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ABSTRACT
Irregular algorithms such as Stochastic Gradient Descent
(SGD) can benefit from the massive parallelism available on
GPUs. However, unlike in data-parallel algorithms, synchro-
nization patterns in SGD are quite complex. Furthermore,
scheduling for scale-free graphs is challenging. This work
examines several synchronization strategies for SGD, ranging
from simple locking to conflict-free scheduling. We observe
that static schedules do not yield better performance despite
eliminating the need to perform conflict detection and reso-
lution at runtime. We identify the source of the performance
degradation to be the structure of certain parts of the graph
(dense vs sparse). This classification can be used to devise
hybrid scheduling strategies which exploit different schedules
for different regions of the graph to obtain better perfor-
mance. We found that the best schedule for some problems
can be up to two orders of magnitude faster than the worst
one. To evaluate the performance of our GPU implementa-
tion, we also compare against a CPU implementation of SGD.
Dynamic schedules perform comparably to a 14-thread CPU
implementation, while a static schedule performs comparably
to a 6-thread CPU implementation.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Program-
ming—Parallel programming ; E.1 [Data Structures]: Graphs
and Networks

General Terms
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Figure 1: Taxonomy of different schedules, gray
boxes represent actual schedules.

1. INTRODUCTION
Stochastic gradient descent (SGD) is a gradient descent

optimization strategy used to minimize certain kinds of ob-
jective functions that arise in big data machine learning
problems like building recommender systems. One example
of such a problem is the Netflix challenge: given a database
of movie ratings from a set of users, predict the rating a given
user might give to a movie he or she has not seen. SGD can
be used to solve this problem, as described in Section 2. The
database of ratings is modeled by a bipartite graph in which
one set of nodes represents users and the other set of nodes
represents movies; if a user a gives a rating of l to a movie b,
there is an edge (a, b) with weight l. An example is shown
in Fig. 4(a). The SGD algorithm operates in rounds; in
each round, it traverses all edges in some order and updates
labels at the end-points of each edge using a computation
described in more detail in Section 2. Parallelism can be
exploited by processing edges in parallel. However, threads
have to update node data exclusively, so we need some form
of synchronization.

A previous study by Dean et al. [5] concluded that GPUs
are not suitable for SGD. One key issue is the need for fine-
grain synchronization, which can be expensive on GPUs.
Moreover, SIMD execution inflates the cost of thread diver-
gence from synchronization conflicts (failure to acquire locks).
Finally, in scale-free graphs [1], some nodes have a large num-
ber of neighbors while most nodes have a small number of
neighbors. In the movie-user example, nodes corresponding
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Figure 2: Matrix completion for matrices U , M and
the desired result A.

to popular movies would be high-degree nodes. These high-
degree nodes pose a challenge for efficient scheduling because
they conflict with many other nodes.

In this paper, we explore the performance trade-offs of dif-
ferent scheduling strategies for implementing SGD on GPUs,
with the goal of extracting general lessons for implementing
irregular algorithms on GPU. The contributions of this paper
are as follows.

1. We explore the performance trade-offs of different syn-
chronization strategies for implementing SGD on GPUs
with the goal of extracting general lessons for imple-
menting irregular algorithms on GPUs. We believe this
is the first study to evaluate different schedules for SGD
on the GPU.

2. We develop and investigate three different static sched-
ules with varying levels of performance. We show that
simple static schedules can be too conservative and
show how to relax those constraints while maximally
utilizing the underlying hardware.

3. We present hybrid schedules which exploit the perfor-
mance benefits of each schedule on different regions of
the graph.

4. We evaluate the different schedules on different scale-
free real world inputs and show how good performance
can be obtained on such inputs.

The rest of the paper is organized as follows. Sec. 2 de-
scribes the SGD problem in more detail and lays the foun-
dation for the rest of the paper. Sec. 3.1 describes dynamic
schedules in which conflicts are resolved at runtime and
Sec. 3.2 describes the static schedules, which are generated
off-line and do not require run-time conflict detection and
resolution. This is followed by an evaluation of the different
schedules in Sec. 4. We discuss related work in Sec. 5, fol-
lowed by directions for future work in Sec. 6 and conclude in
Sec. 7.

2. PROBLEM STATEMENT
Consider a set of movies and users. Each user has assigned

ratings to some movies. We can represent these ratings as a
matrix in which rows represent users and columns represent
movies, as shown in Fig. 2. Each non-zero entry, shown as a
letter, represents the numerical rating assigned to the movie
by the corresponding user. We want to predict the ratings
for the empty cells in the matrix to decide which movies
should be recommended to that user.

sgd update (Movie m, User u , Rating r ){
de l t a = abs ( f (m. lv , u . l v )−r ) ;
m. lv = update lv (m. lv , d e l t a ) ;
u . l v = update lv (u . lv , d e l t a ) ;

}//End sgd update

Figure 3: Pseudo-code for SGD update.
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Figure 4: (a) Graph representation, (b)Compressed
sparse row (CSR) representation.

One way to solve this problem is to use matrix completion.
The goal is to find two dense low-rank matrix U and M such
that the product UM approximates A; that is, each non-zero
entry in A must be close in value to the corresponding entry
in the product UM . Note that the product UM produces
values even for entries in A where the value is zero; these
are considered to be the predicted ratings for each user and
movie combination.

As mentioned before, it is convenient to think of this com-
putation in terms of graphs. The matrix A is considered
to be a bipartite graph that has an edge for each non-zero
(user,movie) entry in A. The matrices U and M can be
considered to be the composition of latent or feature vectors,
where each user and movie is assigned one vector. For our
example, the latent-vector product for u3 and m2 should
produce a value close to i. If this product is not equal to
i, SGD updates the values of u3 and m2 to obtain a better
approximation, as shown in Fig. 3. The overall computa-
tion consists of a series of supersteps; in each superstep, all
edges are visited in some order and the latent vector update
computation is performed at each edge. At the end each
superstep, the RMS error is computed and if this is below
some threshold, the computation is terminated.

Since the edges of the bipartite graph can be processed in
any order in each superstep, SGD is an example of an un-
ordered algorithm in the TAO classification of algorithms [8].
Moreover, a subset of edges can be processed in parallel
provided they form a matching ; that is, no two edges in
the graph share a node. The implementations discussed in
this paper are concerned with finding such matchings either
explicitly, in a preprocessing step, or implicitly, during SGD
computation, using speculative execution.
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void edge opera to r (Graph , graph ){
p a r a l l e l f o r ( edge e : graph ){

i f ( e . unmarked ){
i f ( l o ck ( e . movie and l o ck ( e . user ) ){

sgd update ( e . movie , e . user , e . r a t i ng ) ;
e . unmarked=fa l se ;

} //end l o c k
}//end i f unmarked

}//end p a r a l l e l−f o r
}//end edge opera tor
void edge locked (Graph graph ){

while ( any unmarked edge in graph ){
edge opera to r ( graph ) ;

}
}

Figure 5: Pseudo-code for edge-locked version

3. SGD IMPLEMENTATION
A parallel algorithm can be viewed as the composition

of an operator and a schedule [8]. For SGD, the operator
is sgd_update (Fig. 3). The schedule governs the order in
which the operator is applied to the graph. We explore seven
scheduling schemes classified broadly into dynamic schedules
and static schedules (Fig. 1)

For the purpose of exposition, we consider a hypothetical
GPU with a single execution unit (streaming multiprocessor)
capable of running two threads (2-SIMT) to illustrate the
execution of different schedules. Due to lack of synchroniza-
tion facilities on GPUs, some schedules may need to make
multiple passes to apply the SGD update to every edge.

3.1 Dynamic Schedules
The dynamic schedules use locking primitives to ensure

mutual exclusion and correctness when applying sgd_update.
We propose three dynamic schedules, based on the order of
processing.

3.1.1 Edge-Locked (EL)
The Edge-Locked (EL) schedule assigns individual edges

of the input graph to individual threads. The edges are
maintained via Coordinate Format (COO) [3] representation
making it easy to access the source, destination and rating for
any particular index. Each thread first locks the source (i.e.
movie) and destination (i.e. user) node of an edge assigned
to it. If the locks are successfully acquired, sgd_update is
applied to the edge. If lock acquisition failed, the edge is
deferred to be processed in the next pass. The algorithm
in Fig. 5 shows the pseudo-code for the EL schedule. The
algorithm repeats until every edge is processed.

One possible schedule is shown in Fig. 6(a). which takes 11
steps. The schedule in Fig. 6(a) can be explained as follows.
The initial ordering of the edges is the same as in Fig. 4(b),
and since our hypothetical GPU can execute two tasks at
once, it will pick chunks of two items from the work-list and
execute them. The first two items are {a, b}. Note that these
two share the same source m0, and hence only one of them
succeeds in acquiring the lock, the other thread sits idle. The
next chunk to be executed are {c, d}, again, which share the
source, so only one of them gets processed while the other is
moved to the next pass. This completes the first pass over
all the edges, indicated by a double line. The second pass
processes all the remaining edges {b, d, h, j, l}. No further
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Figure 6: Schedules observed for sample input un-
der EL(without and with shuffle) and NL on the hy-
pothetical GPU. Each row indicates edges scheduled
at that time slot, and each column indicates the item
processed, if any, by each thread.
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Figure 7: Edges processed by edge-locked version.
Horizontal axis shows iterations and vertical axis
shows number of edges processed. Shuffled version
(92) terminates early due to less conflicts, whereas
un-shuffled (3, 916) version takes significantly more it-
erations due to intra-block conflicts for high-degree
nodes (max degree is 43, 331) in the graph.

passes are required. So, the execution required two passes
and eleven steps.

One problem that becomes immediately apparent is that if
edges from the same movie are processed concurrently, only
one of the threads will make progress. For instance edges
{a, b} share the same movie node m0 and hence cannot be
processed in parallel. Since the COO format was derived
from the CSR format which lays out the edges of the same
node in adjacent memory locations, this introduces a large
number of conflicts which persist through passes.

Therefore, we shuffle the edges in the initial worklist. The
goal is to ensure that edges for the same movie are no longer
adjacent in the shuffled worklist. This lowers the likeli-
hood that those edges, sharing the same movie, are sched-
uled concurrently and hence conflict on the source movie.
For our sample graph, we shuffle the edges (for instance to
{k, e, b, d, j, c, h, g, f, a, i, l}) and obtain a schedule as shown
in Fig. 6(b). Notice how the first four steps now process 6
edges even though there are three conflicts; between the edge
pairs (b, d), (h, g), and (f, a). By mixing the edges of m0

with other nodes, we perform more useful work. Experiments
on actual input graphs confirm that shuffling can improve
performance significantly. For the BGG input (Section 4),
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void node operator (Graph graph ){
p a r a l l e l f o r (movie m : graph ){

//Copy m. l v to shared memory
for ( user u : m. ne ighbors ){

i f ( edge (m, u) i s unmarked ){
i f ( l o ck (u ) ){

sgd update (m, u , edge (m, u ) ) ;
unlock (u ) ;
mark (u ) ;

}// i f−l o cked
}// i f−unmarked

}//end for−ne ighbors
// wr i t e m. l v to g l o b a l memory

}//end p a r a l l e l−f o r
}//end node operator

void node locked (Graph graph ){
while ( any unmarked edges in graph ){

node operator ( graph ) ;
}

}

Figure 8: Pseudo-code for node-locked version
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Figure 9: Edges processed as the node-locked
version proceeds. Horizontal axis represents itera-
tion number, and vertical axis represents number of
edges processed up to that point. Termination oc-
curs (350 iterations) when all the edges (6, 017, 340 for
BGG) have been processed.

processing the shuffled worklist takes 92 passes whereas the
unshuffled worklist takes 3916 passes ( Fig. 7).

3.1.2 Node-Locked (NL)
The Node-locked (NL) schedule assigns individual nodes

to individual threads. This has two benefits. First, there
is no need to acquire locks on the source node (i.e. movie)
anymore since each thread is assigned a distinct source node.
Locks will still need to be acquired on the destination nodes
(i.e. user). Second, unlike the EL schedule whose access
patterns make it hard to exploit locality, the NL schedule
can exploit reuse of the source node data.

Like the EL schedule, the NL schedule uses multiple passes
to process all the edges of a graph. The pseudo-code for NL
is shown in Fig. 8.

Fig. 6(c) presents a possible NL-schedule We schedule nodes
m0 and m1 first on the GPU, and the edges are processed in
order. In the first step, all the edges for m0 are processed
while f and g are deferred to the next pass. In the next pass,
f and g, from the previous pass, are processed. Next, we
schedule the remaining nodes m2 and m3, which concludes
without any conflict.

NL behaves similar to EL for the initial few passes as it
can find work easily. But after the initial few passes, there

// wo r k l i s t o f edges edge wl ;
void node operator (Graph graph , WL edge wl ){

p a r a l l e l f o r (movie m : graph ){
//Copy m. l v to shared memory
for ( user u : m. ne ighbors ){

i f ( l o ck (u ) ){
sgd update (m, u , edge (m, u ) ) ;
unlock (u ) ;

} else {
edge wl . push back ( edge (m, u ) ) ;

}
}

// wr i t e m. l v to g l o b a l memory
}//end p a r a l l e l−f o r

} //end node operator
void edge opera to r (Graph graph , WL edge wl ){

p a r a l l e l f o r ( edge e : edge wl ){
i f ( l o ck ( e . movie ) ) {

i f ( l o ck ( e . user ) ){
sgd update ( e . movie , e . user , e . r a t i ng ) ;
unlock ( e . user ) ;

}
unlock ( e . movie ) ;

}
}//End p a r a l l e l−f o r

}//End edge opera tor
void hybr id locked (Graph graph ){

WL edge wl ;
node operator ( graph , edge wl ) ;
while ( ! edge wl . emptt ( ) ){

edge opera to r ( graph , edge wl ) ;
}

}

Figure 10: Pseudo-code for hybrid-locked version

is a large overhead of finding new work as each thread has
to scan a node’s entire edge-list. This can be prohibitive for
high-degree nodes as the repeated scans become expensive.
The behavior of NL can be viewed in Fig. 9, where we
show the number of edges processed (vertical axis) across
passes (horizontal axis). We observe that the number of
edges processed in the first few passes is very high but overall
termination takes very long.

The use of shared memory for storing the movie node’s
latent vector reduces the residency of the kernel, which means
the number of edges that can be concurrently processed on
the GPU is reduced. Further, since only one thread processes
all edges of a node, nodes with high degrees can lead to
serialization and load imbalance. The use of marks implies
that all edges must be scanned in every pass to determine if
they must be processed. As we shall see in the evaluation,
these factors play a major role in the performance of NL.

3.1.3 Hybrid-Locked (HL)
The Hybrid-Locked (HL) schedule was motivated by exper-

imental evaluation of the EL and NL schemes. We observed
that the NL scheme processes a significant fraction of edges
in the first pass. However, since its succeeding passes must
scan the entire graph in order to discover unmarked edges,
they exhibit high overhead.

Therefore, HL combines the EL and NL schemes. The first
pass over the input graph uses a NL-like scheme which moves
conflicting edges to a worklist instead of using marks. All
later passes use the EL scheme to process these conflicting
edges.
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void bu i l d s ch edu l e (Graph g ){
MatchingSet m;
while ( edges remaining in g ){

Matching m i = matching ( g ) ;
//remove edges in m i from g ;
g = g − m i ;
m[ i ] = m i ;
i +=1;

}
}

Figure 11: Build the matching for the graph.

agm e operator (Graph graph , MatchingSet m){
for (Matching c u r r s e t : m){

p a r a l l e l f o r (Edge e : c u r r s e t ){
sgd update ( e . movie ,

e . user , e . r a t i ng ) ;
}//End p a r a l l e l f o r

}//End fo r matching
}//End operator

Figure 12: Pseudo-code for AGM-E.

3.2 Static Scheduling
EL, NL, and HL use locks at runtime to ensure mutual

exclusion. Alternatively, conflict-free subsets of edges in
the input graph can be identified in a preprocessing step
and processed without locks during the SGD computation.
Such conflict-free sets correspond to the matchings [6] of the
bipartite input graph. To process an input graph, we need to
obtain a set of matchings that cover the entire input graph.
We do this by (i) extracting a matching from a graph and,
(ii) removing its edges from the graph, (iii) repeating the
process on the resulting graph. We explore three different
implementations of off-line scheduling, two of which compute
matchings over the entire graph and one that only computes
matchings for a portion of the graph.

3.2.1 All-Graph Matching (AGM)
In the All-graph matching scheme, we build a set of match-

ings for the entire graph. Each edge is associated with
a matching which can be numbered from 0 to at least
max degree, where max degree is the maximum degree of
any node. The maximum degree in the graph is thus the
minimum length of the critical path. All the edges belonging
to a particular matching can be safely processed in parallel
without any locks since they do not share any end-points.
However, matchings must be processed serially. The pseudo-
code for constructing the matchings is given in Fig. 11. We
repeatedly find matchings m i in the graph via matching,
which represent an independent set of edges. These are
stored in a Matching object and removed from the graph.
The process is repeated until all the edges have been assigned
to a matching set.

The matchings for the sample graph are given in Fig. 13(a),
where each row lists a different matching. The sample graph
contains five matchings. In our implementation, we actually
use two different schemes to do this, which we describe below.

Edge Schedule (AGM-E)
The edge-schedule (Sec. 3.1.1) is applied to each edge in a
matching, except locking is not needed. Further, multiple

agm n operator ( NodeSet ns ){
p a r a l l e l f o r (movie n : ns ){

for (Edge e : n){
sgd update (n , e . dst , e . r a t i ng ) ;
b a r r i e r ( ) ;

}
}

}
void agm n(Graph g , MatchingSet m){

//NodeSet i s s e t o f nodes t ha t
// can concurren t l y run on GPU.
for ( NodeSet ns : g ){

for (Node n : ns ){
// so r t ne ighbors in matching order
s o r t (n . edges , m) ;

} //End fo r Node
} //End fo r NodeSet
for ( NodeSet ns : g ){

agm n operator ( ns )
}//end for−NodeSet

}

Figure 14: Pseudo-code for AGM-N.

passes over a matching are not needed, since none of the
edges in a matching conflict. This also obviates the need for
shuffling. However, all matchings must be processed serially.

The pseudo-code for the lock-free edge version is given
in Fig. 12. Given a set of matchings m, we process all the
matching serially, processing all the edges of each matching
concurrently on the GPU.

For our sample graph, a lock-free edge schedule is given
in Fig. 13(b). In our example, we can only execute two
items per step, so we have to complete execution of each
matching (2 items from a matching at a time) and move to
next matching. So, the first two steps are used to process
edges belonging to the first matching {a, g, i}. Once the first
matching is completed, execution of the second matching
proceeds, and this process repeats until all matching sets
have been processed. Our example requires eight steps to
complete the execution.

Node Schedule (AGM-N)
The AGM-N schedule assigns individual nodes to individual
threads as in the dynamic NL schedule, but uses the informa-
tion from the matching to avoid locking. The basic idea is
to associate with each edge of a node a time-stamp at which
it is safe to process that edge. All edges with the same time-
stamp can be processed in parallel without conflicts. The
time-stamp value is obtained from the computed matchings.

Like NL, AGM-N exhibits better locality and reuse. To
achieve synchronous execution, we invoke the kernel once
and use global inter-thread block synchronization to ensures
all threads process the same time-stamp edges in parallel.

The pseudo-code for AGM-N is shown in Fig. 14. It uses
the same matching set constructed via Fig. 11. However, in
order to ensure that each thread processes edges belonging to
the same matching synchronously, we need to sort the edges
for each node according to the matching-set they blong to.
Once we have sorted the edges for each node we can process
the nodes. This is achieved by device-side barriers, which
limit the number of threads that can simultaneously run on
the GPU.

The node-schedule computed via the all-graph matching
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Figure 13: Static-schedules executed by different strategies for sample input. Tables with M in top-left cell
indicate matching sets, whereas tables with T in top-left cell indicate schedules where each row indicates a
time-step and each column lists the edges processed by a thread.

is displayed in Fig. 13(d). We see that it takes four steps
to execute the second block of nodes consisting of {m2,m3}.
However, upon observing the original graph, we see that
edges for m2 and m3 can be processed in parallel since they
are independent; i and j can be run in parallel with k and
l since they do not share any user node. This leads us to
conclude that the matchings computed over all the edges
of a graph are too conservative for a node-schedule if the
number of threads (movies) to be executed simultaneously is
smaller than the total number of movies. In order to build
an offline schedule per-node, we need to limit the edges used
for the constructing the matching only to movies that will
be executed simultaneously on the GPU.

3.2.2 Sub-Graph Matching (SGM)
The SGM schedule improves on the AGM-N version by

computing matchings over a subset of the graph. Each
subset groups movies into blocks. Only movies in the same
block will be processed simultaneously. Thus, the matching
is built only for those edges that are expected to be processed
concurrently.

The sub-graph node-schedule for the sample graph is shown
in Fig. 13(b). Compared to the all-graph matching schedules,
we see that edges of m2 and m3 can be processed in parallel
since they do not share endpoints.

We observe that the number of steps taken to process a
node reduces in SGM. Consider the number of steps for each
node-set in AGM-N as shown in Fig. 13(c). For the subset
(m0,m1), there are five steps since each there are edges for
at least one of the nodes in the five matching sets. Similarly
for the subset (m2,m3), the number of steps is four, as each
node has an edge in at least one of the four matching sets.
Contrast this with SGM as shown in Fig. 13(e), where the
subset (m2,m3) only has two steps to process all the edges.
SGM scheduling, by not considering conflicts across partitions
of nodes, produces schedules which are less conservative.

3.3 Hybrid (H)

We observe that the SGM schedule performs well, but
generating the schedule takes a long time. In particular, the
nodes with the highest degree take the longest time since they
participate in the largest number of matchings, proportional

sgm n operator ( NodeSet ns , Matching m){
p a r a l l e l f o r (movie n : ns ){

for (Edge e : n){
sgd update (n , e . dst , e . r a t i ng ) ;
b a r r i e r ( ) ;

}//end fo r edge
}//end p a r a l l e l−f o r

}//end sgm n operator

MatchingMap bui ld sub match ing (Graph g ){
MatchingMap map ;
//NodeSet i s s e t o f nodes t ha t
// can concurren t l y run on GPU.
for ( NodeSet ns : g ){

m = bu i l d s ch edu l e ( g , ns ) ;
map [ ns ] = m;
for (Node n : ns ){

// so r t edges o f n w. r . t m
}//end fo r node

}//end fo r node−s e t
}//end bu i l d sub match ing

void sgm n (Graph g ){
MatchingMap map = bui ld sub match ing ( g ) ;
for ( NodeSet ns : g ){

agm n operator ( ns , map [ ns ] ) ;
}//end for−NodeSet

}//end sgm n

Figure 15: Pseudo-code for SGM-N.

to their degrees. We can avoid the overhead of building
schedules for SGM by processing the edges for the highest
degree nodes with EL, and processing the remaining nodes
via SGM. This has two benefits: (i) the conflicts in the high
degree nodes are handled by the shuffled EL schedule and
(ii) the SGM schedule for the lower degree nodes does not
have to handle conflicts with the higher degree nodes, which
otherwise lead to longer schedules.

The Hybrid schedule H partitions nodes into two subsets
based on the degree of a node. We first order the nodes by
their out-degree, and partition them into subsets to build the
matching (for instance (m0,m1) and (m2,m3)). The first
partition (with highest degree nodes) will be processed via
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Figure 16: Normalized execution time for all sched-
ules with respect to the EL schedule. Lower is better.

Table 1: Nodes and Edges for the input graphs.
EL is the absolute runtime for EL schedule and is
used as the baseline for the results. Runtimes were
averaged over 5 runs.

Input V E MaxDegree EL

BGG 155, 998 6, 017, 340 43, 331 0.21s
NETFLIX 497, 959 99, 072, 112 227, 715 1.94s
YAHOO 1, 625, 951 252, 800, 275 463, 820 5.55s

SOC-POKEC 1, 632, 803 22, 301, 964 14, 854 0.41s
IMDB 1, 324, 745 3, 782, 462 1, 590 0.063s

STACK 641, 876 1, 302, 439 6, 121 0.038s
USA-E 7, 197, 246 8, 778, 114 9 0.19s

an EL schedule. The remaining nodes use a SGM schedule.

4. EVALUATION
We present an evaluation of the proposed scheduling schemes.

We discuss the overall performance of each schedule, com-
pare the dynamic and static schedules and also provide a
comparison with state-of-the-art CPU implementation.

4.1 Methodology
We implement SGD in OpenCL 1.1 (the latest supported

by NVIDIA) and execute the different implementations on a
NVIDIA Tesla K40C. The GPU has 12GB of memory but we
can only use 4GB due to NVIDIA’s OpenCL implementation.
The host machine is a Quad core Intel Xeon E5-2609 with
32GB system memory running Scientific Linux 6.6 with Linux
kernel 2.6.32.

4.2 Inputs
Table 1 describes the inputs used in our study. All the in-

puts, except USA-E, are power-law graphs. USA-E is derived
from the road network graph and thus exhibits a uniform
degree distribution – we use this graph to isolate issues pe-
culiar to power-law graphs. Since USA-E is not a bipartite
graph, we direct the edges and duplicate the nodes such that
one copy has only outgoing edges (hence a movie) and the
other copy only has incoming edges (hence a user). The size
of the latent vectors is 16 floats.

4.3 Optimizations
We briefly describe the optimizations made to each im-

plementation to assist reproduction of results. All of the

implementations use the float16 vector data type supported
by OpenCL.

1. EL – We use a COO (Coordinate format) to represent
the edges. The edges are shuffled prior to building the
COO representation to ensure less intra-warp conflicts
due to edges from the same source.

2. NL – The implementations uses shared memory to store
the source feature vectors and goes over the neighbors
of each movie to process edges. Instead of maintaining
two work-lists, which would require twice the space, we
mark edges as processed and skip them in subsequent
passes.

3. AGM-E – The implementation uses a device-side barri-
ers between each matching set. Each thread is assigned
one or more edges from a matching to process, which
it can do concurrently, followed by a device-wide bar-
rier. Once all the threads reach the barrier, the next
matching set can be processed.

4. AGM-N – The implementation uses shared memory to
store the source node and goes over all the neighbors. It
also employs device-side barriers, and hence not all the
sources will be processed concurrently. The updated
feature vectors for the source node are read once at the
start, and written to global memory at the end of the
pass.

5. SGM – The implementation is similar to AGM-N, with a
less conservative matching to produce better schedules.

4.4 Overall Performance
Fig. 16 presents runtimes of the different schedules nor-

malized to the runtime of EL schedule.
Overall, we observe that HL is the best performing schedule.

Recall that HL works by first executing NL over the input
graph once, followed by repeated invocations of EL on any
unprocessed edges. In this case, NL processes 78% to 98%
of the edges leaving the rest to EL. Repeated invocations of
NL alone are counter-productive because NL must always
scan the graph’s edges to identify unprocessed edges, unlike
EL which maintains a work-list of unprocessed edges. The
pure NL schedule thus executes slowly. HL also outperforms
EL overall because the majority of edges are processed by
NL which has a significantly lower number of global memory
transactions due to use of shared memory and which also uses
fewer locks. HL does not perform well on YAHOO, due to the
poor throughput for NL. This is due to multiple thread-blocks
containing high-degree movies causing many thread-blocks
to process a large number of edges. If we sort the movies
by degree before we schedule them to the GPU (to reduce
divergence), the time to process the graph goes down (first
pass takes 5.9s compared to 8s for the unsorted movies), but
the percentage of edges processed goes down as well (from
98% to 84%) due to increased conflicts between the high-
degree movies which are now more likely to be scheduled
concurrently.

4.5 Static vs Dynamic Schedules
Perhaps surprisingly, the static schedules AGM-E, AGM-

N and SGM are slower overall compared to the dynamic
schedules even when the time to construct the schedules is
not taken into account as in Fig. 16. The only exceptions
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Table 2: Input features and relative running times
for different schedules. Running times are normal-
ized to EL schedule, which has absolute times listed.
Absolute running times for CPU are also given; one
for 40 threads, and another closest to the EL with the
number of threads in parenthesis. All running times
are averaged over 5 runs and use a 16-float vector.

Bgg Netflix Yahoo

40T-CPU(s) 0.048s 0.294s 2.561s
CPU(s) 0.221s(4T ) 1.895(6T )s 5.356s(14T )

are SOC-POKEC and IMDB, which have a relatively low
max-degree allowing for better static schedules. The best-
performing static schedule is the SGM schedule which is 2×
slower than HL overall, and is never faster than HL for any
input.

Firstly, SGM outperforms the other static schedules be-
cause it is less conservative than the AGM-E and AGM-N.
Recall that SGM partitions the nodes of the graph and pre-
pares a matching for each partition separately. Since SGM
guarantees never to execute two partitions concurrently, the
resulting schedule is correct. The partitioning captures the
fact that the number of nodes in the input graph is much
larger than the number of threads executing concurrently on
the GPU. Thus, not all conflicts in the graph will necessarily
occur at runtime. In contrast, AGM-E and AGM-N assume
that all nodes may be processed concurrently and hence they
produce very conservative schedules that underutilise the
GPU hardware. In particular, since each edge of a particular
node must occur in a different matching, the length of the
AGM-E and AGM-N schedules is at least the maximum node
degree in the graph Table 1.

Secondly, SGM is unable to outperform the dynamic sched-
ules because its schedules are still too conservative. The
dynamic schedules process edges optimistically, using lock-
ing to ensure mutual exclusion and correctness. For the
majority of inputs, this produces schedules that execute in
fewer steps than any statically determined schedule. Signifi-
cantly, although static schedules save on conflict detection
and re-execution, any gains obtained are not enough to match
the performance and flexibility of dynamic schedules. Thus,
unless criteria such as ensuring deterministic execution are
important, dynamic schedules should be preferred over static
schedules.

4.6 CPU Comparison
We also evaluate the performance of our GPU implementa-

tion against a state of the art CPU multi-threaded implemen-
tation [10] running on a 40-core Xeon E7-4860. We present
both the 40-thread runtime as well as for thread counts with
the closest runtime to the EL schedule. We can see that
the EL-based GPU implementation is competitive with a
CPU implementation, and for larger inputs, is equivalent in
performance to a 14-threaded CPU implementation. This
combination can be very useful in modern systems, which
can be equipped with multiple GPUs, as a heterogeneous
implementation of SGD can utilize both the CPU and the
GPU to compute more efficiently. Furthermore, the parti-
tioning between the two devices can yield further benefits;
GPU can be allocated more denser regions whereas the CPU
can process the sparser regions.

5. RELATED WORK
GPUs have been used to accelerate machine learning ap-

plications in many systems [9, 4, 12], however SGD is not
a common candidate for parallelization. GPU A-SGD [7]
exploits both model and data parallelism to speed up neural
network training for computer vision. They evaluate GPU
A-SGD on the ILSVRC 2012 input (1.2M training images and
150K validation images labelled with 1K categories) and
report 10.7 days on a single GPU, scaling to 3.3 days on 8
GPUs. An alternate approach is to use SPMV routines to
compute the gradient, and port the computation to GPUs.
A study [2] found that despite the speedup, the program-
ming overhead was too large. Siede et. al [11] investigate
the theoretical efficiency of model and data parallel SGD,
and conclude that fundamental change in the training algo-
rithm is necessary to obtain any speedup. Dean et al. [5]
compare the performance of a GPU implementation to for
speech model training (about 1.1 billion labelled inputs) and
observed a large overhead compared to a CPU cluster. How-
ever, none of the aforementioned studies investigate different
scheduling strategies for the GPU. As our experiments show,
a poor scheduling strategy can be up to 158× slower than
the fastest schedule. We believe that scheduling is essential
for better performance on the GPU.

6. FUTURE WORK
The performance of SGD can be further improved by dis-

tributing the graph across multiple GPUs. Here, each GPU
can utilize the best scheduling strategy based on the charac-
teristics of the partition being processed. A two-dimensional
tiling can be used to partition the rating matrix along the
movie and user dimension. Under this scheme, partitions
along a diagonal can be scheduled to execute independently
on different devices. However, now the scheduling decision
also needs to consider the cost of data movement for the
latent vectors across different devices.

The performance on a single device can be further improved
by optimizing for memory access to the global memory. In
particular, the matching schedules do not take into account
the memory access patterns for each thread. Multiple mem-
ory transactions per-instruction can incur large performance
overheads. However, the length of latent vectors (typically
larger than a hundred bytes) prohibits coalesced memory
accesses for different threads, even if they are operating on
adjacent movies or users. Better data-layouts can be explored
to increase coalesced accesses for the latent vectors.

7. CONCLUSION
To the best of our knowledge, this is the first study com-

paring the alternative scheduling for SGD. We show that
SGD can execute efficiently on the GPU, and that a dynami-
cally scheduled implementation is comparable to a 14-thread
CPU implementation. Dynamic schedules like EL rely on
the randomness of edge selection and in the underlying hard-
ware to produce efficient schedules. Further performance
improvements can be obtained by the hybrid HL schedule,
which utilizes the on-chip shared memory while avoiding the
overhead associated with a NL scheme. Static schedules, on
the other hand, sacrifice performance for determinism. The
static schedules, AGM-E, AGM-N, and SGM use matchings
to construct schedules which can be executed without any
conflict-detection. The fastest static schedule, SGM, performs
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comparably to a 6-thread CPU implementation.
The scale-free nature of real-world inputs poses a chal-

lenge to data-parallel implementations for applications. In
particular, high-degree nodes pose a performance bottleneck.
To efficiently process such inputs, we need to address these
high-degree nodes. Given the large variance in graph struc-
ture (degrees of nodes), it is not surprising to see hybrid
approaches, HL and H, be the best candidates in terms of
performance. By exploiting different implementation strate-
gies for different parts of the graph, we can achieve better
performance. The HL schedule utilizes the benefits of a single
pass of NL with the low overhead of EL for the remaining
passes whereas the H schedule relies upon EL to efficiently
execute nodes with very high degrees and SGM to process
the remaining edges without the need for synchronization.

We believe these scheduling insights will be useful when
implementing other algorithms on scale-free graphs on the
GPU.
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