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Abstract A new application of the remarkable D -expansion method based on a fractional order ordinary

differential equation is used to find exact solutions of the space-time fractionalsymmetric regularized long wave
(SRLW) equation and the space-time fractional Sharma-Tasso-Olver (STO) equation. This method involves
Jumarie’s modified Riemann-Liouville derivative and uses some of its basic properties. Exact solutions for both
equations are obtained.
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1. Introduction

Nonlinear fractional partial differential equations
(FPDEs) are generalization of the classical nonlinear
partial differential equations (PDEs) of integer order. In
recent years, nonlinear FPDEs become one of the hottest
topics for mathematician and other scientists because they
are widely used to describe large number of new complex
phenomena in many fields such as engineering, physics,
biology, signal processing, systems identification, control
theory, finance and others [1-9]. In the past, scientists
defined and established a lot of powerful methods to find
numerical and exact solutions of nonlinear FPDEs, such as
the finite difference method [10,11], the finite element
method [12,13,14], the Adomian decomposition method
[15,16], the variational iteration method [17,18,19,20], the
homotopy perturbation method [21,22], the fractional sub-

equation method [23,24,25], the %-expansion method

[26] and many others.

(24

In this paper, we will apply the -expansion

method [26], which is an improvement of the fractional

E-expansion method, to solve two nonlinear FPDEs,

namely SRLW and STO equations. The fractional
derivatives in these equations are described in the sense of
Jumarie’s modified Riemann-Liouville derivative which is
defined as follows:
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where the Gamma function is defined for R(z) > 0 by
I'(z) = fooe_t tZ~1 dt.
Using (;imple calculations, we can obtain
I(z+1)=2I'(z),I(z+1)=2!

Here we summarize some basic properties of the
Jumarie’s modified Riemann-Liouville derivative:

D)?Xﬁ :Mxﬂ_a,ﬂ>0
I(+p-a) (1)

and Dy’c =0,c is acostant.

D¢ (¢ f (x)+g(x))=c D¢ f (x)+Dgg(x), @)
c is a constant.

D¢ (f(x)g(x))=g(x)Dg f (x)+ f (x)Dgg(x). (3)
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DY (f29)(x) =D f (9(x) W
= fg (900) D9 (x)=Dg f (3 (x))(9°(9)""

2. Description of The L;G Expansion
Method

Step 1. Assume that we have the following nonlinear
FPDE in the form:

P(u,ux,ut,D)‘f‘u,D{"u,...)zo,0<asl, (5)

where DZuand Dfu are Jumarie’s modified Riemann-
Liouville derivatives of w,u = u(x,t) is an unknown
function, P is a polynomial in uand its various partial
derivatives, in which the highest order derivatives and
nonlinear terms are involved.

Step 2. Using the wave transformation:

u(xt)=U(z),z=k x+ct, 6

where k and ¢ are constants to be determined later, the
nonlinear FPDE in Eq. (5) is reduced to the following

nonlinear fractional ordinary differential equation (FODE)
forU = U(z):

P(U,ku ' cU ',k“Dg‘u,c“Dg"u,...)zo,o<a31. )

Step 3. Suppose that Eq. (7) has the solution in the
following form:

<n (D262
U(z)_zizoa,( ) J (8

where a;(i = 0,1, 2, ..., n) are coefficient constants to be
determined later, n is a positive integer determined by
balancing the highest order derivatives and nonlinear
terms in Eq. (5) or Eq. (7), while G(z) satisfies the
following fractional ordinary equation (FODE):

D?%G(z) + ADZG(z) + 1G(z2) =0,0<a <1,  (9)

where A and u are constants.
The following solutions of fractional Eq. (9) in the form

_ D%G(z2)

of W(z)= are as follows:

[2_ [2_ ]
C, cosh uz“ +C, sinh uza
{/12 —4yu 21+ «) 21+ «a) 2 o a0
2 [2_ [2_ 2’ '
C;sinh NA” =44 4 +C, cosh VA" =44 ya
2I(l+ ) 2I'(l+a)
D?G(z) VAu- 2 a|_c \ ;u_ﬂv2 a
W (z)= = C, cos z 28 (10)
G(z) \/4#_/12 21+ @) 21+ ) 2 )
5 —E,ifﬂ —4u <0,
[ 2 2
C,sin VA=A +C,cos VA=A Ja
21+ ) 21+ «a)
Col*a)  A452 4,
Coz® +CI'(l+a) 2
Step 4. Substituting Eqg. (8) along with Eq. (9) into Eq.
(7) and using the properties of Jumarie’s modified thaU(X,t)+ DEQU(XI)+U(X,I)D{Z (DQU(X,I))
Riemann-Liouville derivative (2), (3) and (4), we can get a (11

polynomial in W(Z):D;((Bz()Z)

coefficients of Wi(i =0,1,2,...,n) to zero, yields a set
of over determined nonlinear algebraic system of
equations for a;(i =0, 1,2, ...,n),A, u, k and c.

Step 5. Finally, assuming that the constants a;(i =
0,1,2,..,n),A u k and ccan be obtained by solving the
algebraic system of equations in Step 4, substituting these
constants and the solutions of Eg. (9) into Eq. (8), then by Eq.
(6) we can obtain the explicit solutions of Eq. (5) immediately.

these

Setting all

3. Applications

3.1. The Space-Time-Fractional SRLW Equation
The space-time-fractional SRLW equation is given by

+Dfu(x,t)DZu(x,t)+DE* (Df“u(x,t)) =0,

where0 < a <1,t > 0.

This equation arises in many nonlinear problems of
mathematical physics and applied mathematics including
ion sound waves in plasma. It is symmetrical with respect
to x and t. see [27].

Using the wave transformationin Eq. (6), we get the
following:

DZu(z)=k*D§U(z),Dfu(z) =c*DyU (z). (12)
Substituting Eqg. (6) and Eq. (12) in Eq. (11) we get:
c2*D2U (z) +k?*DZ?U (z) +c“k“U (z)D?*U (2)

(13)
+c%k* (DU (2))? +c2*k2* DU (2) = 0.
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Balancing the order of the highest derivative term
D}%U(z) and the highest nonlinear term U(z)D2%*U(z)
in Eq. (13), we obtain n = 2. Thus, Eqg. (8) reduces to:

2
DYG DZG
U (Z):ao +a.1 G(Z()Z)+a2[ G(Z()Z)J .
If we let W (z)= D;G(Z) , then

U(z)= W (2) +a,W (2)?
(2) =ag +aW (2) +aW (2) (14)
or simply,U =ag + W +a2W2.

Therefore, we can compute the fractional derivatives of
U(z) = U,DFU,D}*U,D3*U and D}*U and substituting
them in Eq. (13), we get the coefficients of powers of i/
are as follows:

14c%%K2%% yp%a, +c2%k2% 133,
0 +2¢7K piagay +c k% al 11+ %k uaga (15)
=u
+16c2%k2% 1%a, +8c2%k2% ypgy

+262% yra, +¢2% Jay + 2k%% pay + k2% 2ay

w1l =30c27k?* uala, +c2%k2* A 4a
+120¢2%k%% 1% pay + 22¢27K% uaa,
+6C7K” piPaya, +6c7K? piAagay (16)
+3c%k% uaa? +c¥k* A%agay +16¢27k%* %8,

+2C7K* pagay +6¢°% pday +c2% %3

+6k2% yipay + k2% 224y +2¢2% pay + 2k 2% uay
W2 =16c°7k%* 2%, +6c7k” 1283
+15¢%k* piayay +4c?k%* A%aga,
+2¢7k” A%af +232¢°7 K> palay
+15¢2%Kk2% 133, +8c%k“ uagay, +4c k% al
+3c%k* Aagay +136¢27Kk%% 1%, +60c°%k>% yiaa,

+4¢2% 2%, + 4k2% 1%a, +8c%% ua,

a7

W3 =130c27k%* 23a, +14cK* ural

+9c7k% 2%aqa, + 440¢27k 2% y2a,

+50c2%k2% 123, +18¢7k paga, +10c?k% laga, (18)

+5c7k% Aa? +40c2 k2% ya, +2c%k % aga,

+10¢2% Aay +10k?% Aa, +2¢2%a, + 2k *% 3
W4 =8c7k® 2%a3 +330c2“k>* 12, +16c7k“ uaj
+21c7k% Aagay +240c2% k%% ya, +60c27k?* 23,  (19)
aka

+6c%k%aga, +3c?k%al +6c2%a, + 6k *“a,

W> =18c%k* 1a3 +336¢2%k 2% 1a, 20)
+12¢%k%aya, +24c2% k% ay

W =10c%k%a2 +120c2*k**a, (21)

Equating the coefficients (15) to (21) to zero, then
solving the resulting system of these equations for
ay, a; and a, by Maple, we get the following solutions:

ap = —(C*k* A% +8cK% pr+c%k % +¢ k%) (22)
a =-12c%k* 2 (23)
a, =12¢%k“. (24)

Therefore, by substituting Eq. (10) and Eq. (22) to Eq. (24)
in Eq. (14) we can write the following solutions for Eq. (13):

Ui(z)= —(c"‘ko‘/l2 +8c“k* pu+c k™ +c‘“k“)

- — -
C, cosh [Mu rasd ]

2F(l+ a)

«M —4
+C, sinh [ﬂ ZO’J

2r(1+a)

2 i [i2_
C, sinh {/14’” z“]

M (1+a)

«M —4
+C, cosh [# 7% J

—12¢%k% A

2 (1+a)

2F(1+ a)

N
+C, sinh (ﬂ z“}

2r(1+a)

2 i [2_ ]
Clsinh[HuzaJ ’

- e —172
2 j—
C, cosh [Mu raid J

-12¢%k“
2l (1+a)

o (25)
2 —_—
+C, cosh [Mu z” J

2r(1+a)

A

L 2
if A2 —4u>0

Up(2)= —(c“k“/lz +8c7K% y+c%k +c""k“)

- : o
C, cos NAUZE a
2l (1+a)

2
)
—12c7k% 4| N2H L |2
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Uz(2) :—(c"‘k”‘/l2 +8c%k* u+ck™ +c‘“k"’)

B B L ) N (27)
. u-2° Coz* +CI (1+a) 2
7| |G or(1ra) 2
peye | N2 | 1] 2 C,I(1+
R T TT T > | @6 —12c"‘k‘{ : Ura) 4| 32 4,0
Clsin{zrgll_ )Z“J Coz” +CI (1+a) 2
+
“ As an illustration, the graphs of the solutions u(x, t) of
4y 22 Eq. 11are shown, with the following assumptions:
+C, C0s ~ A
2r(1+a)
if A% -4u<0
Leta=%,/1:4,y:3,k=1,c=2,c1=5,c2=6,thena0=—83;/§,al=4sﬁ,a2:—125.
22 :
5COSh[ b ]+6sinh[ 2y21tx ]
u,(x,1)=-12 ﬁ ﬁ 202
] SSinh[2 2tx ]+6cosh[2 2t+x]
I I
SCosh[ 22 +x ]+6sinh[2 2itx ]
N [ 8
—48 2|2 -=2
(242 +x 221 +x 2
5sinh + 6 cosh
o M e o
Leta=%,x1=4,,u=5,k=Lc=2,01=3,C2=6,thena0=—1152\/§,a1=—48\5,a2=—12\5.
%sin(z jt—+x ]+6cos[2 2ttx ] ’
wle ) =12 , [2 2itx . 2\/2t+x] —2
cos + 6sin| ——
Jr n
34 2y 2t+x 2y 2t+x
-3sin ﬁ + 6¢os 7\/; s
o 3005[2 2itx ]+6Sin[2\/2t+x] - ﬁ_Tﬁ
In Jn
Leta:%,/1:4,u:4,k=1,c:2,Cl:5,CZ:6,thena0:—ggf,al_—48\/§,a2_—12\/§.
gl 1) =-12 jﬁs -2 J2
Oy 21+x +EH
99
— 48 355 — -2 ﬁ—jﬁ
621 +x +oJm
Where 0 < a,f < 1,t > 0, see [28]
3.2. The Space-Time-Fractional STO When g = a, then Eq. (28) becomes
Equation

The space-time-fractional STO equation is given by
Du(x,t)+3A(Du(x.t))? +3Au(x,t)2 DAu(x.t)
+3Au(x,t)DZu(xt)+ ADPu(x,t)=0,

(28)

DZu(x,t)+3A(DZu(x,1))% +3Au(x,t)* DZu(x,t)
+3Au(x,t) D2%u(x,t) + ADS%u(x,t)=0.

(29)

Using the wave transformation (6) and Eq. (12) in Eq.
(29), we get the following:
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DU (z)+3Ak** (DU (2))? +3Ak®U (z)* D2U (z)
+3Ak%?U (2)D?U (2)+ AK**D3*U () =0.

(30)

Now, by balancing the order of the highest derivative
term D3%U(z) and the highest nonlinear term
U(z)D2*U(z), we getn = 1.Thus, Eq. (8) reduces to:

U(z)=ag+aW (z)orsimply,U =gy +aW. (31)

Similar to section 3.1, we can compute the fractional
derivatives of U(z) = U,DZU,D2%U and D3*U and
substituting them in Eq. (30),we get the coefficients of
powers of W as follow:

WO —a,c” 11— 3Aadark® u+3Aagalk > Au

Wl

1 —a,c% A —3Aada kA — 6Aaya’k” 1+ 9Aatk

2,,2a
A
#(33)

+3Aaga k®® (A% +241) — Aak3* A(2% +81)

W2 —a,c” —3Aalak” —6Aaya’k” A +9Aayak’* A
+3Aa’k?% 12 —3Aatk? 11+ 6AaPk>Y 1 (34)
+3Aa2k2% (22 + 2p) — Ak ay (742 +81)

W3 —6Aaya’k%a? +6Aagak >
—3Aa’k* A +15Aa2k?* 1 —12 Aak3* 2

(35)

W*:—3Aatk* +9AaZk?* —6Aa k> (36)

(32) Equating the coefficients of powers of W from (32) to
+3Aa12k2”’y2 —Aa1k3“y(22 +2u) (36) to zero, then solving the resulting system for a,, a;
and A by Mathematica, we get the following of solutions:
Table 1
case a, a; Y 22 —4pu
2a 2),4a 21,40 42 a,a
1 3AK /1+\/12A K" p-3AK" A7 ~12AcTk ke A Any real number (3 solutions)
6AK”*
2a 21, 4c 2,40 52 aa
2 3AK i_\/le K™ p-3AKT" A7 ~12AcTk ke A Any real number (3 solutions)
6AK*
A u—ck o | 2JAp—ck™ 4(c*k> +12Au)
3 k — = - (3 solutions)
J13A 13A 13A
. 3k A -k o | afAp—cne | a{ctk +12mu)
— —_— - (3 solutions)
13A 13A 13A
a _ ~o 3 _~ap—3a o, —3a
5 k «/4Ay c“k ke 4A p—ck _c”k (2 solutions)
JA JA
a _ ~ap,—3a _ ~ap,—3a o, —3a
6 _k «f4Ay c“k k@ _«/4Ay c“k _c%k (2 solutions)
JA JA A
The total number of solutions is 16

So the solutions of Eq. (30) in case l1and 2 are as follows: U(z) = a, + a;W (z) becomes

3Ak2“/1+\/(12A2k4“y—3A2k4“/12 —12Ac“k“)

Ui (z)=

6Ak*

2I'(l+ )

+k@ \A}LZ _4/‘ L

__ -
C, cosh [M Z“J+C2 sinh(

2I'(l+ )

: -
NAT=4u z“J 37)

JifA2—4u>0

2'(l+a)

2 [ [2_
C; sinh {’14# z“]+C2 cosh{

72—y Za]

2I'(l+a)

N[

 3AK% 4+ \[12A2K4% 11— 3AZKA9 42 12 Ak

Uz(2)

+k¢ ‘44#_12

6Ak”

2(l+a)

i Y
Clcos[wza]—cz sin[

21+ )

— 2 ]
7‘W’ ZO‘J (38)

~Z1ifA%—4u<0

z
21+ a)

2 f 2
Clsin{él'u_/1 “]+C2 cos[

/4;1—/12 z“} 2

21+ )
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(40)

(41)

3AK?F 1 +\[12A%K4% 1 — 3AZKA¥ 12 12 Ac“K“ .
Us(2) = il = CK k| Gt A2 400 (39)
6AK* Cz* +CI'(l+a) 2
U (2)- 3AK2% 1 —\12A2K*% 11 - 3AZKA 42 12 Ac K™
! 6AK
é 2 f 2
C, cosh VA ZAp a +Cysinh VA =44 4
2 2(l+a) 21+ )
a| NAT —4u Al )2
+k 5 ~3 JfA°—4u>0
, 2 ; 2
C;sinh VA" =44 sa +C, cosh NA” =44 4
21+ ) 21+ @)
Us(2)= 3AK2* 1 - \[12A2K*% 11— 3AZKA 42 12 Ac k™
> 6AK®
, Y ? Y
C]_COS Mza _Czsin Mza
?4;1—/12 2I'(l+ ) 2I(l+ ) 2
+k¢ 5 -2 JifA2—4u<0
Clsin 7‘Wza +C, cos 7‘44;1_/122“
2
21+ a) 21+ )
Ak 3 —\J12A%K 4% 1~ 3AZKA 22 —12 Ac%K? .
UG(Z):S 4 “/ #-3 4 LS S L ) B JifA2—4u=0. (42)
6AK” Cz2* +CI'(l+a) 2

and by a similar way, the remaining solutions can be found.
As an illustration, the graphs of two solutions u(x, t) of Eq. 29are shown, with the following assumptions:

48+§/§ 48+§/§

Case5(i), Let a:é,A:4,,u:3,k:1,C:—2,C1:5,C2 =6,then,ag=———,y =2, 1=

%ﬁr(%](—ztﬂ)' 3]

T

il
. [% ﬁﬁr[;n]uw”m/

f 3 3
Case 5(ii), Let @ ==, A=4, =3k =1c=2,C, =5C, =6 then, a = 48;‘5, =2, A= 48;*5

[ ‘ X %[2:+x1"‘3ﬁr[%] ]

= J 3
DCOS{ e

8 T
3 ' i
. ‘J?tzw.\-}"-‘ﬁrL%J ]

+ 6sin

oo |

T
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4. Conclusion

In this paper, the D;ﬁexpansion method which is one

of the powerful fractional sub-equation method has been
successfully used to find exact solutions for the well-
known SRLW and STO equations in an efficient way.
Even though this method is not easy to implement,
however, it produces many convenient solutions to
nonlinear FPDEs.

Finally, we believe that this method provides a
powerful and remarkable mathematical tool to obtain
exact analytical solutions for a large number of nonlinear
FPDEs in physics, biology and engineering.
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