
In IEEE International Conference on Robotics and Automation
pp. 158-164, New Orleans, LA, April 26 - May 1, 2004

Using a Sensor Network for Distributed
Multi-Robot Task Allocation

Maxim A. Batalin and Gaurav S. Sukhatme
Robotic Embedded Systems Laboratory

Center for Robotics and Embedded Systems
Computer Science Department

University of Southern California
Los Angeles, CA 90089, USA

Email: maxim@robotics.usc.edu, gaurav@usc.edu

Abstract— We present a Multi Field Distributed In-network
Task Allocation (DINTA-MF) algorithm for online multi-robot
task allocation (OMRTA) where tasks are allocated explicitly to
robots by a pre-deployed, static sensor network. The idea of
DINTA-MF is to compute several assignment fields in the sensor
network and then distributively assign fields to different robots.
Experimental results with a simulated alarm scenario show that
our approach is able to compute solutions to the OMRTA prob-
lem in a distributed fashion and arguably in an optimal way. We
compared DINTA-MF with a simpler implementation (DINTA)
which uses one assignment field. The data show that DINTA-MF
outperforms DINTA as the number of robots increases.

I. INTRODUCTION

We are motivated by a particular application of wireless
sensor networks, namely, multi-robot task allocation (MRTA).
The MRTA problem has been well-studied in the robotics com-
munity [1], and is simply stated as the problem of allocating
tasks to robots. Of particular interest is the online version of
the problem (OMRTA), where tasks in the environment are
geographically and temporally spread, and robots need to visit
task locations to accomplish task completion. The problem
is to assign tasks to robots optimally in an online fashion.
Previous MRTA approaches in the robotics community have
focused on performing the task allocation computation on the
robots or at some centralized location external to the robots.
All the sensing associated with tasks and robot localization is
typically performed on the robots.

In recent work [2], we have proposed an alternative strategy
based on the interaction between a sensor network and mobile
robots. Tasks, upon arrival, are allocated implicitly to robots
by a pre-deployed, static sensor network. In prior work [3],
[4] we have developed an algorithm for the deployment, and
maintenance of such a static network by robots. We have also
developed algorithms for exploration and navigation [3], [4]
where robots use the deployed network to efficiently explore
an unknown environment and navigate to a designated goal.
In [2], we assume the network is pre-deployed (through means
outlined in [3], [4]), and robots have to perform spatially and
temporally distributed tasks efficiently. Our solution [2] was
to allow the process of task allocation to occur in the static
network through distributed computation and implicit assign-
ment of robots to tasks. We termed the approach described

in [2] DINTA: Distributed In-Network Task Allocation. The
basic idea of DINTA is that given a set of tasks detected by the
network, every node k in the network computes a suggested
motion direction for a robot if its in the vicinity of k. The
ensemble of suggested directions computed over all nodes
is called a Navigation Field. An adaptive distributed value
iteration algorithm is used to compute the navigation field.

In this paper, we propose a variant of DINTA, where mul-
tiple navigational fields (one for every task) are maintained in
the network at a given time. Fields are assigned to robots using
a greedy policy. We call this approach DINTA-MF (multiple
fields). The difference between this approach and the previous
approach is that in DINTA-MF every network node computes
the direction that the robot should follow in its locality for
every task in the environment. Like our previous work on
DINTA, we consider an online task assignment problem, in
which tasks need to be assigned to robots in real time and the
distribution of tasks’ arrival is not known a priori.

Our work is broadly situated at the intersection of mobile
robots and sensor networks. The underlying principle in inter-
action between the network and robots is: the network serves
as the communication, sensing and computation medium for
the robots, whereas the robots provide actuation (mobility),
which is used, among other things, for network deployment,
repair, and other tasks.

We study a particular experimental scenario, emergency
handling, as an experimental substrate. In prior work [5], we
have used a similar scenario to study the role of opportunism
vs. commitment in MRTA. In our experimental scenario,
events in the environment trigger alarms. An alarm is spatially
focused, but has temporal extent (i.e. it remains on until it is
turned off by a robot). Alarms are detected by sensor nodes.
The task of the team of robots is to turn off the alarms
by notionally responding to the emergency signaled by each
alarm. This is done by a robot navigating to the location of
the alarm, which causes the alarm to shut off. The goal is
to minimize the cumulative alarm On Time across all alarms,
over the duration of the entire experiment. Each alarm’s On
Time is computed as the difference between the time the alarm
was turned off by a robot and the time the alarm was detected
by one of the nodes of the network.



We make the following assumptions:
1) The sensor network is predeployed in the environment

(one could use the algorithm in [4] for automatic deploy-
ment using robots or rely on a manual deployment).

2) In addition to deploying the network nodes, the de-
ployment algorithm also computes the distributions of
transition probabilities P (s′|s, a) from network node
s to s′, when the robot executes action a [3]. The
appropriate distributions are stored on corresponding
nodes.

3) An alarm requires at least one robot to service it. To
turn off an alarm, a robot needs to appear in its vicinity.
Thus, the handling of the alarm is purely notional since
that is not our focus here.

4) The nodes of the sensor network are time synchronized
(high precision is not required). One of several existing
techniques may be used for this. As an example see [6].

For completeness, we enumerate what we do not assume:
1) The robots do not have a pre-decided environment map

or access to GPS.
2) The environment is not required to be static.
3) The robots do not perform localization or mapping.
Our key result is that the multi-field approach (DINTA-

MF) statistically outperforms our earlier implementation
(DINTA [2]). Further, DINTA-MF arguably provides an opti-
mal solution to an online assignment problem in terms of time
and assigned resources.

There are many applications of MRTA including security,
monitoring, and urban search and rescue (USAR) in the after-
math of a natural or man-made disaster (e.g. building rubble
due to an earthquake or other causes). Further, the ability
of a sensor network to assign tasks to different robots, thus
serving as a multi-purpose infrastructure, enables solutions to
problems requiring heterogeneous groups of robots. Imagine
a scenario on a construction site which requires cooperation
of two distinct groups of robots - transporters and builders.
Transporters concentrate on delivering the materials to several
piles while builders choose the type of material they need
from a corresponding pile and continue construction. Thus,
transporter robots would be guided (tasked) along a shortest
path towards the material storage area or towards the pile that
requires certain materials the most. While the builder robots
would be directed towards a pile with required materials or
towards another builder needing assistance. In other words, the
network can be used as a distributed multi-functional manager.
Note also that even though we study task assignment problem
in the context of mobile robot task allocation, the proposed
system can be applied for the general online task assignment
problem where the resources are different from robots (e.g.
people trying to get outside of the building would be guided
(tasked) to the closest exits, etc.).

II. RELATED WORK

Our work is closely related to the body of literature on
using markers to aid mobile robot navigation. This idea has

received attention in coverage and exploration [3], [4], [7],
[8], [9], and navigation [3], [10], [11]. Ant-like trail laying
algorithms [10], [9] consider a special case of the marker
deployment approaches - when the distance between the two
consecutive markers is small. Therefore a trail is formed
that the robots can follow and cover the environment and/or
navigate. In these cases, no inter-marker communication is
necessary, indeed the markers are passive ’read-only’ devices.

In [7], [8] the problem of graph coverage using a few
markers is considered. In both cases the authors study the
problem of dynamic single robot coverage of an environment
consisting of nodes and edges (a graph). The key result was
that the ability to tag a limited number of nodes (in some cases
only one node) with unique markers dramatically improved the
cover time.

The problem of multi-robot task allocation (MRTA) has
received considerable attention. For an overview and compar-
ison of the key MRTA architectures see [1], which subdivides
MRTA architectures into behavior-based and auction-based.
For example, ALLIANCE [12] is a behavior-based architecture
that considers all tasks for (re)assignment at every iteration
based on robots’ utility. Utility is computed by measures of ac-
quiescence and impatience. Broadcast of Local Eligibility [13]
is also a behavior-based approach, with fixed-priority tasks.
For every task there exists a behavior capable of executing
the task and estimating the utility of robot executing the task.
Auction-based approaches include the M+ system [14] and
Murdoch [15]. Both systems rely on the Contract Net Protocol
(CNP) that makes tasks available for auction, and candidate
robots make ’bids’ that are their task-specific utility estimates.
The highest bidder (i.e., the best-fit robot) wins a contract for
the task and proceeds to execute it.

DINTA-MF (and DINTA), differs from the above MRTA
approaches in the following ways:

1) DINTA-MF relies on a static network, and communica-
tion, sensing and computation are distributed.

2) The utilities of task assignments are propagated and
computed by the network based on purely local com-
munication between the network nodes.

3) The system does not require mobile robots to be within
communication range of each other. The network is used
for propagating messages between the robots.

4) The system does not place a limitation on the number of
robots. There is no computation or communication over-
head associated with increasing the number of robots.

5) The system does not require one robot to recognize
another robot.

III. TASK ALLOCATION: OFFLINE VS. ONLINE

The Task Allocation (TA) problem has two major subdi-
visions: Offline and Online. Offline TA is the problem of
assigning resources (robots) to different tasks (alarms) if the
tasks’ information such as arrival time distribution, tasks’
weight or priority, etc. is known a priori. The assignment
process is thus offline. An offline TA problem, in its most



(a) One alarm (b) Three alarms; A1, A2

and A3

Fig. 1. Examples of navigation field computed by DINTA.

general form, is equivalent to the NP-Complete conjunctive
planning problem [16].

We focus on the other version of the problem - Online
Task Allocation. In online TA, the information about the
tasks becomes available only upon arrival and hence has to
be computed in real time. Therefore, the task assignment
occurs in decision epochs. A decision epoch is a period of
time during which only the alarms which have arrived are
considered for assignment. It is shown in literature [17] that
the optimal solution to online TA assigns the tasks in a greedy
fashion. Also [17] show that the greedy online TA solution
is within a bounded limit of an optimal solution obtained
by offline TA. In general, increasing the decision epoch to
infinity turns the online TA into offline TA problem. We note
that several real-life applications involving mobile robots in
dynamic environments are naturally online problems.

IV. THE BASIC APPROACH: DINTA

The basic idea of DINTA (see [2] for details) is that given
a set of alarm-weight pairs (ai, wi) detected by the sensor
network, every node k in the network computes a suggested
direction that a robot should take if in the vicinity of k. This
computation results in a direction which maximizes the net
utility of the robots. The weight wi is an abstraction, which
is a scalar representation for several parameters like priority,
magnitude, time (older alarms should be served first), etc. The
ensemble of suggested directions computed over all nodes
is called a Navigation Field. An adaptive distributed value
iteration algorithm is used to compute the navigation field.
An example of a navigation field for one and three alarms is
shown in Figure 1.

It may be noted that a parallel approach for the construction
of a navigation field has been proposed in the sensor network
literature [11]. Instead of value iteration [11] uses potential
fields and the hop count to compute the magnitude of the
directional vectors.

The DINTA approach has two subsystems - Cover-
age/Exploration and Alarm Response. If no alarms are de-
tected, the system operates in Coverage/Exploration [3], [4]

Utility Update

Task AllocationGeneral Task

ALARM(a,w,hc)

ALARM_OFF(a)

SUGGESTION(...)

Sensor Data

UTILITY_REQUEST/
UPDATE(...)

ROBOT_UPDATE(...)

Controller

IN

ALARM(a,w,hc)

ALARM_OFF(a)

UTILITY_REQUEST/
UPDATE(...)

Controller

OUT

Fig. 2. Node Architecture in DINTA.

mode. In this mode, the navigation field computed by the
network, causes the robots to patrol the environment. If, on the
other hand, an alarm is detected, the system switches to the
Alarm Response mode where the navigation field computed by
the network guides the robots to turn off alarms, thereby im-
plicitly solving the MRTA problem. The Coverage/Exploration
mode is the same in DINTA and DINTA-MF.

Figure 2 shows the data flow on a network node. Alarm
Response mode proceeds as follows. If a node receives an
ALARM message with identification a of the node that detected
the alarm, weight w (estimation of the alarm’s importance) and
hop count h (estimation of how far away node a is), the alarm
is placed on the list L of currently active alarms according
to its utility V (Utility Update block). We define the
utility as the ratio V =w

h
. Note that DINTA maintains only

one navigation field . Thus the utility is used by each node to
determine which alarm it should compute a direction for. Low
hop counts equate to high utility so all things being equal, a
node will maintain a direction command for a nearer alarm
compared to one further away.

Every node maintains a current alarm variable, which is
the element of L with largest utility. If the current alarm
changes, the Task Allocation block computes a new
task assignment for a robot (discussed next) and reroutes the
alarm message with incremented hop count to neighboring
nodes. In the global perspective, prioritizing between the tasks
according to their utility value results in creation of multiple
superimposed navigation fields (for example three alarms case
of Figure 1). Note that if Sensor Data block indicates that
an alarm is detected by the node itself, then the node initiates
a message ALARM(thisNodeID, w, 0). The General Task
block represents the Coverage/Exploration subsystem, in case
L is empty.



ALARM(a, t)

ALARM_OFF(a)

UTILITY_REQUEST/
UPDATE(...)

ROBOT_UPDATE(...)

ROBOT_SYNCH(...)

Controller

IN

Sensor Data General Task

Direction
Computation

Decision Epoch

Robot
Synchronization

Task
Assignment

ALARM(a, t)

ALARM_OFF(a)

UTILITY_REQUEST/
UPDATE(...)

SUGGESTION(...)

ROBOT_SYNCH(...)

Controller

OUT

Fig. 3. Node Architecture in DINTA-MF.

The direction computation proceeds according to equations
1 and 2 and follows a distributed value iteration Algorithm. A
thorough discussion of the approach can be found in [2].

It is important to note that DINTA does not make explicit
assignments of tasks to robot or specific robot subgroups,
which may result in suboptimal behavior both in terms of time
and wasted resources (several robots might pursue the same
task). Consider the case when the robots are cluttered in one
region (one subfield) and therefore, can all be attracted towards
the same alarm or simply ignore other alarms, depending on
the implementation.

V. THE MULTI-FIELD APPROACH: DINTA-MF

DINTA-MF is based on maintaining multiple navigational
fields, one for every alarm at the same time and assigning
those fields to different robots using a greedy policy. In other
words, every node in the environment computes the ’optimal’
direction that the robot should follow (when in the vicinity of
that node) for every alarm in the environment. Figure 3 shows
the data flow on a network node.

A. Philosophy

DINTA-MF uses a static network and mobile robots cooper-
atively. The network provides a ’sensor’ that is ’stretched’ over
the environment and thus widens the range of applications for
groups of robots that do not cover the whole environment -
’can’t be everywhere at the same time’. Thus, an alarm can
be detected even though no robot is within sensor range. In
addition, mobile robots can communicate through the static
network even if they are not within communication range of
each other. The other benefit of using the network is distributed
computation. First, there is no redundant computation (on
each separate robot). Second, since every node of the network
updates its state based only on the state of its neighbors and
robots in the vicinity, the system is scalable. Third, utilities are
computed in the network distributively and propagated from
the alarm (the goal node). Another benefit is that the robots
used can be very simple since they do not need to localize
and map the environment - they navigate by listening to the
suggestions from the sensor network.

The DINTA-MF approach, like DINTA, has two subsystems
- Coverage/Exploration and Alarm Response. If no alarms are
detected, the system operates in Coverage/Exploration mode.
In this mode, the navigation field computed by the network,
causes the robots to patrol the environment. For details on how

that is enabled see [3], [4]. If, on the other hand, an alarm is
detected, the system switches to the Alarm Response mode
where navigation fields are computed by the network, which
guide the robots to turn off alarms, thereby implicitly solving
the MRTA problem.

B. Alarm Response

The following describes behavior of a node in the sensor
network. If a node receives an ALARM message with identifi-
cation a of the node that detected the alarm, the system time
t when the alarm was detected by node a and hop count h
from this node to the node detected the alarm (node a), the
alarm is placed on the list LUA of currently active unassigned
alarms according to its time t.

This portion of the system executes in decision epochs.
As described above, a decision epoch is a period of time
during which only recently arrived alarms are considered for
assignment. For purpose of clarity and ease of explanation we
consider a decision epoch to be equal to one alarm, but easily
can be generalized to n alarms or time units. Hence, in the
experiments described here, we assign one alarm at a time. For
a given decision epoch, if the list LUA is not empty (i.e. it con-
tains active unassigned alarms) and there are unassigned robots
in the vicinity, the Direction Computation block starts
to compute the assignment direction for an alarm of smallest
time t in the list. List LCD contains direction assignments
computed for alarms of list LUA.

A node decides which robot should be assigned to a partic-
ular alarm based on where robots are relative to the alarms. In
a given decision epoch every node that has robot in its vicinity
sends out a ROBOT-SYNCH-MESSAGE that contains robot’s
id, alarm id, and the hop count to the alarm. A node pro-
cesses such responses in Robot Synchronization and
passes this information to the Task Assignment block.
Given shared information about the alarms and robots relative
positions to these alarms the Task Assignment block of
every node assigns the robot with shortest distance. Ties
are broken in favor of robots with smaller IDs. Note also
that in order to guarantee that the system is in the same
decision epoch (i.e. computes assignments for the same tasks)
a time-synchronization mechanism is needed. The General
Task block implements the coverage/exploration algorithm
described in [3], [4] in case LUA is empty.

The task allocation problem for emergency handling can
be formulated as guiding robots towards a specific goal node



0 1 a b c n-1 nd e

0.25

0.45
0.3

0

0

b

c

d

k

e

a

Fig. 4. An example of a discrete probability distribution of node k for
direction (action) ”East”(i.e. right).

(closest to alarm). Hence, the problem can be considered as
the problem of navigation. A node computes the direction
assignments in the Direction Computation block as
follows. We assume that the network is deployed and every
node has a discrete probability distribution of the transitional
probability P (s′|sC , a) (probability of arriving at node s′

given that the robot started at node sC and commanded an
action a). The reader is referred to [3] for detailed discussion
on how such distributions can be obtained. Figure 4 shows a
typical discrete probability distribution for a node per action
(motion direction). Note that in practice the probability mass
is distributed around neighboring nodes and zero otherwise.

Note that the node the robot transitions to depends only on
the node closest to the robot and the action the robot takes.
Thus the navigation problem is modeled as a Markov Decision
Process [18]. To compute the best action at a given node, value
iteration [19] is used on the set of nodes S − sg , where sg

is the goal node. The general idea behind value iteration is to
compute the values (or utilities) for every node and then pick
the actions that yield a path towards the goal with maximum
expected value. The value is incrementally computed:

Vt+1(s) = C(s, a) + max
a∈A(s)

∑

s′∈S−s

P (s′|s, a)× Vt(s
′) (1)

where C(s, a) is the cost associated with moving to the next
node. Usually the cost is chosen to be a negative number which
is smaller than −(minimalreward)

k
, where k is the number of

nodes. The rationale is that the robot should ’pay’ for taking
an action (otherwise any path that the robot might take would
have the same value), however, the cost should not be too big
(otherwise the robot might prefer to stay at the same node).
Initially the value of being at the goal node is set to a large
number and of the other nodes to 0. Given the values, an action
policy is computed for every node s as follows:

π(s) = arg max
a∈A(s)

∑

s′∈S−s

P (s′|s, a)× V (s′); (2)

The standard value iteration algorithm assumes central com-
putation. However its not difficult to implement a distributed
version. The idea is that every node in the network updates its
value and computes the optimal task assignment (navigation
action) for a robot in its vicinity on its own. Once the current
alarm has been changed, every node starts the computation
of the optimal task assignment by updating values according

to Equation 1. Note that the values of neighboring nodes
are needed as well, hence, the node queries its neighbors
for corresponding values. Note that value iteration can be
considered as a form of Dynamic Programming. [20] showed
how to compute general Dynamic Programming problem
distributively.

After the values are computed, every node computes an
optimal policy for itself according to Equation 2. Neighboring
nodes are queried once again for the final value. The computed
optimal action is stored at each marker and is sent as a
SUGGESTION message, to any robots in the vicinity.

The action policy computation is done only once per alarm,
and does not need to be recomputed. The value update
equations have to be executed until the desired accuracy is
achieved. For practical reasons the accuracy in our algorithm is
set to 10−3, which requires a reasonable number of executions
of the value update equation per state (approx. 20) and thus,
the list of values that every node needs to store is small (20).
Since the computation and memory requirements are small it
is possible to implement this approach on the real nodes that
we plan to use (the Mote [21]).

Note that if neighbors of all nodes are known exactly
(per every direction node has at most one neighbor), then
P (s′|s, a) = 1. Hence, equations 1 and 2 reduce to maxi-
mization of utilities of neighboring nodes only. In this case
the system would converge after a single iteration.

VI. SIMULATION EXPERIMENTS

In our experiments we used the Player/Stage [22], [23] sim-
ulation engine populated with simulated Pioneer 2DX mobile
robots equipped with 180◦ field-of-view planar laser range
finders (used for obstacle avoidance), wireless communication
and a mote base station (to communicate with the motes, used
as network nodes). A network of 25 Motes was predeployed
in a test environment. The communication range of motes and
robots was set to approximately 4 meters. The task of the
team of robots is to serve alarms by navigating towards the
point of alarm and minimize the cumulative alarm On Time.
Each alarm’s On Time is computed as the difference between
the time the alarm was served by a robot and the time the
alarm was detected by one of the nodes of the sensor network.
We conducted experiments in an environment of 576m2 with
robot group sizes varying from 1 to 4, 10 trials per group. For
experiments the schedule of 10 alarms was drawn (time-wise)
from a Poisson distribution, with uniformly distributed nodes
that detected the alarm. The parameter of Poisson distribution
was set to λ = 1

60 , which means that the expected number of
alarms is 10 in 600 seconds.

The implementation of the proposed approach in simulation
proceeds as follows. If there are no alarms detected in the
environment, then the robots execute exploration algorithm
of [3], [4]. If an alarm is detected, the network computes
task assignments (navigation fields in our case). Once the
tasks are computed at every node, the robots change from
EXPLORATION to ALARM mode, and traverse the directions
suggested by the network. When a robot reaches an alarm



0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

100

200

300

400

500

600

700

800

900

1000

1100

Number of Robots

O
nT

im
e

DINTA
DINTA−MF

Fig. 5. Experimental comparison between DINTA-MF and DINTA

node, the robot injects an ALARM-OFF message into the
network. Note that if there are multiple alarms active at the
same time, several navigation fields will be produced. Figure 5
shows the On Time comparison for DINTA and DINTA-MF.
In order to test the similarity between the pairs of datasets
for DINTA and DINTA-MF, we ran the T-Test. The T-Test
produced the following p values for correxponding data points:
0.9139 for the first pair of points which means that they are
similar, 0.0081, 0.0897, 0.091 for the last three pairs of points,
which means that they are different. Note that with one robot
the performance of both algorithms is about the same, which
is due to the fact that both approaches reduce to the same
solution. Although, despite the fact that environment becomes
saturated with robots, the proposed approach outperforms its
predecessor as the number of robots in the team increases. The
reason behind this is that every node in the network computes
alarm assignment for every alarm and hence all unassigned
robots are assigned an alarm, which is not necessarily the
case with one assignment field. Note also that DINTA-MF
does not waste resources (robots), whereas in DINTA, several
robots can pursue the same alarm.

Note that space and time requirements for DINTA-MF are
linear in the number of alarms, which makes it realistic for
implementation on our target node platform (the mote). In
addition we plan to extend the proposed approach to allow
online grouping of robots for more complex tasks.

VII. CONCLUSION AND FUTURE WORK

In this paper we introduced DINTA-MF: Multi Field Dis-
tributed In-Network Task Allocation for solving the Online
MRTA (Multi Robot Task Allocation) problem. DINTA-MF
allows us to combine the benefits of a sensor network with
mobility and functionality of robots. The system computes
task assignments distributively in-network while, at the same
time, providing a virtual sensor and communication device that
’extends’ throughout the whole environment and has obvious

Fig. 6. Mobile robot and a Mote in experimental setting.

benefits over traditional OMRTA approaches. The fundamental
assumption, though, is the existence of the sensor network on
which robots can rely.

We compared DINTA-MF with an earlier implementation,
which relies on maintaining a single navigation field consisting
of several subfields. The experimental data show that DINTA-
MF outperforms DINTA. The difference in the On Time
metric is not large though. The reason is that the experimental
environment is not large and the occurrence of alarms is
rather infrequent. Hence the environment and conditions of the
experiment are better suited for DINTA. Another advantage of
using DINTA-MF is that it does not waste resources, whereas
in DINTA, several robots can pursue the same alarm. In
general, DINTA-MF proposes a solution which can handle
alarms (tasks) of high frequencies, represents a multi purpose
distributed manager that can solve a large variety of problems

There are several advantages in using DINTA-MF as op-
posed to other MRTA approaches. The sensor network allows
robot to detect a goal (alarm) even though the alarm is not in
robot’s sensor range. In addition, mobile robots can use sensor
network to relay messages if they are not in the communication
range of each other. One of the other benefits of using DINTA-
MF is distributed in-network computation, which 1. avoids
redundant computation by updating the state of a node based
only on the state of its neighbors and robots in the vicinity
(scalability), 2. computes utilities in the network distributively
and propagates from the goal state (alarm). Another benefit
is the ease of determining relative distance to the goal (for
determining utilities) by considering hop counts from the goal
node. Note also that robots implementing DINTA-MF can
be quite simple - they do not need to localize and map the
environment - they can navigate by listening to the suggestions
from the sensor network.

In future work we plan to extend the current implementation
of DINTA-MF to allow assignment of tasks requiring groups
of, potentially heterogeneous, robots, which would allow more
complex task assignments as well as group formations. We



also plan to conduct further experiments both in simulation
and hardware in varying environments, with tasks of varying
complexity, requiring different numbers of robots. The system
would have to assign not only a task, but also combine
robots in a group if a task requires participation of several
robots. We have completed a set of initial real hardware
experiments. Figure 6 shows Pioneer 2DX mobile robot and
a mica 2 mote during one of the experimental trials. In our
experiments a sensor network of mica 2 motes was deployed
in a cubicle-like environment. The goal was to compute a
navigation field and navigate the robot towards the node that
detected the alarm. We conducted 50 experimental trials for 5
different goal nodes. Each trial was successful. Currently we
are working on further hardware experiments with multiple
goal nodes and distributed task assignment algorithm (DINTA-
MF). Our preliminary results show that the system is compact
enough to fit in our target sensor network node platform (the
Mica2 mote). Further experiments are conducted to check the
reliability of the system and possible implementation for real-
world applications.

VIII. ACKNOWLEDGMENTS

This work is supported in part by NSF grants ANI-0082498,
IIS-0133947, and EIA-0121141.

REFERENCES

[1] B. Gerkey and M. J. Mataric, “Multi-robot task allocation: Analyzing
the complexity and optimality of key architectures,” in To appear in
Proceedings of the IEEE International Conference on Robotics an
Automation (ICRA03), Taipei, Taiwan, 2003.

[2] M. A. Batalin and G. S. Sukhatme, “Sensor network-based multi-robot
task allocation,” in To appear in Proc. of IEEE/RSJ Intl. Conf. On
Intelligent Robots and Systems (IROS’03), Las Vegas, Nevada, 2003,
pp. 1939–1944.

[3] ——, “Coverage, exploration and deployment by a mobile robot and
communication network,” in The 2nd International Workshop on Infor-
mation Processing in Sensor Networks (IPSN ’03), Palo Alto, 2003, pp.
376–391.

[4] ——, “Efficient exploration without localization,” in To appear in
Proc. of IEEE International Conference on Robotics and Automation
(ICRA’03), Taipei, Taiwan, 2003, pp. 2714–2719.

[5] E. H. Ostergard, M. J. Mataric, and G. S. Sukhatme, “Distributed
multi-robot task allocation for emergency handling.” in In Proc. of the
IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS), 2001,
pp. 821–826.

[6] J. Elson, “Time synchronization in wireless sensor networks,” Ph.D.
dissertation, University of California, Los Angeles, May 2003.

[7] M. A. Bender, A. Fernandez, D. Ron, A. Sahai, and S. Vadhan, “The
power of a pebble: Exploring and mapping directed graphs,” in Annual
ACM Symposium on Theory of Computing (STOC ’98), 1998, pp. 269–
278.

[8] G. Dudek, M. Jenkin, E. Milios, and D. Wilkes, “Robotic exploration as
graph construction,” in IEEE Transactions on Robotics and Automation,
7-6, 1991.

[9] J. Svennebring and S. Koenig, “Trail-laying robots for robust terrain
coverage,” in To appear in Proc. of IEEE International Conference on
Robotics and Automation (ICRA’03), Taipei, Taiwan, 2003.

[10] R. Vaughan, K. Stoy, G. S. Sukhatme, and M. Mataric, “Lost:
Localization-space trails for robot teams,” IEEE Transactions on
Robotics and Automation, vol. 18, no. 5, pp. 796–812, 2002.

[11] Q. Li, M. DeRosa, and D. Rus, “Distributed algorithms for guiding
navigation across a sensor network,” in The 2nd International Workshop
on Information Processing in Sensor Networks (IPSN ’03), Palo Alto,
2003.

[12] L. E. Parker, “Alliance: An architecture for fault-tolerant multi-robot
cooperation.” in IEEE Transactions on Robotics and Automation, vol. 14,
no. 2, 1998, p. 220240.

[13] B. B. Werger and M. J. Mataric, Distributed Autonomous Robotic
Systems 4. Springer-Verlag, 2000, ch. Broadcast of Local Eligibility
for Multi-Target Observation, p. 347356.

[14] S. Botelho and R. Alami, “M+: a scheme for multi-robot cooperation
through negotiated task allocation and achievement.” in Proc. of IEEE
International Conferenceon Robotics and Automation (ICRA), 2000, p.
293298.

[15] B. P. Gerkey and M. J. Mataric, “Sold!: Auction methods for multi-
robot coordination.” in IEEE Transactions on Robotics and Automation,
vol. 18, no. 5, 2002, p. 758768.

[16] D. Chapman, “Planning for conjunctive goals,” Artificial Intelligence,
vol. 32, pp. 333–377, 1987.

[17] B. Kalyanasundaram and K. Pruhs, “Online Weighted Matching,” J. of
Algorithms, vol. 14, pp. 478–488, 1993.

[18] D. J. White, Markov Decision Process. West Sussex, England: John
Wiley & Sons, 1993.

[19] S. Koenig and R. G. Simmons, “Complexity analysis of real-time
reinforcement learning applied to finding shortest paths in deterministic
domains,” Carnegie Mellon University, School of Computer Science,
Carnegie Mellon University, Pittsburg, PA 15213, Tech. Rep. CMU-CS-
93-106, December 1992.

[20] D. P. Bertsekas, “Distributed dynamic programming,” IEEE Trans.
Automatic Control, vol. AC-27, no. 3, pp. 610–616, 1982.

[21] K. S. J. Pister, J. M. Kahn, and B. E. Boser, “Smart dust: Wireless
networks of millimeter-scale sensor nodes,” Electronics Research Lab-
oratory Research Summary, 1999.

[22] B. P. Gerkey, R. Vaughan, K. Stoy, A. Howard, G. Sukhatme, and
M. Mataric, “Most valuable player: A robot device server for distributed
control,” in IEEE/RSJ Intl. Conf. On Intelligent Robots and Systems
(IROS), Wailea, Hawaii, 2001.

[23] R. Vaughan, “Stage: a multiple robot simulator,” Institute for Robotics
and Intelligent Systems, University of Southern California, Tech. Rep.
IRIS-00-393, 2000.


