
Generalized Compressed Network Search

Rupesh Kumar Srivastava, Jürgen Schmidhuber and Faustino Gomez

IDSIA
USI-SUPSI

Manno-Lugano, CH
{rupesh,juergen,tino}@idsia.ch

Abstract. This paper presents initial results of Generalized Compressed
Network Search (GCNS), a method for automatically identifying the
important frequencies for neural networks encoded as Fourier-type co-
efficients (i.e. “compressed” networks [7]). GCNS is a general search
procedure in this coefficient space – both the number of frequencies
and their value are automatically determined by employing the use of
variable-length chromosomes, inspired by messy genetic algorithms. The
method achieves better compression than our previous approach, and
promises improved generalization for evolved controllers. Results for a
high-dimensional Octopus arm control problem show that a high fitness
3680-weight network can be encoded using less than 10 coefficients using
the frequencies identified by GCNS.

1 Introduction

Indirect or generative encoding schemes for neural network phenotypes [1,5,6,9]
offer the potential of allowing very large networks to be represented compactly.
In previous work [7], we showed that encoding neural network weight matrices
indirectly as a set of Fourier-type coefficients can reduce the search space di-
mensionality and help to discover more ‘regular’ networks which are simpler in
the Kolmogorov sense (the program required to encode them is much shorter).
Such networks are expected to have better generalization capabilities [9].

However, up to now, this “compressed” network search has been restricted
to band-limited networks where the genome includes all frequencies up to a
specified limit frequency. This means that more genes must be searched than may
be necessary, because only a few, select frequencies may be needed to represent
a good network. In this work, we implement a more general approach which
automatically determines the subset of frequencies and their amplitudes using
a genetic algorithm with variable size chromosomes, where each gene specifies a
frequency number as well as amplitude value. Taking inspiration from the messy
genetic algorithms [2], cut and splice operators are used instead of crossover. By
resolving the overspecification and underspecification problems arising from this
less restrictive encoding, we are able to find genomes which represent high fitness
networks using very few frequencies. Initial results are very encouraging: we are
able to identify isolated frequencies which appear to contribute significantly to
fitness, and which are not easily identified otherwise.

Inverse
DCT

Inverse
DCT

Inverse
DCT

(a)

(b)

(c)

Fig. 1. DCT network representation. The left column shows three different types of
2D frequency-domain coefficient arrays. The coefficients are arranged along the second
diagonals, going from upper-left corner, to the bottom right corner. Each diagonal
is filled from the edges to the center starting on the side that corresponds to the
longer dimension. The right column shows the weight matrix resulting from applying
the inverse DCT transform; gray-scale levels denote the weight values (black = low,
white = high). In (a) all frequencies are present, so that all possible weight matrices
can be represented. (b) Shows a band-limited weight matrix where only the first four
coefficients from (a) are used, as in [7]. The weights in (b) are more spatially correlated
than those in (a). (c) Shows a weight matrix encoded by a subset of frequencies from
(a). GCNS searches this space of coefficient subsets (power set) of (a).

2 DCT Network Representation

The Discrete Cosine Transform (DCT) representation for neural networks, first
introduced in [8], encodes network weight matrices in the frequency domain by
using genomes of DCT coefficients. The motivation is that if weights that are
near each other in the matrix are correlated, then the representation of the
matrix in the frequency domain should require fewer parameters (coefficients1)
than the number of weights in the matrix, thereby reducing the dimensionality
of the search space.

In this paper, all of the networks are fully connected recurrent neural net-
works (FRNNs) with i inputs, and single layer of n neurons where some of the
neurons are treated as output neurons. An FRNN consists of three weight matri-
ces: an n× i input matrix, I, an n×n recurrent matrix, R, and a bias vector t of
length n. These three matrices are combined into one n× (n+ i+1) matrix, and

1 In this paper, we will use the terms ‘frequency’ and ‘coefficient’ interchangeably. To
be precise, every frequency is associated with a coefficient which expresses its energy
content.

index
ï7.38 ï3.98

784 0 12 7 12 45 0 97 5
5.65 1.87value ï2.32 6.52 ï12.1 2.10 3.46 ï5.4

`

Fig. 2. GCNS coefficient genome. Each gene consists of two entries, the index of
the DCT coefficient in the coefficient array, and the value of the coefficient. The same
index can appear more than once in the genome, and genomes have variable length, `.

encoded indirectly using c ≤ N DCT coefficients, where N is the total number
of weights in the network.

Figure 1 illustrates the relationship between the coefficients and weights for a
hypothetical 4×6 weight matrix (e.g. a network with four neurons each with six
weights). The left side of the figure shows three weight matrix encodings that use
different coefficients. Generally speaking, coefficient ci is considered to be more
significant (associated with a lower frequency) than cj , if i < j. The right side of
the figure shows the weight matrices that are generated by applying the inverse
DCT transform to the coefficients. In the first case (a), all 24 coefficients are
used, so that any possible 4×6 weight matrix can be represented. The particular
weight matrix shown was generated from random coefficients in [−20, 20]. In (b),
each ci has the same value as in (a), but the full set has been truncated up to the
first four lowest frequencies, favoring smoother matrices. This is the approach
taken in [7] where a limit frequency c` (c4 in the example) is specified by the
user, and genomes of length ` are evolved. In (c), the coefficient matrix again
has only four non-zero coefficients, but the coefficients are not restricted to a
band-limited spectrum; they can be at any frequency. The genomes evolved by
GCNS search this less constrained space.

3 Generalized Compressed Network Search

Generalized Compressed Network Search (GCNS) attempts to simultaneously
find the number of coefficients required to represent a high fitness network,
their indices (2D frequency), and their values. Variable size chromosomes are
used where each gene has two elements: the coefficient index and the value (see
figure 2). The coefficient index determines the position of the coefficient in the
coefficient matrix which is transformed into the network via the inverse DCT.

The overspecification problem (some genes can have multiple copies in the
genome) is handled as in messy genetic algorithms [2, 3]. If a coefficient index
appears multiple times in a genome, only its first value, reading from left to
right, gets expressed in the phenotype. This results in an intra-chromosomal
dominance operator. The problem of underspecification (some of the frequencies
do not appear in a particular genome) elegantly resolves itself due to the nature
of the encoding: if a particular coefficient number does not appear in the genome,
it is muted in the phenotype i.e. its value is taken to be zero.

GCNS starts with an initial parent population of size popsize with genomes
of variable lengths containing frequency indices and values randomly chosen in a

Fig. 3. Cut and Splice. This schematic shows the effect of application of the cut and
splice operators on a set of two parent genomes. In the case shown, only P1 gets cut
resulting in three chromosomes (strands S1, S2 and parent P2). Then splice is applied
with probability ps. If the first splice succeeds, then S1 gets spliced with P2, leaving
S2 as a separate genome. If first splice does not occur, another splice between S2 and
P2 can lead to the two children shown if it succeeds. If both splices do not succeed,
S1, S2 and P2 become the final children as shown. Similar possibilities exist for other
cases of the parents getting cut.

given range. At each generation, the child population is formed from the parent
population by applying the ‘cut’ and ‘splice’ operators in groups of two to ran-
domly chosen members from the parent population (without replacement). The
process of applying cut and splice is a generalization of the crossover operation
to the variable length genome case, and can yield one to four children from two
parents. First, it is determined whether one, both or none of the two parents
will be cut. The probability of cut is given by pc ∗ (l − 1) where l is the length
of the genome and pc is a parameter. The location of the cut on a genome is
randomly chosen over its length. At this intermediate step, there are two to four
chromosomes present depending on the number of cuts that occur. The splice
operator then joins together pairs of chromosomes with probability ps, resulting
in either one (splice succeeds) or two (splice fails) children for each splice. Fig-
ure 3 shows the recombination of the parent genomes in an example scenario.
As shown, when only parent 1 is cut, three possible sets of children can result
after splicing. The other scenarios are handled similarly.

After cutting and splicing, mutation is applied to each coefficient index (with
probability pmi

) and value (with probability pmv
) by drawing new values from

Gaussian distributions centered at their current values and having fixed standard
deviations. The value of pmi

is kept much lower than pmv
so that new frequencies

are introduced only sporadically, allowing the algorithm to focus on refining the
selected coefficients. In all our runs, the standard deviations were taken to be 5
and 10 for the indices and values, respectively.

After all the children have been evaluated, the best popsize members from
the combined parent and child populations are chosen as the parents for the next
generation. The algorithm terminates after the specified number of generations.

(a)

32 outputs32 nodes
(11x3 grid, 1 not used)

8 st
ate va

ria
bles p

er c
ompartm

ent

base rotation + 10 compartments

32x32 recurrent connections

32 bias weights

82 inputs

output

nodes

inputs

(b)

Fig. 4. Octopus arm task. (a) A flexible arm consisting of p compartments, each
with 3 muscles, must be controlled to touch a goal location with the arm tip from the
−π/2 position. The other two standard, initial positions were not used (see text). (b)
The arm is controlled by a fully recurrent network with 32 neurons, one for each action
(muscle). This topology is fixed, and only the number of coefficients used to represent
its weights is determined automatically by GCNS.

4 Octopus arm control

The octopus arm consists of n compartments floating in a 2D water environ-
ment [10]. Each compartment has a constant volume and contains three con-
trollable muscles (dorsal, transverse and ventral). The state of a compartment is
described by the x, y-coordinates of two of its corners plus their corresponding x
and y velocities. Together with the arm base rotation, the arm has 8n + 2 state
variables and 3n + 2 control variables. The goal of the task is to reach a goal
position with the tip of the arm, starting from different initial positions, by con-
tracting the appropriate muscles at each 1s step of simulated time. The standard
setup uses 3 initial positions (figure 4); here, only one initial position was used
for training (the arm starts hanging straight down), since it turns out the other
two (indicated in gray, figure 4) are very easy to solve, and successful networks
tend to generalize to them. The fitness function is given by (1− (t ∗ d)/(T ∗D))
where t is the number of time steps taken to reach the goal, d is final arm tip
distance to the goal, T maximum the number of time steps in a trial, and D is
the initial arm tip distance to the goal.

4.1 Setup

GCNS was run 30 times with popsize = 100, ngen = 150, pc = 0.2, ps = 0.8,
pmi

= 0.1 and pmv
= 0.8. The initial population contained genomes of random

length, `, ranging from 2 to 20 genes, with indices chosen at random from [1, 100],
and values chosen at random from [−30, 30]. With this setup, no one genome
contains all of the 100 available frequencies, but with very high probability all
frequencies are present in the population.

input rec. bias

18p+2

n

n

Fig. 5. Coefficient matrix. There is one coefficient matrix for all of the weights in the
network. The small boxes in the upper left-hand corner denote coefficients organized
in the usual way (as in [4, 7]) in the matrix, from this corner to the opposite corner,
in order of increasing frequency. In GCNS, genomes can instead contain frequencies
from anywhere in the (bounded) spectrum (denoted by gray boxes), without having
to include all lower frequencies. When the iDCT is applied to this matrix, a matrix
of weights of the same size is generated, and sliced into three sub-matrices (indicated
by vertical lines): one for the input weights, one for the recurrent weights, and a bias
vector.

4.2 Results

The mean best fitness over 30 runs was 0.95, while the average number of ex-
pressed genes (i.e. non-dominated) in the best genomes was 9.8, one-third the
number required in [7] to achieve similar fitness. It is important to point out
that our objective here is not to demonstrate raw performance, but to determine
whether a small basis (set of frequencies) can be discovered and parameterized
consistently.

Figure 6 shows how the frequency content in the population declines over
the course of evolution as the search converges to just a few frequencies for
the behavior of a typical run. Interestingly, we found that in addition to the
fundamental frequency (index 1, which we expected), almost all of the most
fit networks contained either index 84 or 97, with large values. The 2D cosine
functions represented by these indices seem to capture a basic regularity inherent
in the task, given the network architecture used.

Figure 9 shows the weight matrices of three difference networks with high
fitness and their GCNS genomes. All three have a very regular structure. The
third network (figure 9c) can be completely specified with just 10 numbers, for
a compression ratio of 3680/10 = 368.

4.3 Lesion study

In order to determine whether the frequencies that were found consistently in
highly fit networks are somehow “special” in that it is easier to find good values
for them, the experiments were run again, but this time the frequencies occurring
most often in the final populations of the previous experiments (indices: 0, 1, 2,
3, 5, 15, 17, 28, 31, 51, 71, 83, 96) were not allowed to be expressed (figure 7,
top). Any time one of these frequencies occurred in a genome its value was muted
by setting it to zero.

Figure 8, compares the performance of GCNS using these lesioned genomes
versus the unlesioned genomes in the first experiments. Without access to the

N
o.

 o
cc

ur
en

ce
s i

n
po

pu
la

tio
n

Coefficient index
 0 100 80 60 40 20

Gen 0

Gen 50

Gen 150

Gen 100

640

 350
 400

 0

 50

 250

 0
 50

 100
 150
 200
 250
 300
 350
 400

 0
 50

 100
 150
 200
 250
 300
 350
 400

 200
 150
 100

 50

 0

 400
 350
 300
 250
 200
 150

 300

 100

Fig. 6. Evolution of population frequency content. Each plot is a histogram of
the coefficient indices (2D DCT frequencies) in the GCNS population of a typical run
at particular point during evolution. In the initial random population (Gen 0), each
frequency occurs about as often as any other. By generation 50 (Gen 50), about 20
frequencies have started to dominate the population.

lesioned frequencies, fitness improves more slowly reaching an average of 0.88.
To do this, the lesioned runs are forced to use alternative frequencies (indices:
9, 10, 12, 21, 23, 60, 79, 87, 92, 94, 100; indicated in black in the bottom plot of
figure 7) that take longer to set properly.

5 Discussion and Future Work

The indirect encoding of neural networks using Fourier-type coefficients is promis-
ing since this scheme can reduce the dimensionality of the search space by or-
ders of magnitude and allow very compact representations of the networks. If
a particular problem suggests that a high degree of redundancy is expected in
the network, this encoding can efficiently exploit this regularity. This has been
demonstrated previously by searching for a fixed set of frequencies [4, 7]. The
present work aims to address some key issues of dealing with this encoding
scheme.

First, the previous study used a fixed set of contiguous frequencies to en-
code the networks. In one run, a set of coefficient values corresponding to these

Coefficient index

A
vg

. n
o.

 o
f o

cc
ur

re
nc

es

Lesioned

630 Unlesioned

 60 40 20

 150

 100

 50

 0

 50

 100

 150

 200

 0

 200

 0
 80 100

Fig. 7. Average frequency content in final populations. Each histogram shows
the indices present in the final population averaged over the 30 runs. In the upper,
unlesioned plot, the indices marked in black are those that cross the chosen threshold
of 30 (horizontal line). These frequencies are muted in the lesioned runs (lower plot),
where alternative solution indices emerge to compensate for those that are lesioned.

frequencies was identified. However, it is uncertain what is the number of fre-
quencies sufficient to encode a high fitness network. Thus, several runs must be
repeated with increasing number of frequencies to ensure that sufficiently high
fitness networks can be found. Moreover, the sufficient set of frequencies for a
particular problem may not consist of contiguous frequencies and thus a higher
degree of compression is possible if this restriction of contiguity can be lifted.
GCNS addresses both these issues: it restricts neither the number nor separation
of the frequencies, and as expected, leads to higher compression.

Although there is no explicit importance given to simpler representations
(lesser number of unique frequencies) in GCNS, the cut and splice operators
coupled with the elitist nature of the algorithm ensure that genomes become
longer only if required. Thus, if a particular problem does not allow high com-
pression, GCNS will utilize more frequencies until the complexity required can
be expressed. Further research in this direction is underway.

6 Acknowledgments

This research was funded by the following EU projects: IM-CLeVeR (FP7-ICT-
IP-231722) and WAY (FP7-ICT-288551).

Fi
tn

es
s

Generations

Unlesioned

 0.5

 0.6

 0.7

 0.8

 0.9

 0 20 40 60 80 100 120 140

 1

Lesioned

 0.4

Fig. 8. Performance on Octopus arm task. The plot shows the fitness of the best
network in each generation, averaged of 30 runs, with 95% confidence intervals. The
upper curve is for the unlesioned case where all 100 coefficients are active in the evolving
genomes; the lower curve is for the lesioned case where the 13 most common frequency
indices found in the final populations of the unlesioned runs are “muted”. Removing
these frequencies from the set of available alleles slows down the search, forcing GCNS
to find alternative solutions consisting of frequencies that are more difficult to set
properly.

References
1. P. Dürr, C. Mattiussi, and D. Floreano. Neuroevolution with analog genetic en-

coding. In PPSN, pages 671–680, 2006.
2. D. Goldberg, B. Korb, and K. Deb. Messy genetic algorithms: Motivation, analysis,

and first results. Complex systems, 3(5):493–530, 1989.
3. D. E. Goldberg, K. Deb, H. Kargupta, and G. Harik. Rapid, accurate optimization

of difficult problems using fast messy genetic algorithms. In Proc. of the Fifth Intl.
Conference on Genetic Algorithms, pages 56–64. Morgan Kaufmann, 1993.

4. F. Gomez, J. Koutńık, and J. Schmidhuber. Compressed network complexity
search. In Proceedings of the 12th International Conference on Parallel Problem
Solving from Nature (PPSN-XII), 2012.

5. F. Gruau. Cellular encoding of genetic neural networks. Technical Report RR-92-
21, Ecole Normale Superieure de Lyon, Institut IMAG, Lyon, France, 1992.

6. H. Kitano. Designing neural networks using genetic algorithms with graph gener-
ation system. Complex Systems, 4:461–476, 1990.

7. J. Koutńık, F. Gomez, and J. Schmidhuber. Evolving neural networks in com-
pressed weight space. In Proc. of the 12th annual conference on Genetic and
evolutionary computation, pages 619–626. ACM, 2010.

8. J. Koutńık, F. Gomez, and J. Schmidhuber. Searching for minimal neural networks
in fourier space. In Proc. of the 4th Conf. on Artificial General Intelligence, 2010.

9. J. Schmidhuber. Discovering neural nets with low Kolmogorov complexity and
high generalization capability. Neural Networks, 10(5):857–873, 1997.

10. Y. Yekutieli, R. Sagiv-Zohar, R. Aharonov, Y. Engel, B. Hochner, and T. Flash.
Dynamic model of the octopus arm. I. Biomechanics of the octopus reaching move-
ment. Journal of neurophysiology, 94(2):1443–1458, 2005.

(a)
{

1
2.74,

6
0.1,

8
6.29,

10
11.72,

11
10.41,

13
12.32,

18
9.5,

19
15.99,

21
−31.65,

29
35.47,

31
−35.59,

41
29.06,

47
−26.79,

57
−26.23,

72
16.98,

84
−0.5,

97
72.82

}

(b)

{
1

12.04,
7

10.65,
19

19.92,
26

20.06,
32

42.82,
52

49.27,
84

49.07,
95

−43.49

}

(c)

{
1

27.31,
20

22.52,
47

−20.25,
75

36.34,
97

38.44

}

Fig. 9. Low-complexity weight matrices. Each row shows the weight matrices of
a successful network (refer to figure 5 for a description of each sub-matrix). Colors
indicate weight values. The genome used to generate the network is shown below each
image.

