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Abstract: 

 A shooting algorithm was employed to solve the one-

dimensional time-independent Schrödinger wave equation 

(TISWE) for the infinite square well potential (particle in 

a box) and the harmonic oscillator.  What you won’t see 

here are the fruitless results of 10 hours of labor trying 

to crack the 1/x potential . 

 



Introduction: 

 Quantum mechanical systems are governed by the time 

dependent Schrödinger equation, but if we seek to know a 

stationary state solution, we can simply examine the TISWE.1   

It is important to solve these equations so that we can 

understand the inner workings of the universe.  Of course, 

the universe we live in is has at least three dimensions.  

Let’s pretend for a while that there is only one. 

 The infinite square well potential is very useful 

because many quantum systems can be described as states 

trapped in a finite region with rigid boundaries.  This 

would include light trapped in an optical cavity. 

  The harmonic oscillator potential is even more 

useful.  It can be used as the first approximation of any 

polynomial potential that does not contain a linear term.  

This would be the case for atomic bonding. 

 



Schrödinger Wave Equation: 

 The TISWE is given by 
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where in calculations, h=m=π=1.  To solve this equation 

numerically, the following approximation is made: 
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where initial conditions will obviously determine the 

trajectory of the ensuing integration.  Additionally, the 

resultant solution must be square integrable adding a 

complex boundary condition to the system. 

 

Particle in a Box: 

 The infinite square well potential is given by 

! 
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Eigenfunction solutions must be symmetric in this potential 

and must vanish at +/-1 endpoints (and therefore by default 

be square integrable).  Therefore, when an integration is 

performed, it cannot be known a priori if it will satisfy 

the boundary condition at the endpoints. 

 Solutions will only exist for certain values of E (the 

eigenvalues).  Therefore E becomes an adjustable parameter 

wherein integration is computed for a trial E and if a 



solution is found, this E is an eigenvalue.  If not, a new 

trial must be performed with another value for E. 

 A program was created to slowly increase the value of 

E while an integration trial was performed to see if a 

satisfactory solution was found (see appendix).  Once the 

first 5 eigenvalues were discovered, the wavefunction 

solutions, ψ, (the eigenfunctions) were graphed (Figure 1). 

 

Figure 1: Solutions of Infinite Square Well Potential. 



 These solutions show the correct form and also based 

on the number of nodes in each that the program did not 

skip any possible eigenfunctions.  They also match the 

well-known analytical solutions, 
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Simple Harmonic Oscillator: 

 The simple harmonic oscillator potential is given by 

! 

V =
1

2
kx

2, 

with k=25 for this simulation.  The boundary value now is 

more complex.  Rather than the wave function simply 

vanishing at a specific location, now the wavefunction must 

continually diminish to zero at infinity.  Luckily, a small 

deviation from the true energy eigenstate will quickly 

result in the integration for the wavefunction becoming 

unbounded.   

 Obtaining eigenfunction solutions that achieved the 

boundary conditions was accomplished by a Newton’s method 

of integration.  If at a distant endpoint the solution blew 

up to positive infinity for one trial energy, but blew up 

towards negative infinity at another trial energy, the 

energy interval between them was investigated more finely.  

This method ran very quickly and could be used to achieve a 



high accuracy in the solution for the eigenfunction (Figure 

2).   

 

Figure 2: Solutions of Simple Harmonic Oscillator. 

 The energy eigenstate solutions for the simple 

harmonic oscillator are well know: 
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and the solutions are in fairly good agreement. Further, no 

eigenfuction solutions have been skipped and are fairly 

accurate compared to the analytical solutions.5,6 

 

Summary: 

 Solving the TISWE by shooting methods is difficult 

because a full integration must be performed before knowing 

if the boundary conditions have been achieved.  One must 

take care not to miss any eigenstates as the search is 

conducted.  Compared to classical systems, it is not like 

shooting fish in a barrel. 
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Borrowed Art: 

wacky fish: www.thetalentshow.org  
 
happy box: www.resource.nsw.gov.au  
 
slinky: www.ls-dyna.cn  
 

 
this and many more scientific portraits at  
http://homepage.mac.com/uchii/PhotoAlbum10.html  
 
 
 



Appendix: 

Program 1: P.I.B. 

%% Shooting Quantum Fish in a P.I.B. (Barrel). 
close all; clear all; prec_end = 2; 
  
set(gcf,'units','normalized','position',[.1,.1,.8,.8]); 
set(0,'defaultaxesfontsize',15); 
set(0,'defaulttextfontsize',15); 
set(0,'defaultlinelinewidth',3); 
  
x = linspace(-2,2,10001); % 21 divisions minimum! 
Nx = length(x);  
dx = (x(end)-x(1))/(Nx-1); 
mid = (Nx-1)/2 + 1; 
left = mid - round(1/dx); 
right = mid + round(1/dx); 
V = x; V(:) = 1e50; V(left+1:right-1) = 0; %%  P.I.B. 
P = x;  
E = 0; 
Ne = 0; 
  
%% Begin search for energy eigenvalues and eigenstates: 
while 1, 
    E = E + 1; 
    flag = 0; 
    count = 1; 
    while 1, 
        E = E + .001; 
        P(:) = 0; 
        P(mid-1:mid+1) = 1; 
        P(right-2:right-1) = 1; 
        for i_P = mid+2:right-3, 
            P(i_P) = 2*(1-(dx)^2*(E-V(i_P-1)))*... 

P(i_P-1)-P(i_P-2); 
            P(2*mid-i_P) = P(i_P); 
        end; 
        for i_P = right-2:right-1, 
            P(i_P) = round((10^prec_end)*... 
                (2*(1-(dx)^2*(E-V(i_P-1)))*P(i_P-1)-... 

 P(i_P-2)))/(10^prec_end); 
            P(2*mid-i_P) = P(i_P); 
        end; 
        if (P(right-2:right-1)==[0,0]), 
            break; 
        end; 
        if count==10000, 



            disp('TIMED OUT: eigenvalue not reached!'); 
            flag = 1; 
            break; 
        end; 
        count = count + 1; 
    end; 
    if flag == 1, 
        continue; 
    end; 
    for i_P = right:Nx, 
        P(i_P) = round((10^prec_end)*... 
            (2*(1-(dx)^2*(E-V(i_P-1)))*P(i_P-1)-P(i_P-... 

2)))/(10^prec_end); 
        P(2*mid-i_P) = P(i_P); 
    end; 
    N = sqrt(sum(P.*P)*dx); 
    P = P/N; 
    if Ne == 0, 
        plot(x,P,'b-'); 
        axis([-2,2,-1,11]); 
        text(-1.9,Ne*2.1+.3,['E = ',num2str(E,3)]); 
        title({'Eigenvalues and Eigenfunctions',... 
            'for Particle in a Box (Barrel :)'},... 
            'fontsize',30); 
        xlabel('x-position'); 
        ylabel({'Normalized Eigenfunctions',... 
            '(spaced for viewing)'}); 
        hold on; 
        plot([-1,-1,1,1],[100,0,0,100],'k','linewidth',6); 
        drawnow; 
        Ne = Ne + 1; 
    elseif Ne == 1, 
        P = P + Ne*2.1; 
        plot(x,P,'r-'); 
        text(-1.9,Ne*2.1+.3,['E = ',num2str(E,3)]);         
        drawnow; 
        Ne = Ne + 1; 
    elseif Ne == 2, 
        P = P + Ne*2.1; 
        plot(x,P,'g-'); 
        text(-1.9,Ne*2.1+.3,['E = ',num2str(E,3)]);         
        drawnow; 
        Ne = Ne + 1; 
    elseif Ne == 3, 
        P = P + Ne*2.1; 
        plot(x,P,'c-'); 
        text(-1.9,Ne*2.1+.3,['E = ',num2str(E,3)]);         
        drawnow; 



        Ne = Ne + 1; 
    elseif Ne == 4, 
        P = P + Ne*2.1; 
        plot(x,P,'m-'); 
        text(-1.9,Ne*2.1+.3,['E = ',num2str(E,3)]);         
        drawnow; 
        break; 
    end; 
end; 
hold off; 
 

Program 2: S.H.O. 

%% Shooting Quantum Fish in a Simple Harmonic Oscillator. 
close all; clear all; prec_end = 1; cutoff = .0000001; clc; 
  
set(gcf,'units','normalized','position',[.1,.1,.8,.8]); 
set(0,'defaultaxesfontsize',15); 
set(0,'defaulttextfontsize',15); 
set(0,'defaultlinelinewidth',3); 
  
k = 25; 
x = linspace(-2,2,10001); % 21 divisions minimum! 
Nx = length(x);  
dx = (x(end)-x(1))/(Nx-1); 
mid = (Nx-1)/2 + 1; 
left = mid - round(1/dx); 
right = mid + round(1/dx); 
V = .5*k*x.*x; %%  S.H.O. 
P(1:Nx) = 0; P(end) = 1; Pswap = P(end); 
E = 0; 
Ne = 0; 
flag2 = 0; 
%% Begin search for energy eigenvalues and even 
eigenstates: 
while 1, 
    E = E + 1; 
    P(end) = 1; 
    while P(end) > cutoff, 
        flag2 = 0; 
        P(:) = 0; 
        P(mid-1:mid+1) = 1; 
        for i_P = mid+2:Nx, 
            P(i_P) = 2*(1-(dx)^2*(E-V(i_P-1)))*... 
                P(i_P-1)-P(i_P-2); 
            P(2*mid-i_P) = P(i_P); 
        end; 



        Pswap = P(end); 
        prec_end = 1; 
        while 1, 
            E = E + .1^prec_end; 
            P(:) = 0; 
            P(mid-1:mid+1) = 1; 
            P(end) = Pswap; 
            for i_P = mid+2:right-3, 
                P(i_P) = 2*(1-(dx)^2*(E-V(i_P-1)))*... 
                    P(i_P-1)-P(i_P-2); 
                P(2*mid-i_P) = P(i_P); 
            end; 
            for i_P = right-2:Nx, 
                P(i_P) = 2*(1-(dx)^2*(E-V(i_P-1)))*... 
                    P(i_P-1)-P(i_P-2); 
                P(2*mid-i_P) = P(i_P); 
            end; 
            if abs(P(end)) < cutoff, 
                flag2 = 1; 
                break; 
            elseif Pswap*P(end) < 0 
                E = E - 2*(.1^prec_end); 
                prec_end = prec_end + 1; 
            end; 
        end; 
        if flag2 == 1, 
            break; 
        end; 
    end; 
    N = sqrt(sum(P.*P)*dx); 
    P = P/N; 
    if Ne == 0, 
        plot(x,P,'b-'); 
        axis([-2,2,-1,11]); 
        text(-1.9,Ne*2.1+.3,['E = ',num2str(E,3)]); 
        title({'Eigenvalues and Eigenfunctions',... 
            'for Simple Harmonic Oscillator'},... 
            'fontsize',30); 
        xlabel('x-position'); 
        ylabel({'Normalized Eigenfunctions',... 
            '(spaced for viewing)'}); 
        hold on; 
        plot(x,V,'k','linewidth',6); 
        drawnow; 
        Ne = Ne + 2; 
    elseif Ne == 2, 
        P = P + Ne*2.1; 
        plot(x,P,'g-'); 



        text(-1.9,Ne*2.1+.3,['E = ',num2str(E,3)]);         
        drawnow; 
        Ne = Ne + 2; 
    elseif Ne == 4, 
        P = P + Ne*2.1; 
        plot(x,P,'m-'); 
        text(-1.9,Ne*2.1+.3,['E = ',num2str(E,3)]);         
        drawnow; 
        break; 
    end; 
end; 
  
%% Begin search for energy eigenvalues and odd eigenstates: 
cutoff = .000000001; 
P(1:Nx) = 0; P(end) = 1; Pswap = P(end); 
E = 0; 
Ne = 1; 
flag2 = 0; 
while 1, 
    E = E + 1; 
    P(end) = 1; 
    while P(end) > cutoff, 
        flag2 = 0; 
        P(:) = 0; 
        P(mid) = 0; 
        P(mid-1) = -dx; 
        P(mid+1) = dx; 
        for i_P = mid+2:Nx, 
            P(i_P) = 2*(1-(dx)^2*(E-V(i_P-1)))*... 
                P(i_P-1)-P(i_P-2); 
            P(2*mid-i_P) = -P(i_P); 
        end; 
        Pswap = P(end); 
        prec_end = 1; 
        while 1, 
            E = E + .1^prec_end; 
            P(:) = 0; 
            P(mid) = 0; 
            P(mid-1) = -dx; 
            P(mid+1) = dx; 
            for i_P = mid+2:right-3, 
                P(i_P) = 2*(1-(dx)^2*(E-V(i_P-1)))... 
                    *P(i_P-1)-P(i_P-2); 
                P(2*mid-i_P) = -P(i_P); 
            end; 
            for i_P = right-2:Nx, 
                P(i_P) = 2*(1-(dx)^2*(E-V(i_P-1)))... 
                    *P(i_P-1)-P(i_P-2); 



                P(2*mid-i_P) = -P(i_P); 
            end; 
            if abs(P(end)) < cutoff, 
                flag2 = 1; 
                break; 
            elseif Pswap*P(end) < 0 
                E = E - 2*(.1^prec_end); 
                prec_end = prec_end + 1; 
            end; 
        end; 
        if flag2 == 1, 
            break; 
        end; 
    end; 
    N = sqrt(sum(P.*P)*dx); 
    P = P/N; 
    if Ne == 1, 
        P = P + Ne*2.1; 
        plot(x,P,'r-'); 
        text(-1.9,Ne*2.1+.3,['E = ',num2str(E,3)]); 
        hold on; 
        drawnow; 
        Ne = Ne + 2; 
    elseif Ne == 3, 
        P = P + Ne*2.1; 
        plot(x,P,'c-'); 
        text(-1.9,Ne*2.1+.3,['E = ',num2str(E,3)]);         
        drawnow; 
        break; 
    end; 
end; 
hold off; 
 

 



Miscellanea: 

 

A terrific applet showing the radial wavefunction for the 

user’s selected quantum numbers can be found at 

http://webphysics.davidson.edu/physletprob/ch10_modern/radi

al.html. 

 

A succinct algorithm for calculating the radial 

wavefunctions is given at 

http://quantummechanics.ucsd.edu/ph130a/130_notes/node237.h

tml. 

 

 


