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Abstract. In this work we state and prove a number of foundational results in
the local bifurcation theory of smooth equivariant maps. In particular, we show
that stable one-parameter families of maps are generic and that stability is
characterised by semi-algebraic conditions on the finite jet of the family at the
bifurcation point. We also prove strong determinacy theorems that allow for
high order forced symmetry breaking. We give a number of examples, related
to earlier work of Field & Richardson, that show that even for finite groups
we can expect branches of fixed or prime period two points with submaximal
isotropy type. Finally, we provide a simplified proof of a result that justifies
the use of normal forms in the analysis of the equivariant Hopf bifurcation.
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1. Introduction

Let Γ be a compact Lie group and V be an irreducible finite dimensional non-
trivial representation space for Γ over R or C. In Field & Richardson [22, 23, 24, 25],
a theoretical framework was developed for the local analysis of symmetry breaking
bifurcations1 of one parameter families of smooth Γ-equivariant vector fields on V .
This approach was developed further in [16, 21], where genericity and determinacy
theorems were proved for bifurcation problems defined on general real or complex
irreducible representations. Taken together, these results imply that there is a finite
classification of branching patterns of stable families, that the stability of a family
is determined by a finite jet at the bifurcation point (finite determinacy), and that
branches persist generically under high order symmetry breaking perturbations
(strong determinacy). We refer the reader to [19] for a discussion of some of these
results and their proofs. Suffice it to say that techniques are typically geometric
and depend on ideas from real algebraic geometry, equivariant transversality and
resolution of singularities (“blowing-up”). Our aim in this work is to develop an
analogous theory for smooth families of Γ-equivariant maps. Specifically, we study
bifurcations of generic one-parameter families of Γ-equivariant maps defined on
an irreducible representation (V,Γ). Rather than looking for branches of relative
equilibria (or limit cycles), we search for branches of invariant group orbits. If Γ is
finite, branches consist of fixed points or points of prime period two and some of
our results extend work of Chossat & Golubitsky [8], Peckham & Kevrekidis [33],
and Vanderbauwhede [38] to situations where the equivariant branching lemma
does not apply. The reader should also note the important work by Ruelle [35] on
bifurcations of equivariant maps (and vector fields). Using our results on families
of maps we provide a simplified analysis of the effect of breaking normal form
symmetries in the equivariant Hopf bifurcation. This approach avoids the use of
the somewhat technical normal hyperbolicity results proved in [21, Appendix].

1We refer the reader to [28], [24, Introduction] for an overview and background on symmetry
breaking and equivariant bifurcation theory.
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In more detail, we start in §2 with a review of basic notations and facts about
group actions, representations and dynamics of equivariant maps. In §3, follow-
ing [24], we cover the basic definitions of stable family, branching pattern and
determinacy for equivariant maps. We conclude with the definition of strong de-
terminacy which allows for forced symmetry breaking. In §4, we prove genericity
and determinacy theorems for one-parameter families of equivariant maps (Theo-
rems 4.5.3, 4.5.7, 4.6.5, 4.7.1). These results are proved using techniques based on
equivariant transversality and stratified sets. Essentially, we show that our concept
of genericity (or determinacy) can be formulated in terms of transversality condi-
tions to stratified sets. Granted this, genericity and determinacy theorems follow
easily using standard transversality theory. We conclude §4 with a version of the
invariant sphere theorem [16] for maps (Theorem 4.8.1) and show how this can
be used to prove a partial extension of Fiedler’s Hopf bifurcation theorem [10] to
maps. Using results from [25], we present in §5 a large class of examples based on
the series of finite reflection groups W (Bn), n ≥ 2. In particular, we give many
examples where there are stable submaximal branches of fixed points or points
of prime period two. In §6, we prove a strong determinacy theorem for families
of equivariant maps (Theorem 6.1.1). The methods used here are very similar to
of [21, §§7–10] and depend on resolution of singularities arguments and, in the case
of non-Abelian non-finite compact Lie groups, recent results of Schwarz [36] on the
coherence of orbit strata. We conclude the section by showing how the strong de-
terminacy theorem can be used to justify the use of normal forms in the analysis
of period doubling bifurcations for equivariant maps (Theorems 6.3.3, 6.3.5). Fi-
nally, in §7, we show how our results on families of equivariant maps can be used
to justify the use of normal forms in the equivariant Hopf bifurcation theorem for
vector fields (Theorem 7.2.1). Using blowing-up arguments, we reduce the study of
the Γ× S1-equivariant Hopf bifurcation to an analysis of a Γ-equivariant family of
(blown-up) Poincaré maps.

1.1. Acknowledgements. We thank Marty Golubitsky for helpful conversations
on period doubling and for telling us of the works by Vanderbauwhede and Peckam
& Kevrekidis. Thanks also to Muriel Kœnig and Pascal Chossat for a number of
stimulating conversations on the equivariant Hopf bifurcation which encouraged
us to write down the simplified proof of the equivariant Hopf bifurcation theorem
presented in §7.

2. Technical Preliminaries and Basic Notations

As far as possible we shall follow the notational conventions of [21, 22].

2.1. Generalities on groups. Throughout, we shall be considering compact Lie
groups Γ. If H is a (closed) subgroup of Γ, we let N(H) denote the normalizer of
H in Γ and C(H) denote the centralizer of H in Γ. Obviously, C(H) ⊂ N(H). We
let H0 denote the identity component of H.

2.2. Γ-sets and isotropy types. Let Γ be a group and X be a Γ-set. If x ∈ X,
then Γ · x denotes the Γ-orbit of x and Γx denotes the isotropy subgroup of Γ at x.
We refer to the conjugacy class (Γx) of Γx in Γ as the isotropy type or orbit type of
x. We let O(X,Γ) denote the set of isotropy types for the Γ-set X. We abbreviate
O(X,Γ) to O if X and Γ are implicit from the context. For x ∈ Γ, we let ι(x)
denote the isotropy type of x. If τ ∈ O(X,Γ), we let Xτ = {x ∈ X | ι(x) = τ} be
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the set of points of isotropy type τ . We let XΓ denote the fixed point set for the
action of Γ on X. We define the usual partial order on O(X,Γ) by “τ > µ, if there
exists H ∈ τ , K ∈ µ such that H ⊃ K, H 6= K”.

2.3. Representations. Let V be a nontrivial (finite-dimensional) real represen-
tation space for Γ. We assume that V has a positive definite Γ-invariant inner
product ( , ) with associated norm | · | and regard Γ as acting on V by orthogonal
transformations.

If V is a nontrivial complex representation space for Γ, we assume that V has
a positive definite Γ-invariant hermitian inner product < ,> and regard (V,Γ) as a
unitary representation. If we let ( , ) denote the real part of < ,>, then ( , ) is a Γ-
invariant inner product on V . We let JV denote the complex structure on V defined
by scalar multiplication by ı. If we regard S1 ⊂ C as the group of complex numbers
of unit modulus, we may extend the action of Γ on V to an action of Γ× S1 on V .
The resulting representation (V,Γ× S1) is complex and both < ,> and ( , ) will be
Γ× S1-invariant. We reserve the notation S1 for the group of complex numbers of
unit modulus and take the S1-action on V defined by scalar multiplication.

Suppose that (V,Γ) is a real irreducible representation and let LΓ(V, V ) denote
the space of all Γ-equivariant R-linear endomorphisms of V . We recall Frobenius’
Theorem [30, 7.7] that LΓ(V, V ) is isomorphic to either R, C or H (the quaternions).

Definition 2.3.1. Let (V,Γ) be a nontrivial irreducible real representation.
(1) (V,Γ) is absolutely irreducible if LΓ(V, V ) ∼= R.
(2) (V,Γ) is irreducible of complex type if LΓ(V, V ) ∼= C.
(3) (V,Γ) is irreducible of quaternionic type if LΓ(V, V ) ∼= H.

Remark 2.3.2. If (V,Γ) is irreducible of complex type, we may give V the structure
of a complex vector space so that (V,Γ) is irreducible as a complex representation.
We take as complex structure on V any element of LΓ(V, V ) whose square is −IV .
This choice is unique up to multiplication by ±IV . Elements of LΓ(V, V ) will then
be complex scalar multiples of the identity map of V . Similar remarks hold for the
quaternionic case. ♦

Suppose that (W,Γ) is absolutely irreducible. The action of Γ on W extends to
a C-linear action on the complexification V = W ⊗R C of W . The representation
(V,Γ) is then irreducible as a complex representation. More generally, we recall the
following basic result [5] on complex representations.

Lemma 2.3.3. Let (V,Γ) be an irreducible complex representation. Then one of
the following three exclusive possibilities must occur.

(R) (V,Γ) is isomorphic to the complexification of an absolutely irreducible rep-
resentation.

(C) If we regard (V,Γ) as a real representation, then (V,Γ) is of complex type.
(Q) If we regard (V,Γ) as a real representation, then (V,Γ) is of quaternionic

type.

Definition 2.3.4 ([21, §2]). Let (V,Γ) be a complex representation. We say that
(1) (V,Γ) is complex irreducible if (V,Γ) is nontrivial, irreducible and not of

quaternionic type.
(2) (V,Γ) is tangential if (V,Γ) is complex irreducible and Γ ⊃ S1.
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Example 2.3.5. Let (V,Γ) be a complex representation. The natural action of S1

on V commutes with Γ. Set G = Γ× S1. Then (V,G) is a complex representation
of G. If (V,Γ) is complex irreducible, then (V,G) is tangential. ♥

2.4. Isotropy types for representations. Let (V,Γ) be a finite dimensional real
representation. It is well-known and elementary that the set O(V,Γ) = O of
isotropy types is finite. Obviously, we always have (Γ) ∈ O. We define O? = O\(Γ).
If τ , µ ∈ O, it follows from linearity and slice theory that

τ > µ if and only if Vτ ⊂ ∂Vµ
We say that an orbit type τ is maximal (respectively, submaximal) if (i) τ 6= (Γ)
and (ii) µ > τ implies µ = (Γ) (respectively, τ 6= (Γ) and τ is not maximal). Given
τ ∈ O, choose x ∈ Vτ and let N(Γx) denote the normalizer of Γx in Γ. Define

gτ = dim(Γ · x), nτ = dim(N(Γx)/Γx)

Of course, gτ and nτ depend only on τ and not on the choice of x in Vτ .

2.5. Polynomial Invariants and Equivariants. Let P (V ) denote the R-algebra
of R-valued polynomial functions on V and P (V, V ) be the P (V )-module of all
polynomial maps of V into V . For k ∈ N, we let P k(V ) (respectively, P (k)(V ))
denote the vector space of all homogeneous polynomials (respectively, polynomials)
of degree k. We similarly define the spaces P k(V, V ) and P (k)(V, V ). If (V,Γ) is
a finite dimensional real representation, we let P (V )Γ denote the R-subalgebra of
P (V ) consisting of invariant polynomials, and PΓ(V, V ) denote the P (V )Γ-module
of Γ-equivariant polynomial endomorphisms of V . If (V,Γ) has the structure of a
complex representation, then PΓ(V, V ) may be given the structure of a complex
vector space, with scalar multiplication defined by P 7→ λP , λ ∈ C.

In the sequel, we assume that (V,Γ) is nontrivial and either absolutely irreducible
or complex irreducible. We let F = {F1, . . . , Fk} be a minimal set of homogeneous
generators for the P (V )Γ-module PΓ(V, V ) and let FV denote the real vector sub-
space of PΓ(V, V ) spanned by F . Let di = degree(Fi), 1 ≤ i ≤ k. We order the Fi
so that d1 ≤ d2 ≤ . . . ≤ dk. If (V,Γ) is absolutely irreducible, we may suppose that
F1 = IV and di ≥ 2, i > 1. If (V,Γ) is complex irreducible, we may suppose that
F1 = IV , F2 = JV and di ≥ 2, i > 2.

Lemma 2.5.1. Suppose that (V,Γ) is a complex representation. We may choose
F so that FV is a complex vector subspace of PΓ(V, V ). If we set J = S1 ∩Γ, then
FV is invariant under the J-action defined by νg(F ) = g ◦ F = F ◦ g, g ∈ J . In
particular, Rk inherits from FV the natural structure of a complex J-representation.

Proof: Let H be a minimal set of homogeneous generators for PΓ(V, V ), regarded
as a module over the complex valued invariants. Take F = H ∪ ıH.

Remarks 2.5.2. (1) In the sequel we always assume that if (V,Γ) is complex ir-
reducible then the set F of generators for PΓ(V, V ) satisfies the hypotheses of
Lemma 2.5.1. If exp(ıθ) ∈ S1 ∩ Γ, we shall let νθ : Rk→Rk denote the linear
isomorphism of Rk induced by multiplication by exp(ıθ). (2) Lemma 2.5.1 applies
when Γ ∩ S1 = {e}. Suppose that H 6= Γ is an isotropy group. Regard N(H)/H
as a subgroup of O(V H) and set H? = N(H)/H ∩ S1. Since the S1 action on V H

is a restriction of the S1-action on V , and F |V H is N(H)/H-equivariant, F ∈ FV ,
it follows that FHV = {F |V H | F ∈ FV } is H?-invariant. ♦



6 MIKE FIELD

2.6. Smooth families of equivariant maps. Let C∞Γ (V × R, V ) denote the space
of smooth (that is, C∞) Γ-equivariant maps from V × R to V , where Γ acts on
V × R as (v, λ) 7→ (gv, λ). Let C∞(V × R)Γ denote the space of smooth R-valued
invariant functions on V × R. We give C∞Γ (V × R, V ) and C∞(V × R)Γ the C∞

topology. Let f ∈ C∞Γ (V × R, V ). It follows either from the theory of closed ideals
of differentiable functions (see [12]) or from Schwarz’ theorem on smooth invariants
(see [34]) that we may write

fλ(x) = f(x, λ) =
k
∑

i=1

fi(x, λ)Fi(x),

where fi ∈ C∞(V × R)Γ, 1 ≤ i ≤ k.

2.7. Normalized families. Suppose f ∈ C∞Γ (V × R, V ) and (V,Γ) is irreducible.
Clearly, x = 0 is a fixed point of f(x, λ) = x. We refer to x = 0 as the trivial branch
of fixed points for f .

Lemma 2.7.1. Suppose that f ∈ C∞Γ (V × R, V ), λ0 ∈ R and Dfλ0 has no eigen-
values of unit modulus. We may choose a neighborhood U of (0, λ0) in V ×R, such
that if (x, λ) ∈ U and fλ(x) ∈ Γ · x then x = 0.

Proof: Suppose that (V,Γ) is a complex representation (the proof when (V,Γ) is
absolutely irreducible is similar). It follows from the irreducibility of (V,Γ) that
Dfλ = σf (λ)IV , where σf : R→C is smooth. Without loss of generality, suppose
|σf (λ)| > 1. It follows by continuity that we can choose a compact neighborhood
J of λ0 such that |σf (λ)| > 1 on J . Hence, for each λ ∈ J , x = 0 is a hyperbolic
repelling point of fλ. Let Dr denote the closed disc, center zero, radius r in V .
Since J is compact, it follows from the mean value theorem that we can choose
r > 0, c > 1, such that for all x ∈ Dr, λ ∈ J , we have ‖f(x)‖ ≥ c‖x‖. Hence there
are no fixed orbits for f in U = Dr × J .

It follows from Lemma 2.7.1 that bifurcations of the trivial branch of fixed points
only occur when Dfλ(0) has an eigenvalue on the unit circle. In particular, note
that our interest is in finding branches of invariant group orbits not just fixed points.

Just as in [22, 23, 24, 21], we restrict attention to families f that have a non-
degenerate change of stability of the trivial branch of fixed points at λ = 0:

(1) |σf (0)| = 1, |σf (0)|′ 6= 0

Reparametrizing the bifurcation variable λ and noting that we shall only be inter-
ested in (generic) behavior of f near the origin of V × R, it is no loss of generality
to restrict attention to the space

M(V,Γ) = {f ∈ C∞Γ (V × R, V ) | σf (λ) = exp(ıω(λ))(1 + λ)},

where ω : R→R is a smooth map. In case (V,Γ) is absolutely irreducible, we replace
the term exp(ıω(λ))(1 + λ) by ±1 + λ.

In the sequel, we refer to elements of the spacesM(V,Γ) as normalized families.
If θ ∈ [0, 2π), we define Mθ(V,Γ) = {f ∈ M(V,Γ) | ω(0) = θ}. If (V,Γ) is ab-
solutely irreducible, we let M+(V,Γ), M−(V,Γ) denote the subspaces of M(V,Γ)
corresponding to σf (0) = 1, σf (0) = −1 respectively.
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3. Branching and invariant group orbits

After briefly reviewing some basic definitions about invariant group orbits for
equivariant maps, we discuss branching and stability for 1-parameter families of
equivariant maps. We assume the reader has some familiarity with the basic defi-
nitions and results about normal hyperbolicity described in Hirsch et al. [29].

3.1. Invariant group orbits and normal hyperbolicity. Let M be a smooth
Γ-manifold. Suppose that f : M→M is a smooth and Γ-equivariant. We say that
a Γ-orbit α ⊂ M is an f-invariant orbit if f(α) = α. It follows from equivariance
that α is an f -invariant orbit if and only if there exists x ∈ α such that f(x) ∈ α. If
Γ (or α) is finite, each point of α is a periodic point of f and the stability condition
we require is that α consists of hyperbolic periodic points. If Γ is infinite, the
natural stability condition is to require that f is normally hyperbolic at α. We
refer to [13] for basic properties of normally hyperbolic group orbits. As we shall
be considering nondegenerate bifurcations off the trivial solution, we may and shall
assume that maps are diffeomorphisms – at least on some neighborhood of invariant
group orbits.

A spectral characterization of normal hyperbolicity for invariant group orbits is
given in [13, 17]. We recall without proof the main definitions and results from [17]
that we need.

Lemma 3.1.1 ([17, Proposition 5.2], [14, Lemma D]). Let α be an f-invariant
Γ-orbit and U be a Γ-invariant neighborhood of α. Suppose that f(x) ∈ N(Γx)0 · x,
for some (hence any) x ∈ α. Then there exists a smooth map χ : M→Γ such that

(1) χ(y) = e, y ∈M \ U .
(2) χ(y) ∈ C(Γy)0, all y ∈M .
(3) If we define f̃ : M→M by f̃(y) = χ(y)f(y), then f̃ is equivariant and f̃ |α

is the identity map.

Suppose that α is an f -invariant Γ-orbit of isotropy τ and f(x) ∈ N(Γx)0 · x,
x ∈ α. It follows from Lemma 3.1.1 that we may find a smooth Γ-equivariant
map f̃ such that f̃ |α is the identity and f̃ , f induce the same map on M/Γ. Since
f̃(x) = x, x ∈ α, Txf̃ : TxM→TxM . Let spec(f̃ , x) denote the set of eigenvalues,
with multiplicities, of Txf̃ . Then spec(f̃ , x) depends only on f̃ and is independent
of x ∈ α [17]. We define spec(f̃ , α) to be equal to spec(f̃ , x), any x ∈ α.

Before giving the next definition, we recall that S1 acts on C by scalar multipli-
cation and that C/S1 ∼= R+.

Definition 3.1.2. Let f, f̃ , α be as above.
(1) The (reduced) spectrum SPEC(f, α) of f along α is the subset of R+ defined

by
SPEC(f, α) = spec(f̃ , α)/S1

(2) The index of f along α, index(f, α), is defined to be the number of elements
of SPEC(f, α) less than 1 (counting multiplicities).

Remarks 3.1.3. (1) It is shown in [13, 17] that the definition SPEC(f, α) depends
only on f and α and not on the choice of f̃ . Note also that the reduced spectrum
may be defined even if f(x) ∈ N(Γx) · x, as opposed to N(Γx)0 · x. We refer to [13]
for details. (2) SPEC(f, α) contains at least gτ elements equal to one. ♦
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Proposition 3.1.4 ([13]). Let f : M→M be a smooth Γ-equivariant map and α
be an f-invariant Γ-orbit of isotropy type τ . Then α is normally hyperbolic if and
only if 1 ∈ SPEC(f, α) has multiplicity gτ .

We conclude this subsection by recalling the following lemma giving a decompo-
sition of f into ‘tangent and normal’ components near an invariant Γ-orbit.

Lemma 3.1.5 ([17, Lemma 6.2]). Let α be an f-invariant Γ-orbit and α(f) ≥ 1
be the smallest integer such that fα(f)|α is Γ-equivariantly isotopic to the iden-
tity. Suppose that U,U ′ are open Γ-invariant tubular neighborhoods of α such that
U, f(U) ⊂ U ′. Denote the corresponding families of slices determined by U,U ′

by S = {Sx|x ∈ α}, S ′ = {S ′x|x ∈ α}, respectively. There exist smooth maps
ρ : U → Γ, h : U → U ′ satisfying:

(1) fα(f)(y) = ρ(y)h(y), y ∈ U .
(2) h : U → U ′ is an equivariant embedding.
(3) h : Sx → S′x, all x ∈ α.
(4) ρ(y) ∈ C(Γy), all y ∈ U .
(5) α is normally hyperbolic if and only if each (any) x ∈ α is a hyperbolic fixed

point of h|Sx.

3.2. Branches of invariant Γ-orbits. Next we discuss families of maps and
branches of invariant group orbits. Most of what we say is a natural extension
of the corresponding definitions for vector fields given in [24, 21]. We assume
throughout that (V,Γ) is either absolutely irreducible or complex irreducible.

Definition 3.2.1. Given f ∈M(V,Γ), let

I(f) = {(x, λ) | fλ(x) ∈ Γ · x}
B(f) = {(x, λ) ∈ I(f) | Γ · x is not normally hyperbolic}

Both I(f) and B(f) are closed Γ-invariant subsets of V × R. We refer to B(f) as
the bifurcation set of f and D(f) = (I(f),B(f)) as the bifurcation diagram of f .

For each τ ∈ O(V,Γ), choose H ∈ τ and set ∆τ = Γ/H. Every Γ-orbit of
isotropy type τ is smoothly Γ-equivariantly diffeomorphic to ∆τ .

Definition 3.2.2. Let f ∈ M(V,Γ) and τ ∈ O(V,Γ). A branch of invariant
Γ-orbits (of isotropy type τ) for f at zero consists of a C1 Γ-equivariant map

φ = (ρ, λ) : [0, δ]×∆τ→V × R
such that λ is independent of u ∈ ∆τ and

(1) φ(0, u) = (0, 0), all u ∈ ∆τ .
(2) For all t ∈ (0, δ], αt = ρ(t,∆τ ) is an fλ(t)-invariant Γ-orbit of isotropy τ .
(3) For every u ∈ ∆τ , the map φu : [0, δ]→V ×R, t 7→ φ(t, u) is a C1-embedding.

If, in addition, we can choose δ > 0 so that
(4) For all t ∈ (0, δ], fλ(t) is a normally hyperbolic at αt,

we refer to φ as a branch of normally hyperbolic invariant Γ-orbits for f at zero.

Remark 3.2.3. Typically, parametrizations φ satisfying Definition 3.2.2 are smooth.
In fact, if φ is smooth, satisfies (1,2) and φu has initial exponent 1 < p <∞, then we
may define a new parametrization by φ̃(t, u) = φ(t

1
p , u). Although φ̃ is no longer

smooth, it satisfies all the conditions of the definition. Subsequently, when we
address the problem of constructing explicit parametrizations, we always construct



SYMMETRY BREAKING FOR EQUIVARIANT MAPS 9

smooth parametrizations with (minimal) finite initial exponent, possibly greater
than one. Whether we work with smooth or C1-parametrizations, the main point
is that the direction of branching should be well-defined at t = 0. ♦

Let f ∈M(V,Γ). We regard two branches of invariant Γ-orbits for f as equivalent
if they differ only by a (local) reparametrization. If φ is a branch, we let [φ] denote
its equivalence class and we identify [φ] with the germ of the image of φ at the
origin of V × R.

Example 3.2.4. Define c+, c− : [0,∞)→V × R by c±(s) = (0,±s), s ∈ [0,∞).
Then c± define two trivial branches of fixed points for any f ∈ V(V,Γ). ♥

3.3. The branching pattern.

Definition 3.3.1 ([24, §1, §3]). Let f ∈ M(V,Γ). The branching pattern Ξ(f) of
f is the set of all equivalence classes of non-trivial branches of invariant orbits for
f . Each point in Ξ(f) is labelled with the isotropy type of the associated branch.

3.4. Stabilities. We refine our definition of the branching pattern to take account
of stabilities. Suppose that φ = (ρ, λ) is a branch of normally hyperbolic invariant
group orbits of isotropy type τ for f ∈M(V,Γ). By continuity, index(fλ(t), ρ(t,∆τ ))
is constant, t > 0, and we define the index of φ, index(φ), to be the common
value of the indices of the non-trivial invariant orbits along the branch. We define
index([φ]) = index(φ) and note that index([φ]) depends only on the the equivalence
class of φ. If all the branches of f are normally hyperbolic, then index is a well
defined N-valued map on Ξ(f).

Lemma 3.4.1. Let f ∈ M(V,Γ) and suppose that φ is a branch of normally
hyperbolic invariant Γ-orbits. Then φ is either a supercritical or subcritical branch.

Proof: Similar to that of Lemma 3.4.2 [21].
If [φ] ∈ Σ(f) is a normally hyperbolic branch we define sign([φ]) to be +1 if the

branch is supercritical and −1 if it is subcritical. It follows from Lemma 3.4.1 that
sign is well-defined on the set of normally hyperbolic branches.

3.5. Branching conditions. Following [24], we consider the following branching
conditions on f ∈M(V,Γ):

B1 There is a finite set φ1, . . . , φr+2 of branches of invariant Γ-orbits for f , with
images C1, . . . , Cr+2, such that

(1) Ξ(f) = {[φ1], . . . , [φr]}, [φr+1] = [c+], [φr+2] = [c−].
(2) There is a neighborhood N of (0, 0) in V × R such that if (x, λ) ∈ N and

Γ · x is fλ-invariant then

Γ · x× {λ} ⊂ ∪r+2
j=1Cj

(3) If i 6= j, then Ci ∩ Cj = {(0, 0)}.
B2 Every [φ] ∈ Ξ(f) is a branch of normally hyperbolic f -invariant Γ-orbits.

Definition 3.5.1 ([24]). A family f ∈ M(V,Γ) is weakly regular if f satisfies the
branching condition B1. If, in addition, f satisfies the branching condition B2, we
say that f is regular.

Remark 3.5.2. If f is regular then (0, 0) ∈ V × R is an isolated point of B(f). ♦
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3.6. The signed indexed branching pattern.

Definition 3.6.1. Suppose f ∈ M(V,Γ) is regular. The signed indexed branching
pattern Ξ?(f) of f consists of the set Ξ(f), labelled by isotropy types, together with
the maps index : Ξ(f)→N and sign : Ξ(f)→{±1}.

Every regular family f has a well-defined signed indexed branching pattern Ξ?(f)
which describes the stabilities of the f -invariant Γ-orbits on some neighborhood of
zero.

Definition 3.6.2. Let f, g ∈M(V,Γ) be weakly regular. We say that Ξ(f) is iso-
morphic to Ξ(g) if there is a bijection between Ξ(f) and Ξ(g) preserving isotropy
type. If f, g are regular, we say that Ξ?(f) is isomorphic to Ξ?(g) if Ξ(f) is isomor-
phic to Ξ(g) by an isomorphism preserving the sign and index functions.

3.7. Stable families.

Definition 3.7.1 (cf. [24, §2]). A family f ∈ M(V,Γ) is stable if there is an
open neighborhood U of f in M(V,Γ) consisting of regular families such that for
every continuous path {ft | t ∈ [0, 1]} in U with f0 = f there exist a compact
Γ-invariant neighborhood A of zero in V ×R and a continuous equivariant isotopy
K : A× [0, 1]→V × R of embeddings satisfying

(1) K0 = IdA.
(2) Kt(I(f) ∩A) = Kt(A) ∩ I(ft), t ∈ [0, 1].

Let S(V,Γ) denote the subset of M(V,Γ) consisting of stable families.

Proposition 3.7.2.
(1) S(V,Γ) is an open subset of M(V,Γ).
(2) If f , f ′ lie in the same connected component of S(V,Γ) then f and f ′ have

isomorphic signed indexed branching patterns.

Proof: We refer the reader to [24, §2].

3.8. Determinacy. We conclude this section by extending the definitions of de-
terminacy and strong determinacy given in [21, §3] to families of equivariant maps.
As usual, if f ∈M(V,Γ), q ∈ N, we let jqf0(0) denote the q-jet of f0 at (0, 0).

Definition 3.8.1. Γ-equivariant bifurcation problems on V are (generically) finite-
ly determined if there exists q ∈ N and an open dense semi-algebraic subset S(q)
of P (q)

Γ (V, V ) such that if f ∈M(V,Γ) and jqf0(0) ∈ S(q) then f is stable.

Remarks 3.8.2. (1) We say Γ-equivariant bifurcation problems on V are (generi-
cally) q-determined if q is the smallest positive integer for which we can find S(q)
satisfying the conditions of Definition 3.8.1. For this value of q, we let R(q) de-
note the maximal semi-algebraic open subset of P (q)

Γ (V, V ) satisfying the condi-
tions of Definition 3.8.1. Granted this Definition of R(q), we shall say that f is
q-determined if jqf0(0) ∈ R(q). (2) Let f ∈ M(V,Γ) be q-determined and set
Q = jqf0(0) − j1f0(0). Define JQ ∈ M(V,Γ) by JQ(x, λ) = Dfλ(0)(x) + Q(x).
Then f and JQ have isomorphic signed indexed branching patterns. ♦

We may give refined definitions of stability and determinacy that allow for per-
turbations by maps which are only equivariant to some finite order.

Given f ∈ C∞(V × R, V ), d ≥ 1, let f [d] = jdf(0, 0) ∈ P (d)(V × R, V ).
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Let H be a closed subgroup of Γ and let H act on V × R and V by restriction
of the action of Γ. For d ≥ 1, define

M[d]
0 [Γ : H] = {f ∈ C∞H (V × R, V ) | f [d] ∈ P (d)

Γ (V × R, V )}

If H = {e}, set M[d]
0 [Γ : H] =M[d]

0 [Γ].

Definition 3.8.3. Let H ⊂ Γ be a closed subgroup, N be a smooth compact
H-manifold and f ∈ M[1]

0 [Γ : H]. Let 1 ≤ r ≤ ∞. A Cr-branch of normally
hyperbolic invariant submanifolds of type N for f consists of a C1 H-equivariant
map φ = (ρ, λ) : [0, δ]×N→V × R satisfying the following conditions:

(1) φ(0, x) = (0, 0), all x ∈ N .
(2) The map λ : [0, δ]×N→R depends only on t ∈ [0, δ].
(3) For each t ∈ (0, δ], ρt(N) = Nt is a normally hyperbolic submanifold of V

for fλ(t).
(4) φ|(0, δ]×N is a Cr H-equivariant embedding and for all (t, x) ∈ [0, δ]×N ,

∂φ
∂t (t, x) 6= 0.

Remarks 3.8.4. (1) We emphasize that we only require the manifolds ρt(N) in
Definition 3.8.3 to be Cr. Of course, in Definition 3.2.2, the invariant manifolds
are Γ-orbits and therefore smoothly embedded. (2) In the usual way, we regard
branches as equivalent if they differ only by a local Cr reparametrization. (3) Let
f ∈ M[1]

0 [Γ : H] and φ : [0, δ]×N→V × R be a Cr-branch of normally hyperbolic
invariant submanifolds of type N for f . For t > 0, let {W ss(Nt, x) | x ∈ Nt}
denote the strong stable foliation of W s(Nt). The the dimension of W ss(Nt, x)
is independent of x and t ∈ (0, δ] and we define index(φ) = dim(W ss(Nt, x)),
t ∈ (0, δ]. Finally, for possibly smaller δ > 0, we may show that φ is either sub- or
supercritical. ♦

Suppose that f ∈ M(V,Γ) is regular. Choose a Γ-invariant neighborhood A of
zero in V × R such that

A ∩ I(f) =
⋃

i∈I

Ei

where each Ei is a (the image of) branch of normally hyperbolic Γ-orbits. We call
E = {Ei | i ∈ I} a local representation of I(f) at zero. Given E ∈ E , let τ(E)
denote the isotropy type of the branch E.

Definition 3.8.5. Let f ∈ M(V,Γ) be stable and E = {Ei | i ∈ I} be a local
representation of I(f) at zero. Let H be a closed subgroup of Γ and d ∈ N. We say
f is (d,H)-stable if there exists an open neighborhood U of f in M[d]

0 [G : H] such
that for every continuous path {ft | t ∈ [0, 1]} in U with f0 = f , there exists an H-
invariant compact neighborhood A of zero in V ×R and a continuous H-equivariant
isotopy K : A× [0, 1]→V × R of embeddings such that

(1) K0 = IdA.
(2) For every E ∈ E , t ∈ [0, 1], Kt(A ∩ E) is a branch of normally hyperbolic

submanifolds of type ∆τ(E) for ft.

Remarks 3.8.6. (1) If H = {e} in Definition 3.8.5, we say f is strongly d-stable.
(2) In (2) of Definition 3.8.5, we implicitly assume that the branch is Cr for some
r ≥ 1. The differentiability class does not play a major role in our results and the
strong determinacy theorem that we prove holds for all r, 1 ≤ r <∞. ♦



12 MIKE FIELD

Definition 3.8.7. We say Γ-equivariant bifurcation problems on V are (generi-
cally) strongly determined if there exist d ∈ N and an open dense semi-analytic
subset S(d) ⊂ P

(d)
Γ (V, V ) such that if f ∈ M(V,Γ) and jdf0(0) ∈ S(d) then f is

strongly d-stable.

Remarks 3.8.8. (1) We shall say that Γ-equivariant bifurcation problems on V are
(generically) strongly d-determined if d is the smallest positive integer for which
we can find S(d) satisfying the conditions of Definition 3.8.7. For this value of d,
we let N (d) denote the maximal semi-analytic open subset of P (d)

Γ (V, V ) satisfy-
ing the conditions of Definition 3.8.7. We say that f is strongly d-determined if
jdf0(0) ∈ N (d). (2) Let H a closed subgroup of Γ. We say that Γ-equivariant
bifurcation problems on V are (generically) strongly H-determined if there exist
d ∈ N and an open and dense semi-analytic subset S(d) ⊂ P (d)

Γ (V, V )0 such that if
f ∈M(V,Γ) and jdf0(0) ∈ S(d) then f is (d,H)-stable. Modulo statements about
H-equivariance of isotopies (see Definition 3.8.5), it is clear that strong-determinacy
implies strong H-determinacy for all closed subgroups H of Γ. ♦

4. Genericity theorems

In this section, we prove our basic genericity and determinacy theorems for Γ-
equivariant bifurcation problems on V . The approach we use is broadly similar to
that followed in [16, Appendix], [22, §5] and, in particular, [21, §4]. Our results hold
for general absolutely or complex irreducible representations of compact Lie groups.
We assume known basic facts about semi-algebraic sets and Whitney stratified sets.
We refer the reader to [22], [21, §4] for a brief review of these topics and to Costi [9],
Mather [32] and Gibson et al. [26] for more detailed presentations.

4.1. Invariant and equivariant generators. Let F = {F1, . . . , Fk} be a minimal
set of homogeneous generators for the P (V )Γ-module PΓ(V, V ) and P = {p1, . . . , p`}
be a minimal set of homogeneous generators for the R-algebra P (V )Γ. Set P =
(p1, . . . , p`) : V→R` and note that P : V→R` may be regarded as the orbit map of
V onto V/Γ ⊂ R`.

4.2. The varieties Σ, Ξ. Define F : V × Rk→V by F (x, t) =
∑k
i=1 tiFi(x) and

let

Σ = {(x, t) ∈ V × Rk | F (x, t) ∈ TxN(Γx) · x}
Ξ = {(x, t) ∈ V × Rk | P (x) = P (F (x, t))}

Obviously Ξ is a Γ-invariant real algebraic subset of V × Rk and F (x, t) ∈ Γ · x if
and only if (x, t) ∈ Ξ. Moreover, if (x, t) ∈ Ξ, then F (x, t) ∈ N(Γx) · x.

Remarks 4.2.1. (1) The variety Σ was defined in [22, 16, 21] and plays a basic role
in the codimension 1 bifurcation theory of smooth Γ-equivariant vector fields. We
refer to these works, especially [21, §4], for properties of Σ. Much of what we do in
this section will be a relatively straightforward extension of this theory to Ξ. (2)
If (V,Γ) is complex irreducible, then we assume (see Lemma 2.5.1, Remarks 2.5.2)
that F is chosen so that FV has the structure of a complex vector space. In
particular, k will be even and we may identify Rk with Cm, where k = 2m. ♦

Example 4.2.2. Suppose that Γ is finite. Define Ξ+ = {(x, t) ∈ V ×Rk | F (x, t) =
x}. Obviously, Ξ+ ⊂ Ξ. However, it is not generally true that Ξ+ = Ξ. For example,
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if Γ = Z2 acts non-trivially on R, then P (x) = x2 and F (x, t) = tx. Hence Ξ is the
zero variety of x2(t2 − 1) while Ξ+ is the zero variety of x(t− 1). ♥

For each τ ∈ O(V,Γ), we let Ξτ denote the subset of Ξ consisting of points of
isotropy type τ . Clearly, Ξ is the disjoint union over O(V,Γ) of the sets Ξτ . Since
(V,Γ) is a non-trivial irreducible representation, Ξ(Γ) = {0} × Rk.

4.3. Geometric properties of Ξ. Suppose that H ∈ τ ∈ O?. Then N(H)/H
acts on the fixed point space V H .

Remark 4.3.1. For future reference, note that if −I ∈ Γ and H ∈ τ ∈ O?, then
−I ∈ N(H)/H, where we regard N(H)/H as a subgroup of the orthogonal group
of V H . Similarly, if (V,Γ) is complex irreducible and Γ ⊃ S1, then N(H)/H ⊃ S1,
where the S1 action on V H is the restriction of the action of S1 on V . In general,
N(H)/H may contain −I or S1 without the same being true for Γ. ♦

Lemma 4.3.2. Suppose that (x0, t0) ∈ ΞHτ . Then D2F(x0,t0) : Rk→V H is surjec-
tive.

Proof: Since x0 ∈ V Hτ , {F1(x0), . . . , Fk(x0)} spans V H . Since the matrix of
D2F(x0,t0) equals [F1(x0), . . . , Fk(x0)], D2F(x0,t0) is onto.

Lemma 4.3.3. For each τ ∈ O(V,Γ), Ξτ is a Γ-invariant smooth semi-algebraic
submanifold of V × Rk of dimension k + gτ .

Proof: Since Ξτ = Ξ ∩ (V × Rk)τ , it is obvious that Ξτ is a Γ-invariant semi-
algebraic subset of V ×Rk. In order to show that Ξτ is smooth, it suffices to show
that the map G : V H × Rk→V H/N(H) defined by G(x, t) = P (F (x, t)) − P (x)
is a submersion at (x0, t0). This follows from Lemma 4.3.2, since the orbit map
restricts to a submersion P : V Hτ →V Hτ /N(H) [2].

Lemma 4.3.4. Let γ, τ ∈ O(V,Γ). Then
(1) Ξτ ∩ Ξγ = ∅ if γ > τ .
(2) dim(Ξτ ∩ Ξγ) < gτ + k, if γ < τ .

Proof: Similar to that of Lemma 4.3.4 [21].
In future we regard Rk as embedded in V ×Rk as the subspace {0}×Rk. We let

Rk−1, Rk−2 denote the subspaces of Rk defined by t1 = 0 and t1, t2 = 0 respectively.
If (V,Γ) is absolutely irreducible, we let C+, C− ⊂ Rk respectively denote the

hyperplanes defined by t1 = +1, t1 = −1. We set C = C+ ∪ C−. If (V,Γ) is
complex irreducible, we let C ⊂ Rk denote the cylinder t21 + t22 = 1. If (V,Γ) is
complex, we let Cθ denote the codimension 2 subspace {θ} × Rk−2.

Lemma 4.3.5. Suppose that τ ∈ O?. Then ∂Ξτ ∩ Rk ⊂ C.

Proof: We prove in case (V,Γ) is complex irreducible. Set (h1, . . . , h`)(x, t) =
P (F (x, t)) − P (x). Since the invariant p1 is the square of the Euclidean norm on
V and F (x, t) = (t1 + ıt2)x+O(‖x‖2), it follows that

(2) h1(x, t) = (t21 + t22 − 1)‖x‖2 +O(‖x‖3)

Suppose that (xn, tn) is a sequence of points of Ξτ converging to the point (0, t) ∈
V ×Rk. Substituting in (2), dividing by ‖xn‖2, and letting n→∞, we deduce that
t21 + t22 = 1.
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Example 4.3.6. Take the standard action of SO(2) on C. A basis for the SO(2)-
equivariant polynomial maps of C is given by F1(z) = z, F2(z) = ız. Let (e)
denote the conjugacy class of the identity element. The variety Ξ is the zero set of
((t21−1)+t22)|z|2. Consequently, Ξ(SO(2)) = R2 and Ξ(e) = {(z, t) | z 6= 0, t21+t22 = 1}.
Obviously, ∂Ξ(e) meets R2 along the circle t21 + t22 = 1. ♥

Lemma 4.3.7. Let H ∈ τ ∈ O?. Suppose (xn, tn) is a sequence of points in ΞHτ
converging to (0, t) ∈ {0} ×Rk, (γn) is a sequence of points of N(H)/H ⊂ O(V H)
converging to γ ∈ N(H)/H and that for n ≥ 1 we have

k
∑

j=1

tnj Fj(x
n) = γnxn

Then
(a) If (V,Γ) is absolutely irreducible, then t1 = ±1 and γ2 = I. If t1 = +1,

then γ = I ∈ N(H)/H. If t1 = −1 and −I ∈ N(H)/H, then γ = −I.
(b) If (V,Γ) is complex irreducible, then t1 +ıt2 = exp(ıθ), for some θ ∈ [0, 2π).

If θ = 2π/p, for some p ∈ N, then γp = I. If exp(ıθ) ∈ S1∩N(H)/H, then
γ = exp(ıθ).

Proof: Given t ∈ Rk, define ft : V→V by ft(x) = F (x, t). Provided t1 6= 0,
ft will be a Γ-equivariant diffeomorphism on some Γ-invariant neighborhood D
of 0 ∈ V . Restrict ft to the N(H)/H-space V H . Following [21, §9], [20], we
(polar) blow-up V H along the non-principal N(H)/H-orbit strata. If Π : Ṽ H→V H
denotes the blowing-down map, we set E = Π−1(0). Let f̃t denote the lift of ft|D to
Ṽ H∩Π−1(D). The restriction of f̃t to E equals the lift of Dft(0) to E. Suppose now
that (V,Γ) is absolutely irreducible and the hypotheses of the lemma are satisfied
with t1 = 1. It follows that f̃tn |E converges to the identity map. Since N(H)/H
acts freely on E ⊂ Ṽ H , we see that γ = I. If t1 = −1, then the same argument
proves that f̃2

tn |E must converge to the identity and so γ2 = I. If −I ∈ N(H)/H,
then f−tn(xn) = (−γn)(xn), where −γn ∈ N(H)/H. Hence −γ = I, since −tn1→1.
The other cases are similarly proved.

Remark 4.3.8. Let (V,Γ) be an absolutely irreducible representation. With the
notation of Lemma 4.3.7, suppose that xn/|xn|→u, where u lies in the unit sphere
of V H . If t1 = −1 then u must be fixed by −γ and so −γ must restrict to the
identity map on the line through u. In particular γ(Ru) = Ru. Consequently, if
N(H)/H acts freely on the projective space of V H , then we can never have t1 = −1.
Similar remarks hold for the case of complex irreducible representations. ♦
Example 4.3.9. Let Γ = D3 denote the dihedral group of order 6 acting in the
standard way on C = R2. As bases for P (C)Γ, PΓ(C,C), we take {|z|2,Re(z3)}
and {z, z̄2} respectively. The action of Γ on C has three isotropy types: τ0 = (Γ),
τ1 = (Z2) and τ2 = (e). It is easy to verify directly that Ξτ1 meets R2 along the line
t1 = 1. On the other hand Ξτ2 ∩ R2 consists of the line t1 = −1 together with the
isolated point (1, 0). Indeed, set z(ρ) = ıρ exp(ıρ)u(ρ). Using the implicit function
theorem together with the defining equations for Ξτ2 , it is not hard to show that
for all t2 ∈ R, we can find smooth maps u, t1 : [0, δ]→R(> 0), such that t1(0) = −1
and F (t1(ρ), t2, z(ρ)) = z(ρ), ρ ∈ [0, δ]. Note that this curve of points of period two
is tangent to the line in C on which z 7→ z̄ acts as minus the identity. Later, we
prove a general version of this result (see Lemma 4.4.2). ♥
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We conclude this subsection with an elementary lemma that will be useful later.

Lemma 4.3.10. Let m = {q ∈ P (V )Γ | q(0) = 0} and suppose

G(x) =
k
∑

i=1

qi(x)Fi(x),

where qi ∈ m, 1 ≤ i ≤ k. If we define F̃ : V × Rk+1→V by F̃ (x, t) = F (x, t) +
tk+1G(x), and let Ξ̃ = {(x, t) | P (F̃ (x, t)) = P (x)}, then for all τ ∈ O we have

∂Ξ̃τ ∩ Rk+1 = ∂Ξτ ∩ Rk × ({0} × R)

Proof: The result follows easily by observing that (x, (t1, . . . , tk+1)) ∈ Ξ̃τ if and
only if (x, (t1 + tk+1q1(x), . . . , tk + tk+1qk(x))) ∈ Ξτ .

Let S denote the canonical (minimal) semi-algebraic stratification of Ξ (see [32]
or [21, §4]).

Theorem 4.3.11 ([22, Theorem 5.10]). The stratification S induces a semi-al-
gebraic Whitney stratification of each Ξτ . In particular, each Ξτ is a union of
S-strata.

Proof: The proof is similar to that of [22, Theorem 5.10] or [21, Theorem 4.3.7]
and we shall not repeat the details.

4.4. The sets Cτ . Given τ ∈ O, define Cτ = Rk ∩ Ξτ . Clearly C(Γ) = Rk. If
τ 6= (Γ), then it follows from Lemma 4.3.5 that Cτ ⊂ C. If (V,Γ) is absolutely
irreducible, we define C+

τ = Cτ ∩ C+ and C−τ = Cτ ∩ C−. (Note that C−τ may
be empty – Example 4.3.9 – but C+

τ always contains (1, 0, . . . , 0)). If (V,Γ) is
complex irreducible, then for each point θ lying on the circle t21 + t22 = 1, we define
Cθτ = Cθ ∩ Cτ .

Remark 4.4.1. We recall from [22, 16, 21] that for τ ∈ O?, we define Aτ = Rk ∩Στ .
The sets Aτ are closed semi-algebraic conical subsets of the hyperplane t1 = 0. If
(V,Γ) is complex irreducible and tangential then Aτ is invariant under translations
by vectors (0, s, 0, . . . , 0) ∈ Rk, s ∈ R. The same is true if H ∈ τ and S1 ⊂
N(H)/H. ♦

Lemma 4.4.2. Let (V,Γ) be absolutely irreducible. Let H ∈ τ ∈ O.
(1) If dim(V H) = 1, then C+

τ is the hyperplane t1 = 1.
(2) If there exists γ ∈ Γ∩N(H), u ∈ V Hτ such that the fixed point space of the

map −γ : V H→V H is the line Ru, then C−τ is the hyperplane t1 = −1.

Proof: Statement (1) is well-known and is essentially just a reformulation of the
equivariant branching lemma (see [19, Example 6.8]). It remains to prove (2). It
suffices to show that there is an open and dense subset R of Rk−1 such that if
(t2, . . . , tk) ∈ R, then there is a smooth solution (x(ρ), (t1(ρ), t2, . . . , tk)), ρ ∈ [0, ρ],
to F (x, t) = γx with x(0) = 0, t1(0) = −1. It follows from Lemma 4.3.10 that if
we add the cubic |x|2x to our generating set F and define

F̃ (x, t̃) = F̃ (x, (t, tk+1)) = F (x, t) + tk+1|x|2x,

then it suffices to show that there is an open and dense subset R̃ of Rk such that if
(t2, . . . , tk+1) ∈ R̃, we can find a smooth solution (x(ρ), (t1(ρ), t2, . . . , tk, tk+1)) of
F̃ (x, t) = γx satisfying the conditions listed previously.
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Write
∑k+1
j=2 tjFj(x) = Q(x) + C(x) +H(x), where Q(x) is the sum of the qua-

dratic terms, C(x) is the sum of the cubic terms and H(x) is the sum of the
remaining higher order terms. Let W be the orthogonal complement of Ru in V H .
Denote the orthogonal projections of V H on Ru and W by πu and πW respectively.
Let j ∈ N be the smallest integer such that πWFj(u) 6= 0 and set b = dj . Note
that j > 1, since F1(u) = u, and that j ∈ {2, . . . , k}, since {F1(u), . . . , Fk(u)} span
V H . Let t1 = −1 + cρ2, where c = ±1, and (t2, . . . , tk+1) ∈ Rk, and look for a
solution to F̃ (x, t̃) = γx of the form x(ρ) = (ρq(ρ)u, ρbŵ(ρ), where q : [0, δ]→R,
ŵ : [0, δ]→W and q(0) > 0, ŵ(0) 6= 0. Since b > 1, x(ρ) will be tangent to Ru at
ρ = 0. Substituting in the equation F̃ (x, t̃) = γx, we find the following conditions
on x(ρ) for it to be a solution.

−ρq(ρ) =

(−1 + cρ2)ρq(ρ) + ρ2qπu[qQ(u) + ρb−1A(u, ŵ) + q2ρC(u)] +O(|ρ|4)

ρbγŵ(ρ) = (−1 + cρ2)ρbŵ(ρ) + qbρbπWFb(u) +O(|ρ|1+b),

where A(u, ŵ) = 2DQ(u)(ŵ). Since Q is even and γu = −u, we have πu(Q(u)) = 0.
It follows from Lemma 4.3.7 that γ2 = I and so γ|W = IW . Dividing the second
equation by ρb and setting ρ = 0, we see that

ŵ(0) = q(0)bπWFb(u)/2.

Now suppose b = 2 (the proof if b > 2 is similar but easier). Dividing the first
equation by ρ3 and substituting for ŵ(0) we find that

(3) cq(0) + q(0)3Λ(u) = 0,

where Λ(u) = πu(A(u, πWFb(u)/2)) + C(u) is independent of ŵ(0). Since F̃ con-
tains the term tk+1|x|2x, there is an open and dense subset R̃ of Rk such that,
if (t2, . . . , tk+1) ∈ R̃, then Λ(u) 6= 0. From (3), q(0)2 = −c/Λ(u) and so we can
choose c so that there is a unique positive value of q(0) satisfying the equation.

The construction of a smooth solution x(ρ) = (ρq(ρ)u, ρbŵ(ρ)) with these initial
values of q, ŵ is now a routine application of the implicit function theorem.

Remark 4.4.3. An alternative proof of Lemma 4.4.2(2) can be based on Liapunov-
Schmidt reduction and the equivariant branching lemma. See Vanderbauwhede [38],
Peckham & Kevrekidis [33] and also [27, Lecture 2]. ♦

As a corollary of Theorem 4.3.11 and the definition of the sets Cτ , we have

Proposition 4.4.4. Each semi-algebraic set Cτ inherits a Whitney regular strati-
fication Cτ from S.

In the sequel we shall denote the stratification C(Γ) of Ξ(Γ) = Rk by B. As usual,
we denote the union of the i-dimensional strata of B by Bi, i ≥ 0. It follows from
our constructions that

Bk = Rk \
⋃

τ 6=(Γ)

Cτ(4)

Bi ⊂ C, i < k(5)

In the next few paragraphs, we undertake a more careful analysis of the sets
Cτ . The way we do this is to start by showing that if exp(ıθ) ∈ N(H)/H we can
reduce the study of Cθτ to that of C+

τ . We then show how the structure of C+
τ can

sometimes be given in terms of the corresponding sets Aτ (see Remark 4.4.1).
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Our first result shows how the set Cτ transform under change of generating set
for PΓ(V, V ). Very similar results can be found in [3, §5], [13, 11].

Lemma 4.4.5. Let F = {F1, . . . , Fk}, G = {G1, . . . , Gk} be two minimal sets
of homogeneous generators for PΓ(V, V ). Let BF , BG denote the corresponding
stratifications of Rk. There is a linear strata preserving isomorphism L : Rk→Rk
mapping BF onto BG.

Proof: Since F is a minimal set of homogeneous generators for PΓ(V, V ), there
exist αij ∈ P (V )Γ such that

Gi(x) =
k
∑

j=1

αij(x)Fj(x), 1 ≤ i ≤ k.

It follows from [12, Lemma 3.4] that the map L(t) = (
∑k
i=1 tiαij(0)) is a linear iso-

morphism of Rk. Define H : V ×Rk→V ×Rk by H(x, t) = (x, h1(x, t), . . . , hk(x, t)),
where hj(x, t) =

∑k
i=1 tiαij(x), 1 ≤ j ≤ k. Then there is a Γ-invariant open

neighborhood U of Rk such that H|U is a Γ-equivariant analytic embedding onto
an open neighborhood of Rk. Let F̄ : V × Rk→R` denote the map defined by
F̄ (x, t) = P (

∑k
j=1 tjFj(x))− P (x) and similarly define Ḡ. It follows from our con-

structions that Ḡ = F̄ ◦H. Hence, H(Ḡ−1(0)∩U) = F̄−1(0)∩H(U). Since H|U is
an analytic isomorphism and the stratifications SF ,SG are minimal, it follows that
H is strata preserving. In particular, H|Rk = L will map BF onto BG .

Lemma 4.4.6. Let H ∈ τ ∈ O?.
(a) If (V,Γ) is absolutely irreducible and −I ∈ N(H)/H, then C−τ = −C+

τ .
(b) Let (V,Γ) be complex irreducible. Suppose that F is chosen so that FHV is

S1 ∩N(H)/H-invariant (see Remarks 2.5.2). If exp(ıθ) ∈ N(H)/H, then
exp(ıθ)(C0

τ ) = Cθτ . In particular, if S1 ⊂ N(H)/H, then S1 acts freely on
Cτ and exp(ıθ)(Cφτ ) = Cθ+φτ , all θ, φ ∈ [0, 2π).

Proof: The result follows easily from Lemma 4.3.7.
The next lemma is a straightforward application of standard existence and reg-

ularity theory for ordinary differential equations.

Lemma 4.4.7. We may construct an open Γ-invariant neighborhood U of C ⊂
V × Rk and a smooth Γ-equivariant map Φ : U × (−2, 2)→V such that for each
((x, t), s) ∈ U × (−2, 2), Φ((x, t), s) is the solution of the ordinary differential equa-
tion dx

ds = F (x, t) with initial condition (x, t).

Following the notation of Lemma 4.4.7, we define F̃ : U→V by F̃ (x, t) =
Φ((x, t), 1). That is, F̃ is the time-one map defined by the solutions of dxds = F (x, t).
Note that F̃ is a smooth equivariant map.

Lemma 4.4.8. If (V,Γ) is absolutely irreducible, there exist smooth invariant func-
tions fj : U→R, 2 ≤ j ≤ k such that fj(0, t) = O(|t1|), j ≥ 2, and

F̃ (x, t) = exp(t1)[x+
k
∑

i=2

(tj + fj(x, t))Fj(x)].

Lemma 4.4.9. Suppose that (V,Γ) is tangential. There exist smooth invariant
functions fj : U→R, 3 ≤ j ≤ k, satisfying
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(a) fj(x, t) is independent of t2, j ≥ 3.
(b) fj(0, t) = O(|t1|), j ≥ 3.
(c) F̃ (x, t) = exp(t1 + ıt2)[x+

∑k
i=3(tj + fj(x, t))Fj(x)].

Proofs of Lemmas 4.4.8, 4.4.9: Lemma 4.4.8 is an elementary exercise in or-
dinary differential equations, the first step of which is to make the transformation
x(t) = exp(t1t)u(t). The proof of Lemma 4.4.9 is similar. In this case, we make the
transformation x(t) = exp((t1 + ıt2)t)u(t) and use the S1-equivariance to obtain an
equation u′ = H(u, t), where H is independent of t2. We omit details.

Lemma 4.4.10. Suppose that (V,Γ) is either absolutely irreducible or tangential.
Let Ξ̃ = {(x, t) ∈ U | P (F̃ (x, t)) = P (x)}. If τ ∈ O?, then Ξ̃τ is smooth near C
and Cτ = ∂Ξ̃τ ∩C.

Proof: Suppose first that (V,Γ) is absolutely irreducible. Noting that F̃ agrees
with F at terms of lowest order, the result follows easily by a standard ‘invariance’
argument similar to that used in the proof of Lemma 4.4.5 (see also [3, §5], [11,
Proposition]). If (V,Γ) is tangential, we start by observing that the S1-equivariance
implies that Ξ̃ = {(x, t) | P (F̃ (x, (t1, 0, t3, . . . , tk)) = P (x)}. The result then fol-
lows, just as before, using the expression for F̃ given by Lemma 4.4.9.

For x ∈ V , let d(x) = dim(V Γx). Given τ ∈ O, x 7→ d(x) is constant on Vτ and
we set dτ = d(x), x ∈ Vτ . If t ∈ Rk, we let t − 1 be the point with coordinates
(t1 − 1, t2, . . . , tk). We similarly define t + 1 and, more generally, C ± 1 for any
subset C of Rk.

Proposition 4.4.11. Let H ∈ τ ∈ O?.
(a) If (V,Γ) is absolutely irreducible, then C+

τ =∈ Aτ +1. In particular, C+
τ −1

is a closed semi-algebraic conical subset of Rk and k−dτ +nτ ≤ dim(C+
τ ) ≤

k − 1. If −I ∈ N(H)/H, then C−τ = Aτ − 1.
(b) Suppose that (V,Γ) is complex irreducible and set A0

τ = {t ∈ Aτ | t2 = 0}.
If exp(ıθ) ∈ S1 ∩N(H)/H, then Cθτ = exp(ıθ)(A0

τ + 1).
(c) If (V,Γ) is tangential or S1 ⊂ N(H)/H, then

Cτ = {exp(ıs)(t+ 1) | t ∈ A0
τ , s ∈ R}

and k − dτ + nτ ≤ dim(Cτ ) ≤ k − 1.

Proof: If Γ is finite, (a,b,c) follow easily from Lemma 4.3.7 and [21, Lemma 4.3.9].
Suppose Γ is not finite and (V,Γ) is absolutely irreducible. It follows from Lem-
mas 4.4.5, 4.4.6, and [21, Lemma 4.3.9] that it suffices to show that C+

τ − 1 = Aτ .
Now C+

τ = ∂Ξ̃τ ∩ Rk ∩C+ (Lemma 4.4.10) and so we may work with the variety
Ξ̃. Suppose t ∈ C+

τ , H ∈ τ and (xn, tn), (γn) are sequences in Ξ̃Hτ , N(H)/H such
that

F̃ (xn, tn) = γnxn and

((xn, tn), γn) → ((0, t), I) ∈ ({0} × Rk)×N(H)/H

Denote the Lie algebra of N(H)/H by k. We may choose a sequence (kn) ⊂ k so
that kn→0 and γn = exp(kn) for sufficiently large n (that is, if γn ∈ (N(H)/H)0).
It follows from the definition of F̃ and equivariance, that

F (xn, tn − 1) =
d

ds
exp(skn)xn|s=0.
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Hence (xn, tn) ∈ Ξ̃ if and only if (xn, tn − 1) ∈ Σ. Letting n→∞, it follows that
C+
τ − 1 = Aτ . In particular, C−τ + 1 is conical. Similar arguments apply when

(V,Γ) is complex or tangential.

Remarks 4.4.12. (1) For the last part of (a), it suffices to assume that F1, . . . , Fk
restrict to odd (possibly zero) maps on V H . It follows that the restriction of any
homogeneous invariant to V H is either zero or of even degree. Since invariants
separate Γ-orbits, it follows that −I ∈ N(H)/H. (2) In general, C−τ may be empty.
If C−τ 6= ∅ and the conditions of (a) do not hold, we may ask whether C−τ + 1
is a conical subset of Rk. This seems possible, at least if there are no quadratic
equivariants. ♦

4.5. Stability theorems I: Weak regularity. Suppose f ∈M(V,Γ) and write

f(x, λ) =
k
∑

j=1

fj(x, λ)Fj(x)

where fj ∈ C∞(V ×R)Γ, 1 ≤ j ≤ k. Define smooth maps graphf : V ×R→V ×Rk
and γf : R→Rk by

graphf (x, λ) = (x, (f1(x, λ), . . . , fk(x, λ))

γf (λ) = (f1(0, λ), . . . , fk(0, λ))

Since f = F ◦ graphf , it follows that I(f) = graph−1
f (Ξ).

In the sequel, we frequently talk about transversality of maps to semi-algebraic
sets. If no stratification is specified, it will always be understood that transversality
is meant with respect to the canonical semi-algebraic stratification of the set. More
generally, if a semi-algebraic set C comes with a Whitney stratification T (not
necessarily canonical), we say that a map is transverse to T if it is transverse to C,
given the stratification T . We use the notation ftC (or ftT ) to indicate that f
is transverse to C (or T ).

Define

LΓ(V ) = {f ∈M(V,Γ) | graphftΞ at λ = 0}
L±Γ (V ) = {f ∈ LΓ(V ) | f1(0, 0) = ±1}
LθΓ(V ) = {f ∈ LΓ(V ) | f1(0, 0) + ıf2(0, 0) = exp(ıθ)}

The methods of Bierstone [3] and Field [12] may be used to show that LΓ(V ),
together with the subsets defined above, are independent of the choices of generators
for P (V )Γ, PΓ(V, V ) and coefficient functions f1, . . . , fk implicit in the definition of
graphf . Just as in [21, §4], it may be shown that the map γf is uniquely defined
once F has been chosen.

Proposition 4.5.1. Let f ∈ M(V,Γ). The following conditions on f are equiva-
lent.

(1) f ∈ LΓ(V ).
(2) γftB at λ = 0.
(3) γf (0) ∈ Bi, where i ≥ k − 1.

Proof: Since f ∈ M(V,Γ), γf (0) ∈ C and γftC at λ = 0. We prove the equiva-
lence of (1) and (2) (see [21, Proposition 4.4.3] for details on the analogous results
for vector fields). Since B ⊂ S, and all strata of S which meet Rk lie in B, it follows
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by the Whitney regularity of the stratification S that graphftS at λ = 0 if and
only if graphftB at λ = 0. Noting the definition of graphf , we see that graphftB
at λ = 0 if and only if γftB at λ = 0. Hence (1) and (2) are equivalent.

As an immediate consequence of Proposition 4.5.1 and standard properties of
maps transversal to Whitney stratified sets we have

Proposition 4.5.2. (1) LΓ(V ) is an open and dense subset of M(V,Γ).
(2) Every f ∈ LΓ(V ) is weakly regular.

Theorem 4.5.3. Let f ∈ LΓ(V ). Then
(1) If codim(Cτ ) ≥ 2, the germ of I(f) at zero contains no points of isotropy

type τ .
(2) If codim(Cτ ) = 1 and γf (0) ∈ Cτ , there is a branch of invariant group

orbits of isotropy type τ for f at zero.
(3) The map γf : R→Rk is transverse to the canonical stratification of Cτ for

all τ ∈ O.
Similar results hold if we replace Cτ by C±τ . Finally, if (V,Γ) is complex irreducible
and Cθτ 6= ∅ for only finitely many values of θ, then codim(Cτ ) ≥ 2 and so the germ
of I(f) at zero contains no points of isotropy type τ .

Proof: The only result that is not immediate by transversality is (2). That is,
we have to prove the branch is C1. If H ∈ τ and N(H)/H is finite, we follow
the method used in the proofs of [22, Proposition 5.16] or [21, Theorem 4.4.5].
Otherwise, we use methods based on blowing-up [21, §9].

Remark 4.5.4. Just as for vector fields, it follows from our results that if f ∈ LΓ(V )
and f(x, λ) =

∑k
i=1 fi(x, λ)Fi(x), then the branching pattern Ξ(f) is determined

completely by (f1(0, 0), f2(0, 0), . . . , fk(0, 0)). In particular, the branching pattern
will be determined by the dk-jet of f0 at the origin. ♦
Definition 4.5.5 (cf. [22, 24, 21]). Let τ ∈ O?. If σ ∈ {+,−} and (V,Γ) is
absolutely irreducible, we say that τ is σ-symmetry breaking (respectively, gener-
ically σ-symmetry breaking) if there exists a non-empty open (respectively, open
and dense) subset U of LσΓ(V ) such that for every f ∈ U , the germ of I(f) at zero
contains points of isotropy type τ . If (V,Γ) is complex irreducible, we say that τ
is symmetry breaking (respectively, generically symmetry breaking) if there exists
a non-empty open (respectively, open and dense) subset U of LΓ(V ) such that for
every f ∈ U , the germ of I(f) at zero contains points of isotropy type τ .

As an immediate consequence of our results so far, we have

Proposition 4.5.6. Let τ ∈ O? and suppose that (V,Γ) is absolutely irreducible
and σ ∈ {+,−}. Then τ is a σ-symmetry breaking isotropy type if and only if
codim(Cστ ) = 1. Moreover, τ is generically σ-symmetry breaking if and only if
Cστ = Cσ. A similar result holds if (V,Γ) is complex irreducible.

It follows from Proposition 4.5.2 that LΓ(V ) is an open and dense subset of
M(V,Γ) consisting of weakly regular families. The next theorem gives a weak
version of stability for families in LΓ(V ).

Theorem 4.5.7. Let f ∈ LΓ(V ) and {ft | t ∈ [0, 1]} be a continuous path in
LΓ(V ) such that f0 = f . Then there exists a compact Γ-invariant neighborhood
A of (0, 0) ∈ V and a continuous Γ-equivariant isotopy K : A × [0, 1]→V × R of
embeddings such that
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(1) K0 = IV .
(2) Kt(A ∩ I(f)) = I(ft) ∩Kt(A), t ∈ [0, 1].

Proof: The result follows from Thom’s first isotopy lemma (see [21, Theorem
4.4.11] for further details).

As an immediate corollary of Theorem 4.5.7, we have

Proposition 4.5.8. Let τ ∈ O? and suppose that (V,Γ) is absolutely irreducible and
σ ∈ {+,−}. Then τ is σ-symmetry breaking if and only if there exists f ∈ LσΓ(V )
such that Ξ(f) contains a branch of isotropy type τ . Further τ is generically σ-
symmetry breaking if and only if for every f ∈ LσΓ(V ), Ξ(f) contains a branch of
isotropy type τ . Similar results hold for the case of complex irreducible representa-
tions.

4.6. Stability theorems II: Regular families. In this section we extend results
of Field [16, 21] and show that S(V,Γ) is an open and dense subset of M(V,Γ) for
all absolutely irreducible and complex irreducible representations (V,Γ). Most of
what we say is a straightforward extension of the theory and methods in [16, 21]
and so we shall only give brief details of proofs.

Let τ ∈ O(V,Γ). Define

Z0(τ) = {(x, y) ∈ V × V | x ∈ Vτ , y ∈ N(Γx) · x}
and set

Z0 = closure(
⋃

τ∈O

Z0(τ))

Lemma 4.6.1 ([21, Lemma 4.5.2]). Each set Z0(τ) is a smooth Γ-invariant semi-
algebraic subset of V × V , τ ∈ O. In particular, Z0 is semi-algebraic.

Proof: We prove that Z0(τ) is a Γ-invariant semi-algebraic set. Let H ∈ τ and set
Z0(H) = Z0(τ) ∩ (V H × V H). Since Z0(τ) = Γ · Z0(H), it suffices to prove that
Z0(H) is a smooth semi-algebraic subset of V H×V H . But Z0(H) = {(x, y) | Q(x) =
Q(y)}, where Q : V H→V H/N(H) denotes the orbit map, and so Z0(H) is semi-
algebraic.

For each τ ∈ O, let Lτ (V, V ) denote the semi-algebraic subset of L(V, V ) con-
sisting of maps that have at least gτ + 1 eigenvalues of unit modulus (counting
multiplicities).

We define sets Z1(τ) ⊂ Vτ × Vτ × L(V, V ) and Z1 ⊂ V × V × L(V, V ) by

Z1(τ) = {((x, y), A) | ∃γ ∈ N(Γx) such that y = γx and γ−1A ∈ Lτ (V, V )}

Z1 = (
⋃

τ∈O

Z1(τ))

Lemma 4.6.2. (1) For every τ ∈ O, Z1(τ) is a Γ-invariant semi-algebraic
subset of V × V × L(V, V ).

(2) Z1 is a closed Γ-invariant semi-algebraic subset of V × V × L(V, V ).

Proof: Let H ∈ τ and define Z̃1(H) to be the semi-algebraic subset of V Hτ ×N(H)×
L(V, V ) consisting of points (x, γ,A) such that γ−1A ∈ Lτ (V, V ). It follows that
Z̃1(τ) = Γ · Z̃1(H) is a Γ-invariant semi-algebraic set. But now there is a natural
semi-algebraic map of Z̃1(τ) onto Z1(τ) defined by mapping (x, γ,A) to ((x, γx), A).
Hence Z1(τ) is semi-algebraic, proving (1). Statement (2) follows from (1) and the
fact that closures and finite unions of semi-algebraic sets are semi-algebraic.
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Let J1(V, V ) denote the space of 1-jets of maps from V to V . Note that J1(V, V )
inherits the structure of a Γ-space from V . Recall that J1(V, V ) ∼= V ×V ×L(V, V )
and that if f ∈ C∞Γ (V, V ) then j1f(x) = (x, f(x), Df(x)) under this isomorphism.

From now on, we regard Z1 and Z1(τ) as defining semi-algebraic subsets of
J1(V, V ).

We turn next to families of maps. The jet space J1(V ×R, V ) is isomorphic (as
a Γ-representation) to J1(V, V )⊕ (R× V ). Thus, if f ∈ C∞Γ (V × R, V ), then

j1f(x, λ) = ((x, λ), f(x, λ), Df(x, λ)) ∈ J1(V × R, V )
= ([x, f(x, λ), D1f(x, λ)], [λ,D2f(x, λ)]) ∈ J1(V, V )× (R× V )

Let Π : J1(V × R, V )→J1(V, V ) denote the associated projection map. Set
Z1

1 = Π−1(Z1). Since Z1
1 may be identified with Z1 × (R × V ), Z1

1 is a closed
semi-algebraic subset of J1(V × R, V ).

Lemma 4.6.3. Let f ∈ C∞Γ (V × R, V ). Then
(1) I(f) = {(x, λ) | fλ(x) ∈ Z0} = {(x, λ) | graphf (x, λ) ∈ Ξ}.
(2) B(f) = (j1f)−1Z1

1 .

Proof: Similar to that of [21, Lemma 4.6.9].
Just as in [21, §4], [16, Appendix], we may express genericity conditions on

maps or families in terms of equivariant jet transversality conditions. We briefly
summarize the main results that we shall need on equivariant jet transversality.
(We refer the reader to [4], [21, §4] for more details.) Suppose that (Vi,Γ), i =
1, 2, are Γ-representations and that Q is a Γ-invariant closed semi-algebraic subset
of J1(V1, V2). If f ∈ C∞Γ (V1, V2), and A ⊂ V1 is compact and Γ-invariant, we
write “j1ftΓQ on A” to signify that j1f : V1→J1(V1, V2) is in equivariant general
position to Q on A. We recall from Bierstone [4] that {f | j1ftΓQ on A} is an
open and dense subset of C∞Γ (V1, V2). Moreover, the usual isotopy and stability
theorems hold (for precise statements, see [4, Theorems 7.6, 7.7, 7.8]).

As an immediate consequence of our definitions, we have

Lemma 4.6.4 (cf. [21, Lemma 4.6.10]). Let f ∈ C∞Γ (V, V ). The following condi-
tions on f are equivalent:

(1) All f-invariant Γ-orbits are normally hyperbolic.
(2) j1f(V ) ∩ Z1 = ∅.
(3) j1ftΓZ1 on V .

Theorem 4.6.5. Let

S0(V,Γ) = {f ∈ LΓ(V ) | j1ftΓZ
1
1 at (x, λ) = (0, 0)}

Then
(a) S0(V,Γ) is an open and dense subset of M(V,Γ).
(b) S0(V,Γ) ⊂ S(V,Γ).

Proof: Statement (a) follows from Bierstone’s jet transversality theorem. The
proof of (b) is very similar to that of the corresponding Theorem 4.6.11 in [21].
We start by observing that if f ∈ S0(V,Γ), then we can find a compact Γ-invariant
neighborhood A of (0, 0) ∈ V ×R such that j1ftΓZ

1
1 on A. Using the definitions of

equivariant general position and Z1
1 , it may be shown that (j1f |A)−1(Z1

1 ) has the
structure of a Whitney regular stratified set. It suffices to prove that the origin is
an isolated point in (j1f |A)−1(Z1

1 ). If not, there is a continuous non-constant arc
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in (j1f |A)−1(Z1
1 ), with initial point at the origin. We derive a contradiction using

the openness of equivariant transversality together with Lemma 4.6.4.

Remark 4.6.6. Using methods similar to those in [4, 12], one can show that S0(V,Γ)
is defined independently of choices of generating sets. ♦

4.7. Determinacy. In this section, we indicate how the determinacy theorems
of [21, §4], [16, Appendix] can be extended from vector fields to smooth maps. As
the methods are completely analogous to those used in [21, 16], we only give very
brief details.

We regard Z0 as a subset of J1(V, V ) and define Z1
0 = Π−1(Z0) ⊂ J1(V ×R, V ).

Clearly Z1
1 ⊂ Z1

0 . It follows that f ∈ S0(V,Γ) if and only if

j1ftΓZ
1
0 and j1ftΓZ

1
1 at (0, 0)

Just as in [21, 16], we construct a Whitney regular stratification T of Z1
0 that

induces a Whitney regular stratification of Z1
1 (we do not know whether this strat-

ification always coincides with the canonical stratification of Z1
1 ). We define

S1(V,Γ) = {f | ftΓT at (0, 0)},
and note that S1(V,Γ) ⊂ S(V,Γ). Just as in [21, Lemma 4.7.9], we may give a
simple characterization for membership in S1(V,Γ). Using this, together with the
standard technique for proving density (see the proof of [21, Theorem 4.7.10]) we
may prove

Theorem 4.7.1. Let (V,Γ) be an absolutely irreducible or complex irreducible rep-
resentation. There exists q > 0 such that Γ-equivariant bifurcation problems on V
are q-determined.

4.8. An invariant sphere theorem and Fiedler’s theorem for maps. Given
f : V × R→V and a ∈ R, we define fa(x, t) = f(x, t) + a|x|2x. Using techniques
based on the persistence of normally hyperbolic sets, similar to those used in the
proof of [16, Theorem 5.2], we may prove the following invariant sphere theorem
for maps (see also [15, §4]).

Theorem 4.8.1. Let (V,Γ) be irreducible and suppose dimR(V ) = m. Let r > 0.
Assume that P 2

Γ(V, V ) = {0} and let f ∈ M(V,Γ). Then we may find a0 ∈ R such
that if a ≤ a0, then there exist ε > 0, a neighborhood U of 0 ∈ V , and a continuous
family Sλ : Sm−1→U , λ ∈ [0, ε], satisfying the following properties.

(1) Sλ : Sm−1→U is a Γ-equivariant Cr-embedding, λ > 0, and S0 is the zero
map.

(2) If we set S(λ) = Sλ(Sm−1), then S(λ) is faλ -invariant.
(3) If x ∈ U \ {0}, then the faλ -orbit of x is forward asymptotic to S(λ).

Example 4.8.2 (cf. [10], [21, §11]). Suppose (V,Γ) is complex irreducible and let
dimR(V ) = 2n. Set G = Γ× S1 and consider the tangential representation (V,G).
If f ∈ LG(V ), it follows from Theorem 4.5.3 that fa ∈ LG(V ) and Ξ(f) = Ξ(fa) for
all a ∈ R. Since P 2

G(V, V ) = {0}, we may choose a0 ∈ R so that if a ≤ a0 then fa

spawns a branch {S(λ) | λ ∈ [0, ε]} of G- and fa-invariant C1-embedded spheres.
Set fa = g. Since S1 acts freely on each S(λ), gλ-induces a C1 G-equivariant
map on the (2n− 2)-dimensional complex projective space S(λ)/S1, λ ∈ (0, ε]. Let
τ ∈ O(V,G) be a maximal isotropy type and let H ∈ τ . For each λ ∈ (0, ε], gλ
restricts to an N(H)× S1-equivariant C1-mapping of S(λ) ∩ V H and so induces a
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C1-mapping gHλ on the associated projective space. Each gHλ is clearly N(H)×S1-
equivariantly homotopic to the identity map. Since the Euler characteristic of
every complex projective space is nonzero, it follows that the Lefschetz number
L(gHλ ) 6= 0. Hence, gHλ has at least one fixed point for each λ ∈ (0, ε]. Consequently,
gλ has an invariant G-orbit of isotropy type τ for each λ ∈ (0, ε]. It follows that
Cτ = C. That is, every G-maximal isotropy type is generically symmetry breaking.
Using the strong determinacy theorem (see §6), we may ask what happens if we
break symmetry from G to Γ. Unlike the case of vector fields [21, §11], complicated
dynamics may appear [6]. ♥

5. Examples for Γ finite

In this section, Γ is always assumed finite. We discuss some examples of sym-
metry breaking closely related to those studied in Field and Richardson [22, 25].

5.1. Preliminaries. Suppose (V,Γ) is complex irreducible. It follows from Theo-
rem 4.5.3 that codim(Cτ ) ≥ 2 for all τ ∈ O, τ 6= (Γ). Consequently, no branches of
invariant orbits bifurcate off the trivial branch for generic maps inM(V,Γ). Hence
we may assume (V,Γ) is absolutely irreducible. Since Γ is finite it follows that if
f ∈ L+(V,Γ) then Ξ(f) consists of branches of fixed points . If f ∈ L−(V,Γ), then
Ξ(f) consists of branches of Γ-orbits consisting of points of prime period 2 for f .

5.2. Subgroups of the Weyl group of type Bn. Assume n ≥ 3. Let Sn denote
the group of n × n permutation matrices and ∆n denote the group of diagonal
matrices with entries ±1. The Weyl group W (Bn) is the semi-direct product ∆no
Sn. Set Wn = W (Bn) and recall that (Rn,Wn) is absolutely irreducible.

Definition 5.2.1 (cf. [25, Conditions 13.5.1-2]). Suppose n ≥ 3. Let Wn denote
the set of representations (Rn,Γ) satisfying

(1) Γ is a subgroup of Wn.
(2) (Rn,Γ) is absolutely irreducible.
(3) P 2

Γ(Rn,Rn) = {0}.

Example 5.2.2. If H is a subgroup of O(n), we let H ′ denote the determinant
one subgroup of H. We recall from [25, §14], that if T is a transitive subgroup of
Sn then, with the single exception of the tetrahedral group T = ∆′3 o Z3, we have

(Rn,∆n o T ), (Rn,∆′n o T ), (Rn, (∆n o T )′) ∈ Wn.

5.3. Branches of fixed points. Let E denote the set of non-zero vectors ε ∈ Rn
such that εi ∈ {0,+1,−1}, 1 ≤ i ≤ n. Given (Rn,Γ) ∈ Wn, let OS = {ι(ε) | ε ∈
E}. It was shown in [25] that an isotropy type τ was symmetry breaking for 1-
parameter families of vector fields if and only if τ ∈ OS . In view of this result and
Lemma 4.4.11(1), we have the following simple characterization of +-symmetry
breaking isotropy types for representations in the class Wn.

Proposition 5.3.1. Let (Rn,Γ) ∈ Wn. Then τ ∈ O is +-symmetry breaking if
and only if τ ∈ OS.

As an easy consequence of results in [24, 25], together with Proposition 4.4.11,
we have the following determinacy result.

Lemma 5.3.2. There is a maximal open and dense semi-algebraic subset R of
P 3

Γ(Rn,Rn) such that
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(1) If f ∈M+(Rn,Γ) and D3f0(0) ∈ R, then f is stable.
(2) If µ ∈ R \ {0}, then µR = R.

5.4. Branches of invariant orbits consisting of period two points.

Lemma 5.4.1. Let (Rn,Γ) ∈ Wn.
(1) Let H ∈ τ ∈ OS. Then τ is −-symmetry breaking if −I ∈ N(H)/H.
(2) If −I ∈ Γ, then τ ∈ O is −-symmetry breaking if and only if τ ∈ OS.

Proof: The result follows immediately from Lemma 4.4.6(a).

Lemma 5.4.2. Let (Rn,Γ) ∈ Wn and suppose −I ∈ Γ. Let R ⊂ P 3
Γ(Rn,Rn) be

the subset given by Lemma 5.3.2. If f ∈ M(Γ,Rn) and D3f0(0) ∈ R, then f is
stable. In particular, Γ-equivariant bifurcation problems on Rn are 3-determined.

Proof: It suffices to show that if f ∈M−(Rn,Γ) and D3f0(0) ∈ R, then f is stable.
Suppose that F2, . . . , Fr are the cubic equivariants in F and set Fr+1(x) = |x|2x.
Then F2, . . . , Fr+1 define a basis for P 3

Γ(Rn,Rn). Suppose f ∈M−(Rn,Γ). Then

D3f0(0)(x) =
r+1
∑

i=2

aiFi(x),

where a2, . . . , ar+1 ∈ R. A simple computation verifies that

D3f2
0 (0)(x) =

r+1
∑

i=2

−2aiFi(x).

Hence, by Lemma 5.3.2(2), D3f2
0 (0) ∈ R if and only if D3f0(0) ∈ R.

We extend our results to cover the case where −I /∈ Γ. Let Z2 ⊂ O(n) be
the subgroup generated by −I and set Γ2 = Γ × Z2. Note that if −I ∈ Γ, then
(−I,−I) ∈ Γ2 fixes every point of Rn. If we identify Γ2 with its image in O(n),
then (Rn,Γ2) ∈ Wn. Let O2

S be the set of +-symmetry breaking isotropy types for
Γ2. If H̃ ∈ τ ∈ O2

S , then (H̃ ∩ Γ) ∈ OS . This construction defines a natural map
Π : O2

S→OS . Note that if x has Γ2-isotropy τ , then Π(τ) is the Γ-isotropy of x.

Proposition 5.4.3. Suppose (Rn,Γ) ∈ Wn.
(1) If τ is −-symmetry breaking then τ ∈ OS.
(2) If D3f0(0) ∈ R, then f is stable.
(3) If τ ∈ OS, τ will be −-symmetry breaking if there exists η ∈ Π−1(τ) such

that η 6= τ . (That is, if we choose x ∈ Vη, then [Γ2
x : Γx] = 2.)

Proof: If −I ∈ Γ, the result follows from Lemma 5.4.2 so we may suppose −I /∈ Γ.
Since Γ2 ∈ Wn and −I ∈ Γ2, Lemma 5.4.2 applies to (Rn,Γ2). Since (Rn,Γ2) and
(Rn,Γ) have the same cubic equivariants and quadratic equivariants are trivial,
(1,2) of the Proposition follow easily. It remains to prove (3). Let τ, η satisfy
the conditions of (3). Suppose that f ∈ M−(Rn,Γ2), D3f0(0) ∈ R and f has a
curve φ = (ρ, λ) of −I-invariant points of prime period two and isotropy type η.
Denote the initial direction ρ′(0) of the curve by ±u ∈ Sn−1 (we define the initial
direction only up to ±1 to allow for the reverse parametrization of the branch).
Since D3f0(0) ∈ R, it is easy to verify that the initial direction u depends only on
D3f0(0). Consequently, if we take any Γ-equivariant perturbation of f by terms of
order at least four, the resulting perturbed curve φ̃ of period two points will have
the same initial direction ±u. It follows from our hypotheses on τ, η, that there
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exists γ /∈ Γu such that −γ ∈ Γ2
u. By Γ-equivariance, γφ̃ must also be a branch of

points of period two. Since γφ̃ has the same initial direction ±u as φ̃, it follows
that γφ̃ = φ̃ (with reverse parametrization) and so τ is −-symmetry breaking.
Conversely, every −-symmetry breaking isotropy type arises in this way.

Using our results in combination with the techniques of [24], we may easily verify
strong 3-determinacy for representations in Wn. In summary, we have proved

Theorem 5.4.4. Let (Rn,Γ) ∈ Wn. Then Γ-equivariant bifurcation problems on
Rn are strongly 3-determined.

Example 5.4.5. Let (R5,Γ) ∈ W5, where Γ = ∆′5 o Z5. It follows from [25,
§14] and Proposition 5.3.1 that all isotropy types in O?(R5,Γ) are +-symmetry
breaking. It follows either directly or using Proposition 5.4.3 that the maximal
isotropy types ι(1, . . . , 1,±1) are not −-symmetry breaking. On the other hand, the
trivial isotropy type ι(1, 1, 1, 1, 0) is −-symmetry breaking. In this case, branches
of invariant orbits will be tangent to the Γ-orbit of the plane x5 = 0. All of the
remaining isotropy types satisfy the conditions of Lemma 5.4.1 and so are also
−-symmetry breaking. ♥

Remark 5.4.6. Additional examples of symmetry breaking for maps for the standard
representation of Sn+1 on Rn are implicit in [25, §17] and explicit in [1]. ♦

6. Strong determinacy

6.1. Strong determinacy theorem for maps. Just as for vector fields, we may
prove a strong determinacy theorem for one parameter families of equivariant maps.

Theorem 6.1.1. Let (V,Γ) be either absolutely or complex irreducible. Then Γ-
equivariant bifurcation problems on V are strongly determined. In particular, there
exists d ∈ N and an open and dense semi-analytic subset N (d) of P (d)

Γ (V, V ) such
that if f ∈M(V,Γ) and jdf0(0) ∈ N (d) then

(1) f is strongly determined.
(2) If H is a closed subgroup of Γ then f is (d,H)-stable.

6.2. Proof of the Strong determinacy theorem for maps. As the proof of
Theorem 6.1.1 is similar to that of the corresponding result for vector fields, we
shall only sketch the main techniques.

We start by restricting to the set Mω(V,Γ) ⊂ M(V,Γ) of real-analytic families
and assume that (V,Γ) is absolutely irreducible or tangential. Using methods based
on resolution of singularities, it can be shown that we can find d,N ∈ N, and an
open and dense semi-algebraic subset R1 of P (d)

Γ (V, V ) such that if we define

M1(V,Γ) = {f ∈Mω(V,Γ) | jdf0(0) ∈ R1}
then, for all p ∈ N, the p-jet at zero of solution branches of f ∈ M1(V,Γ) depends
analytically on jp+Nf(0, 0). (Full details of this construction are given in [21,
§10].) If Γ is finite, we may use this parametrization theorem, in combination with
methods based on Newton-Puiseux series, to obtain estimates on eigenvalues of
the linearization along branches of invariant group orbits. A routine application
of Tougeron’s implicit function theorem [37] then yields strong determinacy for
smooth maps. If Γ is not finite, we have to work a little harder. First of all we
blow-up along orbit strata using recent results of Schwarz on the coherence of the
orbit stratification (see [36] and [21, §9]). In this way, we desingularize the branch.
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Next we use the tangential and normal form for the family given by Lemma 3.1.5
and apply the same arguments used for the Γ-finite case to the normal component to
obtain eigenvalue estimates along the branch. We obtain strong determinacy using
persistence results on families of normally hyperbolic manifolds. (Proofs of these
results are in [21, Appendix].) Finally, we extend our strong determinacy result
from tangential to complex irreducible representations using equivariant normal
forms (see [21, §9.18]).

6.3. Applications to normal forms. We conclude this section by briefly describ-
ing how we can use Theorem 6.1.1 to justify normal form computations.

First of all, suppose that (V,Γ) is absolutely irreducible and that −I /∈ Γ. Set
Γ2 = Γ × Z2. It follows from Theorem 6.1.1 that we can find d ∈ N such that Γ2-
equivariant bifurcation problems on V are strongly (d,Γ)-determined. Suppose that
f ∈ M−(V,Γ2) and f is strongly (d,Γ2)-determined. Let f ′ ∈ M−(V,Γ) satisfy
jdf ′0(0) = jdf0(0). We regard f ′ as a perturbation of f breaking symmetry from
Γ2 to Γ. It follows from the strong determinacy theorem that each branch of nor-
mally hyperbolic invariant Γ2-orbits in Ξ?(f) will persist as a branch of Γ-invariant
normally hyperbolic submanifolds for f ′. Typically, some of these branches will be
branches of Γ-orbits (and so will appear in Ξ?(f ′)), others will not be Γ-orbits. If
Γ is finite, each branch for f ′ will consist of hyperbolic points of prime period two.

Example 6.3.1. Let Γ = ∆′5 o Z5 (Example 5.4.5). Then Γ2-equivariant bifurca-
tion problems are strongly (3,Γ)-determined (Theorem 5.4.4). It is easy to verify
directly that if f ∈ L−Γ (R5), then f has branches of points of prime period two tan-
gent to the axes R(1, 1, 1, 1,±1). However, the period two points are not related by
Γ-symmetries. In this example, (R5,Γ), (R5,Γ2) have the same cubic equivariants
and fourth order terms are required to break symmetry from Γ2 to Γ. ♥

Let P (d)
Γ (V ×R, V )0 denote the subset of P (d)

Γ (V ×R, V ) consisting of polynomial
maps with linear term (λ − 1)IV . We similarly define P (d)

Γ2 (V × R, V )0. The next
result follows from the theory of equivariant normal forms [28, Chapter XVI, §5]
(see also the proof of [21, Lemma 9.18.3]).

Lemma 6.3.2. Let d ∈ N. There is a polynomial submersion

Nd : P (d)
Γ (V × R, V )0→P (d)

Γ2 (V × R, V )0,

such that if f ∈M−(V,Γ) then Nd(jdf(0, 0)) is the Γ2-equivariant normal form of
f to order d. Moreover, if p > d, Nd(Np(jpf(0, 0))) = Nd(jdf(0, 0)). In particular,
Nd restricts to the identity map on P

(d)
Γ2 (V × R, V )0.

Suppose that Γ-equivariant bifurcation problems on V are p-determined, Γ2-
equivariant bifurcation problems on V are q-determined and Γ2-equivariant bifur-
cation problems on V are strongly (d,Γ)-determined. It is easy to see that d ≥ p, q.

Theorem 6.3.3. We may construct an open and dense semi-analytic subset N of
P

(d)
Γ (V × R, V ) such that if f ∈M−(V,Γ) satisfies jdf(0, 0) ∈ N then

(1) f ∈ S(V,Γ).
(2) f̃ = Nd(jdf(0, 0)) ∈ S(V,Γ2).
(3) Every branch of invariant normally hyperbolic Γ2-orbits of f̃ persists as a

branch of normally hyperbolic Γ-invariant submanifolds manifolds for f and
every branch of invariant Γ-orbits of f arises via such a perturbation.
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Proof: Let R,R2 be the open and dense semi-algebraic subsets of P (d)
Γ (V ×R, V ),

P
(d)
Γ2 (V × R, V ) that respectively determine stable maps for Γ- and Γ2-equivariant

bifurcation problems on V . let D be the semi-analytic subset of P (d)
Γ2 (V × R, V )

that determines the strongly (d,Γ)-stable mappings in M−(V,Γ2). We define

N = R∩N−1
d (R2 ∩ D)

Since Nd is a polynomial submersion, N is an open and dense semi-analytic subset
of P (d)

Γ (V × R, V ). The theorem follows.
We have somewhat similar results if (V,Γ) is a complex representation such that

S1 6⊂ Γ. In this case, we set G = Γ × S1. Let d ∈ N. Let P (d)
Γ (V × R, V )0

be the set of polynomial maps which have linear term (1 + λ) exp(ıω)IV , where
ω ∈ [0, 2π). Let P (d)

Γ (V × R, V )? denote the open and dense semi-algebraic subset
of P (d)

Γ (V × R, V )0 defined by requiring that exp(ıω) is not a qth root of unity,
1 ≤ q ≤ d. We similarly define P (d)

G (V × R, V )?.

Lemma 6.3.4. Let d ∈ N. There is a polynomial submersion

Nd : P (d)
Γ (V × R, V )?→P (d)

G (V × R, V )?,

such that if f ∈M(V,Γ) then Nd(jdf(0, 0)) is the G-equivariant normal form of f
to order d. Moreover, if p > d, Nd(Np(jpf(0, 0))) = Nd(jdf(0, 0)). In particular,
Nd restricts to the identity map on P

(d)
G (V × R, V )?.

Suppose G-equivariant bifurcation problems on V are strongly (d,Γ)-determined.
We have

Theorem 6.3.5. We may construct an open and dense semi-analytic subset N of
P

(d)
Γ (V × R, V ) such that if f ∈M−(V,Γ) satisfies jdf(0, 0) ∈ N then

(1) f ∈ S(V,Γ).
(2) f̃ = Nd(jdf(0, 0)) ∈ S(V,G).
(3) Every branch of normally hyperbolic G-orbits of f̃ persists as a branch of

normally hyperbolic Γ-invariant submanifolds manifolds for f . Moreover,
every branch of invariant Γ-orbits of f arises as such a perturbation.

Remark 6.3.6. The residual dynamics on branches when we break normal form
symmetry may, of course, be complicated (see Broer et al. [6]). ♦

7. Equivariant Hopf bifurcation theorem for vector fields

One of the applications of the theory developed in [21] was a proof of a variant
of Fiedler’s equivariant Hopf bifurcation theorem based on strong determinacy and
equivariant normal forms [21, Theorem 11.2.1]. The proof of the general strong
determinacy theorem given in [21] depends on rather technical and delicate results
on persistence of branches of normally hyperbolic group orbits under symmetry
breaking perturbations. It is clear, however, that simpler proofs should be avail-
able if we restrict attention to symmetry breaking perturbations which only break
normal form symmetry. In this section, we outline a relatively simple proof of a
version of the strong determinacy theorem that applies to the normal form analysis
of the equivariant Hopf bifurcation. Our proof avoids most normal hyperbolicity
issues.
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7.1. Preliminaries. Suppose that (V,Γ) is a complex irreducible representation.
Let X be a smooth Γ-equivariant vector field on V and α be a relative equilibrium of
X. We recall [21, §3], [13, 17] that we may define the reduced Hessian HESS(X,α)
of X along α and that HESS(X,α) is a subset of C/ıR. The orbit α is normally
hyperbolic for X if and only if the multiplicity of 0 in HESS(X,α) is equal to the
dimension of α. If α is an equilibrium orbit, HESS(X,α) is, up to translations
by pure imaginary numbers, the set of eigenvalues (counting multiplicities) of the
Hessian of X along α. If X = XN +XT is a tangent and normal decomposition of
X on a neighborhood of α (see [31, 17]), then HESS(XN , α) = HESS(X,α). In the
sequel, we typically work with the tangent and normal decomposition.

Let V(V,Γ) denote the space of normalized Γ-equivariant vector fields on V . We
recall that if f ∈ V(V,Γ) then Dfλ(0) = (λ+ ı)IV , λ ∈ R.

The next result follows from [21, Theorem 9.18.1] (cf. [28, Chapter XVI, §11]).

Proposition 7.1.1 (Estimates on eigenvalues). There exist d ∈ N, ν > 0 and an
open and dense semi-analytic subset R of P (d)

Γ (V, V ) such that if f ∈ V(V,G) and
jdf0(0) ∈ R then

(1) f ∈ S(V,Γ).
(2) If b ∈ Σ(f) is a branch of relative equilibria of isotropy type τ , there exists

a parametrization Ψ = (φ, λ) : [0, δ] ×∆τ→V × R of b and C = C(f) > 0
such that if t ∈ (0, δ] and µ(t) ∈ HESS(fλ(t), φ(t,∆τ )) is nonzero, then

|Re(µ(t))| ≥ Ctν

Remark 7.1.2. The first step of the proof of Proposition 7.1.1 depends on choosing
R and d ∈ N so that if f is analytic and jdf0(0) ∈ R, then we can choose parametr-
izations of branches so that initial exponents along the branch are locally constant
(as functions of f). This is done in [21, §7] and we may suppose R is semi-algebraic.
In order to obtain estimates on eigenvalues along the branch, we use blowing-up
techniques and results based on Newton-Puiseux series. Typically, we now have to
allow R to be semi-analytic rather than semi-algebraic. Finally, using the tangent
and normal form, we extend estimates to smooth families (see [21, §8]). ♦

7.2. Equivariant Hopf bifurcation and normal forms. Continuing with our
assumptions on (V,Γ), set G = Γ× S1 and consider the representation (V,G). Let
d ∈ N, R ⊂ P (d)

G (V, V ) and ν satisfy the conditions of Proposition 7.1.1 for (V,G).

Theorem 7.2.1. There exists d̃ ≥ d such that (V,G) is strongly (d̃,Γ)-determined.

Proof: Let µ ∈ O(V,G) be a symmetry breaking isotropy type. The conjugacy
class of Γx is constant on Vµ and so µ determines a unique isotropy type τ ∈ O(V,Γ).
In particular, Vµ ⊂ Vτ (see also [18, §3] and note that in general Vµ may not be an
open subset of Vτ ). If G-orbits of isotropy type µ are Γ-orbits, it is easy to see that
normally hyperbolic branches of relative equilibria of isotropy type µ persist when
we break symmetry from G to Γ. Therefore, we assume that G-orbits of isotropy
type µ are not Γ-orbits. It follows that if α is a G-orbit of isotropy type µ, then
G/Γ is diffeomorphic to S1 and Gx/Γx ∼= Zp, for some p ≥ 1.

Following [21, Lemma 9.3.5], we successively polar blow-up V × R along (the
strict transforms) of the G-orbit strata Vρ × R, ρ > µ. In this way, we obtain an
analytic G-equivariant map Π : W→V ×R such that Wµ = Π−1(V µ×R) is a closed
submanifold of W . In addition, Wµ will be a submanifold of Wτ – the set of points
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of Γ-isotropy type τ . Indeed, if we order O(V,G) so that ρ > µ if Wρ ⊂ ∂Wτ , we
may and shall assume that Wτ is a closed submanifold of W . The blowing-down
map Π restricts to a local finite-to-one analytic diffeomorphism on the complement
of Π−1(∪ρ>τ (V ×R)ρ). Every f ∈ V(V,G) lifts uniquely to a smooth G-equivariant
vector field on f̃ on W . If jdf0(0) ∈ R, then every branch b ∈ Σ(f) of isotropy
type µ lifts to a branch b̃ ⊂ Wµ of normally hyperbolic relative equilibria of f̃ . If
we let Ψ̃ : [0, δ] ×∆µ→Wµ ⊂ W denote the lift of the parametrization of b given
by Proposition 7.1.1, then the estimates of Proposition 7.1.1 hold for Ψ̃ (since Π
is a local analytic diffeomorphism off Π−1(∪ρ>τ (V × R)ρ)). The map Ψ̃ is a G-
equivariant embedding. We set Zt = Ψ̃(t,∆µ), t ∈ [0, δ], and note that Zt will be a
smooth family of G-orbits of G-isotropy type µ and Γ-isotropy type τ . We regard
the dynamics on Z as Γ-equivariant and define a local Poincaré section D ⊂W for
Z0. We recall that D will be a smoothly Γ-equivariantly embedded submanifold of
codimension 1 which intersects Z0 transversally along a Γ-orbit (we refer to [13, 17]
for details). It follows by transversality that D will be a Poincaré section for Zt,
t ∈ [0, δ′], where 0 < δ′ ≤ δ. Choosing a sufficiently small D′ ⊂ D, we may define
an associated family of Poincaré maps Pλ(t) : D′→D, t ∈ [0, δ′], such that Pλ(t) has
an invariant Γ-orbit Zt ∩D for each t ∈ [0, δ′]. If z ∈ D′, Pλ(t)(z) will be defined
as the first point of intersection of the forward f̃λ(t)-trajectory through z with D.
If z ∈ Zt ∩D, then Pλ(t)(z) = exp(2πı/p)z. Set It = Zt ∩D. It follows from our
hyperbolicity conditions on b̃ that It is a branch of normally hyperbolic invariant
Γ-orbits for the family of Γ-equivariant diffeomorphisms Pλ(t), t ∈ [0, δ′]. Moreover,
our estimates on elements of HESS(f̃λ(t), Zt) exponentiate to estimates on elements
of SPEC(Pt, It). Specifically, if µ(t) ∈ SPEC(Pλ(t), It) is not equal to one, then
there exists C > 0 such that

|1− |µ(t)|| ≥ Ctν , t ∈ [0, δ′]

It is now a straightforward application of the techniques used to study fami-
lies of Γ-equivariant maps to show that the branch It of invariant Γ-orbits will
persist, as a family of normally hyperbolic invariant Γ-orbits, under sufficiently
small high order Γ-equivariant perturbations of the family P . Moreover, we can
choose an S1-invariant horn neighborhood H of the original branch It such that
H ∩ Π−1(∪ρ>τ (V × R)ρ) = I0 and require that perturbed families lie within H.
Finally, we may choose d̃ ≥ d (independent of f) such that if f ∈ M(V,Γ) and
jd̃f ′(0, 0) = jd̃f(0, 0), then f̃ ′ defines a family of Poincaré maps P ′λ(t) with a cor-
responding branch of invariant normally hyperbolic Γ-orbits contained in H. This
branch determines in the usual way a family of Γ- and f̃ ′-invariant normally hyper-
bolic submanifolds of Wτ and again we may require that the family is contained
in H. Blowing-down by Π we obtain the required family of Γ- and f ′-invariant
normally hyperbolic submanifolds of f ′.

Remarks 7.2.2. (1) Note that it is somewhat easier to prove persistence of the
branch in Wτ . Once we have defined the Poincaré maps, restrict to the free Γ-
manifold Wτ and reduce to the orbit manifold Wτ/Γ. The branch of invariant
Γ-orbits drops down to a branch of fixed points. Somewhat similar techniques were
used in [7]. (2) Note that the advantage of working with the Poincaré maps is that
they are Γ-invariant, even when we break normal form symmetries, and so we can
characterize normal hyperbolicity in terms of spectral conditions on eigenvalues of
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linearizations. This approach is not open to us if we do not work with flow or map
invariant Γ-orbits as the behavior tangent to the manifold then becomes critical. ♦
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