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Abstract. We present an extensive survey of bijective proofs of classical par-
titions identities. While most bijections are known, they are often presented
in a different, sometimes unrecognizable way. Various extensions and general-
izations are added in the form of exercises.
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1. Introduction

Constructive Partition Theory is a rich subject, with many classical and impor-
tant results which influenced the development of Enumerative Combinatorics in
the twentieth century. It is also a collection of various terminologies, notation and
techniques, with a number of results rediscovered on many occasions, and some
fundamental bijections remain in obscurity. This survey is an attempt to present
the subject in a coherent way.

First, let us outline the framework of what we do in the survey. Our goal is to
give direct combinatorial (bijective or involutive) proofs of partition identities, and
occasionally some applications. To start, we translate the identities into equalities
between the numbers of two types of partitions. In most cases, we represent these
partitions graphically, by means of Young diagrams, and then use various combina-
torial tools to transform one of the classes of partitions into the other. Although this
approach appears to be simple, this is rather misleading as the resulting partition
identities are often very powerful and at times difficult to prove by other means.
As the reader will see, finding bijective proofs requires a great deal of ingenuity,
but once found they are often not difficult to understand.

Historically, most partition identities were first proved analytically, and only
much later combinatorially. The subject of this survey is so much intertwined with
the subjects of partition identities, hypergeometric series, and q-series in general,
that it is difficult to give an adequate historical presentation of one without the
other. Nevertheless we cannot refrain from making a brief historical overview of the
120 years of effort of giving bijective proofs of partition identities. We emphasize
the combinatorial part of the story and leave aside the meaning and history of
partition identities (see section 10 for the references).

The Theory of Partitions as a subject started with Euler’s celebrated treatise [66],
where Chapter 16 introduced integer partitions as we know them. Back in 1748,
Euler proved a variety of partition identities, most notably the Pentagonal Theorem
and the “partitions of n into odd parts vs. partitions of n into distinct parts”
theorem. In the next 250 years a great number of partition identities were proved,
including those bearing the names of Gauss, Cauchy, Jacobi, Weierstrass, Sylvester,
Heine, Lebesgue, Schur, MacMahon and Ramanujan.

As a research area, Partition Theory had trouble fitting in with other fields,
perhaps due to its multidisciplinary nature. It originated as a part of the Analysis,
but then quickly became a part of the Number Theory, when numerous applications
has emerged. Older textbooks, such as [82], traditionally had at least one section
devoted to Partition Theory. Later, Partition Theory was considered as a part of
Combinatorial Analysis, a subject which evolved into modern day Combinatorics
and Discrete Mathematics. Most recently, it seems, the subject gained the rights
of its own.

The method of proving partition identities “constructively” was pioneered by
Sylvester in [121]. To be fair, the monumental paper [121] with a playful title is a
long survey of results of Sylvester himself, as well as his students and collaborators.
The method was largely accepted after Franklin’s involution was published [72].
Franklin was a student of Sylvester at Johns Hopkins University and wrote a few
sections of [121]. Almost immediately an unexpected benefit of having combinato-
rial proofs was discovered by Cayley: He noted in a letter to Franklin (published
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in [53]) that Franklin’s involution “gives more,” meaning it preserves a certain
statistic on partitions, and thus proves a more general partition result.

With the two notable exceptions of Schur and MacMahon, few people worked
in the field until the mid–1960s. Freeman Dyson [60] had to fight the following
attitude at the time:

Professor Littlewood, when he makes use of an algebraic identity, al-
ways saves himself trouble of proving it; he maintains that an identity, if
true, can be verified in a few lines by anybody obtuse enough to feel the
need for verification.

In about 1965 the “golden age” had begun. In a short span of less than 20 years
many different people proved a large number of partition identities by combinatorial
methods, giving an impression that one should expect “constructive” proofs of most
if not all partition identities. This was the time when George Andrews arrived
on the scene and played an important role in these developments. In his two
fundamental papers [12, 13], which are somewhat forgotten now, he built a basis for
both now standard techniques by which partition bijections are obtained. Thus in
the late 1970s one had an impression that a unifying theory was in sight. Depending
on one’s point of view, the birth of the involution principle either confirmed or
destroyed these hopes. The “golden age” was over.

In essence, Garsia and Milne showed that one can “mechanically” construct bi-
jections out of existing bijections and involutions. Typically, these bijections turned
out to be indirect and quite complicated. They introduced the involution princi-
ple, giving a long-awaited bijective proof of the Rogers–Ramanujan identities by
combining the already-known Vahlen’s involution, Sylvester’s bijection and Schur’s
involution [76]. This approach was further extended in subsequent publications to
give bijective proofs of many partition identities (see e.g. [48, 91, 109]).

Despite the clamorous claims of success of the “involution principle technology”
(see [91]), from a traditional combinatorial of view this approach is unsatisfactory.
First, the resulting bijective proofs are not simpler than the analytic proofs; in a
sense they are not even new at all. The involution principle bijections are too com-
plicated to follow and do not seem to produce new refinements of known partition
identities. In fact, even the complexity of the Garsia–Milne bijection remains open.
To quote Joichi and Stanton, “The emphasis now should be placed on combinatori-
ally important proofs rather than just a proof” [91].

While it has been over twenty years since the Garsia–Milne paper [76], the state
of “constructive partition theory” remains confused and the years uneventful. Few
genuine new bijections have been discovered, as the importance of combinatorial
proofs seem to have plunged once again in the anonymous “public opinion”. We
hope this survey will help to reverse this course.

Let us briefly summarize the state of art from a nontechnical point of view.1

The way we see it, finding direct bijective or involutive proofs or most identities is
an unfeasible task. Right now very few partition identities have such proofs and it
seems there is little reason why the remaining identities should be so fortunate to
have them, especially after resisting a combinatorial proof for so many years. Of
course, just like bijections, partition identities are not created equal and one can
make a plausible case that only the “important” partition identities should have a

1We suggest the diligent reader at this point first review “The language” section of the intro-
duction (see below).
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combinatorial proof. Few open problems we include in this survey present the first
challenge to this thesis.

Right now the number of different combinatorial proofs (of “important” parti-
tion identities) remains rather small, many of them covered in this survey. The
corresponding identities are often classical and their study is easy to justify. Unfor-
tunately, many recent bijections give the same correspondences as the old ones, with
the authors often aware of this. While new bijections are often easier to present
than their older counterparts, there is a limit to this, and after a certain point little
room is left for improvement. On the other hand, there is an appalling absence of
new original ideas in bijection constructions. It is clear that large classes of parti-
tions identities, such as Macdonald’s eta-function identities in their full generality
(see [101, 116]), require a new combinatorial approach.2

Another venue awaiting the exploration is our current lack of understanding
where the “natural” bijections come from. It is conceivable that some partition
results simply do not have direct combinatorial proofs. At the moment we are not
aware of any negative results in this direction. Even finding a formal framework
for such results is an important challenge. To be more specific, recall that after so
many years of studies, the Rogers–Ramanujan’s identities still lack a direct bijective
proof despite having an essentially royal status in the world of Partition Theory.
Should we assume that there is no such proof at least in the way we are trying to
find it, or we are just awaiting for the right idea to come along and correct this
oversight?

Let us conclude this brief excurse into the past, present and future of “Construc-
tive Partition Theory” on an optimistic note. We believe there is a great deal of
work yet to be done before we reach a better understanding of the combinatorial
nature of partition identities. We hope this survey will provide a guidance and the
ground floor for the future investigations. As D. J. Kleitman once said, “Combina-
torics will survive as long as mathematics does” [94]. To paraphrase this, Partition
Theory will survive as long as Combinatorics does, and we believe its future is as
bright as it was imagined by Sylvester so many years ago...

Material Selection. As we mentioned before, in this survey we concentrate
on bijections of what we view as the “important” partition identities. Of course,
classifying partition identities into “important” and “unimportant” is not easy.
This requires a good analytic background, work experience with partition identities,
and an intangible “sense of beauty”. Although we do not claim to possess either of
these qualities, we hope the reader will agree with and appreciate our selection.

Upon going through some of the extensive partition literature, we were over-
whelmed by the task. We can only agree with the sentiment expressed by George
Andrews in [16] (in a much less general context), that “the superficial sameness of
these results leaves one daunted.” Later, on the same page Andrews continues, “[A]
compendium of Rogers-Ramanujan type identities leaves the impression that it is
impossible to have any idea of what is really going on.” Thus we are conservative
in our selection, hoping that combinatorial proofs of partition identities will help
the reader to see beyond their “superficial sameness.”

2A largely overlooked paper [98] makes the first step in this direction, but the proof stops shy
of being bijective.



6 IGOR PAK

To summarize, we concentrate on a few key classical partition identities, and
present a number of their extensions and generalizations. No attempt is made to
cover the whole field or to be complete in references. A great deal of material is
placed in the exercises which are interspersed with the main results. Because of
space limitations, no hints or solutions are provided. We hope this survey will be
useful to both beginners and experts in the field.

While we heavily borrow from the available literature, we often felt the need to
significantly modify the original presentation for the sake of clarity and consistency.
Some of the bijections are different enough from the original exposition that they
probably constitute as new constructions. Since the line is virtually impossible to
draw, we never claim authorship but always refer to the source.

No references or attributions are given in the main body of the paper; we delay
this at times extensive or controversial material until the last section. We tend to
refer only to papers that were used directly in the writing or to the most recent
papers containing further references which may be useful to the reader. At times, for
the benefit of the reader, we also cite more recent references where the results have
been rediscovered or presented in a different language. Normally, the bijections
in such papers are equivalent or the same as those in this survey. Also, as we
emphasize the bijections themselves, we tend to be less careful with combinatorial
statistics on partitions. Given bijection descriptions, such statistics often give new
or old partition identities, some of which are mentioned in the exercises.

The structure. Admittedly, we are heavily influenced by Andrews’s and Stanley’s
celebrated monographs [24, 115]. In fact, one can view this paper as a supplement
to either book, even if written in a rather different style. The order of the sections
and the results within the sections reflect our notions of difficulty and importance.
The exercises are placed directly after the relevant material. The placement of open
problems is less obvious at times.

The theorems are denoted by H and are rarely proved. Proofs are introduced
by I and end with ¥. The examples and exercises we deem important for under-
standing the material are denoted by (♦). We suggest that the reader unfamiliar
with the subject should attempt to prove all the theorems and such exercises. Ad-
ditional results and exercises are marked by (◦), (◦◦) and (◦◦◦); our choice reflects
their difficulty on a log-scale: from simple to medium, from medium to hard, and
from hard to very hard. We also include a number of questions and open problems,
which are marked (∗), (∗∗) and (∗∗∗), to indicate approximately their difficulty on
the same scale. We should emphasize here that all identities mentioned in the open
problems have already been proved; it is a combinatorial proof that is sought.

It was our intention to use pictures as much as possible, so a number of defi-
nitions and results are best understood upon examining the included figures. The
formulas and theorems are not numbered; they are usually unique in a subsection
so subsection numbers suffice. While the survey does not require any preliminary
knowledge of the subject, it is written in a concise manner. The reader is assumed
to be familiar with the generating functions and occasionally other standard com-
binatorial concepts for which we refer the reader to [115].

The language. We shall adopt the following conventions which we use through-
out the paper. A correspondence between two set is a one-to-one function from
one set into another. Typically, these two sets will be infinite sets of partitions,
in which case the correspondence preserves the size of partitions. A bijection is a
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correspondence between two sets together with its lexical description. Naturally,
the same correspondence can be described in many different ways. Thus we can say
that two bijections give the same correspondence. We also say that two bijections
are identical if their descriptions are essentially the same or sufficiently close to
each other.

When describing a bijection, we refer to its construction as a map and then
prove (or leave the proof to the reader) that it is well defined and one-to-one.
Almost always, this is straightforward. We say that a bijection is explicit if its
descriptions is sufficiently concise. Virtually all our bijections are explicit, except
for those given by the involution principle. There is a way to formalize the notion
of “explicit bijection” by treating it as an algorithm which may or may not be
polynomial in the size of the input.

Informally, we refer say that a bijection is natural if we believe most people would
agree with this characterization. For example, conjugation is a natural bijection
between partitions of n into at most k parts and partitions of n into parts which
are no larger than k.

We say that bijections ϕ : A → B and ϕ ′ : A′ → B′ are equivalent if there are
natural bijections α : A → A′ and β : B → B′ such that ϕ◦β = α◦ϕ ′. We say that
a bijection or involution is direct if it uses no intermediate steps in its constructions.
Of course, one uses common sense when deciding whether a particular bijection is
direct or not; same with natural bijections.

We say that a proof is combinatorial if it is based on a sequence of bijections or
involutions or double counting arguments. Similarly, a proof is bijective or involutive
if it is based on a direct bijection or involution, respectively. Thus, for example,
the proof of Rogers–Ramanujan’s identities we present in 7.2 is combinatorial but
neither bijective nor involutive.

The notation. We denote by N = {0, 1, 2, . . . } the set of natural numbers. We
use routinely both notations for partitions trusting this will not lead to confusion.
Various sets of partitions of n are denoted by script capital letters An, Bn, etc.
Occasionally some of these sets (such as partitions into distinct parts, Dn) are
preserved throughout the survey. Partitions are denoted by letters λ, µ, ν, and
the bijections are denoted by different Greek letters: α, ϕ, ψ, etc. Parameters
of partitions (the largest part, the number of parts, etc.) are denoted by Roman
minuscules, such as a(λ), `(µ), etc. Usually we write q-series with a parameter t
instead of q. We do this for psychological reasons, to underscore their combinatorial,
not analytical, context.
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Figure 1. Young diagrams of partitions λ = (6, 5, 5, 3) = (3526)
and λ′ = (4, 4, 4, 3, 3, 1) = (13243).
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2. Basic results

2.1. Partitions and Young diagrams.

2.1.1. We define a partition λ to be an integer sequence (λ1, λ2, . . . , λ`) such that
λ1 ≥ λ2 ≥ · · · ≥ λl > 0. We say that λ is a partition of n, denoted λ ` n and
|λ| = n, if

∑
i λi = n. We refer to the integers λi as the parts of the partition.

Let a(λ) = λ1 and s(λ) = λ` denote the largest and the smallest parts of the
partition λ. The number of parts of λ we denote by `(λ) = `. Let mi = mi(λ) be
the number of parts of λ equal to i. We also use λ = (1m12m2 . . . ) as an alternative
notation for partitions. The conjugate partition λ′ = (λ′1, λ

′
2, . . . ) of λ is defined by

λ′i = |{j : λj ≥ i}| = mi + mi+1 + . . . . Clearly, |`(λ′)| = a(λ).
For partitions λ = (λ1, λ2, . . . ) and µ = (µ1, µ2, . . . ) define the sum λ + µ to

be a partition (λ1 + µ1, λ2 + µ2, . . . ). Similarly, define the union λ ∪ µ to be
a partition with parts {λi, µj} (arranged in nonincreasing order). Observe that
(λ ∪ µ)′ = λ′ + µ′.

2.1.2. A Young diagram [λ] of a partition λ ` n is a collection of n 1× 1 squares
(i, j) on a square grid Z2, with 1 ≤ i ≤ `(λ), 1 ≤ j ≤ λi. Pictorially, we adopt a
convention (the so-called English convention), with the first coordinate i increasing
downward, while the second coordinate j increases from left to right. The conjugate
Young diagram [λ′] is then obtained by reflection of [λ] through the line i = j (see
Figure 1). Young diagrams corresponding to the sum and the union of partitions
are shown in Figure 2.
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λ
µ λ+µ

λ µU

Figure 2. Young diagrams of partitions λ = (4, 4, 3, 1), µ =
(5, 3, 2), λ + µ = (9, 7, 5, 1), λ ∪ µ = (5, 4, 4, 3, 3, 2, 1).

2 2
2

1

22
2
2

1
1

2

2
2 2 2

[λ] [λ] [λ,  ]

Figure 3. Young diagram [8, 6, 5, 4, 3, 3, 2], the corresponding 2-
modular diagram and MacMahon diagram.

2.1.3. A MacMahon diagram
[
λ, ¢

]
is a Young diagram [λ] and a subset of squares

which we call “marked”, such that a marked square can be only the rightmost square
in a row, and no marked square can lie above an unmarked one. We refer to the
partition λ as the shape of

[
λ, ¢

]
. Of course, there are many MacMahon diagrams

of the same shape λ. By abuse of notation, we denote by [λ] the diagram with no
marked squares, and by [λ] the diagram with all rightmost squares marked. We
denote by κ

[
λ, ¢

]
the number of marked squares in a MacMahon diagram

[
λ, ¢

]
.

Clearly, κ[λ] = `(λ).
MacMahon diagrams with marked squares only in the corners are called standard

MacMahon diagrams. Observe that if
[
λ,¢

]
is a standard MacMahon diagram,

then so is
[
λ, ¢

]′. We define the sum [ν] +
[
λ,¢

]
and the union [ν] ∪ [

λ, ¢
]

of a
Young diagram and a standard MacMahon diagram in the obvious fashion.

2.1.4. Modular diagrams. A 2-modular diagram [µ]2 to be a Young diagram with
the integers 1 or 2 written in squares, such that 1 can appear only in the last
square of a row, and no 2 can appear above 1. There exists a natural bijection
between Young diagrams and 2-modular diagrams by collapsing two consecutive
squares into one 2-square (see Figure 3). We denote by [λ]2 the 2-modular diagram
corresponding to partition λ. Finally, there is an obvious bijection between 2-
modular diagrams and MacMahon diagrams as in Figure 3. We shall use this
bijection later in the paper.

In general, a m-modular diagram [µ]m is defined by having an integer m written
in all squares of [µ] which are not the last of a row; any integer i such that 1 ≤ i ≤ m
can be written in the last square of a row.
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2.1.5. (♦) A partition λ is called self-conjugate if λ = λ′. Prove that the number
of self-conjugate partitions is equal to the number of partitions into distinct odd
parts.

2.1.6. (♦) Prove bijectively the following summation formula:

∑

λ=(1m12m2 ... )`n

1
m1! 1m1 m2! 2m2 · · · = 1 .

2.1.7. (◦) Prove bijectively the following product formula:
∏

λ=(1m12m2 ... )`n

m1! m2! · · · =
∏

λ=(1m12m2 ... )`n

1m1 2m2 · · ·

2.2. Generating functions.

2.2.1. Number of partitions. Denote by Pn = {λ ` n} the set of partitions of n,
and let p(n) = |Pn| be the number of partitions of n. Denote by P = ∪nPn the set
of all partitions. Let Pn,k = {λ ` n : `(λ) ≤ k} be the set of partitions of n with at
most k parts, and let pk(n) = |Pn,k|. For convenience, let p(0) = pk(0) = 1.

From the representation λ = (1m12m2 . . . ) we immediately have:

P (t) :=
∞∑

n=0

p(n)tn =
∞∏

i=1

1
1− ti

Taking the conjugate partition, we obtain pk(n) = |{λ ` n : a(λ) ≤ k}|. Therefore:

Pk(t) :=
∞∑

n=0

pk(n)tn =
k∏

i=1

1
1− ti

Similarly, we obtain more general formulas:

P (t, s) :=
∑

n

(∑

λ`n

s`(λ)

)
tn =

∞∏

i=1

1
1− sti

,

Pk(t, s) :=
∑

n


 ∑

λ`n, `(λ)≤k

sa(λ)


 tn =

k∏

i=1

1
1− sti

.

2.2.2. (∗∗∗) Prove combinatorially the following Ramanujan’s identity :

∞∑

k=1

p(5k − 1) tk = 5
∞∏

i=1

(1− t5i)5

(1− ti)6
.
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2.2.3. Euler’s first row decomposition. The following identity is due to Euler:

1 +
∞∑

n=1

sntn

(1− t)(1− t2) · · · (1− tn)
=

∞∏

i=1

1
1− sti

Indeed, on the r.h.s. we have a generating function for all partitions:
∑

λ∈P
s`(λ)t|λ| =

∑
n

sn
∑

λ: `(λ)=n

t|λ| =
∑

n

snPk(t),

which proves the result.

2.2.4. (♦) Prove that the following sum is symmetric in a and b:

F (a, b; t) :=
∞∑

n=1

a bn tn

(1− at)(1− at2) · · · (1− atn)
.

2.2.5. (♦) Let (k)q = 1 + q + . . . + qk−1, k!q = (k)q(k − 1)q · · · (1)q. Define the
Gaussian coefficients

(
n
k

)
q

= n!q
k!q(n−k)!q

. Prove combinatorially:

∑

λ: a(λ)≤k, `(λ)≤`

q|λ| =
(

k + `

k

)

q

2.3. Basic geometry of Young diagrams.

2.3.1. Durfee square. The largest square [δr] = {(i, j), 1 ≤ i, j ≤ r} which fits
into a Young diagram [λ] is called the Durfee square (see Figure 4). Observe that
[λ]r[δr] is a disjoint union of two Young diagrams [µ] and [ν], such that µ, ν′ ∈ Pn,k.
Define the map ϕ : Pn →

⊔
r,k Pn−k,r ×Pk−r2,r by letting ϕ(λ) = (µ, ν).

H Map ϕ defined above is a bijection.

This proves P (t) =
∑

r tr
2
Pr(t)Pr(t) and implies Euler’s identity :

∞∏

i=1

1
1− ti

= 1 +
∞∑

r=1

tr
2

(1− t)2(1− t2)2 · · · (1− tr)2
,

More generally, we have P (t, s) =
∑

r srtr
2
Pr(t)Pr(t, s), which implies Cauchy’s

idenity :
∞∏

i=1

1
1− sti

= 1 +
∞∑

r=1

sr tr
2

(1− t)(1− t2) · · · (1− tr)(1− st)(1− st2) · · · (1− str)
.

2.3.2. (◦) Generalize Durfee squares to prove the following identity:

∑

a,b≥0

t(a
2−ab+b2) z(a−b)

(1− t)(1− t2) · · · (1− ta) (1− t)(1− t2) · · · (1− tb)
=

∞∑
n=−∞

tn
2
zn

∞∏

i=1

1
1− ti

.
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Figure 4. Young diagrams λ = (7, 7, 6, 6, 4, 1) with Durfee square
[δ4], and µ = (11, 9, 8, 7, 5, 1) ∈ D41 with Sylvester’s triangle [ρ6].

2.3.3. (◦◦) Generalize Durfee squares to prove the Rogers-Fine identity :

1 +
∞∑

n=1

(1 + at)(1 + at3) · · · (1 + at2n−1) znt2n

(1− bt2)(1− bt4) · · · (1− bt2n)

=
∞∑

r=0

(1 + azt4r+3)brzrt2r(r+1)

(1− zt2(r+1))

r∏

i=1

(1 + at2i−1)(1 + ab−1zt2i+1)
(1− bt2i)(1− zt2i)

.

Hint : The l.h.s. is a generating function for partitions λ into parts such that odd
parts are not repeated. Now consider a maximal 2r × (r + 1) rectangle which fits
into [λ], interpret the remaining pieces of [λ] accordingly, and sum over all r ≥ 0.

2.3.4. Sylvester’s triangle. Let Dn be the set of partitions λ ` n into distinct parts:
λ1 > λ2 > · · · > λl > 0, and let D = ∪nDn. Clearly,

D(t, s) := 1 +
∑

λ∈D
s`(λ)t|λ| =

∞∏

i=1

(1 + sti) .

Consider a diagram [ρk] = {(i, j) : i + j ≤ k + 1}, with k = `(λ) (see Figure 4).
We shall refer to [ρk] as Sylvester’s triangle. Observe that the horizontal parts of
the diagram [λ]r [ρk] for a partition. This gives D(t, s) =

∑
r s`(ρr)t|ρr|Pr(t), and

implies another Euler identity :
∞∏

i=1

(1 + sti) = 1 +
∞∑

r=1

sr t
r(r+1)

2

(1− t)(1− t2) · · · (1− tr)
.

2.3.5. Frobenius coordinates. Let D′n be the set of partitions λ ` n into nonnegative
distinct parts: λ1 > λ2 > · · · > λl ≥ 0, and let D′ = ∪nD′n. When λl = 0, we
say that λ contains the empty part, and let `(λ) = l. Note that we distinguish here
partitions λ ∈ D′ with and without the empty part. Clearly,

D′(t, s) := 1 +
∑

λ∈D′
s`(λ)t|λ| =

∞∏

i=0

(1 + sti) .

When drawing a Young diagram of λ ∈ D′, we add an interval ont the bottom for
the auxiliary empty part.

Let Dn,k = {λ ∈ Dn : `(λ) = k}, D′n,k = {λ ∈ D′n : `(λ) = k}. Observe that
|D′n,k| = |Dn,k| + |Dn,k−1|. Let us show that |Pn| =

∑
k

∑
m |Dm,k| · |D′n−m,k|.

Indeed, start with λ ` n and let k be the side of the Durfee square δk ⊂ [λ].
Now split the Young diagram [λ] into two parts: one on or above the diagonal i−
j = 0, and one below the diagonal. Now read the rows of the first part and the
columns of the second diagram (see Figure 5). The resulting pair of partitions
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[λ]
[µ] [ν]

Figure 5. Partition λ = (8, 5, 4, 4, 3, 1) ` 25, and its Frobenius
coordinates (µ, ν), where µ = (8, 4, 2, 1) ∈ D15,4, ν = (5, 3, 2, 0) ∈
D10,4.

m+1 r

r

r

m+1 m

r

r r<_<_

<_

Figure 6. Bijection ϕ.

are the Frobenius coordinates (µ, ν) of λ, where µ ∈ Dm,k, ν ∈ D′n−m,k. Let
ϕ : Pn →

⊔
m,k Dm,k ×D′n−m,k defined by ϕ(λ) := (µ, ν). Then the above formula

follows from the following result:

H Map ϕ defined above is a bijection.

2.3.6. Consider the following simple Ramanujan’s identity :
∞∑

m=0

tm

(1− tm+1) · · · (1− t2m)
=

∞∑
m=0

t2m+1

(1− tm+1) · · · (1− t2m+1)

Let An be the set of all partitions λ ` n with unique smallest part s(µ), and
a(λ) ≤ 2s(λ). Let Bn be the set of all partitions µ ` n with odd a(µ), and
a(µ) < 2s(µ). The above identity is equivalent to |An| = |Bn|, for all n > 0.

We define a bijection ϕ : Bn → An as follows. Start with a partition µ ∈ Bn

with a(µ) = 2m + 1. Split the Young diagram [µ] into a (m + 1) × `(µ) rectangle
and the remaining part [ν]. Move [ν] so it attaches below the rectangle. Let [λ] be
the conjugate of the resulting Young diagram. Define ϕ(µ) = λ (see Figure 6).

H The map ϕ : Bn → An defined above is a bijection.

2.3.7. Vahlen’s involution. Consider the following trivial identity:
k∏

i=1

(1− ti)
k∏

r=1

1
1− tr

= 1

Observe that the coefficient of tn on the l.h.s. is equal to
∑

(λ,µ)(−1)`(µ), where the
summation is over all λ ∈ P, µ ∈ D, |λ| + |µ| = n, and a(λ), a(µ) ≤ k. Define an
involution on P ×D by moving the smallest part s(λ) from λ to µ, if s(λ) < s(µ),
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Figure 7. Young diagram [λ], λ = (72, 6, 3, 22, 1), with γ(λ) = 5
corners and γ(λ) + 1 = 6 outside corners.

or by moving part s(µ) from µ to λ, if s(λ) ≥ s(µ). This map is called Vahlen’s
involution. By the construction, it has no fixed points for all n ≥ 1.

2.4. Number of distinct parts.

2.4.1. Denote by γ(λ) the number of distinct parts of a partition λ. The following
result is, perhaps, a bit surprising at first glance:

∑

λ∈P
γ(λ) t|λ| =

t

1− t

∞∏

i=1

1
1− ti

.

I In a Young diagram [λ], a corner is a square (i, j) ∈ [λ], such that (i, j+1), (i+1, j) /∈ [λ].
Similarly, an outside corner is a square (i, j) /∈ [λ], such that (i, j − 1) ∈ [λ], if j > 1,
and (i − 1, j) ∈ [λ], if i > 1. Observe that γ(λ) is equal to the number of corners of λ.
Similarly, γ(λ) + 1 is the number of outside corners of λ (see Figure 7).

Denote by [eλ] = [λ] − (i, j), a Young diagram obtained by removal of a square (i, j)

from [λ]. Obviously, if λ ` n, then eλ ` n− 1. We have:X
λ`n

γ(λ) =
X

[eλ]⊂[λ]

1 =
X
eλ`n−1

�
γ(eλ)+1

�
= p(n−1)+

X
eλ`n−1

γ(eλ) = 1+p(1)+p(2)+. . .+p(n−1).

This immediately implies the result. �

2.4.2. (◦◦) In a Young diagram [λ], the boundary ∂[λ] is a collection of squares
(i, j) ∈ [λ] such that (i + 1, j + 1) /∈ [λ]. Similarly, the outside boundary ∂[λ]
is a collection of squares (i, j) /∈ [λ] such that either (i, j − 1), or (i − 1, j)m
or (i − 1, j − 1) ∈ [λ]. Define a rim hook R in [λ] to be a rookwise connected
sequence of squares R ⊂ ∂[λ], such that [λ] − R is also a Young diagram of a
partition. Similarly, an outside hook R′ (outside of [λ]) is a rookwise connected
sequence of squares R′ ⊂ ∂[λ], such that [λ]∪R is a Young diagram of a partition.
The height and length of a hook are the dimensions of the smallest rectangle which
contains the hook.

Prove that for every λ, the number of rim hooks of height h and length ` in λ
is one less than the number of hooks of height h and length ` outside of λ (see
Figure 8). When k = ` = 1 this was a crucial observation in the proof above.
Compute a generating function

∑
λ η(λ, k, `)t|λ| for the number η(λ, k, `) of hooks

of height k and length ` in λ.

2.5. Dyson’s rank.
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Figure 8. Young diagram [7263221]. Three rim hooks and four
outside hooks of height 3 and length 2.

2.5.1. Fine–Dyson symmetry relations. Define the rank of a partition λ to be
r(λ) = a(λ) − `(λ). Denote by p(n, r) the number of partitions λ ` n of rank r.
Denote by Hn,r and Gn,r the set of partitions of n with rank at most r and at
least r, respectively. Let h(n, r) = |Hn,r|. Clearly, p(n, r) = h(n, r) − h(n, r − 1).
By conjugation, |Gn,r| = |Hn,−r| = h(n,−r). Since Pn = Hn,r ∪ Gn,r+1, we also
have complementarity relations:

h(n, r) + h(n,−1− r) = p(n) .

The following relations are called the Fine-Dyson symmetry relations:

h(n, 1 + r) = h(n + r, 1− r).

We shall prove this formula by an explicit bijection ψr : Hn,r+1 → Gn+r,r−1. Start
with a partition λ ∈ Hn,r+1. Remove the leftmost column in [λ], with ` = `(λ)
squares. Add the top row with (` + r) squares. Let [µ] be the resulting Young
diagram (see Figure 9.) We call the map ψr : λ → µ Dyson’s map.

H Dyson’s map ψr : Hn,r+1 → Gn+r,r−1 is a bijection.

I By assumption on λ, we have r(λ) = a(λ) − ` ≤ r + 1, so ` + r ≥ a(λ) − 1, and
the top row a(µ) is the largest indeed. Clearly, |µ| = |λ| − ` + (` + r) = n + r. Also,
r(µ) = a(µ)− `(µ) = `(λ) + r − (λ′2 + 1) ≥ r − 1. Therefore, µ = ψr(λ) ∈ Gn+r,r−1. �

2.5.2. (◦) Deduce from Fine-Dyson symmetry the following Fine’s relations:
1) p(n)− p(n− 1) = p(n + r + 1, r), ḟor r + 3 ≥ n ≥ 1,
2) p(n + 1, 0)− p(n, 0) + 2 p(n− 1, 3) = p(n + 1)− p(n), for n ≥ 1,
3) p(n, r + 1)− p(n− 1, r) = p(n− r− 3, r +4)− p(n− r− 2, r + 3), for n ≥ r +3.

2.5.3. (♦) Interpret the l.h.s. in Fine’s relation 1) (see above) as the number of
partitions λ ` n, with s(λ) ≥ 2. Now prove 1) bijectively.
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ψ2

Figure 9. Dyson’s map ψr : λ → µ, where λ = (9, 7, 6, 6, 3, 1) ∈
H32,r+1, µ = (8, 8, 6, 5, 5, 2) ∈ G32+r,r−1, and r = 2.

2.5.4. Generating function. (♦) Let Gr(t) =
∑∞

n=1 h(n,−r) tr be the generating
function for |Gn,r|. Use the complementarity relations and the Fine-Dyson symme-
try relations to obtain the following two identities:

1 + Gr(t) + G1−r(t) =
∞∏

i=1

1
(1− ti)

, Gr(t) = tr+1
(
1 + G−2−r(t)

)
.

Deduce from these identities that

Gr(t) = tr+1
∞∏

i=1

1
(1− ti)

− tr+1 Gr+3(t) .

Iterate the above equation to conclude:

Gr(t) =
∞∑

m=1

(−1)m−1t
m(3m−1)

2 +rm
∞∏

i=1

1
(1− ti)

.

2.5.5. (◦) Use Dyson’s map 2.5.1 to give a bijective proof of the generating func-
tion above.

2.5.6. (∗∗∗) Prove combinatorially Dyson’s combinatorial interpretation of Ra-
manujan’s congruence:

∑

r≡i mod 5

p(5k − 1, r) =
1
5

p(5k − 1) , for all integers i, k > 0 .

2.5.7. (◦◦) Let R = D × P × P be a set of triples of partitions (λ, µ, ν), such
that λ ∈ D. Let |(λ, µ, ν)| = |λ| + |µ| + |ν|, vr(λ, µ, ν) = `(µ) − `(ν), and Rn,r =
{(λ, µ, ν) ∈ R : |(λ, µ, ν)| = n, %(λ, µ, ν) = r}. Consider Garvan’s weighted sum:

M(n, r) =
∑

(λ,µ,ν)∈Rn,r

(−1)`(λ)

Check that M(n, r) = M(n,−r). Use Vahlen’s involution 2.3.7 to prove that∑
r M(n, r) = p(n). Prove combinatorially the analogue of the Fine-Dyson sym-

metry relations in this case.
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2.5.8. (◦) Prove combinatorially:
∞∑

r=−∞
r2 M(n, r) = 2n p(n) .

2.5.9. (◦◦) Define the crank of a partition λ as follows: cr(λ) = −`(λ) if t :=
λ1− λ2 = 0, and cr(λ) = t− λt+1 if t > 0. Let N(n, r) be the number of partitions
λ ` n with crank cr(λ) = r. Prove combinatorially that M(n, r) = N(n, r).

2.6. q-binomial theorem.

2.6.1. The following classical identity is usually called the q-binomial theorem:
∞∑

k=1

(1 + a)(1 + at) · · · (1 + atk−1) zktk

(1− t)(1− t2) . . . (1− tk)
=

∞∏

i=1

1 + azti

1− zti

Let us show that both sides are equal to the generating function

M(a, t, z) =
∑

[
λ,�

] aκ
[
λ,�

]
z`(λ)t|λ|,

where the sum is over all standard MacMahon diagrams with n squares. In other
words, we present two bijections between sets of partitions, one for each side of the
identity, and standard MacMahon diagrams.

For the r.h.s. this is straightforward. Start with partitions λ ∈ P and µ ∈ D,
corresponding to the denominator and numerator, respectively. Let [µ] be the
corresponding standard MacMahon diagram with a marked square in each row.
Now consider a standard MacMahon diagram

[
ν, ¢

]
= [λ] ∪ [µ], which gives the

desired interpretation of the r.h.s. Set ψ(λ, µ) =
[
ν, ¢

]
(see Figure 10).

For the l.h.s, start with a pair of partitions υ ∈ P, ω ∈ D′, with a(υ) ≤ k,
a(ω) ≤ k − 1. Attach to [ω] a row of length k, the term corresponding to tk, and
denote by [π] the resulting Young diagram. Now consider a standard MacMahon
diagram

[
π, ¢

]
of shape π, with a marked square in each corner, except perhaps

for the square (1, k). Mark the latter only if ω contains part (0). Now let
[
τ , ¢

]
=[

π, ¢
] ∪ [υ], and define ϕ(υ, ω) =

[
τ , ¢

]′.
H The maps ϕ, ψ are bijections.

Now check that `(ν) = `(λ)+ `(µ), κ
[
ν, ¢

]
= `(µ), and |ν| = |λ|+ |µ|. Similarly,

`(τ) = a(π) = k, κ
[
τ , ¢

]
= `(ω), and |τ | = |υ| + |ω| + k. Thus we obtain the

q-binomial theorem.

2.6.2. (◦) Deduce identities 2.2.3 and 2.2.5 from the q-binomial theorem.

2.6.3. (∗) Prove combinatorially the following extension of the q-binomial theo-
rem:

(1+a)
n∑

r=m

(1 + abt)(1 + abt2) · · · (1 + abtr−1) btr

(1− bt)(1− bt2) · · · (1− btr)
=

n∏

i=1

(1 + abti)
(1− bti)

−
m−1∏

j=1

(1 + abtj)
(1− btj)

.

2.7. Heine transformation.
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ϕ

ϕ

ψ

[λ]

[µ]

[υ]

[ω]

(k)

_

+

Figure 10. Example of bijections ψ : (λ, µ) → [
ν,¢

]
and ϕ :

(υ, ω) → [
τ , ¢

]
. Here λ = (7, 7, 6, 6, 4, 3, 1), ω = (6, 4, 1, 0), λ =

(9, 9, 6), µ = (11, 8, 6, 3), and
[
ν, ¢

]
=

[
τ , ¢

]
.

2.7.1. The classical Heine transformation can be written as follows:
∞∑

k=0

k−1∏

i=0

(1− ati)(1− bti)
(1− ti+1)(1− cti)

zk =
∞∏

r=0

(1− aztr)(1− btr)
(1− ctr+1)(1− ztr)

∞∑

k=0

k−1∏

i=0

(1− cb−1ti)(1− zti)
(1− ti+1)(1− azti)

This is equivalent to F (a, z, b, c; t) = F (c, b, z, a; t), where

F (a, z, b, c; t) =
∞∑

k=0

k−1∏

i=0

(1 + ati)
(1− ti+1)

∞∏
m=1

(1 + cbtk+m)
(1− btk+m)

zktk .

The proof idea is based on a symmetric combinatorial interpretation of the coeffi-
cients in F (a, z, b, c; t).

2.7.2. Using the bijections 2.6.1, let us first give a combinatorial interpretation
to the coefficients in the two products inside the series F . We obtain:

tk
k−1∏

i=0

(1 + ati)
(1− ti+1)

=
∑

[
λ,�

]
: a(λ)=k

aκ
[
λ,�

]
t|λ|,

where the summation is over all standard MacMahon diagrams
[
λ, ¢

]
with k

squares in the first row. Indeed, use the bijection ϕ′ defined as φ in 2.6.1, but
without conjugation in the last step. Similarly, for the second product we have:

∞∏
m=1

(1 + cbtk+m)
(1− btk+m)

=
∑

[
µ,�

]
: s(µ)=k+1

b`(µ)cκ
[
µ,�

]
t|µ|,
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Figure 11. Bijection in the proof of Heine transformation.

where the summation is over all standard MacMahon diagrams
[
µ, ¢

]
which are ei-

ther empty or have at least k+1 squares in the last row. Indeed, use the bijection ψ,
defined in 2.6.1. Therefore, we have:

F (a, z, b, c; t) :=
∑

(p,l,r,q,n)

f(p, l, r, q; n) ap zl br cq tn

=
∞∑

k=0

∑
[
λ,�

]
: a(λ)=k

∑
[
µ,�

]
: k<s(µ)

aκ
[
λ,�

]
zk b`(µ) cκ

[
µ,�

]
t|λ|+|µ| ,

Attaching
[
µ,¢

]
right above

[
λ,¢

]
, we get a diagram

[
ν,¢

]
. From the equation

above, we see that f(p, k, r, q; n) is equal to the number of standard MacMahon
diagrams

[
ν, ¢

]
with n squares, with an outside corner in (r+1, k+1), with p marked

squares in the rows that are ≤ k, with q marked squares in the rows that are > k
(see Figure 11). Conjugating

[
µ, ¢

]
, we deduce f(p, k, r, q; n) = f(q, r, k, p; n),

which completes the proof of the Heine transformation.

2.7.3. (♦) Convert the above proof into a direct bijection between quadruples of
partitions, representing coefficients in F (a, z, b, c; t) and F (c, b, z, a; t).

2.7.4. (◦) Deduce the following Heine identity :

1 +
∞∑

k=1

(abc)k
k−1∏

i=0

(1 + b−1qi)(1 + c−1qi)
(1− aqi)(1− qi+1)

=
∞∏

i=0

(1 + abqi)(1 + acqi)
(1− aqi)(1− abcqi)

.

2.7.5. (◦) Deduce identities 2.3.1 and 2.3.4 from the Heine identity.

2.7.6. (∗∗) Prove combinatorially Ramanujan’s 1ψ1-summation:
∞∑

k=−∞

(1− a)(1− aq) · · · (1− aqn−1)
(1− b)(1− bq) · · · (1− bqn−1)

zk

=
∞∏

n=0

(1− azqn)(1− a−1z−1qn+1)(1− qn+1)(1− a−1bqn)
(1− zqn)(1− a−1bqn)(1− bqn)(1− a−1qn+1)

.
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3. Euler’s Theorem

3.1. Partitions into distinct parts vs. partitions into odd parts. Recall
that Dn denotes the set of partitions into distinct parts. Denote by On the set of
partitions of n into odd parts.

H Euler’s Theorem. |On| = |Dn|.
The proof is straightforward:

1 +
∞∑

n=1

|On| tn =
∞∏

r=1

1
(1− t2r−1)

=
∞∏

r=1

(1− tr)(1 + tr)
(1− t2r)(1− t2r−1)

=
∞∏

i=1

(1 + ti) = 1 +
∞∑

n=1

|Dn| tn .

In this section we present three bijective proofs of Euler’s Theorem and a number
of extensions. Further generalizations including Andrews’ Theorem 8.1.1 will be
presented in Section 8.

3.2. Glaisher’s bijection.

3.2.1. Glaisher’s bijection ϕ : On → Dn is defined as follows. Let λ = (1m13m3 . . . ) ∈
On be a partition with odd parts. For every odd i, let ϕ(λ) contain part i · 2r, if
and only if the integer mi written in binary has 1 at the r-th position.

In the other direction, let φ : Dn → On be defined by an iterative procedure.
Start with λ = (λ1, λ2, . . . ) ∈ Dn. Substitute every even part (λi) with two parts
(λi/2). Repeat until the resulting partition µ has no even parts, and set φ(λ) := µ.

H Maps ϕ : On → Dn and φ : Dn → On are well defined bijections,
inverse to each other: φ = ϕ−1.

3.2.2. (♦) Let Bn ⊂ Dn be the set of all partitions λ ` n into distinct parts, such
that λi ≡ 0, 1 or 2 mod 4. Let Qn ⊂ On be the set of all partitions µ ` n into odd
parts, such that all parts i ≡ 3 mod 4 appear an even number of times. Finally, let
An be the set of all partitions ν ` n, such that νi ≡ 1, 5 or 6 mod 8. Check that
Qn = φ(Bn). Conclude that |Bn| = |An|.
3.2.3. (♦) Glaisher’s Theorem. For any d ≥ 2, prove that the number of partitions
λ ` n with no part divisible by d is equal to the number of partitions µ ` n with
no part repeated ≥ d times.

3.2.4. (◦) Let pe(n) and po(n) be the number of partitions of n into an even and
an odd number of even parts, respectively. Prove combinatorially that pe(n)−po(n)
is equal to the number of partitions of n into distinct odd parts.

3.2.5. (◦) Vector partitions. Fix an integer k ≥ 1. Consider nonnegative integer
vectors c = (c1, . . . , ck). Define a vector partition of c to be a presentation of c
as a sum of nonnegative integer vectors, regardless of the order. A vector is called
odd if it has at least one odd component. Then the number of vector partitions
of c into odd vectors is equal to the number of vector partitions into distinct (i.e.
unequal) vectors. Extend Glaisher’s bijection to prove this result.

3.3. Franklin’s Extension.
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Figure 12. Sylvester’s bijection ψ : (7, 5, 3, 3) → (7, 6, 4, 1).

++

Figure 13. The second version of Sylvester’s bijection ζ.
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Figure 14. The third version of Sylvester’s bijection η.

3.3.1. For a partition λ, denote by γO(λ) the number of even part sizes, and by
γD(λ) the number of repeated part sizes. Franklin’s extension of Euler’s Theorem
states that the number of partitions λ ` n with γO(λ) = k is equal to the number
of partitions µ ` n with γD(µ) = k. When k = 0 we obtain Euler’s Theorem.

As before, let Pn be the set of all partitions of n. Define the following extension
ϕ : Pn → Pn of Glaisher’s bijection. Start with λ ∈ Pn. Suppose λ = π ∪ ν, where
π is a partition into even parts and ν is a partition into odd parts. Divide each part
of π into two, and denote this partition by π/2. Now let ϕ(λ) = ϕ(ν) ∪ π/2 ∪ π/2.
Clearly, ϕ : On → Dn.

H The map ϕ : Pn → Pn defined above is a bijection. Moreover, if
ϕ(λ) = µ, then γO(λ) = γD(µ).

3.3.2. (♦) Find a similar extension of Glaisher’s Theorem 3.2.3.

3.4. Sylvester’s bijection.

3.4.1. Sylvester’s bijection. The following is a different bijective proof of Euler’s
Theorem 3.1. In fact, we will present three different bijections giving the same
correspondence.

Sylvester’s bijection ψ : On → Dn is best described by a picture. We arrange all
odd parts symmetrically, folding them as hooks, and then read them diagonally, as
shown on Figure 12.

For the second bijection ζ : On → Dn, we divide the diagram [λ] into two parts,
along the line j = 1+2i. Read the parts above and below as diagrams of partitions
α and β′, respectively. Now let ζ(λ) = (2 · (α/2)′)′ + β, see Figure 13.

To exhibit the third bijection, define η : On → Dn as follows. Draw a 2-modular
diagram [λ]2 corresponding λ ∈ On. Draw successive hooks H1,H2, . . . , as in
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Figure 14. Let µ1 be the number of squares in H1, let µ2 be the number of 2-s in
H1, let µ3 be the number of squares in H2, let µ4 be the number of 2-s in H2, etc.
Now let η(λ) = µ.

H The maps ψ, ζ, η : On → Dn are bijections giving identical correspon-
dence: ψ = ζ = η.

3.4.2. (♦) Fine’s Theorem. Prove that the number of partitions µ ∈ Dn with a(µ) =
k is equal to the number of partitions λ ∈ On with a(λ) + 2`(λ) = 2k + 1.

3.4.3. (♦) Let O1
n and O3

n be the sets of partitions λ of n into odd parts, such
that the largest part a(λ) = λ1 ≡ 1 and 3 mod 4, respectively. Let D0

n and D1
n be

the sets of partitions λ of n into distinct parts, such that the largest part a(λ) = λ1

is even and odd, respectively. Apply Fine’s Theorem to show that ψ : O1
n → D0

n,
O3

n → D1
n, when n is even, and ψ : O1

n → D1
n, O3

n → D0
n, when n is odd. Use 5.2.2

to compute |O1
n| − |O3

n|.

3.4.4. (◦) Sylvester’s Theorem. Let γ(λ) be the number of distinct parts in
λ ∈ P. For every µ ∈ D, let ζ(µ) be the number of contiguous sequences of parts
in µ, i.e. the number sequences of consecutive integers in a partition (µ1, µ2, . . . ).
Prove that the number of partitions λ ∈ On with γ(λ) = k is equal to the number
of partitions µ ∈ Dn with ζ(λ) = k, for all n ≥ k ≥ 1.

3.4.5. (◦) Denote by |λ|a the alternating sum of parts of a partition λ: |λ|a =
λ1− λ2 + λ3− λ4 + . . . Prove that the number of partitions λ ` n into k odd parts
is equal to the number of partitions µ ` n into distinct parts with |µ|a = k.

3.4.6. (◦) Let λ ∈ P have type (c,m) if the parts appear, alternately, starting
with the largest part, c times, (m − c) times, c times, (m − c) times, etc. Let
1 ≤ c < m. Generalize Sylvester’s bijection to prove that the number of partitions
of n with parts ≡ c mod m is equal to the number of partitions of n of type (c,m).
When c = 1 and m = 2, this is Euler’s Theorem. Extend Fine’s and Sylvester’s
theorems to partitions of type (c,m).

3.5. Iterated Dyson’s map. Let Dn,r be the set of partitions µ ∈ Dn with rank
r(µ) = r. Let Un,2k+1 be the set of partitions λ ∈ On, such that the largest part
a(λ) = 2k + 1. The following identity is a refinement of Euler’s Theorem:

|Un,2r+1| = |Dn,2r+1| + |Dn,2r|.
Recall the construction of Dyson’s map ψr : Hn,r+1 → Gn+r,r−1 defined in 2.5.1.

Let λ = (λ1, λ2, . . . , λ`) be a partition. Consider a sequence of partitions ν1, ν2,
. . . , ν`, such that ν` = (λ`), and νi is obtained by applying Dyson’s map ψλi

to νi+1. Now let µ = ν1. We shall call new map ξ : λ → µ the iterated Dyson’s
map. See Figure 15 for an example.

H The map ξ : On → Dn is a bijection. Moreover, ξ
(Un,2r+1

)
=

Dn,2r+1 ∪ Dn,2r.
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Figure 15. The iterated Dyson’s map ζ : λ → µ, where λ =
(5, 5, 3, 3, 1) ∈ U17,5 and µ = (8, 6, 2, 1) ∈ D17,4.

4. Partition Theorems of Lebesgue, Göllnitz and Schur

4.1. Lebesgue identity. The following result is called Lebesgue identity :
∞∑

r=1

t(
r+1
2 ) (1 + zt)(1 + zt2) · · · (1 + ztr)

(1− t)(1− t2) · · · (1− tr)
=

∞∏

i=1

(1 + zt2i)(1 + ti) .

Note that when z = 0, we obtain Euler’s identity 2.3.4. We present two bijec-
tive proofs, both of which introduce different intermediate set of partitions. The
resulting correspondences are also different.

First, let us restate the identity in combinatorial language. Recall that for a
partition λ, we denote a(λ) = λ1 and `(λ) = λ′1. Let Vn,k be the set of pairs of
partitions (λ, µ), such that λ, µ ∈ D, |λ|+ |µ| = n, `(µ) = k, and a(µ) ≤ `(λ). Let
En,k be the set of pairs of partitions (σ, τ), such that |σ|+ |τ | = n, `(σ) = k, and σ
is a partition into even parts.

H Lebesgue identity is equivalent to the following partition theorem:
|Vn,k| = |En,k|, for all n, k ≥ 0.

I Observe that adding Sylvester’s triangle as in the proof of Euler’s identity 2.3.4 com-

bines t(
r+1
2 ) and the denominator on the l.h.s. into a generating function for partitions λ

into distinct parts, with `(λ) = r. The product in the numerator is a generating function
for partitions µ into distinct parts with a(µ) ≤ r. Summing over all r ≤ k = `(µ), we
see that the l.h.s. is equal to

P
n,k |Vn,k| tnzk. For the r.h.s. of the identity, the result is

straightforward. �

4.2. First proof of Lebesgue identity.

4.2.1. Bessenrodt’s bijection. We start by introducing an intermediate set of parti-
tions. Let Rn,k be the set of all partitions π ` n, such that π has exactly k even
parts, where these even parts are not repeated. We shall prove that

|Vn,k| = |Rn,k| = |En,k|.
The second equality is straightforward. Start with (σ, τ) ∈ En,k. We have τ ∈ Dm,
for some m ≤ n. By Euler’s Theorem 3.1, |Dm| = |Om|. Now let ω = ψ−1(τ),
where ψ : Om → Dm is Sylvester’s bijection 3.4.1. Join the parts of ω and σ
together, to form a partition π. Note that π ∈ Rn,k as desired.

For the first equality, we shall construct a map % : Rn,k → Vn,k, by using
2-modular diagrams of partitions. Start with the 2-modular diagram [π]2 of a
partition π ∈ Rn,k. Mark the last squares in each row whenever it’s a 2. Since
even parts are not repeated in π, no two marked squares lie in the same column or
row. For every marked square below the main diagonal i = j, remove the row of 2-s
which contains it. For every marked square on or above the main diagonal i = j,
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Figure 16. Example of the bijection %.

remove the column of 2-s which is above it, replacing the marked square with a 1,
and attaching one square with a 1 to the column (see Figure 16). Denote by [γ]2
the remaining 2-modular diagram. Observe that γ ∈ O. Now let λ = ψ(γ) ∈ D.

Now conjugate all the removed columns and join them with the removed rows in
a 2-modular diagram, which we denote by [µ]2. Define by %(π) = (λ, µ). Note that
λ, µ ∈ D, |λ|+ |µ| = |π| = n, and `(µ) is the number k of even parts in π. Finally,
the geometry of the construction guarantees that the length of each removed row or
column is at most the size of the Durfee square δr in a diagram [π]2. This translates
into a(µ) ≤ `(λ), and implies that (λ, µ) ∈ Vn,k.

H The map % : Rn,k → Vn,k is a bijection.

4.2.2. (♦) An example of the bijection % : Rn,k → Vn,k is given in Figure 16.
The 2-modular diagram [π]2 of the partition π = (22, 21, 19, 18, 15, 10, 92, 7, 4, 2) ∈
R136,5 is mapped into [γ]2 and [µ]2, where γ = (192, 172, 15, 92, 7), µ = (10, 7, 4, 2, 1).
The last step, corresponding to Sylvester’s bijection ψ, is not drawn but the cor-
responding hooks are indicated on [γ]2 by dashed lines (cf. Figure 14). Now
λ = ψ(γ) = (17, 16, 15, 14, 12, 11, 10, 8, 6, 3), and (λ, µ) = %(π). Note that the
Durfee square δ5 ⊂ [γ]2 has 2 in its lower right corner (it always coincides with the
corner of the last hook). This corresponds to r = `(λ) = 10, and a(µ) = 10 ≤ r.

4.2.3. (♦) Define a natural extension of Sylvester’s statistic ζ(λ) to this case.
Find the corresponding partition identity.

4.2.4. (◦) Generalize the above construction to partitions of type (c,m).
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4.3. Göllnitz Theorem.

4.3.1. The following result for partitions is not directly related to Euler Theorem,
but has a similar flavor. The bijective proof will also be helpful in the next section
in motivating the second proof of the Lebesgue identity.

Let An be the set of partitions λ ` n into parts ≡ 1, 5 or 6 mod 8. Let Hn be
the set of partitions µ ` n into parts which differ by at least 2, and such that odd
parts differ by at least 4.

H Göllnitz Theorem. |An| = |Hn|.
Denote by Bn ⊂ Dn set of all partitions λ ` n into distinct parts, such that

λi ≡ 0, 1 or 2 mod 4. Recall that |An| = |Bn|, as described in 3.2.2. Thus it
remains to show that |Bn| = |Hn|.

4.3.2. Bressoud’s bijection. We construct a bijection ξ : Bn → Hn, again by using
2-modular diagrams and standard MacMahon diagrams.

Start with a partition λ ∈ Bn. Let k be the number of parts ≡ 1 mod 4 in λ.
Map it into a 2-modular diagram [λ]2. Map [λ]2 into a MacMahon diagram

[
ν, ¢

]
,

which has exactly k marked squares. Split
[
ν, ¢

]
into two Young diagrams [α],

[β] and a standard MacMahon diagram
[
γ, ¢

]
. Namely, let

[
γ, ¢

]
contain all rows

with marked squares (they are shaded in Figure 17), and let [α] and [β] consist of
parts > k and ≤ k, respectively (and no marked squares).

Now let
[
υ, ¢

]
= [β]′ +

[
γ, ¢

]
. Clearly, `(υ) = k. Attach

[
υ, ¢

]
right below [α]

and remove Sylvester’s triangle
[
ρm, ¢

]
, where m = `(α) + k − 1 = `(α + υ). This

is possible indeed since the smallest of [α] is > k. Rearrange the remaining m
rows in a nonincreasing order, and add back to

[
ρm,¢

]
. Convert the resulting

standard MacMahon diagram
[
ω, ¢

]
into a 2-modular diagram, and then to a Young

diagram [µ]. Let µ = ξ(λ).

H The map ξ defined above is a bijection between Bn and Hn.

I First, observe that ξ is well defined. Indeed, in the standard MacMahon diagram
�
γ,��

all rows are marked and have distinct odd lengths. This is preserved in
�
ω,��. Thus, the

standard MacMahon diagram
�
ω,�� has all parts of distinct length, and no two rows with

marked squares are adjacent. This translates into µ ∈ Hn.
For the inverse map, start with a Young diagram [µ], and convert it into a MacMahon

diagram
�
ω,��. Remove Sylvester’s triangle ρm, where m = `(µ) − 1. Reorder the

remaining rows, so that all k rows with marked squares are on the bottom. Split the
resulting diagram into [α] and

�
υ,��. Remove columns from

�
υ,��, depending on the

parity of the distance between adjacent marked squares, to obtain
�
γ,��. Collect the

removed columns of distinct length ≤ k into a Young diagram [α]′. Now let
�
ν,�� =

[α]∪ [β]∪ �γ,��. Now convert the MacMahon diagram
�
ν,�� into a partition λ. The rest

of the proof is straightforward. �

4.3.3. (♦) Check that the number k of odd parts in λ is equal to the number of
odd parts in µ = ξ(λ).

4.3.4. (♦) Prove that the number of partitions λ ` n into parts ≡ 2, 3 or 7 mod 8
is equal to the number of partitions µ ` n into parts which differ by at least 2, such
that the odd parts differ by at least 4, and the smallest part is at least 2.
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[α]

[β]

[γ]

[γ] [υ]

[α]

[υ]

[β]

8
[ρ ]

'

_

_ _

_

=[ω,  ]

[ν,  ]

Figure 17. Intermediate steps of a bijection ξ : λ → µ,
where λ = (28, 22, 17, 16, 14, 13, 10, 8, 6, 5, 2, 1) ∈ B142 and µ =
(33, 27, 24, 18, 15, 10, 8, 5, 2) ∈ H142, with k = 4.

4.3.5. Bressoud’s Theorem. (♦) Let 1 ≤ r < k. Prove that the number of par-
titions λ ` n into distinct parts ≡ 0, r, or k mod 2k is equal to the number of
partitions µ ` n into parts ≡ 0 or r mod k, which differ by at least k, and such
that parts ≡ r mod 2k differ by at least 4.

Hint : translate both sets of partitions into the language of k-modular diagrams,
then into standard MacMahon diagrams, and use the same bijection.

4.4. Second proof of Lebesgue identity.

4.4.1. Alladi–Gordon’s bijection. We say that the i-th row in a diagram [λ] has a
gap, if λi−λi+1 ≥ 2. Let Gn,k be the set of all MacMahon diagrams with n squares,
and k marked squares, such that all rows have distinct length, and every row with
a marked square has a gap.

We shall prove that
|Vn,k| = |Gn,k| = |En,k|,
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[λ]  [µ]'
_

[ν,  ]

Figure 18. Example of a bijection ς : V34,3 → G34,3.

which implies the Lebesgue identity. For this, construct two bijections ς : Vn,k →
Gn,k, and κ : En,k → Gn,k.

The first bijection is straightforward. Start with (λ, µ) ∈ Vn,k. Mark the last
square in each of the k rows in [µ] to obtain a standard MacMahon diagram [µ]
with k marked squares. Now let

[
ν,¢

]
= [λ] +

[
µ, ¢

]′, as in Figure 18. Finally, let
ς(λ, µ) =

[
ν, ¢

]
.

As for the second bijection, follow steps similar to that in 4.3.2. Start with
(σ, τ) ∈ En,k. Mark the last square in each of the k rows in [σ] (all of even length)
to obtain a standard MacMahon diagram [σ] with k marked squares. Split τ = α∪β
into parts > k and ≤ k, respectively. Consider [σ]+[β]′ and attach it right below [α].
Now remove Sylvester’s triangle ρk, rearrange the rows into nonincreasing order,
and reassemble them into a standard MacMahon diagram

[
ν, ¢

]
. Let κ(σ, τ) =[

ν, ¢
]
. In

[
ν, ¢

]
, all rows have distinct length, and every row with a marked

square (there are exactly k of them) has a gap.

H The maps ς : Vn,k → Gn,k and κ : En,k → Gn,k defined above, are
bijections.

4.4.2. (∗∗) Find a combinatorial proof of the following identity:

1 +
∞∑

n=1

qn2 (1 + q)(1 + q2) · · · (1 + q2n+1)
(1− q)2(1− q2)2 · · · (1− q2n)2

=
∞∏

n=1

1 + q2n−1

1− q2n
,

4.5. Schur’s Partition Theorem.

4.5.1. Let An be the set of partitions of n into parts ≡ 1 or 5 mod 6. Let Bn be
the set of partitions of n into distinct parts ≡ ±1 mod 3. Finally, let Sn be the set
of partitions of n with minimal difference 3 between parts, and no two parts which
are consecutive multiples of 3. Schur’s Partition Theorem states that

|An| = |Bn| = |Sn|.
While the first equality is elementary and can be proved in a manner similar to
Euler’s Theorem 5.1.1 (see also 8.1.3), the second equality is more involved and
will be proved here by an explicit bijection ϕ : Bn → Sn.

Start with a partition λ ∈ Bn. Consider a 3-modular diagram [λ]3 (see 2.1.4).
By the definition of Bn, all rows in [λ]3 are distinct and end with a 1 or 2 square.
Working from the bottom to the top row, arrange rows into pairs and single rows
by the following rules. Only rows which differ by 1 or 2 can form a pair. If
this holds, and λi is not paired yet, pair the rows λi−1 and λi if either i = `(λ),
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 [σ]

[α]

[β]'[σ]

[τ]=[α]   [β]

_

U

[ν,  ]

Figure 19. Example of a bijection κ : V33,3 → G33,3.

or λi − λi+1 ≥ 3, or the previous two rows λi+1 and λi+2 form a pair. Now
add paired row to each other to form a single 3-modular diagram. Now remove
Sylvester’s triangle (see 2.3.4), rearrange the rows in nonincreasing order and add
Sylvester’s triangle back again. Denote the resulting 3-modular diagram by [µ]3,
and let ϕ(λ) = µ (see Figure 20).

H The map ϕ defined above is a bijection between Bn and Sn.

4.5.2. Bressoud’s Generalization. (♦) Fix integers r and m, such that r < m/2.
Then the number of partitions of n into distinct parts ≡ ±r mod m is equal to the
number of partitions of n into parts ≡ 0, ±r mod m, with minimal difference m
between parts, and no two parts are consecutive multiples of m. Prove this theorem
by converting the 3-modular diagrams, used in the bijection above, into m-modular
ones.
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[λ]
3

[µ]
3

Figure 20. An example of bijection ϕ : [λ]3 → [µ]3, defined
above. Here λ = (35, 22, 20, 19, 17, 13, 10, 8, 7, 2) ∈ B153, and
µ = (45, 39, 29, 21, 10, 7, 2) ∈ S153.

4.5.3. (◦◦) Denote by En the set of all partitions λ = (λ1, λ2, . . . ) ` n, such that

λi − λi+1 ≥





5, if λi ≡ 0 mod 3,

3, if λi ≡ 1 mod 3,

2, if λi ≡ 2 mod 3.

Prove bijectively that |En| = |Sn|.

5. Euler’s Pentagonal Theorem

5.1. The identity.

5.1.1. Euler’s Pentagonal Theorem is the following identity:
∞∏

i=1

(1− ti) =
∞∑

m=−∞
(−1)m−1t

m(3m−1)
2 .
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m

m

m

m+1

2m2m-1

Figure 21. Young diagrams [2m − 1, 2m − 2, . . . , m + 1,m] and
[2m, 2m− 1, . . . , m + 2,m + 1].

The integers m(3m ± 1)/2 are called Pentagonal numbers following the ancient
Greek tradition.

We present two bijective proofs of the identity in this section. Jacobi’s triple
product identity, generalizing Euler’s Pentagonal Theorem is presented in the next
section.

5.1.2. (♦) Deduce from 5.1.1 Euler’s recurrence relation:

p(n) = p(n− 1) + p(n− 2)− p(n− 5)− p(n− 7) + p(n− 12) + p(n− 15)

− . . . + (−1)m

(
n− m(3m− 1)

2

)
+

(
n− m(3m + 1)

2

)
.

This formula was used by Euler to tabulate values of p(n). Using asymptotic
formula 9.6.1, estimate the complexity of Euler’s algorithm for computing the first n
values p(1), p(2), . . . , p(n).

5.2. Franklin’s involution.

5.2.1. Let Dn = D+
n ∪ D−n be the set of partitions into distinct parts 2.3.4, and

D+
n , D−n be the subsets with an even and an odd number of parts, respectively. Let

F be the set of pentagonal Young diagrams as in Figure 21. Let Fn = F ∩ Dn.
Clearly, |Fn| = 0 unless n = m(3m ± 1)/2, in which case |Fn| = 1. Thus Euler’s
Pentagonal Theorem 5.1.1 is equivalent to the identity

|D+
n | − |D−n | = ±|Fn|,

where the sign is determined by the number of parts of a unique partition in Fn.
Franklin’s involution α : Dn → Dn gives a bijective proof of Euler’s Pentagonal

Theorem. It is defined as follows. First, compare the sizes of horizontal and
diagonal lines of squares in Young diagram [λ]: (`, 1), (`, 2), . . . , (`, λ`) ∈ [λ], and
(1, k), (2, k − 1), . . . ∈ [λ], where ` = `(λ), k = a(λ). Let s = s(λ) and g = g(λ),
respectively, be the lengths of these lines. If s > g, move the diagonal line below
the horizontal line. Otherwise, (if s ≤ g), move the horizontal line to the right of
the diagonal. If s = g, or s = g + 1, and the lines have a common square, stay put.

H The above construction gives a sign-reversing involution α on Dn with
the set Fn as the only possible fixed point.

I Observe that unless we are at a fixed point, the involution changes the number of parts
in a partition by one. Thus, α is sign-reversing. Clearly, the involution is well defined and
has fixed points only when horizontal and diagonal lines intersect at a point which is to
be moved. Thus the set of fixed points is exactly Fn. �
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Figure 22. Young diagram [λ] = [9, 8, 7, 6, 4, 3] with horizontal
and diagonal lines of length s(λ) = 3 and g(λ) = 4, respectively.
An example of Franklin’s involution.

5.2.2. (♦) Let D0
n and D1

n be the sets of partitions λ of n into distinct parts,
such that the largest part a(λ) is even and odd, respectively. Check that Franklin’s
involution α : λ → µ satisfies a(µ) = a(λ)± 1, unless λ ∈ Fn. Conclude that

|D0
n| − |D1

n| =





1, if n = k(3k + 1)/2,

−1, if n = k(3k − 1)/2,

0, otherwise.

5.2.3. (◦) Modify Franklin’s involution to prove the following version of 5.1.1 :
∞∏

i=2

(1− ti) =
∞∑

m=0

(−1)m−1t
m(3m+1)

2 (1 + t + t2 + . . . + t2m) .

5.2.4. (◦) Extend Franklin’s involution to obtain the following identity, refining
Euler’s Pentagonal Theorem:

1 +
m∑

k=1

(−1)k
(
t

k(3k−1)
2 + t

k(3k+1)
2

)
=

∑

0≤r≤m

(−1)itrm+(r+1
2 ) ∏

r<i≤m

(1− ti) .

5.2.5. (∗) Do the same for the following identity:
3m∏

i=1

(1− ti) = 1+
m∑

k=1

(−1)k
(
t

k(3k−1)
2 + t

k(3k+1)
2

)
×

×
k∏

j=1

(
1− t3m−3k+3j

) m−k∏
r=1

(
1− t3m+3k+3r

)
.

5.2.6. (◦◦) Use Franklin’s involution to prove the following identity:
∞∑

k=1

(−1)k
[
(3k − 1)t

k(3k−1)
2 + (3k)t

k(3k+1)
2

]
=

∞∑
n=0

[ ∞∏

i=1

1
(1− ti)

−
n∏

i=1

1
(1− ti)

]

−
∞∏

i=1

1
(1− ti)

∞∑

j=1

tj

(1− tj)
.

5.2.7. (∗∗) Let D¦n be the set of partitions λ ∈ Dn, with the smallest part s(λ)
being odd. Find an explicit involution to show that |D¦n| is odd if and only if n is
a square.
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Figure 23. Young diagrams [11, 10, 8, 4, 3, 2] and [11, 10, 8, 6, 3, 2],
which contain diagrams [θ4] and [θ′4], respectively.

5.2.8. (∗∗) Let Qi
n denote the set of partitions λ, such that λ, λ′ ∈ On, and the

number of parts `(λ) ≡ i mod 4. Prove combinatorially that

|Q1
n| − |Q3

n| =

{
(−1)k , if n = 12k2 + 8k + 1 or n = 12k2 + 16k + 5,

0 , otherwise.

5.3. Sylvester’s identity.

5.3.1. Consider Sylvester’s identity :
∞∑

n=0

(−1)nxnt
n(3n+1)

2
(
1− xt2n+1

) n∏

i=1

1
(1− ti)

∞∏

i=n+1

1
(1− xtn)

= 1 .

Multiplying by
∏∞

n=1(1− xtn), and setting z = −x, we obtain:
∞∑

n=0

(
znt

n(3n+1)
2 + z(n+1)t

(n+1)(3(n+1)−1)
2

) n∏

i=1

(1 + zti)
(1− ti)

=
∞∏

i=1

(1 + zti).

Note that when z = −1 we obtain Euler’s Pentagonal Theorem 5.1.1. On the other
hand, this identity can be compared with Euler’s identity in 2.3.1. The following
bijective proof is based on a modification of the Durfee squares and is similar to
that in 2.3.1.

Denote by θm, θ′m pentagonal partitions, as in Figure 21. Suppose λ ∈ Dn is a
partition with distinct parts, and δm be the Durfee square in [λ]. There are two
possibilities to consider in this case.

If λm = m, consider [λ]− [θm], which is a disjoint union of two diagrams [µ] and
[ν], such that [µ] has at most (m − 1) parts, while [ν] has distinct parts of size at
most (m− 1) (see Figure 23). Take ϕ(λ) = (µ, ν, θm).

Similarly, if λm > m, consider [λ]−[θ′m], which is a disjoint union of two diagrams
[µ] and [ν], such that [µ] has at most m parts, while [ν] has distinct parts of size
at most m. Take ϕ(λ) = (µ, ν, θ′m)

H The map ϕ defined above is a bijection which proves Sylvester’s iden-
tity.

5.3.2. (♦) Set z = −1 in Sylvester’s identity. The two products on the l.h.s.
cancel. Instead of cancelling them analytically, use Vahlen’s involution 2.3.7. Now,
starting with partitions λ ∈ Dn corresponding to the r.h.s., obtain ϕ(λ) = (µ, ν, θm)
and cancel triples with nonempty µ and ν. Check that the resulting involution is
identical to Franklin’s involution 5.2.1.
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γ

m

m

m

m

m m

m

m

Figure 24. Bijection γ proving Euler’s recurrence relation.

5.4. Bijective proof of Euler’s recurrence relation.

5.4.1. Recall Euler’s recurrence relation 5.1.2:

p(n) = p(n− 1) + p(n− 2)− p(n− 5)− p(n− 7) + p(n− 12) + p(n− 15)− . . .

We present an explicit bijection proving it in the following form:

γ :
⋃

m even

Pn−m(3m−1)/2 ←→
⋃

m odd

Pn−m(3m−1)/2 ,

where m ∈ Z on both sides is allowed to be negative, and the map γ is defined by
the following rule:

for λ ∈ Pn−m(3m−1)/2 , γ(λ) =

{
ψ−3m−1(λ), if r(λ) + 3m ≤ 0,

ψ−1
−3m+2(λ), if r(λ) + 3m > 0,

where ψr is Dyson’s map 2.5.1.
In Figure 24 we exhibit a pentagonal number by one of the diagrams as in

Figure 21. So when m changes, we show how where the change comes from. By
definition, γ is a sign-reversing involution.

H The map γ defined above is a bijection.

5.4.2. (♦) Recall the following identity in 2.5.4: P (t) = 1 + G0(t) + G1(t), where

Gr(t) =
∞∑

m=1

(−1)m−1t
m(3m−1)

2 +rm P (t) , and P (t) =
∞∏

i=1

1
(1− ti)

.

Deduce from here Euler’s Pentagonal Theorem.

5.4.3. (◦) Combine the two involutions in 2.5.5 for r = 0 and r = 1 to give
an involution proving Euler’s recurrence relation. Check that this involution is
identical to that in 5.4.1.

5.5. Gauss identity.
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Figure 25. Two examples of the involution α.

5.5.1. The following classical Gauss identity has an involutive proof:
∞∏

m=1

(1− tm)
(1 + tm)

=
∞∑

r=−∞
(−1)r tr

2
.

First, interpret the coefficient of tn on the l.h.s. as the sum of (−1)`(λ), over all
standard MacMahon diagrams

[
λ, ¢

]
of shape λ ` n. We shall define a sign-

reversing involution on
[
λ, ¢

]
with no fixed points unless n is a square.

In a Young diagram [λ] define a horizontal line and a vertical line to be the
bottom row and the rightmost column. As before, let s = s(λ) be the length of the
horizontal line. Similarly, let f = f(λ) = ma(λ) be the length, and let q = q

[
λ, ¢

]
be

the number of unmarked squares of the vertical line in [λ]. We say that a column
(row) is marked if it contains a marked square. By the definition of a standard
MacMahon diagram, f = q + 1 if the vertical line is a marked column, and f = q
otherwise.

Now, if f < s, or q < f = s, attach a row of length f to the horizontal line;
make it marked if the vertical line was unmarked, or vice versa (see Figure 25).
Conversely, if s < f , or s = q = f , attach a column of length s to the vertical line
and make it marked if the horizontal line was unmarked, or vice versa. Denote by α
the involution we obtain.

There are four exceptional cases when α is undefined: when
[
λ, ¢

]
is an r×(r+1)

rectangle with no marked squares, an (r +1)× r rectangle with one marked square,
and an r× r rectangle with or without a marked square. The first two cases cancel
each other, while the last two give the terms on the r.h.s.

H The map α defined above gives a sign-reversing involution with square
shaped standard MacMahon diagrams as fixed points.

5.5.2. (♦) Deduce from the proof:

1− 2
∞∑

m=1

(1− zt)(1− zt2) · · · (1− ztm−1) zm+1 tm

(1 + zt)(1 + zt2) · · · (1 + ztm)
= 1− 2

∞∑
r=1

z2r (−1)r tr
2

5.5.3. (◦) Modify the previous argument to prove another Gauss identity :
∞∏

n=0

(1− t2m)
(1− t2m−1)

=
∞∑

n=0

t
n(n+1)

2 .

5.5.4. (◦) Deduce both Gauss identities above and identity 5.5.2 from the Rogers-
Fine identity 2.3.3.
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6. Jacobi’s triple product identity

6.1. Variations on the theme.

6.1.1. The following summation is known as the Jacobi identity or the triple
product identity :

∞∑
n=−∞

znqn2
=

∞∏

k=1

(1− q2k)(1 + zq2k−1)(1 + z−1q2k−1) .

6.1.2. (♦) Deduce Euler’s Pentagonal Theorem from the Jacobi identity.

6.1.3. (♦) Deduce Gauss identities 5.5.1, 5.5.3 from the Jacobi identity.

6.1.4. (◦) Deduce the following Gauss identity :
∞∏

i=1

(1− ti)3 =
∞∑

n=0

(−1)n(2n + 1) t
n(n+1)

2 ,

6.1.5. (◦) Vahlen’s Theorem. Let ε(m) be the integer i ∈ {−1, 0, 1}, such that
m ≡ i mod 3. Let ε(λ) = ε(λ1) + ε(λ2) + . . . ∈ Z. Define On,k = {(λ1, λ2, . . . ) ∈
On : ε(λ) = k}. Then for all k ∈ Z :

∑

λ∈On,k

(−1)`(λ) =





(−1)k , if n =
k(3k − 1)

2
0 , otherwise.

6.1.6. (∗∗) Prove combinatorially the quintuple product identity :
∞∑

n=−∞
q

n(3n−1)
2 z3n (1 + zqn)

=
∞∏

n=0

(1 + z−1qn+1)(1 + zqn)(1− z−2q2n+1)(1− z2q2n+1)(1− qn+1).

6.1.7. (∗∗) Find a combinatorial proof of the following Ramanujan’s identity :

1+
∞∑

n=1

qn

(1− aq)(1− aq2) · · · (1− aqn) (1− bq)(1− bq2) · · · (1− bqn)

= (1− a−1)

(
1 +

∞∑
n=1

(−1)nqn(n+1)/2bna−n

(1− bq)(1− bq2) · · · (1− bqn)

)

+ a−1
∞∑

n=0

(−1)nqn(n+1)/2bna−n
∞∏

k=1

1
(1− aqk)(1− bqk)

.

6.2. Direct bijection.
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+
+

[λ]

[ν]
[µ]

Figure 26. The case k = 3, n = 35. The bijection ϕ : λ → (µ, ν),
where λ = (5243321) ` 29 = 35 − (

4
2

)
, µ = (8, 7, 5, 4, 3, 1), ν =

(4, 2, 1). Note that `(µ)− `(ν)− k = 0.

6.2.1. We start with the following equivalent form of the Jacobi identity:
∞∑

k=−∞
skt

k(k+1)
2

∞∏

i=1

1
1− ti

=
∞∏

i=1

(1 + sti)
∞∏

j=0

(1 + s−1tj).

The coefficient of srtn on the l.h.s. can be interpreted as the number of partitions
in Pn−k(k+1)/2. On the r.h.s. we have |Wn,k|, where

Wn,k =
{
(µ, ν) : µ ∈ D′, ν ∈ D, |µ|+ |ν| = n, `(µ)− `(ν) = k

}
.

We define a map ϕ = ϕn,k : Pn−k(k+1)/2 → Wn,k as in Figure 26. We start with
λ ∈ Pn−k(k+1)/2 and the integer k. First, arrange

(
k+1
2

)
squares into a rotated

Sylvester’s triangle, and attach it sideways to diagram [λ]. When k < 0, attach
the triangle on the other side of [λ]. Then split the obtained diagram along the
i− j = k diagonal, and read columns below the diagonal, and rows on or above the
diagonal. This gives us two partitions: µ into distinct parts, and ν into nonnegative
distinct parts.

H The map ϕ defined above is a bijection between Pn−k(k+1)/2 and Wn,k.

Note that when k = 0, the above bijection ϕ give Frobenius coordinates 2.3.5.

6.2.2. Let us present here another direct bijection to prove the Jacobi identity in
essentially the same form as in 6.2.1. In fact, we present here two different bijections
defining the same correspondence.

The first bijection is essentially the same as the bijection φ in 6.2.1, with a
substitution t = q2 and s = z/q:

∞∑

k=−∞
zkqk2

∞∏
r=1

1
1− q2r

=
∞∏

i=1

(1 + zq2i−1)
∞∏

i=1

(1 + z−1q2i−1) .

Define D◦ = D ∩ O to be the set of partitions into distinct odd parts. Let Vn,k =
{(µ, ν) : µ, ν ∈ D◦, |µ| + |ν| = n, `(ν) − `(µ) = k}. We present map φ = φn,k :
P(n−k2)/2 → Vn,k in Figure 27. Here the squares of the intermediate diagrams are
divided into two triangles, to account for the length of the resulting partitions being
odd.

The second bijection is rather unusual, in a sense that we allow diagrams to
overlap to our advantage. We shall use Sylvester’s idea for representing partitions
with odd parts as a stack of hooks (see 3.4.1, Figure 12.) Start with a partition λ =
(λ1, λ2, . . . ) into even parts and convert it into a partition λ/2 = (λ1/2, λ2/2, . . . ),
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Figure 27. The case k = 2, n = 78. Bijections φ, η : λ → (µ, ν),
where λ = (14, 123, 10, 6, 24) = 2 · (7, 63, 5, 3, 14) ` 74 = 78 − 22,
µ = (17, 13, 11, 9, 5), ν = (15, 5, 3). Note that `(µ)− `(ν)− k = 0.

and its conjugate (λ/2)′. Now overlap their Young diagrams so that a k-square fits
in the upper left corner. View the resulting arrangement of squares (counted with
multiplicity) as a superimposed picture of two stacks of hooks, corresponding to
partitions µ, ν ∈ D◦. Denote this map by η.

H The maps φ, and η are identical bijections between P(n−k2)/2 and Vn,k.

6.2.3. (♦) Deduce from the proof the following MacMahon’s identity :
m∏

i=1

(1 + zq2i−1)
n∏

j=1

(1 + z−1q2j−1) =
m∑

k=−n

zk qk2
(

m + n

k + n

)

q2

.

Check that as m,n →∞ we obtain Jacobi identity.

6.3. Involutive proof. We present a sign-reversing involution proving the Jacobi
identity in the following form:
∞∏

n=1

(1−unvn−1)(1−un−1vn)(1−unvn) = 1+
∞∑

k=1

(−1)n
(
u(k+1

2 )v(k
2) + u(k

2)v(k+1
2 )

)
.

Setting q2 = uv, z = −u/v, we obtain Jacobi identity as in 6.1.1.
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Let Λ−, Λ0, and Λ+ be the sets of pairs of partitions {(λ, λ−)}, {(λ, λ)}, and
{(λ−, λ)}, respectively, where λ = (λ1, λ2, . . . ) ∈ D, and λ− = (λ1 − 1, λ2 − 1, . . . ).
We use the notation (ν, ν+) for elements of Λ+. Let Λ = Λ− × Λ0 × Λ+, and let

Am,n :=
{
M =

(
λ, µ, ν

λ−, µ, ν+

)
∈ Λ : |λ|+ |µ|+ |ν| = m, |λ−|+ |µ|+ |ν+| = n

}

be the set of triples of pairs of partitions. The sign of such a triple is defined by

ε(M) = ε

(
λ, µ, ν

λ−, µ, ν+

)
:= (−1)`(λ)+`(µ)+`(ν+) ∈ {±1}.

Now the Jacobi identity is reduced to the following summation:

∑

M∈Am,n

ε(M) =





(−1)k, if m =
(

k + 1
2

)
, n =

(
k

2

)
, or m =

(
k

2

)
, n =

(
k + 1

2

)
,

0, otherwise.

Note that the sum on the l.h.s. is symmetric, so it suffices to calculate it for m ≥ n.
In this case we shall cancel all terms except for Fk =

(
ρk+1,0,0
ρk,0,0

)
, where m =

(
k+1
2

)
,

n =
(
k
2

)
, and ρr = (r, r − 1, . . . , 2, 1) for all r > 0. We say that λ is triangular, if

λ = ρk for some k > 0.
The proof follows the same idea as Franklin’s proof 5.2.1. Let s(λ) be the length

of the horizontal line in [λ], and let g(λ) be the length of the diagonal line defined
as in 5.2.1. Clearly, g(λ−) = g(λ) unless λ is triangular.

Let M =
(

λ, µ, ν
λ−,µ,ν+

) ∈ Am,n, and m ≥ n. Consider two cases: g(λ) ≥ s(µ),
and g(λ) < s(µ), with λ not triangular. Move the diagonal line from [λ] to the
horizontal line in [µ], or vice versa; and the same for [λ−] and [µ].

Now suppose λ = ρk and k = g(λ) < s(µ). Consider another two cases: s(µ) >
k + s(ν), and s(µ) ≤ k + s(ν), with ν 6= ∅. Move the largest part of [λ] and the
horizontal line in [ν] to combine into the horizontal line in [µ], or vice versa; repeat
the same for [λ−] and [ν+].

We demonstrate the map ϕ defined above in both cases in Figure 28, where
we present only partitions (λ, µ, ν), omitting the matching triple (λ−, µ, ν+). Note
that ϕ changes parity in `(λ) + `(µ) + `(ν).

H The map ϕ is a sign-reversing involution on Am,n, m ≥ n, with no
fixed points, except when m =

(
k+1
2

)
, n =

(
k
2

)
, and Fk is a unique fixed

point.
This completes the involutive proof of the Jacobi identity.

7. Rogers-Ramanujan identities

7.1. Combinatorial Interpretations.

7.1.1. The classical Rogers-Ramanujan identities are:

(?) 1 +
∞∑

k=1

tk
2

(1− t)(1− t2) · · · (1− tk)
=

∞∏

i=0

1
(1− t5i+1)(1− t5i+4)

,

(??) 1 +
∞∑

k=1

tk(k+1)

(1− t)(1− t2) · · · (1− tk)
=

∞∏

i=0

1
(1− t5i+2)(1− t5i+3)

.

The two identities are similar in nature, so we concentrate only on (?).
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Figure 28. In the first case, we have:

ϕ :
(

(7, 6, 5, 3, 2) , (6, 4) , (4, 1)
(6, 5, 4, 2, 1) , (6, 4) , (5, 2)

)
→

(
(6, 5, 4, 3, 2) , (6, 4, 3) , (4, 1)
(5, 4, 3, 2, 1) , (6, 4, 3) , (5, 2)

)
.

In the second case, we have:

ϕ :
(

(4, 3, 2, 1) , (9, 8) , (6, 5, 3)
(3, 2, 1) , (9, 8) , (7, 6, 4)

)
→

(
(3, 2, 1) , (9, 8, 7) , (6, 5)
(2, 1) , (9, 8, 7) , (7, 6)

)
.

Let us start by giving combinatorial interpretations to the coefficients of tn in
(?). The r.h.s. is clear: this is the number of partitions of n into parts ≡ ±1 mod 5.
We denote the set of such partitions by An.

Let Bn be the number of partitions of n into parts which differ by at least 2. Let
Cn be the number of partitions λ ` n such that s(λ) ≥ `(λ). Then the coefficient
of tn on the l.h.s. in (?) is equal to |Bn| = |Cn|.

7.1.2. (♦) Use the Durfee square 2.3.1 to obtain the generating function for Cn

and compare it with the l.h.s. of (?). Similarly, use the modified Sylvester’s trian-
gle 2.3.4 to obtain the generating function for Bn and compare it with the l.h.s. of
(?). Finally, find a direct bijection π : Bn → Cn.

7.1.3. (♦) Obtain similar combinatorial interpretations for (??).

7.1.4. (◦) Consider a Young diagram [λ] and its Durfee square [δr]. Consider the
lower of the two Young diagrams in [λ] r [δr]. Repeatedly take the Durfee square
until an empty diagram is obtained. Let Cn,k be the set of partitions λ ` n with
at most k − 1 successive Durfee squares. Let An,k be the set of partitions into
parts ≡ ±k mod 2k +1. Write the generating functions for |Cn,k| and |An,k|. Their
equality is called Gordon’s identity .

7.2. Schur’s proof of Rogers-Ramanujan’s identities.

7.2.1. (♦) Apply Jacobi identity 6.1.1 to rewrite the r.h.s. of (?) :

∞∏
r=0

1
(1− t5r+1)(1− t5r+4)

=
∞∑

m=−∞
(−1)m t

m(5m−1)
2

∞∏

i=1

1
(1− ti)

.
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m

2m-12m-1 2m 2m-1

m

Figure 29. Fixed points of Schur’s involution α : Rn → Rn.

µ

{

u(  )µ

λ

s(  )λ

g(  )λ

Figure 30. For a pair of partitions (λ, µ) ∈ R as above, we have
s(λ) = 3, g(λ) = 5, u(µ) = 4.

7.2.2. Schur’s Involution. From the above observation, rewrite (?) in the following
equivalent form:

∞∏

i=1

(1− ti)

(
1 +

∞∑

k=1

tk
2

(1− t)(1− t2) · · · (1− tk)

)
=

∞∑
m=−∞

(−1)m t
m(5m−1)

2 .

We shall prove this identity by an explicit sign-reversing involution, by combining
elements of Vahlen’s involution 2.3.7 and Franklin’s involution 5.2.1. The construc-
tion we present is called Schur’s Involution.

We give a combinatorial interpretation of the coefficient of tn on both sides of
the equation above. For the l.h.s. we have a set of pairs λ ∈ D and µ ∈ B, where
D is a set of partitions into distinct parts, and B = ∪Bn is a set of partitions µ
with no equal or consecutive parts (see 7.1.1 above). Let R = D × B, and let Rn

consist of pairs (λ, µ) ∈ R, such that |λ| + |µ| = n. The sign of a pair (λ, µ) is a
parity of `(λ). We define an involution α : Rn →Rn which is sign-reversing except
for the fixed points, defined as in Figure 29. Observe that these fixed points give a
combinatorial interpretation for the r.h.s. of the equation above.

Start with (λ, µ) ∈ Rn ⊂ D×B. First, compare a(λ) and a(µ). If a(λ) ≥ a(µ)+2,
move part λ1 to µ. If a(λ) < a(µ), move part µ1 to λ. There remain the cases
a(λ) = a(µ) and a(λ) = a(µ) + 1. Denote these cases by R1

n and R2
n, respectively.

As in 5.2.1, let s(λ) be the length of the horizontal line in [λ], let g(λ) be the
length of the diagonal line, and let u(µ) be the length of the tangential line defined
as in Figure 30. Start with (λ, µ) ∈ R1

n, and suppose this is not a fixed point. If
s(λ) ≤ g(λ), u(µ), remove the horizontal line and attach it to the diagonal line.
Conversely, if (λ, µ) ∈ R2

n is not a fixed point, and g(λ) < s(λ), g(λ) ≤ u(µ),
remove the diagonal line and attach it to the horizontal line (see Figure 31).

Suppose (λ, µ) ∈ R2
n with s(λ) ≤ g(λ), u(µ). Then remove the horizontal line

and attach it to the tangential line. Conversely, if (λ, µ) ∈ R1
n and u(µ) < s(λ),

u(µ) ≤ g(λ), then remove the tangential line and attach it to the horizontal line
(see Figure 31).
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a
a-1 {

u

Figure 31. Three cases of Schur’s involution α.
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Finally, if (λ, µ) ∈ R1
n and g(λ) < s(λ), u(µ), then remove the largest part a(µ)

and the diagonal line, and attach them to the largest part a(λ) and the tangential
line, respectively. Conversely, if (λ, µ) ∈ R2

n and u(λ) < s(λ), u(µ), then remove
the largest part a(λ) and the tangential line, and attach them to the largest part
a(µ) and the diagonal line, respectively (see Figure 31).

H The map α : Rn →Rn defined above is a sign-reversing involution.

I First, observe that α is defined for all (λ, µ) except for fixed points. Also, α−1 = α
by construction, in each of the four cases considered. Finally, the number of parts `(λ)
always changes by 1, so α is sign-reversing. �

7.2.3. (◦) Define polynomials Am(q) and Bm(q) as follows:

Am = Am−1 + qmAm−2, A0 = 1, A1 = 1 + q ,

Bm = Bm−1 + qmBm−2, B0 = 1, B1 = 1 .

Prove by induction that

Am(q) =
∑

r

(−1)rqr(5r−3)/2

(
m− 1

bm+1−5r
2 c

)

q

,

Bm(q) =
∑

r

(−1)rqr(5r+1)/2

(
m− 1

bm−1−5r
2 c

)

q

,

where summation is over all r for which the q-binomial coefficient are defined
(see 2.2.5). Compute Schur’s limits:

A∞(q) =
∞∏

i=0

1
(1− q5i+1)(1− q5i+4)

, B∞(q) =
∞∏

i=0

1
(1− q5i+2)(1− q5i+3)

.

7.2.4. (◦◦) Let Am(t), Bm(t) be as in 7.2.3. Modify Schur’s involution 7.2.2 to
prove the following generalization of Rogers-Ramanujan’s identities:

1 +
∞∑

k=1

tk(k+m)

(1− t)(1− t2) · · · (1− tk)

= (−1)mt−(m
2 )Bm−2(t)

∞∏

i=0

1
(1− t5i+1)(1− t5i+4)

− (−1)mt−(m
2 )Am−2(t)

∞∏

i=0

1
(1− t5i+2)(1− t5i+3)

.

7.2.5. (∗∗) Find a combinatorial proof of the Farkas-Kra identity :
∞∏

i=1

(1 + t2i−1) = A∞(t)A∞(t4) + tB∞(t) B∞(t4) .
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7.2.6. (◦◦) Recall Euler’s recurrence relation 5.1.2 and its bijective proof 5.4.1.
Modify Dyson’s map to obtain a similar proof of the recurrence relation for the
numbers |Cn|, corresponding to the following equivalent form of (?) :

1 +
∞∑

k=1

tk
2

(1− t)(1− t2) · · · (1− tk)
=

∞∑
m=−∞

(−1)m t
m(5m−1)

2

∞∏

i=1

1
(1− ti)

.

7.3. Ramanujan’s Continued Fraction.

7.3.1. Define

F (x, q) = 1 +
∞∑

k=1

xk qk2

(1− q)(1− q2) · · · (1− qk)
,

and let c(x, q) = F (x, q)/F (xq, q). Observe that F (x, q) = F (xq, q) + xqF (xq2, q),
and therefore

c(x, q) = 1 +
xq

F (xq, q)/F (xq2, q)
= 1 +

xq

c(xq, q)
.

This immediately gives the Ramanujan’s continued fraction:

c(x, q) = 1 +
xq

1 +
xq2

1 +
xq3

1 +
xq4

1 + . . .

When x = 1, we have c(1, q) = F (1, q)/F (q, q). Now identities (?) and (??) imply
the famous Ramanujan’s formula:

1 +
q

1 +
q2

1 +
q3

1 +
q4

1 + . . .

=
∞∏

i=0

(1− q5i+2)(1− q5i+3)
(1− q5i+1)(1− q5i+4)

.

7.3.2. (◦) Let f(z, t) = 1/c(−z, t). Define Dyck words to be 0-1 sequences with
an equal number of 0’s and 1’s and such that the k-th 0 always precedes the k-th 1.
Denote the set of such words by W, and let `(ω) be half the length of the word.
Define a(ω) to be the number of 0-1 pairs in a word such that 1 precedes 0. Note
that 0 ≤ a(ω) ≤ (

n
2

)
, for all `(ω) = n. Use the recurrence relation for c(z, t) to

show that
f(z, t) =

∑

ω∈W
z`(ω) t(

n
2)−a(ω) .

7.3.3. (◦◦) Find a (infinite) subset W◦ ⊂ W of Dyck words, such that

c(−z, t) =
∏

ω∈W◦

(
1− z`(ω) t(

n
2)−a(ω)

)
.
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8. Involution principle and partition identities

8.1. Equivalent partition bricks.

8.1.1. Andrews’ Theorem. Fix a sequence a = (a1, a2, . . . ), where ai ∈ P ∪ {∞}.
Let supp(a) be the set of all i ∈ P such that ai < ∞. We say that two such sequences
a and b = (b1, b2, . . . ) are equivalent, denoted a ∼ b, if there exists a one-to-one
correspondence π : supp(a) → supp(b) such that i · ai = j · bj , for all j = π(i).

Let An and Bn be the sets of partitions λ = (1m12m2 . . . ) ` n such that mi < ai

and mj < bj , respectively. We refer to A = ∪nAn and B = ∪nBn as equivalent
partition bricks.

H Andrews’ Theorem. If a ∼ b, then |An| = |Bn|, for all n > 0.

I 1 +

∞X
n=1

|An| tn =

∞Y
i=1

1− ti ai

1− ti
=

∞Y
j=1

1− tj bj

1− tj
= 1 +

∞X
n=1

|Bn| tn, where t∞ = 0. �

8.1.2. (♦) Let a = (2, 2, . . . ), b = (∞, 1,∞, 1, . . . ), π : i → 2i. Then An = Dn

and Bn = On. In this case Andrews’ Theorem becomes Euler’s Theorem 3.1.

8.1.3. (♦) Let An be the set of partitions of n into parts ≡ 1 or 5 mod 6. Let
Bn be the set of partitions of n into distinct parts ≡ ±1 mod 3. Let Cn be the set
of partitions of n into odd parts none appearing more than twice. Deduce from
Andrews’ Theorem the equality |An| = |Bn| = |Cn|.
8.1.4. (◦) Let γA : P → N be a statistic defined by γA(λ) = |{i : mi(λ) ≥ ai}|.
Define γB analogously. Prove that statistics γA and γB are equidistributed on Pn.
Compare this result with Franklin’s extension 3.3.1.

8.2. O’Hara’s Algorithm.

8.2.1. We present here O’Hara’s Algorithm, which defines a bijection ϕ : An →
Bn.

Start with λ ∈ An. Set µ := λ. While µ contains any part (j) at least bj times
(i.e. mj(µ) ≥ bj), remove bj copies of part (j) from µ, add ai copies of the part (i)
to µ, where i = π−1(j). Repeat until µ ∈ Bn.

H The map ϕ : An → Bn is a well defined bijection, independent of the
order of parts removed in the algorithm.

8.2.2. (♦) Show that in Example 8.1.2, the bijection ϕ : Dn → On coincides with
the map φ : Dn → On in 3.2.1, the inverse to the Glaisher’s bijection.

8.2.3. (♦) Use O’Hara’s Algorithm to give a bijective proof of the equalities
in 8.1.3. Convert these into explicit ‘à la Glaisher’ bijections between the sets.

8.2.4. (◦) Let a = (a1, a2), b = (b1, b2), π = (2, 1) ∈ S2. Define the speedy
version of O’Hara’s Algorithm by combining identical iterations into one. Find a
connection to Euclid’s Algorithm and continued fractions. Conclude that the new
version takes O(log M) steps, where M = max{ai, bj}.
8.2.5. (∗) Let m be fixed, a = (a1, . . . , am), b = (b1, . . . , bm), π ∈ Sm. Prove that
the speedy version of O’Hara’s Algorithm requires O(log M) steps.
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8.3. Geometric version.

8.3.1. Let a = (a1, . . . , am), b = (b1, . . . , bm), and w = (w1, . . . , wm), where
ai, bi, wi ∈ R+. For the rest of this section, let [m] = {1, 2, . . . , m}. We write
a ∼ω b if there exists a bijection π : [m] → [m], such that aiwi = bjwj for all
j = π(i).

Let V = Rm, and consider a linear function ω ∈ V ∗, defined by ω(x1, . . . , xm) :=
w1x1 + · · ·+ wmxm. Consider two ω-equivalent bricks:

A = {(x1, . . . , xm) ∈ V : 0 ≤ xi ≤ ai, i ∈ [m]},
B = {(x1, . . . , xm) ∈ V : 0 ≤ xj ≤ bj , j ∈ [m]},

and let Ac = A ∩ {x ∈ V : ω(x) = c}, Bc = B ∩ {x ∈ V : ω(x) = c}, where c ∈ R+.

H If a ∼ω b, then vol(Ac) = vol(Bc) for all c > 0.

8.3.2. (◦) Let e(Q) denote the number of integer points in the convex polytope Q,
and let N · Q be the polytope Q extended by a factor of N in all directions. The
Ehrhart polynomial fQ(t) is defined by fQ(N) = e(N · Q), for all N ∈ N. Extend
the above result to an equality of Ehrhart polynomials of the polytopes Ac and Bc.
Deduce Andrews’ Theorem 8.1.1 in this case.

8.3.3. (◦) Extend O’Hara’s Algorithm 8.2.1 to a map ϕ : A → B. Prove that ϕ is
a piece-wise linear and volume preserving map, such that ω(x) = ω(ϕ(x)). Observe
that ϕ is a parallel translation almost everywhere. Give another proof of 8.3.2.

8.4. General involution principle.

8.4.1. Garsia–Milne Theorem. Let A = A+ t A− and B = B+ t B− be two
sets with two subsets. Suppose α : A → A and β : B → B be two involutions
with fixed points Fα ⊂ A+ and Fβ ⊂ B+, such that α : A+ r Fα → A− and
β : B+rFβ → B− are bijections. Such involutions are called sign-reversing. Finally,
suppose ψ : A → B is a bijection which maps A+ into B+, and A− into B−. Clearly,
|Fα| = |A+| − |A−| = |B+| − |B−| = |Fβ |.

The involution principle defines the following map ϕ : Fα → Fβ . Start at
a ∈ Fα ⊂ A+. If b := ψ(a) ∈ Fβ ⊂ B+, let ϕ(a) = b. Otherwise, consider
b′ = β(ψ(α(ψ−1(b)))) ∈ B+. Again, if b′ ∈ Fβ , let ϕ(a) = b′. Otherwise, let
b′′ := β(ψ(α(ψ−1(b′)))) ∈ B+ and repeat.

H Garsia–Milne Theorem. The map ϕ : Fα → Fβ is a bijection.

8.4.2. (♦) Let D∞ = 〈α, β〉/(α2 = β2 = 1) be an infinite dihedral group, D∞ =
Z2 ∗Z2 ' Z2nZ. Let ρ : D∞ → SN be a permutation representation of D∞ on [N ].
Show that orbits of the action of D∞ give a perfect matching on a set F = [N ]D∞
of fixed points of the action of D∞ on [N ]. Deduce the Garsia–Milne Theorem.

8.4.3. (♦) Recall Franklin’s involution 5.2.1 and Vahlen’s involution 2.3.7. Apply
the involution principle to obtain an involutive proof of Euler’s recurrence rela-
tion 5.1.2. Compare the resulting involution with 5.4.1.

8.4.4. (♦) Recall Schur’s involution 7.2.2 and direct bijective proof of Jacobi
identity 6.2.1. Combine the two with Vahlen’s involution to obtain an involution
principle bijective proof of the Rogers-Ramanujan’s identity (?) in 7.1.1.
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8.4.5. (∗∗) Prove that in the worst case the number of steps in the resulting
bijection ϕ : An → Bn (in the notation of 7.1.1) is > exp(nα), for some α > 0.
Compare this with the total number of partitions |An|.

8.4.6. (◦) Let p be a prime ≡ 1 mod 4. Euler proved that p = x2 + 4y2 for some
integers x and y. Consider a set of triples A = {(x, y, z) ∈ Z3 : x2 +4yz = p}. Note
that |A| ≥ 1 since a = (1, 1, p−1

4 ) ∈ A. Define two involutions on A: α(x, y, z) =
(x, z, y), and

β(x, y, z) =





(x + 2z, z, y − x− z), if x < y − z,

(2y − x, y, x− y + z), if y − z < x < 2y,

(x− 2y, x− y + z, y), if x > 2y.

Note that a is a unique fixed point of the involution β. Deduce from here Euler’s
result and present an algorithm for finding a solution algorithmically.

8.4.7. (∗∗) Estimate the complexity of the above algorithm.

8.5. Remmel’s bijection. We present here a bijective proof of Andrews’ The-
orem 8.1.1 by means of the involution principle. The idea is to multiply by the
common denominator both sides of the identity in the proof of Andrews’ Theorem,
and then cancel terms accordingly.

We use the notation of 8.1. For simplicity, assume that supp(a) = supp(b) = [m],
i.e. a = (a1, . . . , am) and b = (b1, . . . , bm), with ai, bj < ∞. Then π ∈ Sm, with
aii = bπ(i)π(i). In this case we have:

A = {(1c1 . . . mcm) : 0 ≤ ci < ai, for all i ∈ [m]},

B = {(1c1 . . . mcm) : 0 ≤ cj < bj , for all j ∈ [m]}.
Let P be the set of all partitions λ, and let X = P × 2[m]. Define

X+ = {(λ, S) : λ ∈ P, S ⊂ [m], and |S| is odd }, and let X− = X r X+.

Finally, let Fα = A × {∅} ⊂ X , and Fβ = B × {∅} ⊂ X . We shall define two
sign-reversing involutions α, β on X , with Fα, Fβ as their fixed points.

Consider (λ, S) ∈ X , where λ = (1c1 , . . . ,mcm), S ∈ [m]. Take the smallest
i ∈ [m], such that either i ∈ S, or ci ≥ ai, or both. Now let

α(λ, S) =

{ (
(1c1 , . . . , ici+ai , . . . , mcm), S r {i}), if i ∈ S,

(
(1c1 , . . . , ici−ai , . . . , mcm), S ∪ {i}), if i /∈ S, ci ≥ ai

Define β = β(µ, S) analogously. Now use the involution principle to construct a
bijection ϕ : Fα → Fβ , and thus gives Remmel’s bijection ϕ′ : A → B.

H Remmel’s bijection. The above construction gives a bijection ϕ′ :
An → Bn. This bijection coincides with the map ϕ : An → Bn defined
by O’Hara’s Algorithm 8.2.1.

8.6. Cohen–Remmel Theorem.
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8.6.1. We now consider a different setup for partition identities. Let R = Nm be
the free abelian semigroup. Fix a semigroup homomorphism ω : R → N, defined by
ω(a) = a1w1 + · · ·+ amwm, where a = (a1, . . . , am). We also assume that wi > 0.
For every C ⊂ R, let Cn = C ∩ {a ∈ R : ω(a) = n}. We call ω the weight function.

For elements a = (a1, . . . , am), a′ = (a′1, . . . , a
′
m), . . . , define

lcm(a, a′, . . . ) =
(
max{a1, a

′
1, . . . }, . . . , max{am, a′m, . . . })

Let A = {a1, . . . , ar}, B = {b1, . . . , br} ⊂ Nm be two subsets of an integer
lattice. We say that A and B are lcmω-equivalent, denoted A ∼ω B, if for all
I = {i1, i2, . . . } ⊆ [r], we have

ω
(
lcm

(
ai1 , ai2 , . . .

))
= ω

(
lcm

(
bi1 , bi2 , . . .

))
.

Consider two lattice idealsA = N〈a1, . . . , ar〉, B = N〈b1, . . . , br〉, and letA′ = RrA,
B′ = R− B.

H Cohen–Remmel Theorem. If A ∼ω B, then A′n = B′n.

I Let G′(t), H ′(t) denote the generating series for the ω-statistic on A′ and B′:
G′(t) =

X
n

|A′n| tn =
X
c∈A′

tω(c), H ′(t) =
X

n

|B′n| tn =
X
c∈B′

tω(c).

Also, let

W (t) :=
X

n

|Rn| tn =
X
c∈R

tω(c) =
Y

i

1

1− twi
.

For every subset I = {i1, i2, . . . } ⊂ [r], consider the intersection of the dual lattice
ideals (also called filters): MI = N〈ai1〉 ∩ N〈ai2〉 ∩ . . . , and the generating series for the

weight function: PI(t) =
P

c∈MI
tω(c). Also, let AI = {ai1 , ai2 , . . . }, and lcm(AI) =

lcm
�
ai1 , ai2 , . . .

�
. For the lattice subset B, define the dual lattice ideal NI , generating

series for the weight function QI(t), and lcm(BI), analogously. From A ∼ω B, we have:

PI(t) = tω(lcm(AI ))W (t) = tω(lcm(BI ))W (t) = QI(t).

The inclusion-exclusion principle gives:

G′(t) =
X

I⊂[r]

(−1)|I|PI(t) =
X

I⊂[r]

(−1)|I|QI(t) = H ′(t).

�

8.6.2. (♦) Fix wi = i, so that ω(c1, c2, . . . ) = c1 · 1 + c2 · 2 + . . . Let a1 =
(a1, 0, 0, . . . , 0), a2 = (0, a2, 0, . . . , 0), . . . Then A′, B′ correspond to equivalent
partition bricks A, B, as in the notation of 8.1. Thus the Cohen-Remmel Theorem
implies Andrews Theorem 8.1.1.

8.6.3. (♦) Deduce Glaisher’s Theorem 3.2.3 from Cohen–Remmel Theorem.

8.6.4. (◦) Prove that A ∼ω B implies that the lcm-lattices LA = {lcm(AI), I ⊂
[r]} and LB = {lcm(BI), I ⊂ [r]} are isomorphic.

8.6.5. (◦) Generalize Remmel’s bijection 8.5 to prove the Cohen–Remmel Theo-
rem. Find an example of when different orderings on [m] produce different bijec-
tions.
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8.6.6. (◦) Define analogs of statistics γA, γB from 8.1.4. Extend the Cohen–
Remmel Theorem to general values of these statistics.

8.7. Gordon’s bijection.

8.7.1. We present a bijective proof of the Cohen-Remmel Theorem 8.6.1. The
idea behind Gordon’s bijection is to generalize the use of the inclusion-exclusion
principle from the proof of the Cohen–Remmel Theorem.

In the notation of 8.6, for every I = {i1, i2, . . . } ⊂ [r], consider dual lattice ideals
AI = N〈ai1 , ai2 , . . .〉 and A•I = AJ ∩MI ⊂ MI , where J = [r]r I. Finally, consider
an ideal A′I = MI rA•I . Clearly, R = ⊕I⊂[r]A′I . Similarly, define dual lattice ideals
BI , B•I , and an ideal B′I . Clearly, A′ = A′∅ and B′ = B′∅.

We shall construct by induction on |I| ≤ r a family of bijections ΦI : A′I → B′I ,
which preserve the statistic ω. By the inductive assumption, it suffices to construct
only a bijection Φ := Φ∅ : A′ → B′.

For every I ⊂ [r] we have obvious bijections ΨI : MI → NI , defined by

ΨI : c → c− lcm(AI) + lcm(BI).

In particular, Ψ := Ψ∅ is an identity map.
For r = 1, we have A = {a}, RA = R〈xa〉. In this case we have two maps Ψ = Ψ∅

and Ψ1 := Ψ{1}. Consider the following version of the involution principle 8.4. Start
at f = c ∈ N ′ and consider g1 = Ψ(f). If g1 ∈ N ′

B, let Φ(f) = g1. Otherwise,
consider g2 = Ψ

(
Ψ−1

1 (g1)
)
. Again, if g2 ∈ N ′

B, let Φ(f) = g2; otherwise, repeat.
In the general case r ≥ 2 proceed analogously. Start at f = c ∈ N ′ and consider

g1 = Ψ(f). Take a unique I ⊂ [r] such that g1 ∈ N ′
I . If I = ∅, define Φ(f) = g1.

Otherwise, |I| ≥ 1 and the maps ΦI are defined by the inductive assumption. Now
let g2 = Ψ

(
Ψ−1

I (g1)
)

and repeat the procedure.

H If A ∼ω B, then the map Φ : A′ → B′ defined above is a weight
preserving bijection.

8.7.2. (♦) Following Example 8.6.2, consider a special case when the Cohen–
Remmel Theorem reduces to Andrews’ Theorem. Prove that the bijection ϕ given
by O’Hara’s Algorithm 8.2.1 coincides with Gordon’s bijection Φ in this case.

8.7.3. (◦) Extend the Cohen-Remmel Theorem 8.6.1 to a geometric setting. Gen-
eralize Gordon’s bijection to this case and prove the equality of the Ehrhart poly-
nomials.

9. Miscellanea

9.1. Plane Partitions.
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Figure 32. A plane partition A (zero entries are omitted) and
a reverse plane partition B of shape (5, 4, 4, 2). Here |A| = 95
and |B| = 55. Two pictures on the right show the hook length
h(2, 2) = 6 in [5, 5, 4, 2], and hook lengths in [55].

9.1.1. MacMahon’s Theorem. A plane partition is a two-dimensional array of non-
negative integers A = (λi,j), such that λi,j ≥ λi,j+1, λi+1,j for all (i, j) ∈ Z2

≥1.
Denote by M the set of all plane partitions. Define |A| = ∑

i,j λi,j . Traditionally,
plane partitions are represented by a function λi,j written in squares (i, j) (see
Figure 32).

The following formula is the classical MacMahon’s Theorem:
∑

A∈M
t|A| =

∞∏
r=1

1
(1− tr)r

.

Define the support by supp(A) = {(i, j) ∈ Z2 : λi,j > 0}. Let Mk be the set of
plane partitions A ∈M, such that supp(A) ⊂ {(i, j) : 1 ≤ i, j ≤ k}. The following
formula is an extension of MacMahon’s theorem:

∑

A∈Mk

t|A| =
k∏

r=1

1
(1− tr)r

k−1∏

i=1

1
(1− tk+i)k−i

.

Indeed, letting k →∞ gives the formula above.

9.1.2. Stanley’s Hook Content Formula. A reverse plane partition of shape µ is an
integer nonnegative function f(i, j) on the squares (i, j) ∈ [µ] such that f(i, j) ≤
f(i + 1, j) and f(i, j) ≤ f(i, j + 1) whenever both squares are in [µ]. Define |B| =∑

(i,j)∈[µ] f(i, j). Denote by R(µ) the set of reverse plane partitions B = {f(i, j)}
of shape µ. The following result is called Stanley’s hook content formula:

∑

B∈R(µ)

t|B| =
∏

(i,j)∈[µ]

1
(1− th(i,j))

,

where h(i, j) = µi + µ′j − i − j + 1 is the hook length, defined as the number of
squares in [µ] to the right or below (i, j), including (i, j) (see Figure 32). When
[µ] = [kk] is a k-square, reverse plane partitions are centrally symmetric to (usual)
plane partitions in Mk, and Stanley’s formula coincides with the extension of the
MacMahon’s Theorem as above (see hook lengths in [55] in Figure 32).

9.1.3. Bijective proof. We present here a bijective proof of Stanley’s formula by
induction on |µ|. Consider a set C(µ) of nonnegative integer functions C = {g(i, j) :
(i, j) ∈ [µ]}, and define ‖C‖ :=

∑
(i,j)∈[µ] h(i, j)g(i, j). We present a bijection

ξµ : R(µ) → C(µ), such that |B| = ‖C‖ for all C = ξµ(B). The base of induction,
when |µ| = 1, is trivial.
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Figure 33. An example of bijection ξµ : B → C, for µ = (33).
Here |B| = ‖C‖ = 44.

Now start with a plane partition B of shape µ defined by a function f on [µ].
Let (p, q) be a corner in [µ], and [ν] = [µ] − (p, q). By induction, assume that ξν

is already defined. Let c = p − q. Let us change the value of f on all squares
(i, j) 6= (p, q) on the diagonal i− j = c by the following rule:

f ′(i, j) = max{f(i− 1, j), f(i, j − 1)} + min{f(i + 1, j), f(i, j + 1)} − f(i, j) ,

where we assume that f(i, j) = 0 whenever i < 0 or j < 0. Let f ′(i, j) = f(i, j)
if i − j 6= c. Now define {g(i, j) : (i, j) ∈ ν} = ξν

({f ′(i, j)}), and let g(p, q) =
f(p, q)−max{f(p− 1, q), f(p, q − 1)} (see Figure 33).

H The map ξµ : R(µ) → C(µ) defined above is a bijection, such that
|B| = ‖C‖ for all C = ξµ(B).

9.1.4. (♦) A priori, the bijection ξµ may depend on the order of squares removed
in the induction steps. Prove that ξµ is, in fact, independent of that order.

9.1.5. (◦) Let A = (λi,j) ∈M be a plane partition. Define tr(A) = λ1,1+λ2,2+. . . .
Deduce from the proof a refinement of MacMahon’s Theorem:

∑

A∈M
t|A| ztr(A) =

∞∏
r=1

1
(1− ztr)(1− tr)r−1

.

9.1.6. (◦) Show that ξµ is a continuous, piecewise linear, volume-preserving map
from a cone of real reverse plane partitions of shape µ to a cone of nonnegative
real functions on [µ]. Extend the theorem to an equality of Ehrhart polynomials of
convex polytopes.

9.1.7. (◦◦◦) Let B(m,n, `) be the number of plane partitions {λi,j} with

supp{λi,j} ⊂ {(i, j) : 1 ≤ i ≤ m, 1 ≤ j ≤ n}, and λi,j ≤ ` .

Prove combinatorially:

B(m, n, `) =
m∏

i=1

n∏

j=1

∏̀

k=1

i + j + k − 1
i + j + k − 2

.

9.2. Bipartitions.
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9.2.1. Carlitz’s Theorem. We say that (µ1, ν1), (µ2, ν2), . . . , (µ`, ν`) is a bipartition
of (m, n) if µi, νi are nonnegative integers, |µ| = m, |ν| = n, and

min{µi, νi} ≥ max{µi+1, νi+1} .

Here we assume also that (µi, νi) 6= (0, 0), except when (m,n) = (0, 0). Clearly, the
min−max condition implies that both µ and ν are integer partitions.

Denote by Bn,n the set of all bipartitions of (m,n). The following result is called
Carlitz’s Theorem:

∑

(m,n)

∣∣Bm,n

∣∣ xmyn =
∞∏

i=1

1
(1− xiyi−1)(1− xi−1yi)(1− x2iy2i)

.

In other words, bipartitions are in bijection with all decompositions of a vector
(m,n) into sum of vectors (i, i − 1), (i − 1, i) and (2i, 2i), with no regard to the
order. Denote by Wm,n the set of such vector decompositions. Define a map
ϕ : Bm,n →Wm,n as follows.

Start with (µ, ν) ∈ Bm,n. Consider a sequence (µ′1, ν
′
1), (µ′2, ν

′
2), . . . Observe that

the min–max condition now translates into |µi−νi| ≤ 1, for all i ≥ 1, and therefore
(µ′, ν′) has a natural decomposition into vectors (i, i− 1), (i− 1, i), and (i, i). Now
split each vector of type (2r − 1, 2r − 1) into two vectors (r − 1, r) and (r, r − 1),
and leave all other vectors intact. Let ϕ(µ, ν) ∈ Wm,n be the resulting vector
decomposition.

H The map ϕ : Bm,n →Wm,n defined above is a bijection.

I Note that (µ′, ν′) can contain either (i, i− 1) or (i− 1, i), but not both. Therefore, to
define ϕ−1 one needs first to couple all pairs of vectors (i, i − 1) and (i − 1, i) into one
vector (2i− 1, 2i− 1). Now collect all the remaining vectors into a pair of partitions, and
take their conjugates. The rest of the proof is straightforward. �

9.2.2. (♦) Let B`
m,n be the set of (µ, ν) ∈ Bm,n, such that `(µ), `(ν) ≤ `. Prove

the following refinement of Carlitz’s Theorem:

∑

(m,n)

∣∣B`
m,n

∣∣ xmyn =
∞∏

i=1

(1− x2i−1y2i−1)
(1− xiyi−1)(1− xi−1yi)(1− xiyi)

.

9.2.3. (◦) Fix an integer r ≥ 1, and let

smax{x1, . . . , xr} = (x1 + . . . + xr) − (r − 1)min{x1, . . . , xr} .

Define r-partitions
(
µ(1), . . . , µ(r)

)
of (m1, . . . ,mr) by the conditions µ(k) = mk for

1 ≤ k ≤ r, and min
{
µ

(1)
i , . . . , µ

(r)
i

} ≥ smax
{
µ

(1)
i , . . . , µ

(r)
i

}
for all i. Compute the

r-variable generating function for the number of r-partitions.

9.3. Partitions and integral points in cones.
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9.3.1. The setup. Suppose a set of partitions can be defined as a set of integral
points in a cone in a (finite dimensional) vector space Rd. The cone C is called
unimodular if it has d supporting rays spanned by integral vectors v1, . . . , vd, such
that det(v1, . . . , vd) = ±1. This implies that all integral points in C ∩ Zd have a
form α1v1+ . . .+αdvd, where αi ∈ N. Now, given two such cones C and C′ as above,
one can obtain a bijection between the integral points in the cones by a unimodular
map defined on a basis ϕ : v′i → vi.

Usually, the set of partitions is given as a cone in an infinite dimensional vector
space. In that case one has to define an increasing subsequence of finite dimensional
vector spaces which converges to the desired partition space. Also, the vector space
is usually provided with a weight function which has to be preserved under the
bijection. The details are easy to understand in the following examples.

9.3.2. (♦) Let Tn be the set of integer triples (a, b, c), such that 0 ≤ a ≤ b ≤ c ≤
a+b, and the perimeter a+b+c = n. These triples are called integer triangles. Let
us prove that |Tn| is equal to the number of partitions of n into parts 2, 3, and 4,
an therefore

∞∑
n=0

|Tn| tn =
1

(1− t2)(1− t3)(1− t4)
.

Indeed, the corresponding cone C is spanned by vectors (0, 1, 1), (1, 1, 1), and (1, 1, 2)
which have perimeter 2, 3, and 4, respectively. Similarly, partitions λ = (2x3y4z)
are spanned by (1, 0, 0), (0, 1, 0), and (0, 0, 1), which are partitions of 2, 3, and 4,
respectively. Check that both cones are unimodular and that the corresponding
map is given by ϕ : λ = (2x3y4z) → (x+ y, x+ y + z, x+ y +2z) ∈ Tn, for all λ ` n.

9.3.3. (♦) Fix an integer r ≥ 1. Consider a set Hn of partitions λ = (λ1, λ2, . . . ) `
n, such that λi ≥ rλi+1. Let us prove that |Hn| is equal to the number of partitions
on n into parts bi = (ri − 1)/(r − 1).

First, restrict the problem to a finite dimensional vector space by considering
only partitions with `(λ) ≤ k. Prove that the corresponding unimodular cone
is spanned by vectors vi = (ri−1, ri−2, . . . , r, 1, 0, . . . , 0). Define an obvious map
ϕ : vi → (bi) and check that the resulting linear map defines a bijection between
{λ ∈ Hn : `(λ) ≤ k} and partitions into parts bi, 1 ≤ i ≤ k. Letting k →∞, obtain
the result.

9.3.4. (◦) Modify the previous example to partitions λ = (λ1, λ2, . . . ) which satisfy
Fibonacci conditions: λi ≥ λi+1 + λi+2.

9.3.5. (♦) Consider a set Hn of partitions λ = (λ1, λ2, λ3, . . . ) ` n with nonneg-
ative second differences ∆2(λ) ≥ 0, i.e., such that λi − 2λi+1 + λi+2 ≥ 0. Let us
prove that |Hn| is equal to the number of partitions on n into parts bi =

(
i
2

)
.

First, restrict the problem to a finite dimensional vector space by considering
only partitions with `(λ) ≤ k. Prove that the corresponding unimodular cone is
spanned by vectors v0 = (1, . . . , 1) and vi = (i − 1, i − 2, . . . , 2, 1, 0, . . . , 0), for
1 ≤ i < k. Define an obvious map ϕ : vi → (bi), v0 → (k). Conclude that
the number of partitions λ ∈ Hn with at most k parts is equal to the number of
partitions into parts k and bi, 1 ≤ i < k. Letting k →∞, obtain the result.
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9.3.6. (◦) Generalize the previous example to partitions with nonnegative r-th
differences.

9.3.7. (◦◦) Let Ln,k be the set of lecture hall partitions λ ` n, `(λ) ≤ k, which
are defined by conditions:

λ1

n
≥ λ2

n− 1
≥ · · · ≥ λn

1
≥ 0.

Prove that

1 +
∞∑

n=1

|Ln,k| tn =
1

(1− t)(1− t3) · · · (1− t2k−1)
.

9.4. Euler’s recurrence for the sum of the divisors.

9.4.1. Let ζ(n) =
∑

d |n d be the sum of the divisors of n. Note that ζ(pk) =
pk+1−1

p−1 , if p is a prime. Also, ζ(mn) = ζ(m)ζ(n), if gcd(m,n) = 1.

H For every n > 0, we have:

ζ(n)−ζ(n−1)−ζ(n−2)+ζ(n−5)+ζ(n−7)− . . . +(−1)rζ

(
n− r(3r ± 1)

2

)
+. . .

=





(−1)k−1n , if n =
k(3k ± 1)

2
0 , otherwise.

The above result is called Euler’s identity. While it can be easily deduced analyt-
ically from Euler’s Pentagonal Theorem 5.1.1, the following proof is a nice example
of “constructive arguments” in additive number theory.
I The proof is based on a double counting argument, and involves a sign-reversing
involution. We start by defining a set

Λn = {(λ, c, d) : λ ∈ D, c, d ≥ 1, |λ|+ c d = n},
where D is a set of partitions with distinct parts. Now let Sn =

P
(λ,c,d)∈Λn

(−1)`(λ) d.

We will show that Sn is equal to both sides of Euler’s identity above.
For the left hand side, from the proof of 5.1.1, we have:

Sn =

nX
m=1

X
(λ,c,d)∈Λn: cd=m

(−1)`(λ) d =

nX
m=1

0@ X
λ∈On−m

(−1)`(λ)

1AX
d |m

d

=

nX
m=1

ζ(m) ·
(

(−1)r, if n−m = r(3r ± 1)/2

0, otherwise

=
X

r

(−1)rζ

�
n− r(3r − 1)

2

�
+ (−1)rζ

�
n− r(3r + 1)

2

�
.

For the right hand side, by definition of Λn, we have:

Sn =
X

(λ,c,d): md(λ)>0

(−1)`(λ) d +
X

(λ,c,d): md(λ)=0, c>1

(−1)`(λ) d

+
X

(λ,1,d): md(λ)=0

(−1)`(λ) d ,

where md(λ) is a multiplicity of part d in λ ∈ D. Now, adding part d to λ maps triples
(λ, c, d) with no part d in λ and c > 1 into triples (µ, c, d) with partition µ containing
part d. Since `(µ) = `(λ) + 1, this cancels the first two sums. For the third sum, consider
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again adding part d to λ. This gives a partition µ = (µ1, µ2, . . . ) ∈ Dn, from which one
can subtract any of the parts. We obtain:X

(λ,1,d)∈Λn: md(λ)=0

(−1)`(λ) d = −
X

µ∈Dn

(−1)`(µ)�µ1 + µ2 + . . .
�

= −n
X

µ∈Dn

(−1)`(µ).

Now, from 5.1.1 this sum is equal to the right hand side in Euler’s identity. This completes
the proof. �

9.4.2. (◦) Prove in a similar manner the following identity:

ζ(n)−3ζ(n−1)+5ζ(n−3)−7ζ(n−6)+ . . . +(−1)r(2r+1) ζ

(
n−

(
r + 1

2

))
+ . . .

=





(−1)k−1 k(k + 1)(2k + 1)
6

, if n =
k(k + 1)

2
,

0 , otherwise.

9.4.3. (∗) Use the involution principle to give a sign-reversing involution which
cancels terms in Euler’s identity. Can one give a direct description of this map?

9.4.4. (♦) Prove combinatorially the following identity:
∞∑

n=1

tn

1− t2n
=

∞∑
n=1

t2n−1

1− t2n−1
.

9.4.5. (◦) Let ζ◦(n) be the number of odd divisors of n. Prove combinatorially
that ζ◦(n) = |{ (k, `) : n =

(
k+1
2

)
+ k`, k, ` ≥ 0}|. Deduce from here another

Jacobi’s identity :

t

1− t
+

t3

1− t3
+

t5

1− t5
+

t7

1− t7
+ . . . =

t

1− t
+

t3

1− t2
+

t6

1− t3
+

t10

1− t4
+ . . .

9.5. Uchimura’s formula for the number of divisors.

9.5.1. Let σ(n) be the number of divisors. Note that σ(pk) = k + 1, when p is a
prime. Also, σ(mn) = σ(m) σ(n), if gcd(m,n) = 1.

The following Uchimura identity gives an interpretation of σ(n) in terms of
partitions:

∞∑

d=1

td

1− td
=

∞∑

k=1

k tk
∞∏

i=k+1

(1− ti).

Taking coefficients of tn, this is equivalent to:

σ(n) = −
∑

λ∈Dn

(−1)`(λ)s(λ),

where Dn is the set of partitions λ ` n into distinct parts. We present here a
bijective proof of the Uchimura identity in this form.

Let C(m) = {λ ∈ D : a(λ) ≥ m > a(λ) − s(λ)}, and let Cn(m) = {λ ` n : λ ∈
C(m)}, where a(λ) = λ1 is the largest part of λ. Clearly, for all λ ∈ D there exist
exactly s(λ) integers m such that λ ∈ C(m). This gives:

∑

λ∈Dn

(−1)`(λ)s(λ) =
n∑

m=1

∑

λ∈Cn(m)

(−1)`(λ).
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Now the Uchimura identity follows from:

∑

λ∈Cn(m)

(−1)`(λ) =

{
−1, if m |n

0, otherwise.

Let Fn(m) contain exactly one partition (n) when m |n, and let Fn(m) = ∅
otherwise. Let A1 = {λ ∈ Cn(m) : λi - n, for all 1 ≤ i ≤ `(λ)}, and let A2 =
{λ ∈ Cn(m) : `(λ) ≥ 2, and λi | n, for some 1 ≤ i ≤ `(λ)}. Clearly, Cn(m) =
A1 ∪ A2 ∪ Fn(m).

We define a sign-reversing involution ϕ on the set of partitions Cn(m) with the
set of fixed points Fn(m). The map ϕ is also a bijection between A1 and A2,
and will be defined as follows. Let λ ∈ A2, with part λi | n and ` = `(λ) ≥ 2.
Remove part λi = cm from λ and add m to the smallest part s(λ̃) of the remaining
partition. Then add m to the smallest part of the obtained partition. Repeat this c
times, until we obtain a partition µ ` n. Now let ϕ(λ) = µ. Note that `(µ) = `− 1.

To reverse the procedure, start with µ ∈ A1 and subtract m from the largest
part µ1. Then subtract m from the largest part µ̃1 in the resulting partition µ.
Repeat this until we reach λ̃, and the total subtracted amount c m satisfies s(λ̃) +
m > cm > λ̃1 −m. Then add part (cm) to λ̃, to obtain λ = ϕ−1(λ).

H The map ϕ : A2 → A1 defined above is a bijection.

9.5.2. (♦) Let m = 7, λ = (16, 14, 13, 11) ∈ A2. We have λ̃ = (16, 13, 11), c = 2.
Then the partition λ̃ is successively transformed into (18, 16, 13), and then into the
partition ϕ(λ) = µ = (20, 18, 16) ∈ A1.

9.5.3. (◦) Let σd(n) =
∑

m|n md. Clearly, σ0(n) = σ(n), and σ1(n) = ζ(n).
Extend the above argument to show:

σd(n) = −
∑

λ∈Dn

(−1)`(λ)

s(λ)∑

i=1

(λ1 − s(λ) + i)d.

9.5.4. (∗) Can one describe the bijection ϕ by means of the involution principle?

9.5.5. (∗∗∗) Prove combinatorially the following Jacobi formulas for the number
rk(n) of decompositions of n as a sum of k squares of integers: r2(n) = 4

(
δ1(n)−

δ3(n)
)
, r4(n) = 8 ζ(n), when n is odd, and r4(n) = 24 ζo(n), when n is even. Here

δi is the number of divisors d |n, such that d ≡ i mod 4, and ζo(n) is the number
of odd divisors of n (cf. 9.4.5).

9.5.6. (∗∗) Prove combinatorially “Liouville’s Last Theorem”: For all integer
n > 0, σ2(n) − nσ0(n) is equal to the number of integer quintuples (w, x, y, z, u),
such that wx + xy + yz + zu = n, and w, x, z, u ≥ 0, y > 0.

9.5.7. (∗∗) Prove combinatorially the Dirichlet-Ramanujan identity :
∑

a,b∈Z
ta

2+ab+b2 = 1 + 6
∞∑

n=0

(
t3n+1

1− t3n+1
− t3n+2

1− t3n+2

)
.

9.6. Asymptotic behavior of the partition function.
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9.6.1. There are very precise formulas for the asymptotic behavior of the partition
function p(n). The following formula of Hardy and Ramanujan is already too precise
to be accessible by combinatorial methods:

p(n) ∼ 1
4
√

3 n
eπ
√

2
3 n .

A much weaker result:

ea
√

n < p(n) < eb
√

n for some b > a > 0

is not difficult to obtain, and we sketch two combinatorial proofs of both the lower
and the upper bound. We shall use the notation in 2.2.1 and no analytic tools other
than Stirling’s formula n! ∼ √

2πn
(

n
e

)n.

9.6.2. (♦) Write a partition λ ∈ Pn,k with at most k parts as a sum n = λ1 +
. . . + λk, with λi ≥ 0. Taking all permutations of the parts, deduce that

k! pk(n) ≥
(

n + k − 1
k − 1

)
≥ nk−1

(k − 1)!
.

Setting k = b√nc, obtain the lower bound.

9.6.3. (♦) Let ρm be a partition (m− 1, m− 2, . . . , 1) ` (
m
2

)
. Take m = 2k, and

consider all
(
2k
k

)
Young diagrams obtained by adding k squares in the m outside

corners of [ρm]. Setting m = b√2nc, obtain the lower bound.

9.6.4. (◦) Define qk(n) by the following formula:

∞∑
n=0

qk(n) tn =
1

(1− t)2(1− t2)2 . . . (1− tk)2
.

Deduce from here the recurrence relation:

qk(n) = qk−1(n) + 2 qk−1(n− k) + 3 qk−1(n− 2k) + . . .

Use induction to show that

qk(n) ≤ (n + k2)2k−1

(2k − 1)!(k!)2
.

Rewrite Euler’s identity 2.3.1 as follows:

p(n) = q1(n− 1) + q2(n− 4) + q3(n− 9) + . . .

Therefore,

p(n) ≤
∞∑

k=1

n2k−1

(2k − 1)! (k!)2
.

Use Stirling’s formula to obtain the upper bound.
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9.6.5. (♦) Start with the following recurrence:

n p(n) =
n∑

r=1

r
∑

λ`n−r

mr(λ) =
n∑

r=1

r

bn/rc∑
m=1

p(n−mr) .

The first equality can be obtained by the following double counting argument.
Observe that n p(n) is the total number of squares in all Young diagrams of parti-
tions λ ` n. The middle term is a summation over all r of squares in all rows of
length r, which occurs exactly m = mr times in [λ]. For the second equality, we
have: ∑

λ`n

mr(λ) =
∣∣{λ ` n : mr(λ) = 1}

∣∣ + 2
∣∣{λ ` n : mr(λ) = 2}

∣∣

+ 3
∣∣{λ ` n : mr(λ) = 3}

∣∣ + . . .

=
∣∣{λ ` n : mr(λ) ≥ 1}

∣∣ +
∣∣{λ ` n : mr(λ) ≥ 2}

∣∣
+

∣∣{λ ` n : mr(λ) ≥ 3}∣∣ + . . .

= p(n− r) + p(n− 2r) + p(n− 3r) . . .

Assume that p(k) < ec
√

k for al k < n, where c = π
√

2
3 is the same as in the

Hardy-Ramanujan’s formula. Now use the above formula in the induction step:

np(n) <
∑

(i,m): im<n

r ec
√

n−mr < ec
√

n
∞∑

r=1

∞∑
m=1

re(−cm/2
√

n)r.

Note that
∑∞

1 r tr = t/(1 − t)2 and e−x/(1 − e−x)2 < 1
x2 , for all x ∈ R. We

conclude:

p(n) <
ec
√

n

n

∞∑
m=1

e−cm/2
√

n

(
1− e−cm/2

√
n
)2 <

ec
√

n

n

∞∑
m=1

4n

c2m2
= ec

√
n 4
c2

(
π2

6

)
= ec

√
n .

10. Final Remarks

1. Let us start by saying that the identities that appear in this survey seem to
appear also in other subjects seemingly as remote as Statistical Physics, Algebra,
Number Theory and Lie Theory [24]. Virtually none of the relevant results or
references are presented here. For more on Partition Theory and q-series see [24, 78].

2. Traditionally, in the context of Partition Theory, partitions are usually
represented by Ferrers graphs (named after Ferrers [121]), which are drawn with
dots instead of squares (see e.g. [24, 4]). We chose to use Young diagrams for clarity
and consistency.

Sylvester was also the one to name and use Ferrers’ diagrams (see [121] p. 258).
Interestingly, Sylvester agonized over the fact that he had to draw pictures. In [121],
he tried several different versions and issued the following apologetic disclaimer:

The method is in its essence absolutely independent of graphical con-
sideration, but as it becomes somewhat easier to apprehend by means
of graphical description and nomenclature, I shall avail myself here of
graphical terminology to express it.
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Despite obvious benefits to the reader, the use of Ferrers’ graphs or Young diagrams
to represent partitions became widespread only recently. Unfortunately, a number
of older papers do not have any pictures. The following quote from [76] may explain
the situation:

Combinatorial constructs involving partitions are most easily commu-
nicated by drawing suitably chosen pictures. This is not the style most
often used in the literature. The reason may be that pictorial descriptions
are sometimes thought to lack precision and rigor. On the other hand,
mathematical language can be a rather imprecise medium at times...

It seems m-modular diagrams and MacMahon diagrams go back to Frobenius and
MacMahon, in one form or another. They were also rediscovered on many occasions
afterwards and bear other names. We chose a name “MacMahon diagrams” in
honor of the discoverer whose contributions were largely overlooked for so long.
The standard MacMahon diagrams is a subclass of MacMahon diagrams invariant
under conjugation; as the reader shall see this is the most useful notion.

For a bijection proving 2.1.5, consider the first step of Sylvester’s bijection ψ
defined in 3.4.1. This result seems to be due to Durfee (see [121]).

The terms of the summation on the l.h.s. in 2.1.6 are the probabilities that a
random permutation σ ∈ Sn has cyclic type λ ` n (see e.g. [115] § 1.3). For 2.1.7
see [89]. The relationship between these two identities is puzzling.

The identity in 2.3.5 is taken from [118]. For a combinatorial proof of the Rogers-
Fine identity, its history and applications see [14] (see also [59] for a proof in the
language of MacMahon diagrams). For Vahlen’s involution, see [123, 120]. Exer-
cise 2.4.2 implies the Regev–Vershik Conjecture, as presented in [39] (see also [34]
for the generating function). The identity 2.2.4 is given in [117].

Ramanujan’s identity 2.2.2 implies one of the celebrated Ramanujan’s congru-
ence p(5k−1) ≡ 0 mod 5. Ramanujan also found congruences modulo 7 and 11, and
now many other congruences are known (see e.g. [2, 24]). The rank of a partition
(see 2.5.1) was defined by Dyson in [60] for the purposes of giving a combinatorial
interpretation 2.5.6 of the congruences. He reminisced in [62] on his discovery: “I
gave thanks to Ramanujan for two things, for discovering congruence properties of
partitions and for not discovering the criterion for dividing them into equal classes.”
Dyson conjectured in [60] that his rank statistic gives a combinatorial interpretation
of Ramanujan’s congruences modulo 5 and 7, but found it errs modulo 11. These
conjectures were later proved in [32]. In Dyson’s own words, “I think this should
be enough to disillusion anyone who takes Professor Littlewood’s innocent views of
the difficulties of algebra” (see the quote in the introduction).

Dyson also conjectured the existence of a hypothetical statistic he called “crank”
which would give a combinatorial interpretation of all three congruences. He sum-
marized his “guesses” in [60] and remarked that

Whatever these guesses are warranted by evidence, I leave to the
reader to decide. Whatever the final verdict may be, I believe the “crank”
is unique among arithmetic functions in having been named before it was
discovered.

Building on Garvan’s work [77] for triples of partitions 2.5.7 the crank was even-
tually found by Andrews and Garvan in [29], where they proved 2.5.9 analytically.
For a story of a famous phone call, see [31].
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The Fine-Dyson symmetry relation was given in [61, 70]. Fine’s relations 2.5.2
appeared in [69, 70] (see [105] for a historical account). The generating function
derivation 2.5.4 follows [61] (see also [62, 37]). Combinatorial proofs of 2.5.8, 2.5.7,
and 2.5.9 were given in [63].

The q-binomial identity was found by Rothe and was rediscovered by Cauchy
and others (see [1] p. 5). For analytic proofs of the q-binomial identity and the
Heine transformation see [24] p. 17, 20. Our proofs of the q-binomial theorem 2.6.1
and the Heine transformation 2.7.1 are loosely based on double counting arguments
given in [12] (see also [5]). Hardy described Ramanujan’s 1ψ1-summation 2.7.6 as “a
remarkable formula with many parameters” [80]. It was observed by Ismail [90] that
the summation can be derived from the q-binomial identity 2.6.1, after substituting
b = qm for the integer m, and then using analyticity (cf. [58]). The identity 2.6.3
was given in [5] and is a special case of Ramanujan’s 1ψ1-summation.

3. Euler’s Theorem ?? was probably the starting point of Partition Theory [66].
See [4] for more on the history of Euler’s and Glaisher’s Theorems. Franklin’s exten-
sion 3.3 (together with a generalization 3.3.2) was given in [73] and does not appear
in modern literature. In Franklin’s words, “[Glaisher’s Theorem and Franklin’s ex-
tension] are very easily obtained either by the constructive proof or by generating
function” (see [121], p. 268). Most recently, these results were rediscovered in [127].

Sylvester’s bijection 3.4.1 is presented in [121], and is sometimes called a fish-hook
construction (see [24, 21, 23]). Sylvester [121] p. 287, gives an acute observation
when comparing two correspondences:

[Glaisher’s] correspondence is eminently arithmetic and transcenden-
tal in its nature, depending as it does on the forms of the numbers of
repetitions of each integer with reference to the number 2.

Very different is [Sylvester’s correspondence] which is essentially
graphical, as in its operation, which is to bring into correspondence the
two systems, not as wholes but separated each other of them into dis-
tinct classes; and it is a striking fact that the pairs arithmetically and
graphically associated will be entirely different, thus evidencing that cor-
respondence is rather a creation of the mind than a property inherent in
the things associated.

Extensions 3.4.2 and 3.5 were stated by Fine in [69] and proved by analytic means
in [70]; the proofs were published about four decades after their discovery. Both
results were noted to follow from Sylvester’s bijection and the Fine-Dyson map by
Andrews [10, 20]. We refer to [24] for references and other proofs. Exercise 3.4.3,
combined with 5.2.2 follows [105] (see also [130]). Together they prove two other
results of Fine, related to certain identities of Ramanujan, which were proved an-
alytically in [10, 19]. The iterated Dyson’s map and a full historical account of
Fine’s partition results were given in [105].

Variation 3.2.4 goes back to Glaisher and Lehmer. A combinatorial proof is
given in [79]. Vector partitions originated in [121, 83]. Generalization 3.2.5 is
proved in [55] by means of generating functions.

The second presentation ζ of the Sylvester’s bijection 3.4.1 follows [108]. It is
essentially the same as that in [25], where the bijection was defined in the lan-
guage of Frobenius coordinates of a partition. Finding a different presentation of
Sylvester’s bijection was justified in [21] by the fact that “the reversal of Sylvester’s
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algorithm is quite cumbersome”. Sylvester’s bijection was extended to partitions of
type (c,m) in [108] (see also [130]).

The third presentation η follows [38]. It is somewhat midway between the two
and can be used to prove that all three maps define the same bijection [130]. In-
terestingly, yet a different version (of a reversed bijection) has recently appeared
in [93] A refinement 3.4.5 was given in [41] (see also [93, 130]).

4. The intermediate sets of partitionsRn,k and Gn,k in both proofs of Lebesgue’s
identity 4.1 go back to Andrews [11]. Our presentation in 4.2.1 follows closely
Bessenrodt’s original paper [38]. The rest of the section uses the language of
MacMahon diagrams, and we modify the constructions appropriately. The bijec-
tion 4.3.2 is due to Bressoud [43], where it was generalized to prove 4.3.5. While
Bressoud’s presentation may appear different, it is essentially equivalent to the
bijection we give (see also [6]).

The second proof of the Lebesgue identity we present in 4.4.1 is a modified
version of [7]. It is built heavily upon [43]. In the original paper [29], the authors
formulate it as a double counting proof in the spirit of [11]. This explains the claim
in [38] that [29] does not contain a direct proof. In fact, the proof 4.2.1 is indirect
as it uses Euler’s Theorem as the first step of a bijection. Partition identity 4.4.2
is taken from Ramanujan’s “Lost” Notebook (see [16] p. 18).

Schur’s Partition Theorem 4.5.1 was given in [112]. Our proof is a modified
version of [44], which also contains 4.5.2. For various extensions, generalizations, a
bijective proof of 4.5.3, and recent references, see [8] (cf. [27]).

5. Euler’s Pentagonal Theorem is implicit in Euler [66]. The corresponding
recurrence relation was, in fact, used for centuries to tabulate values of p(n). Hardy
and Ramanujan used such a table for n ≤ 200, which was provided to them by
MacMahon [80, 81].

Franklin’s proof 5.2.1 was published in [72]. A modified version 5.2.3 is presented
in [100]. The first refinement 5.2.4 is due to Shanks [113] who proved it by induction,
and thus obtained a simple proof of Euler’s Pentagonal Theorem. The identity was
also proved in [95, 119] by Franklin’s involution.

Formula 5.2.6 is due to Zagier; it was proved using Franklin’s involution in [54].
The identity in 5.2.5 is taken from [86]. Results 5.2.2 and 5.2.7 are due to Fine [69,
70] (see 3.4.3 and [105]). Theorem 5.2.8 is equivalent to an identity of Ramanujan
(see [16] p. 100).

Our proof of Sylvester’s identity 5.3.1 follows the original generalization of Dur-
fee squares by Sylvester [121] p. 268. For other generalizations of Durfee squares
see [18]. Exercise 5.3.2 is perhaps the most natural explanation of the nature of
Franklin’s involution.

The bijective proof in 5.4.1 was found in [47]. The proof of 5.4.2 is due to
Dyson [61]. For the history of the subject and the solution to 5.4.3 see [105]. The
involution in 5.5.1 is a modified version of a bijection in [14]. For the rest of the
section 5.5, references, and details, see [14].

6. Jacobi’s triple product identity was first found by Gauss in an unpublished
manuscript, and became famous after its rediscovery by Jacobi (see [30], §4.) The
history of a direct bijection is quite involved and somewhat educational. We believe
it deserves to be told in full as it is symptomatic of the subject.

The first bijective proof of the Jacobi identity is due to Sylvester [121] (see
below), just one year after Franklin’s proof was published. Eighty years later it
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was rediscovered by Wright [128] in a short note, with nice pictures and clear
presentation. Soon thereafter Sudler realized that Wright’s bijection is equivalent
to that of Sylvester. He wrote:

I discovered that Sylvester had already given a proof of [the Jacobi
identity] of the required type. However, because of his somewhat ver-
bose and somewhat unclear style, his work on this topic has apparently
been almost completely ignored in recent times except by MacMahon, who
gave [102] §323, a generalization of Sylvester’s idea.

Naturally, Sudler decided to improve the rigor and exposition of Wright’s and
Sylvester’s papers; his effort [120] did not contain a single picture. As J. Roberts
put it in the AMS Review article on [120]: “To read the paper one needs to have
a copy of Wright’s paper [128] at hand.”

A subsequent quest for a better exposition of Sylvester’s bijection is perplexing.
A series of papers [55, 57, 76, 97, 99, 120, 124] described a number of bijections, all of
which are either equivalent or give exactly the same correspondence as Sylvester’s.
Since the authors seemed to be aware of the previous work, they emphasized the
notation and the qualities of their presentation. For example, Leibenzon writes
that his description “seems the most elementary and explicit” [97].

Our presentation in 6.2.1 follows Wright [128]. Two versions of a bijection in 6.2.2
follow Vershik [124] and Lewis [99]. The latter paper also acknowledges that the
correspondence is identical to that of Sylvester. To quote Lewis: “[Sylvester’s]
description of this correspondence is fairly obscure as the diligent reader will dis-
cover” [99]. Most recently, an equivalent version has appeared in [57], where it was
attributed to Itzykson and Viennot.

The involutive proof we present here follows Zolnowsky [131]. In fact, it can also
be found in Sylvester’s paper [121]. The following quote from [95] puts a new spin
on the issue:

The literature contains several incorrect references to the history of
Sylvester’s construction. Sudler [120] says that the approach taken by
Wright [128] is essentially that of Sylvester; but in fact it is essentially
the same as another construction due to Arthur S. Hathaway, quoted by
Sylvester [121] § 62. Zolnowsky independently rediscovered Sylvester’s
rules [...]

Sylvester’s original treatment has apparently never been cited by any-
one else, possibly because it comes at the end of a very long paper; fur-
thermore, his notation was rather obscure and he made numerous errors
that a puzzled reader must rectify.

So who is the real author of the direct proof of Jacobi identity? Our brief
historical investigation showed that both Hathaway and Sylvester are the authors
of two different albeit equivalent versions. It seems Sudler is referring to Sylvester’s
proof in [121], § 38–40, while [95] is alluding to a full two page quote of Hathaway’s
paper [83] in Sylvester’s “Exodion” [121], § 62. Sylvester himself did not seem to
notice the relationship. Thus attributing the proof to both Hathaway and Sylvester
(as done in [23]) is quite appropriate.

Perhaps, the shortest and the most elementary analytic proof of the Jacobi
identity is due to Andrews [9], who deduced it directly from Euler’s two identities
in 2.2.3 and 2.3.4. The quintuple product identity is a classical result in analysis,
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going back to G. N. Watson and Karl Weierstrass. We refer to [52] for the history of
the quintuple product identity, references and a simple proof. Another simple proof,
extensions and more recent references can be found in [71]. Vahlen’s Theorem 6.1.5
has appeared in [123], and in this form was presented in [125] p. 165. When m = n,
MacMahon’s identity 6.2.3 is called the Cauchy identity [48]. For a simple inductive
proof, see [85]. Identity 6.1.7 is taken from [22] p. 99.

7. The Rogers-Ramanujan identities (?) and (??) are due to Rogers and were
later rediscovered by Schur, Ramanujan, and others. There are numerous analytic
proofs known, as well as proofs by means of Lie Theory, but not a single direct
bijective proof. We refer to [24] for many generalizations and further references.

The following two quotes were highly influential in the subject. According to
Hardy, “None of the proofs of [(?) and (??)] can be called “simple” and “straight-
forward, since the simplest are essentially verifications; and no doubt it would be
unreasonable to expect a really easy proof” [80]. Forty years later, Andrews con-
curred with this sentiment: “Hardy’s comments about the nonexistence of a really
easy proof of the Rogers-Ramanujan identities are still true today” [24].

In his lecture notes [75], Garsia challenges the above assessment. He starts by
saying:

Schur independently discovers the Rogers identities [(?) and (??)]
and (unlike Ramanujan) is also able to provide a proof. We may add
that it is really a great historical injustice (mostly due to the tabloid
sensationalism of G. H. Hardy) to refer to [(?) and (??)] as the Rogers-
Ramanujan identities.

He then continues to criticize the above Hardy’s quote:

Hardy must have not given a close look at Schur’s paper, otherwise
such a judgement can only be a result of Hardy’s lack of knowledge of 19th
century “Partition” literature. Schur’s proof is not only quite simple, but
a straightforward extension of Franklin’s proof of the Euler Pentagonal
Theorem [5.1.1]. Moreover, as such it is substantially different from any
innumerable other proofs [of (?) and (??)], that have been given in the
more than 100 years since they have been discovered.

In Hardy’s defense, he did seem to know everything there was to know about “par-
tition literature.” In the very same book [80] he presents “F. Franklin’s beautiful
proof” (see pp. 83–85), and writes, “About the same time [of Ramanujan’s redis-
covery of (?) and (??) published earlier by Rogers] I. Schur, who was then cut off
from England by the war, rediscovered the identities again. Schur published two
proofs, one of which is “combinatorial” and is quite unlike any other proof known”
(see p. 92). Hardy then proceeds to restate Rogers-Ramanujan’s identities as com-
binatorial results and concludes with the following passage:

These forms of the theorems are MacMahon’s (or Schur’s); neither
Rogers nor Ramanujan ever considered their combinatorial aspect. It
is natural to ask for a proof in which we set up, by “combinatorial”
arguments, a direct correspondence between the two sets of partitions,
but no such proof is known. Schur’s “combinatorial” proof is based not
on [identity (?)] itself, but on a transformation of the formula [...] It is
not unlike Franklin’s proof of [Euler’s Pentagonal Theorem 5.1.1] but a
good deal more complicated.
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It is natural to assume that the preponderance of analysis over combinatorics
in those days led Hardy to believe that Schur’s proof 7.2.2 is quite complicated, a
view not shared in modern times. Other than this evaluation, both authors seem to
be in accordance with each other. Injustice or not, the name “Rogers-Ramanujan’s
identities” has long been accepted as standard in the field. See [92] § 7.11 for
an independent literary account of how Ramanujan “rediscovered” and published
identities (?) and (??) after previously seeing them in Rogers’ paper, since, in
Ramanujan’s words, “[the identities] had entirely slipped from my memory.”

The interpretation 7.1.4 is given in [18]. In our presentation of Schur’s proof [111]
we follow [76], which used a rather different language. Our Figure 31 is based upon
pictures in [75]. Generalizations 7.2.4 (see also 7.2.3) are given in [74]. For 7.2.6,
see [46]. The Farkas-Kra identity 7.2.5 was given in [68] p. 521. For 7.3.1, see
e.g. [82] § 19.15 (see also [24]).

8. The involution principle was introduced by Garsia and Milne [76] as a tool to
give a bijective proof of the Rogers–Ramanujan’s identities (see 8.4.4). Although
the authors claimed to have “an algorithm for the construction of bijections in a
wider combinatorial setting than that of the theory of partitions,” the involution
principle has rarely been used outside of the field.

The first equality in 8.1.3 is due to Schur [112], while the second is due to
Andrews [27] (cf 4.5.1). The exercise 8.4.2 is explicit in [76].

Exercise 8.4.6 is based on Zagier’s “one-sentence proof” [129]. For missing sen-
tences see [28]. The involution β goes back to Heath-Brown. We dispute the
assertion that Zagier’s proof is ineffective, which was made in [129] and repeated
in [3]. In fact, in view of the involution principle it is effective indeed, albeit the
corresponding algorithm is probably very inefficient (see [114] for the analysis).

A few words about the history of the problem. In 1747 Euler showed that
the decomposition p = x2 + 4y2 is unique, proving a conjecture of Fermat (see
e.g. [64] §2.4). Fermat himself claimed to have such a proof. In a letter to Pascal
he asks for a general rule for finding such a decomposition (ibid. §2.6). For efficient
polynomial time algorithms see [33].

For Andrews Theorem 8.1.1 see [24], where the equivalent partition bricks are
called simple classes of partitions. O’Hara’s Algorithm 8.2.1 was given in [104].
Historically, O’Hara’s paper was based upon Remmel’s and Gordon’s work and has
appeared later. She proves in [104] that the bijection she defines coincides with
Remmel’s and Gordon’s bijection in a special case.

The Cohen-Remmel Theorem 8.6.1 was found by Cohen [56] and then extended
by Remmel [109] by removing a technical disjointness condition. Our presentation
of the Cohen-Remmel Theorem follows the recent paper [103]. We use here a very
different, slightly less general and more structured language. For other presenta-
tions see [126] (see also [115] § 2). The exercises 8.1.4 and 8.6.6 are taken from [127].
They are direct generalizations of Franklin’s extension 3.3.1 of Euler’s Theorem 3.1.

9. For MacMahon’s Theorem 9.1.1 see [102], (see also [24]). For Stanley’s for-
mula, extension 9.1.5, other generalizations, a connection to symmetric functions
and references, see [115], Chapter 7. The first bijective proof of MacMahon’s Theo-
rem is found in [36]. Our presentation follows [107]. Both proofs are related to the
Robinson-Schensted-Knuth correspondence (see e.g. [24, 107, 115]). Formula 9.1.7
is also due to MacMahon; the only direct bijective proof we know [96] uses an
assortment of ‘bijective technology’ not covered in this paper.
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The bipartitions 9.2.1 were introduced in [50, 51]. The extension 9.2.3 is given
in [15]. Our proof follows [110] (cf. [40]).

Our presentation of 9.3 follows [106]. For more on integer points in cones and
polytopes see [115]. For integer triangles 9.3.2, see [17] (see also [26]). A bijection
in 9.3.3 is given in [84]. Partitions with nonnegative r-th differences 9.3.6 were
introduced in [26]; the first bijective proof was given in [49]. The lecture hall
partitions 9.3.7 were introduced in [41] and further studied in [42].

For a thorough treatment of arithmetic functions and their properties, see [82].
Our proof of Euler’s identity 9.4.1 follows [125], p. 161 (see also [68] p. 472). Iden-
tity 9.4.5 follows from the Gauss identity 6.1.4 [67]. The Uchimura identity 9.5.1
was obtained in [122]. Our proof follows closely [45]. Simple proofs of the Jacobi
formulas 9.5.5 are given in [87, 88] where the author deduces them from the triple
product identity (see also [3]). A proof of Liouville’s Last Theorem can be found
in [35] (see also [25] for historical context and recent references).

Our two lower bounds in 9.6 are probably folklore. The first upper bound
proof 9.6.4 follows [81], while the second upper bound proof 9.6.5 follows [65].
The recurrence relation used in 9.6.5 was given in [81]. Note that the lower bounds,
while simpler, give weaker estimates than the second proof of the upper bound
(cf. [65]).
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