coord, P[1].Coord) +
f_coorddist(P[1].Coord, P[2].Coord) +
f_coorddist(P[2].Coord, Dst.Coord).

c3 ePathRequest(Src, Dst, Path) :-
ePathCost(Src, Dst, Limit, Path, Cost),
Cost > Limit.

c4 ePathResult(Src, Dst, Path) :-
ePathCost(Src, Dst, Limit, Path, Cost),
Cost <= Limit.

Rule c1 is similar to the earlier random selection rules
that select a random set of three relay nodes. Here, how-
ever, the Coord field is also projected for use in rule c2.
Based on the three selected relays, c2 computes the e2e
path cost as the sum of the Euclidean distances of the
coordinates. The process repeats (rule c3) until a path
whose overall cost is less than Limit (an input variable)
is selected (rule c4).

5.2.2 Tunable Performance/Anonymity Selection

In Appendix A, we additionally present a link-based
path selection algorithm, WEIGHTED [36] that provides
tunable performance and anonymity. The algorithm con-
sists of two phases. In the first phase, the initiator rapidly
generates (but does not instantiate) candidate paths con-
sisting of three relays chosen uniformly at random with-
out replacement. The initiator computes the e2e cost of
each generated candidate path. In the second phase, the
initiator sorts the candidate paths by their cost estimates,
and then applies Eq. 1 to select the path.

5.2.3 Hybrid Selection

Although the above rules use a single metric when se-
lecting a path, it is easy to combine multiple factors for

relay selection.
The following rule selects a path whose minimum

bandwidth is above Thres by a conditional join on nodes
in the table, and then uses the coordinate embedding sys-
tem to select a path with e2e latency less than Limit. In
this example, the table of all nodes node(IP, Coord,

BW) stores the virtual latency coordinate as well as band-
width for each node IP. Interestingly, we need only make
one change to replace c1 (from 5.2.1) with h1:
h1 eCandidatePath(Src, Dst, Limit,

RAND(3)<IP,Coord,BW>) :-
ePathRequest(Src, Dst, Limit, Thres),
node(IP,Coord,BW),
Src!=IP, Dst!=IP, BW>THRES.

Other hybrid policies using multiple metrics can
be similarly constructed (for example, using the
WEIGHTED policy only on nodes whose bandwidth is
above a threshold).

6 Path Instantiation Policies
A3’s forwarding engine performs path instantiation,

a process that establishes necessary network state at each
selected relay to enable bidirectional data flow over an
anonymous circuit between a given initiator and any des-
tination. Unlike relay selection, which happens locally
at the initiator, path instantiation is an inherently dis-
tributed operation, and thus exercises the distributed ex-
ecution features of A3LOG.

In this section, we demonstrate the use of A3LOG for
path instantiation. Due to space constraints, we primar-
ily emphasize Onion Routing [30] and leave a discussion
of Tor [9] and Crowds [31] to Appendix B. We evaluate
the performance of our Onion Routing path instantiation
implementation in Section 7.2.1.

We begin with a brief overview of the path instanti-
ation scheme used by Onion Routing. After selecting
a path consisting of one or more relays – called onion
routers – the initiator sends a recursively encrypted mes-
sage called an onion to the first hop of the selected path.
Each layer of the onion contains the address of the next
desired hop in the path, and seed material to generate
symmetric keys shared with the initiator 3. Public key
cryptography ensures that every node can interpret ex-
actly one layer of the onion. Each node removes its
layer, generates keys from the seed material, and – if
it is not the endpoint – forwards the remainder of the
onion on to the next hop. The endpoint sends a con-
firmation message to the initiator backward along the
newly-instantiated path.

3In practice, each layer also contains information about which
cryptographic algorithm to use in each direction of the circuit, a times-
tamp, and a version identifier.

More precisely, if the relays in the anonymous path
are R1, ..., Rn and M1, ...,Mn are the relays’ corre-
sponding onion layers, then the onion is encrypted
as ER1(M1, ER2(M2, ..., ERN

(MN))), where EX(W)
denotes the encryption of message W using the public
key belonging to X . In practice, only the key seed ma-
terial is encrypted with the public key. The remaining
data is encrypted using a symmetric key derived from
the key seed material.

Onion routing specifies an additional link-layer pro-
tocol that governs how messages are exchanged between
onion routers. For a discussion of this protocol, see [30].

6.1 Onion Routing in A3LOG

Our A3LOG implementation of Onion Routing re-
quires 12 rules to specify path instantiation. These rules
consist of three recursive computations: building the
onion, relaying the onion along the path to establish state
at each node, and forwarding a confirmation back along
the path. We extended our implementation to support
forwarding data along an instantiated path at a cost of
five additional rules.

We briefly summarize the schema (data format) of
the facts computed in relations at each node. All facts
are indexed by a locally unique CID (circuit identi-
fier). An initiator stores a circuitPath(CID,Path)

fact that associates a circuit with a path representing
the chosen relay nodes. The Path variable represents
the result of the relay selection phase and is popu-
lated based on the ePathResult tuple. In addition,
the initiator stores the current state of the circuit in
the circuitStatus(CID,Status) relation. The value
for Status may be either BUILDING or ESTABLISHED.
As the path is being instantiated, the initiator and
each intermediate relay creates a link-local identi-
fier (ACI) for the circuit, stored along with the cir-
cuit’s next relay in a circuitForward(CID,ACI,Node)

fact. Similarly, the final relay and each interme-
diate relay stores the ACI generated by the pre-
vious Node in the circuitReverse(CID,ACI,Node)

relation. At each relay, symmetric encryption
keys (shared with the initiator) for forward and
reverse cryptographic operations are stored in the
circuitKeys(CID,ForwardKey,ReverseKey) relation.
For each relay node, the initiator maintains these keys
in the circuitInitiator(CID, Relay, ForwardKeys,

ReverseKeys) relation.
It is worth noting that many of the relations used by

the Onion Routing rules can also be used by Tor and
Crowds. For example, all of these systems involve mul-
tiplexing traffic from multiple anonymous circuits over a

single link, necessitating the use of per-circuit link-local
unique identifiers. Also, in each system, paths are bidi-
rectional, requiring intermediate nodes to store the next
node in each of the forward and backward directions. To
differentiate between different types of paths, we use a
circuitType(CID, Type) relation.

Below, we highlight the use of A3LOG via the follow-
ing three rules (oc1-oc3) that express the local recursive
computation of generating an Onion at the initiator:

oc1 circuitPath(CID, Path),
circuitStatus(CID, "BUILDING"),
circuitForward(CID, ACIForward, FirstRelay),
eCreateOnion(CID,LastRelay,

RemainingPath,FirstLayer) :-
ePathResult(_,_,Path),
FirstRelay=f_first(Path).IP,
LastRelay=f_last(Path).IP,
ACIForward=f_gen_aci(),
RemainingPath=f_removeLast(Path),
CID=f_gen_cid(), FirstLayer={}.

Rule oc1 is triggered upon insertion of a new path. It
generates state at the initiator for the new circuit, includ-
ing the local CID and link-local ACI. These are respec-
tively used to differentiate between circuits at a given
node and circuits on a given link. In addition, oc1 as-
sociates the new circuit with its path representation, and
a status describing the current stage of the circuit’s life-
cycle – BUILDING in this case indicates that the circuit
is currently being instantiated and is not yet ready for
use. Rule oc1 triggers the recursive rule, oc2, through
the eCreateOnion event:

oc2 eCreateOnion(CID,NextRelay,
RemainingPath,NextLayer) :-

eCreateOnion(CID, CurrentRelay,Path, PrevLayer),
f_size(RemainingPath) != 0,
NextRelay = f_last(Path).IP,
RemainingPath = f_removeLast(Path),
encryptOnion(CID, CurrentRelay,

PrevLayer, &EncryptedLayer),
NextLayer={NextRelay, EncryptedLayer}

The eCreateOnion event represents an intermediate
step of circuit instantiation. Its first argument references
the CID of the circuit being created, its second notes the
most recently added relay, and its third contains the in-
termediate representation of the onion. Note that onions
are built outwards from the innermost layer. We denote
the innermost layer as an empty list, as this layer will be
interpreted by the ultimate relay in the circuit, who does
not extend the path any further.

Rule oc2 calls the encryptOnion Composable View
(CView, described in Section 6.2), which encrypts
the previous layer of the onion. Rule oc2 is lin-
early recursive and will continue to trigger itself and
derive new facts as long as RemainingPath is non-
empty. Each invocation of the rule removes a relay

node from RemainingPath as it adds a layer of encryp-
tion. Upon reaching the terminating condition – when
RemainingPath is empty – rule oc3 is triggered:

oc3 eOnionMessage(@FirstRelay, ACI, CompleteOnion) :-
eCreateOnion(CID, CurrentRelay,

RemainingPath, PrevLayer),
f_size(RemainingPath) = 0,
circuitForward(CID, ACI, FirstRelay).
encryptOnion(CID, CurrentRelay,

PrevLayer, &CompleteOnion).

Rule oc3 calls encryptOnion to encrypt the final
layer of the onion, and sends the completed onion to the
first relay node (via the location specifier @FirstRelay)
read from the circuitForward relation. Upon receiv-
ing the onion, each intermediate relay will peel off and
decrypt a layer of the onion (using the decryptOnion

CView), extract the location of the subsequent hop, and
recursively forward the onion. We omit these rules due
to space constraints.

The observant reader will note that the above rules do
not implement Onion Routing’s link-layer protocol. One
may easily specify this protocol in A3LOG by adding a
layer of indirection to any rule that sends a high-level
anonymous message. We omit the specification here, as
it involves relatively mundane serialization, encapsula-
tion, and encryption.

6.2 Composable Virtual View for Onion En-
cryption

In order maximize reusability between different
path instantiation protocols and enable re-configurable
encryption, we leverage Composable Virtual Views
(CViews) [22] to express high-level cryptographic prim-
itives. A CView is a user-defined function implemented
in A3LOG. A call to a CView may only occur in the body
of a rule, and has the following syntax:

viewName(K1,K2,...,Kn, &R1,&R2,...,&Rm)

Each CView has a set of input attributes – shown
above as K1,K2,...Kn – which must be bound at the be-
ginning of the call to the CView, and a set of return at-
tributes, &R1,&R2,...,&Rm, that are returned by the call.
Note that CViews do not augment the expressive power
of the A3LOG language but rather provide modularity.
In fact, any rule that uses CViews can be rewritten as a
series of regular A3LOG rules using a rewrite [22].

We illustrate the encryptOnion CView used by the
above rule:

def encryptOnion(CID, Node, Data_in, &Data_E) {
eo1 circuitInitiatorKeys(CID, Node,

Key_forw, Key_back)
this.return(Data_E) :-

this.init(CID, Node, Data_in),

KeySeed = f_genKeySeed(),
Key_onion = f_sha1(KeySeed),
Key_forw = f_sha1(Key_Onion),
Key_back = f_sha1(Key_forw),
Payload_E = f_symEncrypt(Key_onion,Data_in),
publickey(Node,PubKey),
KeySeed_E = f_asymEncrypt(PubKey,KeySeed),
Data_E=[KeySeed_E, Payload_E].

}

The built-in predicates this.init and this.return

respectively specify the input values and return values
to/from the CView. Rule eo1 generates key seed mate-
rial and iteratively applies the SHA-1 hash function to
derive three symmetric keys to be shared between the
initiator and a given Node in the circuit: (i) Key onion,
used for encrypting the layer of the onion (except for
KeySeed) destined for Node; (ii) Key forw, used for cryp-
tographic operations on data sent forward from the ini-
tiator; and (iii) Key back, used for cryptographic opera-
tions on data sent backward to the initiator. These keys
are stored at the initiator in the circuitInitiatorKeys

relation4. Rule eo0 then employs Key onion to encrypt
Data in, which consists of the next node in the circuit,
and the previous layer of the onion. The KeySeed is then
encrypted with the public key of Node.

Because CViews can clearly separate the crypto-
graphic operations from the specification of the proto-
col, one can easily tune the encryption by customiz-
ing the above encryptOnion (and the corresponding
decryptOnion) CView. Furthermore, CViews can facil-
itate reusability of these high-level cryptographic primi-
tives across different path instantiation protocols.

7 Evaluation
In this section, we describe our implementation of

A3 and present measurement studies that demonstrate its
ability to produce flexible anonymous paths at low per-
formance overhead. To examine the scalability aspects
of our implementation, we evaluate A3 both in simula-
tion using real-world network traces as well as an actual
deployment on the PlanetLab testbed.

7.1 Implementation and Experimental Setup

A3’s Relay Selection and Forwarding Engines has
been implemented as an extension to the P2 [19] declar-
ative networking system, with enhancements to enable
the various new features of A3LOG as described in Sec-
tions 5 and 6. All relay selection policies used our ex-
periments produce paths with three anonymizing relays.

4Note that circuit initiator does not contain Key onion
– this key is only used for cryptographic operations on the onion sent
for path instantiation, and need not be persisted.

We utilize a MySQL database server as our Directory
Service. A3 nodes register with the service and query
for membership by sending SQL queries and updates to
the server. Membership information that has not been
refreshed within 15 minutes is purged from the direc-
tory. Although the MySQL protocol adds a small degree
of unnecessary bandwidth overhead, directory fetches
and updates occur infrequently. To minimize such over-
head, compression is enabled in both A3 clients and
the database server. The Local Directory Cache, which
queries the Directory Service for membership informa-
tion, stores the results in materialize tables that are ac-
cessible to the Relay Selection Engine.

The A3 system executes in simulation mode by tak-
ing as input a network trace consisting of pairwise la-
tency measurements [17] and running several A3 in-
stances on a single machine. Actual implementation
is achieved by running each A3 instance on PlanetLab,
interfacing with the Directory Service and Information
Providers.

Our experiments utilize two Information Providers.
Each relay (whether running in simulation mode or on
PlanetLab) participates in a Vivaldi [6] virtual coordi-
nate embedding system. Relays update the Network
Coordinate Information Provider (here, the MySQL
database used as our Directory Service) with its new co-
ordinate when the Euclidean distance between coordi-
nate updates exceed 10ms. Additionally, our PlanetLab
experiments utilize the CoMon PlanetLab Monitoring
Infrastructure [27] to retrieve peers’ bandwidth, mem-
ory, and CPU usage information.

7.2 Relay Selection Evaluation

A3 is a flexible anonymity framework that enables the
rapid development and deployment of relay selection al-
gorithms. To demonstrate A3’s ability to parse a diverse
set of relay selection policies, we evaluate the perfor-
mance characteristics of generated paths and compare
them to their expected values.

7.2.1 Simulation-based Evaluation

Figure 2 shows the cumulative distribution of end-to-end
(e2e) latencies using our A3 implementation in simu-
lation mode with the WEIGHTED relay selection pol-
icy [36]. The x-axis of the graph plots the achieved
e2e latency, while the y-axis indicates the fraction of
paths that has at most that latency. As input to the trace-
driven simulator, we utilize the King dataset [17], a col-
lection of pairwise latencies collected from the Inter-
net using the King method [14]. As can be seen from

 0

 20

 40

 60

 80

 100

 150 200 250 300 350 400

P
e
rc

e
n
ta

g
e
 o

f
p
a
th

s
 m

e
e
ti
n
g
 c

o
n
s
tr

a
in

t

Constraint: e2e RTT (ms)

% of constraint paths
% of random paths

Figure 4. Achieved performance as mea-
sured by e2e RTT under simulation using
the King dataset with the CONSTRAINT relay
selection policy.

the figure, WEIGHTED reduces the e2e RTT of anony-
mous paths when compared to RANDOM. For exam-
ple, the median RTT of anonymous paths decreases 30%
from 261ms to 184ms when WEIGHTED is used. Sim-
ilarly, Figure 3 shows the achieved performance, mea-
sured as the e2e bandwidth of anonymous paths, using
various node-based relay selection policies. Paths were
constructed using bandwidth information retrieved from
Tor directory servers. As expected, the Tor routing pol-
icy produces paths with significantly greater bandwidths
than random selection. The Snader-Borisov algorithm
achieves tunable performance results – as the value of
s increases, the effective e2e bandwidth of anonymous
paths also increases.

The performance of the anonymous paths shown in
Figures 2 and 3 can be validated by comparing against
results from previous studies [36] in which the relay
selection algorithms were hardcoded. Using A3, how-
ever, policies are concisely represented in a few lines of
A3LOG, and are provided to the Relay Selection Engine
during runtime.

Our novel CONSTRAINT algorithm allows applica-
tions to specify hard constraints on their anonymous
paths. The performance results for various e2e latency
constraints is shown in Figure 4. The graph plots the
percentage of anonymous paths whose e2e latency met
the constraint for both the CONSTRAINT and RANDOM
relay selection policies. The results from the uniform
selection policy serve as an approximation for the per-
centage of possible paths that meet the constraint, and

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600 700 800

C
u
m

u
la

ti
v
e
 F

ra
c
ti
o
n

e2e RTT (ms)

Random
Weighted (s=3)

Weighted (s=15)

Figure 2. Achieved performance as mea-
sured by e2e RTT under simulation using
the King dataset with the WEIGHTED relay
selection policy.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 16 32 64 128 256 512 1024

C
u
m

u
la

ti
v
e
 F

ra
c
ti
o
n

Bandwidth (KBps)

Random
Tor

Snader-Borisov (s=3)
Snader-Borisov (s=9)

Snader-Borisov (s=15)

Figure 3. Achieved performance (log scale)
as measured by e2e bandwidth under sim-
ulation using bandwidths from the Tor di-
rectory server for various node-based relay
selection policies.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

R
a
n
d
o
m

 C
o
n
s
tr

a
in

t
(<

4
0
0
m

s
)

 C
o
n
s
tr

a
in

t
(<

3
5
0
m

s
)

 C
o
n
s
tr

a
in

t
(<

3
0
0
m

s
)

 C
o
n
s
tr

a
in

t
(<

2
5
0
m

s
)

 C
o
n
s
tr

a
in

t
(<

2
0
0
m

s
)

 C
o
n
s
tr

a
in

t
(<

1
5
0
m

s
)

W
e
ig

h
te

d
 (

s
=

3
)

W
e
ig

h
te

d
 (

s
=

9
)

W
e
ig

h
te

d
 (

s
=

1
5
)

R
a
n
g
e
 o

f
N

o
d
e
 P

re
v
a
le

n
c
e
s

Figure 5. Node prevalences for latency
datasets

 0.0001

 0.001

 0.01

 0.1

 1

R
a
n
d
o
m

T
o
r

S
n
a
d
e
r-

B
o
ri
s
o
v
 (

s
=

3
)

S
n
a
d
e
r-

B
o
ri
s
o
v
 (

s
=

9
)

S
n
a
d
e
r-

B
o
ri
s
o
v
 (

s
-1

5
)R

a
n
g
e
 o

f
N

o
d
e
 P

re
v
a
le

n
c
e
s

Figure 6. Node prevalences for band-
width datasets (log scale).

therefore indicate the difficulty of finding conforming
paths. Failure to meet the requirements specified by the
CONSTRAINT strategy are due to embedding errors in
the Vivaldi virtual coordinate system. That is, under-
estimations of network distances occasionally cause the
Relay Selection Engine to incorrectly believe that a non-
conforming path met the requirements of the policy.

When the constraint is lax and permits paths with e2e
latencies of up to 350ms, 74% and 94% of the paths gen-
erated using uniform and CONSTRAINT, respectively,

adhere to the requirement. Even for very stringent re-
quirements – e2e latencies of 150ms or less – 83% of
paths produced for the CONSTRAINT policy met the re-
quirement. In contrast, less than 9% of random paths
had latencies below the threshold.

In addition to enabling flexible routing, A3 also
serves as a tool for protocol designers to empirically
measure some of the security characteristics of their al-
gorithms. New protocols may be quickly encoded in
A3LOG and tested on A3. The security of a given al-

gorithm may be partly assessed by examining the dis-
tribution of relays’ node prevalences – the percentage
of anonymous paths for which a given relay is a par-
ticipant [36]. Comparing the node prevalences for var-
ious routing policies while keeping the network consis-
tent provides a straightforward means of determining
whether any particular relay is selected disproportion-
ately during relay selection. Figures 5 and 6 plot the
range of node prevalences for the previously described
relay policies under simulation. Of particular interest is
the maximum node prevalence – the percentage of paths
that include the most popular chosen relay. As demon-
strated in prior work [36], the node prevalences resulting
from link-based path selection (left) tend to be signifi-
cantly lower than that of node-based selection.

7.2.2 PlanetLab Deployment

To evaluate the system’s performance on real-world net-
works, we installed A3 on approximately 110 geograph-
ically distributed hosts on the PlanetLab testbed.

PlanetLab Performance. Figure 7 shows the e2e path
performance results on PlanetLab for the RANDOM,
WEIGHTED, and CONSTRAINT strategies. Due to insta-
bility in the PlanetLab network, paths were abandoned
after a two second timeout, leading to a maximum RTT
of 2s. WEIGHTED (with s = 9) reduced the median
RTT of paths by 194ms (38%) as compared to random
selection. 69% of paths met the fairly stringent 400ms
requirement using the CONSTRAINT policy. By com-
parison, only 26% of random paths had e2e RTTs of less
than 400ms.

Information Provider Polling Frequency In order to
produce paths that adhere to application policies, the
Routing Engine must rely on the data stored in the Local
Directory Cache. If the data is stale, then routing deci-
sions will be based on outdated information. However,
frequent polling of the Information Providers consumes
bandwidth both at relay nodes (whose resources may al-
ready be overburdened from forwarding traffic) and at
the Providers. The rate at which information should be
refreshed is highly dependent upon the particular metric.
For example, bandwidth capacities may be fairly static,
whereas bandwidth utilization varies significantly over
time.

To understand this tradeoff for our Network Coor-
dinate Information Provider, we examined the rate at
which coordinates changed under high degrees of churn.
Figure 8 (log scale on both axes) plots the rate of change

(as measured by the distance between successive coor-
dinate updates) on PlanetLab. Since relays operate in-
dependently and conduct coordinate updates at varying
times, results are grouped at one minute intervals, with
the 10th, 50th (median), and 90th percentiles plotted on
the graph. Initially, 90% of all relays join the network
at approximately the same time, resulting in substantial
coordinate movement early in the experiment. However,
the system quickly stabilizes– the median rate of change
decreases to less than 10ms within 10 minutes. Hence,
even in the near worst-case scenario in which all partic-
ipants join the network at once, the coordinate system
reaches equilibrium within approximately 10 minutes.

To model a more realistic scenario, the remaining
10% of PlanetLab nodes join the network after approx-
imately 30 minutes (indicated by arrows on the graph).
Immediately following the introduction of the new par-
ticipants, the median difference between coordinate up-
dates experiences a minor jump, but remains below 3ms.

Our results indicate that latency is fairly stable (at
least on PlanetLab), requiring infrequent coordinate up-
dates. Even when members of a large coalition of relays
join the network simultaneously, the effect on coordinate
stability is minor.

Processing Costs The Relay Selection Engine parses
and interprets A3LOG policies and uses the information
stored in the Local Directory Cache to generate con-
forming paths. The engine is implemented in C++ as an
extension to the P2 declarative networking system [19].
We observe in our simulations and PlanetLab exper-
iments that the time required to parse A3LOG scripts
(which occurs only when such scripts are loaded) and
produce paths is minimal. For example, when running
on PlanetLab with a heavy network load, the Relay Se-
lection Engine requires on average less than 200ms to
produce a path using the CONSTRAINT policy with mul-
tiple constraints.

7.3 Path Instantiation

Above, our evaluation validated the flexibility of
A3LOG for supporting a wide range of relay selection
policies with low performance overhead. Next, we
benchmark the performance of declarative onion path
instantiation. As described in Section 6, the A3LOG im-
plementation of this protocol requires the use of secure
communication, as well as symmetric-key cryptographic
primitives and onion assembly. To isolate the effects of
CPU and communication overhead, we conducted our
evaluation in a local cluster in addition to the PlanetLab
testbed.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

C
u
m

u
la

ti
v
e
 F

ra
c
ti
o
n

e2e RTT (ms)

Random
Weighted (s=9)

Constraint (< 400ms)

Figure 7. Achieved performance as mea-
sured by e2e RTT on PlanetLab.

 0.1

 1

 10

 100

 1000

 10 100 1000

D
is

ta
n
c
e
 f
ro

m
 p

re
v
io

u
s
 c

o
o
rd

in
a
te

 (
m

s
)

Time (minutes)

Median
10%
90%

Figure 8. Median, 10th, and 90th percentile
distances between coordinate updates on
PlanetLab (log scale). Initially, 90% of all
relays join the network at approximately
the same time. Arrows indicate the point
at which the remaining relays join.

Path Length Local Cluster PlanetLab
2 102 1059 (853, 1459)
3 146 1342 (1120, 2862)
4 192 2202 (1311, 3402)
5 244 2215 (1602, 2564)

Table 2. Median Onion Routing path instan-
tiation time (in milliseconds) on our local
cluster and on PlanetLab. The values in
parentheses shows the 20th and 80th per-
centile times on PlanetLab.

Our local cluster consists of quad-core machines with
Intel Xeon 2.4GHz CPUs and 4GB RAM running Fe-
dora 10 with kernel version 2.6, which are intercon-
nected by Gigabit Ethernet. This setup allows us to iso-
late the computation overhead of onion routing in our
benchmark.

Table 2 (second column) shows the path instantiation
times (measured from the initiator creating the onion
to the establishment of the bidirectional onion path) as
the number of relays increases. For each relay size, we
measured 10 path instantiations and computed the me-
dian. We make the following two observations: First, as
expected, the path instantiation time increases linearly
with the number of relays. Second, the instantiation time
is within 244ms, even for up to 5 relay nodes, demon-

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20

C
u
m

u
la

ti
v
e
 F

ra
c
ti
o
n

Bandwidth (KBps)

Random
Dual-Constraint

Figure 9. Distribution of bandwidth
throughput on PlanetLab using the DJ-
Anonymous application with a dual-
constraint selection policy.

strating the low overhead and efficiency of using A3LOG.
Table 2 (third column) shows a similar experimental

evaluation on the PlanetLab testbed, where we measure
the median path instantiation times as the number of re-
lays increases. We observe greater variability in path
instantiation times (as shown by the values in parenthe-

ses denoting the 20th and 80th percentile) for the same
number of relays. We further observe that on PlanetLab,
the instantiation times are higher when the end-to-end
latency dominates other factors due to the high load and
network congestion observed on PlanetLab. Neverthe-
less, the majority of path instantiations complete within
2-3 seconds, even for many relays.

7.4 DJ-Anonymous A3 Audio Streamer

To illustrate how applications can leverage the flex-
ibility provided by A3, we implemented a simple uni-
cast audio streamer which we call DJ-Anonymous. DJ-
Anonymous reads from an audio device at a fixed rate
and transmits audio messages at regular intervals to the
receiver. DJ-Anonymous supports the transmission of
live audio and aims to minimize the latency and maxi-
mize the bandwidth of its chosen paths.

DJ-Anonymous uses a dual constraint policy in
which the e2e latency is capped at 400ms and the tol-
erable maximum CPU utilization of a relay is set at 30%
(as measured by CoMon [27]). Since rate limiting on
PlanetLab prevents accurate bandwidth measurements,
our policy does not include any bandwidth requirements.
The entire policy used by DJ-Anonymous may be ex-
pressed in just six lines of A3LOG.

In our experimental setup, each PlanetLab node runs
an instance of DJ-Anonymous, sending streams of data
to randomly selected PlanetLab destinations. Streams
are instantiated on average every two minutes (stream
start times are randomized between -20% and +20% to
avoid nodes functioning in lockstep) and persist for one
minute. Initiators attempt to send 500 byte payloads
every 25ms, representing a maximum possible through-
put of 20KBps. Since we were not able (or willing) to
read from live audio sources on PlanetLab nodes, DJ-
Anonymous instances on PlanetLab read “audio” from
their /dev/zero devices.

Figure 9 shows the e2e bandwidth (as measured
by the receiver) achieved using DJ-Anonymous’ two-
constraint relay selection policy. For comparison, the
bandwidth that results from using random selection is
also plotted. Using our six-rule dual-constraint pol-
icy, DJ-Anonymous achieves a median throughput of
9.0KBps (sufficient for G.711/PCM µ-law audio en-
coding), more than doubling the median bandwidth of
3.7KBps that results from random selection.

8 Conclusion

This paper presents Application-Aware Anonymity
(A3), an extensible anonymity framework that enables

senders to compactly specify policies for relay selec-
tion and path instantiation that meet their performance
and anonymity requirements. Unlike existing anonymity
networks in which modifying the relay selection and
path instantiation algorithms require changes to the
source code, A3 allows senders to customize the manner
in which paths are chosen and constructed at runtime.

A3 uses a declarative design in which senders specify
their routing requirements using the A3LOG policy lan-
guage. We demonstrate that A3 provides sufficient flex-
ibility to encode the relay selection algorithms used by
Tor [9], Snader and Borisov’s refinement to Tor [40], and
link-based approaches [36] in only a few lines of A3LOG.
Results from simulations over trace-driven datasets and
our deployment on PlanetLab show that A3 produces
paths that conform to the specified policies with little
computational overhead.

In addition to providing flexible relay selection, A3

also enables initiators to customize both the manner in
which anonymous paths are constructed as well as the
mechanisms used to transport data over such paths. For
example, we show how the Setup and Data Transmission
phases of Onion Routing [30] can be compactly speci-
fied in A3LOG.

A3’s flexibility has several advantages for anonymous
routing. First, it allows senders to construct policies that
meet their applications’ specific requirements. For ex-
ample, a real-time VoIP application may provide poli-
cies that enforce e2e latency constraints, whereas a file
sharing client may utilize a policy that favors bandwidth
over other performance indicators. Second, the ability to
rapidly deploy both relay selection and path instantiation
algorithms makes A3 a useful tool for protocol designers
and anonymity researchers. Finally, A3’s modular de-
sign and declarative techniques permit the system to be
easily extended to support additional metrics. By con-
structing small adapters that interface with Information
Providers, A3 can be adapted to support policies that ref-
erence a diverse set of routing criteria.

Acknowledgments

The authors are grateful to the anonymous reviewers
for their insightful feedback. This work is partially sup-
ported by NSF Grants CNS-0831376, CNS-0524047,
and CNS-0627579; DARPA Grant ONR-N00014-09-1-
0770; and OSD/AFOSR MURI Collaborative Policies
and Assured Information Sharing. Any opinions, find-
ings, and conclusions or recommendations expressed in
this paper are those of the authors and do not necessarily
reflect the views of the funding agencies.

Appendix A. Link-based Tunable Perfor-
mance/Anonymity Selection in A3LOG

The WEIGHTED link-based path selection algorithm
operates in two phases:

In the first phase, the initiator rapidly generates (but
does not instantiate) candidate paths consisting of three
relays chosen uniformly at random without replace-
ment. The initiator computes the e2e cost of each gen-
erated candidate path. In the second phase, the initiator
sorts the candidate paths by their cost estimates. Us-
ing the family of functions introduced by Snader and
Borisov [40] (see Eq. 1), the initiator instantiates the
candidate path with index bn · fs(x)c, where x is cho-
sen uniformly at random from [0, 1), and n is the num-
ber of nodes. As with Snader and Borisov’s algorithm, a
larger value of s more heavily weighs path selection in
favor of performance. The s parameter is denoted by the
S attribute in the initial path request.

WEIGHTED is represented in A3LOG as follows:

w1 eCandidatePaths(Src, Dst, S,
RAND(3, 100)<IP,Coord>,
PathCosts) :-

ePathRequest(Src, Dest, S), node(IP, Coord),
Src != IP, Dst != IP, PathCosts = {}.

w2 eCandidatePaths(Src, Dst, S, PathList,
PathCosts) :-

eCandidatePaths(Src, Dst, S, PathList,
PathCosts),

f_size(PathList) > 0, P=f_popfront(PathList),
PathCost=f_coorddist(Src.Coord,P[0].Coord) +

f_coorddist(P[0].Coord,P[1].Coord) +
f_coorddist(P[1].Coord,P[2].Coord) +
f_coorddist(P[2].Coord,Dst.Coord),

PathCosts.append([P, PathCost]).

w3 ePathResult(Src, Dest, Path) :-
eCandidatePaths(Src, Dst, S, PathList,

PathCosts),
f_size(PathList)=0,
SortedPathCosts=f_sortByField(PathCosts,

"PathCost",
"desc"),

sbRand=(1 - 2ˆ(S*f_rand01())) / (1-2ˆS)),
Path=f_selectIndex(SortedPathCost,sbRand).P.

Rule w1 first generates 100 random permutations of
three elements each from the node table. Then, rule w2

repeatedly converts these list elements into pairs with
the path’s e2e cost, based on the embedded coordinates.
Finally, rule w3 sorts this list and selects an index using
the Snader-Borisov random variable described in Eq. 1,
with a tunable performance parameter S. Note that in
this case, we sort in reverse order since lower latency is
preferred to higher latency. The above rule assumes a
left-to-right execution ordering of predicates. This as-
sumption can be avoided with a more verbose version of
the above program using some additional rules.

Appendix B. Tor and Crowds in A3LOG

Tor: Unlike Onion Routing, where the initiator recur-
sively builds a single onion that is relayed along the en-
tire path, Tor specifies an incremental telescoping path
instantiation strategy. At a high level, a circuit initia-
tor sends a CREATE message to the first Tor router in
the desired circuit. The Tor router establishes local state
and replies, resulting in a path of length one. Should the
initiator choose to add another hop to the end of path, he
relays an EXTEND message to the current endpoint. The
current endpoint translates the EXTEND into a CRE-
ATE message and sends it to the desired new endpoint.
The new endpoint of the circuit replies with a confirma-
tion message, which is forwarded back to the initiator.
The initiator may continue to extend the path if he de-
sires5.

Both CREATE and EXTEND messages can be en-
coded as A3LOG message tuples, and contain half of
a Diffie-Hellman handshake, encrypted with the pub-
lic key of the desired new endpoint. The new endpoint
completes the handshake with the initiator, resulting in
symmetric keys shared with the initiator, as in Onion
Routing. The encryption/decryption modules can be im-
plemented as a CView module with the corresponding
cryptographic functions, similar to that described in Sec-
tion 6.2. Tor’s telescoping path establishment implies
that n messages are exchanged in each direction to es-
tablish a circuit of length n. The kth message sent in the
forward direction is essentially an onion with k layers.
For sending messages between Tor routers, Tor specifies
a link-layer protocol similar to that of Onion Routing.

Crowds: The process of path instantiation in Crowds
commences when an initiator starts an anonymous relay
on his machine called a jondo and contacts a server to
obtain membership in a crowd – a collection of anony-
mous users. To build a path, the initiator forwards a
request to a jondo chosen uniformly at random – pos-
sibly his own. Upon receiving a request to create a
path, a jondo chooses to extend the path to another jondo
(again chosen uniformly at random) with probability pf ,
or ceases path creation with probability 1 − pf .

Typically, an initiator will use a single bidirectional
path for all anonymous communication. However, in or-
der to preserve anonymity properties, all initiators must
create a new circuit – and cease using any previous ones
– whenever a new jondo joins the crowd.

Below, we exhibit the forward half of the path instan-
tiation scheme used in Crowds in the following rules:

5The current implementation of Tor uses three-relay anonymous
paths by default.

c0 circuitStatus(CID, "BUILDING"),
circuitForward(CID, ACI_out, Node_out),
extend(@Node_out, ACI_out, Me) :-

establish_path(), ACI_out=f_gen_aci(),
CID = f_gen_cid(), random_jondo(&Node_out).

Rule c0 begins the process of building a new path of
jondos in response to an establish path event. Such
an event is triggered when a node retrieves a new list of
jondos, for example. c0 generates a CID and ACI for
the new circuit, and selects a jondo uniformly at random
(using the random jondo CView) to receive the path ex-
tension request, extend. Upon receipt of an extend re-
quest, rule c1 is triggered:

c1 circuitReverse(CID, ACI_in, Node_in),
incoming(CID, X) :-

extend(@Me, ACI_in, Node_in),
X = f_rand01(), CID = f_gen_cid().

Rule c1 generates a random number in the range [0, 1],
as well as a CID for the circuit. c1 also derives a local
incoming event, containing the local CID of the new cir-
cuit, and the previously generated random number. The
incoming event triggers rule c2:

c2 circuitForward(CID, ACI_out, Node_out),
extend(@Node_out, ACI_out, me) :-
incoming(CID, X), p_forward(P), X <= P,
ACI_out = f_gen_aci(),
random_jondo(&Node_out).

Rule c2 compares the random number (X) against the
probability of extending the path forward, (P). If X ≤ P,
then rule c2 generates an outgoing ACI, and selects a
jondo uniformly at random to serve as the next relay in
the circuit. Alternatively, if X > P, another set of rules
relays a confirmation back to the initiator informing him
that the newly instantiated path is ready for use.

References

[1] Tor Directory Protocol, Version 3. https:
//git.torproject.org/checkout/tor/
master/doc/spec/dir-spec.txt.

[2] D. G. Andersen, H. Balakrishnan, M. F. Kaashoek, and
R. Morris. The Case for Resilient Overlay Networks. In
HOTOS ’01: Proceedings of the Eighth Workshop on Hot
Topics in Operating Systems, page 152, 2001.

[3] K. Bauer, D. McCoy, D. Grunwald, T. Kohno, and
D. Sicker. Low-Resource Routing Attacks Against Tor.
In Proceedings of the 2007 ACM Workshop on Privacy in
Electronic Society, pages 11–20, 2007.

[4] O. Berthold, H. Federrath, and M. Köhntopp. Project
“Anonymity and Unobservability in the Internet”. In CFP
’00: Proceedings of the Tenth Conference on Computers,
Freedom and Privacy, pages 57–65, 2000.

[5] M. Costa, M. Castro, R. Rowstron, and P. Key. PIC:
Practical Internet Coordinates for Distance Estimation. In
International Conference on Distributed Computing Sys-
tems, 2004.

[6] F. Dabek, R. Cox, F. Kaashoek, and R. Morris. Vivaldi: A
Decentralized Network Coordinate System. SIGCOMM
Comput. Commun. Rev., 34(4):15–26, 2004.

[7] F. Dabek, J. Li, E. Sit, F. Kaashoek, R. Morris, and
C. Blake. Designing a DHT for Low Latency and High
Throughput. In NSDI, 2004.

[8] R. Dingledine and N. Mathewson. Tor Path Specifi-
cation, January 2008. http://www.torproject.
org/svn/trunk/doc/spec/path-spec.txt.

[9] R. Dingledine, N. Mathewson, and P. Syverson. Tor: The
Second-Generation Onion Router. In Proc. of the 13th
Usenix Security Symposium, pages 303–320, 2004.

[10] H. Federrath. JAP: Anonymity & Privacy. http://
anon.inf.tu-dresden.de/.

[11] P. Francis, S. Jamin, C. Jin, Y. Jin, D. Raz, Y. Shavitt,
and L. Zhang. IDMaps: A Global Internet Host Distance
Estimation Service. IEEE/ACM Trans. Netw., 9(5):525–
540, 2001.

[12] M. Freedman, K. Lakshminarayanan, and D. Mazières.
OASIS: Anycast for Any Service. In Networked Systems
Design and Implementation (NSDI), May 2006.

[13] M. J. Freedman and R. Morris. Tarzan: A Peer-to-Peer
Anonymizing Network Layer. In CCS, Washington, D.C.,
November 2002.

[14] K. P. Gummadi, S. Saroiu, and S. D. Gribble. King: Es-
timating Latency between Arbitrary Internet End Hosts.
In ACM SIGCOMM Workshop on Internet Measurment
(IMW), 2002.

[15] M. A. Kaafar, L. Mathy, C. Barakat, K. Salamatian,
T. Turletti, and W. Dabbous. Securing Internet Coordi-
nate Embedding Systems. In ACM SIGCOMM, August
2007.

[16] M. A. Kaafar, L. Mathy, T. Turletti, and W. Dabbous.
Real Attacks on Virtual Networks: Vivaldi Out of Tune.
In SIGCOMM Workshop on Large-Scale Attack Defense
(LSAD), pages 139–146, 2006.

[17] “King” Data Set. Available at http://pdos.csail.
mit.edu/p2psim/kingdata/.

[18] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F.
Kaashoek. The Click Modular Router. ACM Transactions
of Computer Systems, 18(3), 2000.

[19] B. T. Loo, T. Condie, J. M. Hellerstein, P. Maniatis,
T. Roscoe, and I. Stoica. Implementing Declarative Over-
lays. In SOSP, 2005.

[20] B. T. Loo, J. M. Hellerstein, I. Stoica, and R. Ramakr-
ishnan. Declarative Routing: Extensible Routing with
Declarative Queries. In SIGCOMM, 2005.

[21] H. Madhyastha, E. Katz-Bassett, T. Anderson, A. Kr-
ishnamurthy, and A. Venkataramani. iPlane Nano: Path
Prediction for Peer-to-Peer Applications. In Proc. of the
USENIX Conference on Networked Systems Design and
Implementation (NSDI), 2009.

https://git.torproject.org/checkout/tor/master/doc/spec/dir-spec.txt
https://git.torproject.org/checkout/tor/master/doc/spec/dir-spec.txt
https://git.torproject.org/checkout/tor/master/doc/spec/dir-spec.txt
http://www.torproject.org/svn/trunk/doc/spec/path-spec.txt
http://www.torproject.org/svn/trunk/doc/spec/path-spec.txt
http://anon.inf.tu-dresden.de/
http://anon.inf.tu-dresden.de/
http://pdos.csail.mit.edu/p2psim/kingdata/
http://pdos.csail.mit.edu/p2psim/kingdata/

[22] Y. Mao, B. T. Loo, Z. Ives, and J. M. Smith. MO-
SAIC: Unified Platform for Dynamic Overlay Selection
and Composition. In 5th ACM International Conference
on emerging Networking EXperiments and Technologies,
2008.

[23] A. Mislove, G. Oberoi, A. Post, C. Reis, P. Druschel,
and D. S. Wallach. AP3: Cooperative, Decentralized
Anonymous Communication. In 11th Workshop on ACM
SIGOPS European Workshop: Beyond the PC, page 30,
2004.

[24] S. J. Murdoch and R. N. M. Watson. Metrics for Security
and Performance in Low-Latency Anonymity Systems. In
8th Privacy Enhancing Technologies Symposium (PETS
2008), July 2008.

[25] T. S. E. Ng and H. Zhang. A Network Positioning Sys-
tem for the Internet. In Proceedings of the 2004 USENIX
Annual Technical Conference, June 2004.

[26] L. Øverlier and P. Syverson. Locating Hidden Servers.
In IEEE Symposium on Security and Privacy, 2006.

[27] K. Park and V. Pai. CoMon: A Monitoring Infrastructure
for PlanetLab. http://comon.cs.princeton.
edu.

[28] PlanetLab. http://www.planet-lab.org.
[29] R. Ramakrishnan and J. D. Ullman. A Survey of Re-

search on Deductive Database Systems. Journal of Logic
Programming, 23(2), 1993.

[30] M. Reed, P. Syverson, and D. Goldschlag. Anonymous
Connections and Onion Routing. IEEE Journal on Se-
lected Areas in Communications, 16(4), May 1998.

[31] M. K. Reiter and A. D. Rubin. Crowds: Anonymity for
Web Transactions. In ACM Transactions on Information
and System Security, 1998.

[32] M. Rennhard and B. Plattner. Introducing MorphMix:
Peer-to-Peer Based Anonymous Internet Usage with Col-
lusion Detection. In WPES ’02: Proceedings of the
2002 ACM Workshop on Privacy in the Electronic Soci-
ety, pages 91–102, 2002.

[33] D. Saucez, B. Donnet, and O. Bonaventure. A
Reputation-Based Approach for Securing Vivaldi Embed-
ding System. In Dependable and Adaptable Networks and
Services, 2007.

[34] Y. Shavitt and T. Tankel. Big-bang Simulation for Em-
bedding Network Distances in Euclidean Space. In IEEE
Infocom, April 2003.

[35] M. Sherr. Coordinate-Based Routing for High Perfor-
mance Anonymity. PhD thesis, CIS Department, Univer-
sity of Pennsylvania, 2009.

[36] M. Sherr, M. Blaze, and B. T. Loo. Scalable Link-Based
Relay Selection for Anonymous Routing. In 9th Privacy
Enhancing Technologies Symposium (PETS 2009), Au-
gust 2009.

[37] M. Sherr, M. Blaze, and B. T. Loo. Veracity: Practical
Secure Network Coordinates via Vote-based Agreements.
In USENIX Annual Technical Conference (USENIX ’09),
June 2009.

[38] M. Sherr, B. T. Loo, and M. Blaze. Towards Application-
Aware Anonymous Routing. In Second USENIX Work-
shop on Hot Topics in Security (HotSec), August 2007.

[39] C. Shields and B. N. Levine. A Protocol for Anonymous
Communication over the Internet. In CCS ’00: Proceed-
ings of the 7th ACM Conference on Computer and Com-
munications Security, pages 33–42, New York, NY, USA,
2000. ACM Press.

[40] R. Snader and N. Borisov. A Tune-up for Tor: Improv-
ing Security and Performance in the Tor Network. In 15th
Annual Network and Distributed System Security Sympo-
sium (NDSS), February 2008.

[41] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and
H. Balakrishnan. Chord: A Scalable Peer-to-Peer Lookup
Service for Internet Applications. In SIGCOMM, 2001.

[42] B. Wong, A. Slivkins, and E. G. Sirer. Meridian: a
Lightweight Network Location Service without Virtual
Coordinates. In SIGCOMM, 2005.

[43] D. J. Zage and C. Nita-Rotaru. On the Accuracy of
Decentralized Virtual Coordinate Systems in Adversarial
Networks. In CCS, 2007.

[44] L. Zhuang, F. Zhou, B. Y. Zhao, and A. Rowstron. Cash-
mere: Resilient Anonymous Routing. Proc. of NSDI,
2005.

http://comon.cs.princeton.edu
http://comon.cs.princeton.edu
http://www.planet-lab.org

	Introduction
	Related Work
	Background on Declarative Networking
	Datalog
	First Example: All Pairs Reachability
	Materialized Soft-state Tables and Events

	A3 Design Goals and Architecture
	Information Providers
	Other Components of A3
	Directory Service
	Local Directory Cache
	Relay Selection Engine
	Forwarding Engine

	Relay Selection Policies
	Node-based Relay Selection
	Bandwidth-weighted Selection
	Tunable Performance/Anonymity Selection

	Link-based Selection
	End-to-end Constraint-Based Selection
	Tunable Performance/Anonymity Selection
	Hybrid Selection

	Path Instantiation Policies
	Onion Routing in A3Log
	Composable Virtual View for Onion Encryption

	Evaluation
	Implementation and Experimental Setup
	Relay Selection Evaluation
	Simulation-based Evaluation
	PlanetLab Deployment

	Path Instantiation
	DJ-Anonymous A3 Audio Streamer

	Conclusion

