
Physics 550 Final Project:

Shooting Quantum Fish

in a Barrel

[I will tell you my name in person when I hand it in]

(Don’t show this to anyone!)

Abstract:

 A shooting algorithm was employed to solve the one-

dimensional time-independent Schrödinger wave equation

(TISWE) for the infinite square well potential (particle in

a box) and the harmonic oscillator. What you won’t see

here are the fruitless results of 10 hours of labor trying

to crack the 1/x potential .

Introduction:

 Quantum mechanical systems are governed by the time

dependent Schrödinger equation, but if we seek to know a

stationary state solution, we can simply examine the TISWE.1

It is important to solve these equations so that we can

understand the inner workings of the universe. Of course,

the universe we live in is has at least three dimensions.

Let’s pretend for a while that there is only one.

 The infinite square well potential is very useful

because many quantum systems can be described as states

trapped in a finite region with rigid boundaries. This

would include light trapped in an optical cavity.

 The harmonic oscillator potential is even more

useful. It can be used as the first approximation of any

polynomial potential that does not contain a linear term.

This would be the case for atomic bonding.

Schrödinger Wave Equation:

 The TISWE is given by

!

"
h
2

8m# 2
$2%(x)() +V (x) &%(x) = E &%(x),

where in calculations, h=m=π=1. To solve this equation

numerically, the following approximation is made:

!

"
n+1(x) = 2 V

n
(x) # E() $"n

(x) $ %x()
2

+ 2"
n
(x) #"

n#1(x)
2,

where initial conditions will obviously determine the

trajectory of the ensuing integration. Additionally, the

resultant solution must be square integrable adding a

complex boundary condition to the system.

Particle in a Box:

 The infinite square well potential is given by

!

V =", x #1 and

= 0, x <1.

Eigenfunction solutions must be symmetric in this potential

and must vanish at +/-1 endpoints (and therefore by default

be square integrable). Therefore, when an integration is

performed, it cannot be known a priori if it will satisfy

the boundary condition at the endpoints.

 Solutions will only exist for certain values of E (the

eigenvalues). Therefore E becomes an adjustable parameter

wherein integration is computed for a trial E and if a

solution is found, this E is an eigenvalue. If not, a new

trial must be performed with another value for E.

 A program was created to slowly increase the value of

E while an integration trial was performed to see if a

satisfactory solution was found (see appendix). Once the

first 5 eigenvalues were discovered, the wavefunction

solutions, ψ, (the eigenfunctions) were graphed (Figure 1).

Figure 1: Solutions of Infinite Square Well Potential.

 These solutions show the correct form and also based

on the number of nodes in each that the program did not

skip any possible eigenfunctions. They also match the

well-known analytical solutions,

!

2 sin n"x(), n =1,2,3,...
3

Simple Harmonic Oscillator:

 The simple harmonic oscillator potential is given by

!

V =
1

2
kx

2,

with k=25 for this simulation. The boundary value now is

more complex. Rather than the wave function simply

vanishing at a specific location, now the wavefunction must

continually diminish to zero at infinity. Luckily, a small

deviation from the true energy eigenstate will quickly

result in the integration for the wavefunction becoming

unbounded.

 Obtaining eigenfunction solutions that achieved the

boundary conditions was accomplished by a Newton’s method

of integration. If at a distant endpoint the solution blew

up to positive infinity for one trial energy, but blew up

towards negative infinity at another trial energy, the

energy interval between them was investigated more finely.

This method ran very quickly and could be used to achieve a

high accuracy in the solution for the eigenfunction (Figure

2).

Figure 2: Solutions of Simple Harmonic Oscillator.

 The energy eigenstate solutions for the simple

harmonic oscillator are well know:

!

E
n

= n +
1

2

"

$

%

&
' (= n +

1

2

"

$

%

&
'

k

m
= n +

1

2

"

$

%

&
') 5, n = 0,1,2,...4,

and the solutions are in fairly good agreement. Further, no

eigenfuction solutions have been skipped and are fairly

accurate compared to the analytical solutions.5,6

Summary:

 Solving the TISWE by shooting methods is difficult

because a full integration must be performed before knowing

if the boundary conditions have been achieved. One must

take care not to miss any eigenstates as the search is

conducted. Compared to classical systems, it is not like

shooting fish in a barrel.

References:

1 D. J. Griffiths, Introduction to Quantum Mechanics, 2nd
Ed., (Pearson Prentice Hall, Upper Saddle River, NJ, 2005),
p. 2.

2 N. J. Giordano and H. Nakanishi, Computational Physics, 2nd
Ed., (Pearson Prentice Hall, Upper Saddle River, NJ, 2006),
p. 308.

3 R. A. Serway, C. J. Moses and C. A. Moyer, Modern Physics,
3rd Ed., (Brooks/Cole-Thomson Learning, Belmont, CA), p.
204.

4 D. J. Griffiths, Introduction to Quantum Mechanics, 2nd
Ed., (Pearson Prentice Hall, Upper Saddle River, NJ, 2005),
p. 54.

5 D. J. Griffiths, Introduction to Quantum Mechanics, 2nd
Ed., (Pearson Prentice Hall, Upper Saddle River, NJ, 2005),
p. 58.

6 R. A. Serway, C. J. Moses and C. A. Moyer, Modern Physics,
3rd Ed., (Brooks/Cole-Thomson Learning, Belmont, CA), p.
216.

Borrowed Art:

wacky fish: www.thetalentshow.org

happy box: www.resource.nsw.gov.au

slinky: www.ls-dyna.cn

this and many more scientific portraits at
http://homepage.mac.com/uchii/PhotoAlbum10.html

Appendix:

Program 1: P.I.B.

%% Shooting Quantum Fish in a P.I.B. (Barrel).
close all; clear all; prec_end = 2;

set(gcf,'units','normalized','position',[.1,.1,.8,.8]);
set(0,'defaultaxesfontsize',15);
set(0,'defaulttextfontsize',15);
set(0,'defaultlinelinewidth',3);

x = linspace(-2,2,10001); % 21 divisions minimum!
Nx = length(x);
dx = (x(end)-x(1))/(Nx-1);
mid = (Nx-1)/2 + 1;
left = mid - round(1/dx);
right = mid + round(1/dx);
V = x; V(:) = 1e50; V(left+1:right-1) = 0; %% P.I.B.
P = x;
E = 0;
Ne = 0;

%% Begin search for energy eigenvalues and eigenstates:
while 1,
 E = E + 1;
 flag = 0;
 count = 1;
 while 1,
 E = E + .001;
 P(:) = 0;
 P(mid-1:mid+1) = 1;
 P(right-2:right-1) = 1;
 for i_P = mid+2:right-3,
 P(i_P) = 2*(1-(dx)^2*(E-V(i_P-1)))*...

P(i_P-1)-P(i_P-2);
 P(2*mid-i_P) = P(i_P);
 end;
 for i_P = right-2:right-1,
 P(i_P) = round((10^prec_end)*...
 (2*(1-(dx)^2*(E-V(i_P-1)))*P(i_P-1)-...

 P(i_P-2)))/(10^prec_end);
 P(2*mid-i_P) = P(i_P);
 end;
 if (P(right-2:right-1)==[0,0]),
 break;
 end;
 if count==10000,

 disp('TIMED OUT: eigenvalue not reached!');
 flag = 1;
 break;
 end;
 count = count + 1;
 end;
 if flag == 1,
 continue;
 end;
 for i_P = right:Nx,
 P(i_P) = round((10^prec_end)*...
 (2*(1-(dx)^2*(E-V(i_P-1)))*P(i_P-1)-P(i_P-...

2)))/(10^prec_end);
 P(2*mid-i_P) = P(i_P);
 end;
 N = sqrt(sum(P.*P)*dx);
 P = P/N;
 if Ne == 0,
 plot(x,P,'b-');
 axis([-2,2,-1,11]);
 text(-1.9,Ne*2.1+.3,['E = ',num2str(E,3)]);
 title({'Eigenvalues and Eigenfunctions',...
 'for Particle in a Box (Barrel :)'},...
 'fontsize',30);
 xlabel('x-position');
 ylabel({'Normalized Eigenfunctions',...
 '(spaced for viewing)'});
 hold on;
 plot([-1,-1,1,1],[100,0,0,100],'k','linewidth',6);
 drawnow;
 Ne = Ne + 1;
 elseif Ne == 1,
 P = P + Ne*2.1;
 plot(x,P,'r-');
 text(-1.9,Ne*2.1+.3,['E = ',num2str(E,3)]);
 drawnow;
 Ne = Ne + 1;
 elseif Ne == 2,
 P = P + Ne*2.1;
 plot(x,P,'g-');
 text(-1.9,Ne*2.1+.3,['E = ',num2str(E,3)]);
 drawnow;
 Ne = Ne + 1;
 elseif Ne == 3,
 P = P + Ne*2.1;
 plot(x,P,'c-');
 text(-1.9,Ne*2.1+.3,['E = ',num2str(E,3)]);
 drawnow;

 Ne = Ne + 1;
 elseif Ne == 4,
 P = P + Ne*2.1;
 plot(x,P,'m-');
 text(-1.9,Ne*2.1+.3,['E = ',num2str(E,3)]);
 drawnow;
 break;
 end;
end;
hold off;

Program 2: S.H.O.

%% Shooting Quantum Fish in a Simple Harmonic Oscillator.
close all; clear all; prec_end = 1; cutoff = .0000001; clc;

set(gcf,'units','normalized','position',[.1,.1,.8,.8]);
set(0,'defaultaxesfontsize',15);
set(0,'defaulttextfontsize',15);
set(0,'defaultlinelinewidth',3);

k = 25;
x = linspace(-2,2,10001); % 21 divisions minimum!
Nx = length(x);
dx = (x(end)-x(1))/(Nx-1);
mid = (Nx-1)/2 + 1;
left = mid - round(1/dx);
right = mid + round(1/dx);
V = .5*k*x.*x; %% S.H.O.
P(1:Nx) = 0; P(end) = 1; Pswap = P(end);
E = 0;
Ne = 0;
flag2 = 0;
%% Begin search for energy eigenvalues and even
eigenstates:
while 1,
 E = E + 1;
 P(end) = 1;
 while P(end) > cutoff,
 flag2 = 0;
 P(:) = 0;
 P(mid-1:mid+1) = 1;
 for i_P = mid+2:Nx,
 P(i_P) = 2*(1-(dx)^2*(E-V(i_P-1)))*...
 P(i_P-1)-P(i_P-2);
 P(2*mid-i_P) = P(i_P);
 end;

 Pswap = P(end);
 prec_end = 1;
 while 1,
 E = E + .1^prec_end;
 P(:) = 0;
 P(mid-1:mid+1) = 1;
 P(end) = Pswap;
 for i_P = mid+2:right-3,
 P(i_P) = 2*(1-(dx)^2*(E-V(i_P-1)))*...
 P(i_P-1)-P(i_P-2);
 P(2*mid-i_P) = P(i_P);
 end;
 for i_P = right-2:Nx,
 P(i_P) = 2*(1-(dx)^2*(E-V(i_P-1)))*...
 P(i_P-1)-P(i_P-2);
 P(2*mid-i_P) = P(i_P);
 end;
 if abs(P(end)) < cutoff,
 flag2 = 1;
 break;
 elseif Pswap*P(end) < 0
 E = E - 2*(.1^prec_end);
 prec_end = prec_end + 1;
 end;
 end;
 if flag2 == 1,
 break;
 end;
 end;
 N = sqrt(sum(P.*P)*dx);
 P = P/N;
 if Ne == 0,
 plot(x,P,'b-');
 axis([-2,2,-1,11]);
 text(-1.9,Ne*2.1+.3,['E = ',num2str(E,3)]);
 title({'Eigenvalues and Eigenfunctions',...
 'for Simple Harmonic Oscillator'},...
 'fontsize',30);
 xlabel('x-position');
 ylabel({'Normalized Eigenfunctions',...
 '(spaced for viewing)'});
 hold on;
 plot(x,V,'k','linewidth',6);
 drawnow;
 Ne = Ne + 2;
 elseif Ne == 2,
 P = P + Ne*2.1;
 plot(x,P,'g-');

 text(-1.9,Ne*2.1+.3,['E = ',num2str(E,3)]);
 drawnow;
 Ne = Ne + 2;
 elseif Ne == 4,
 P = P + Ne*2.1;
 plot(x,P,'m-');
 text(-1.9,Ne*2.1+.3,['E = ',num2str(E,3)]);
 drawnow;
 break;
 end;
end;

%% Begin search for energy eigenvalues and odd eigenstates:
cutoff = .000000001;
P(1:Nx) = 0; P(end) = 1; Pswap = P(end);
E = 0;
Ne = 1;
flag2 = 0;
while 1,
 E = E + 1;
 P(end) = 1;
 while P(end) > cutoff,
 flag2 = 0;
 P(:) = 0;
 P(mid) = 0;
 P(mid-1) = -dx;
 P(mid+1) = dx;
 for i_P = mid+2:Nx,
 P(i_P) = 2*(1-(dx)^2*(E-V(i_P-1)))*...
 P(i_P-1)-P(i_P-2);
 P(2*mid-i_P) = -P(i_P);
 end;
 Pswap = P(end);
 prec_end = 1;
 while 1,
 E = E + .1^prec_end;
 P(:) = 0;
 P(mid) = 0;
 P(mid-1) = -dx;
 P(mid+1) = dx;
 for i_P = mid+2:right-3,
 P(i_P) = 2*(1-(dx)^2*(E-V(i_P-1)))...
 *P(i_P-1)-P(i_P-2);
 P(2*mid-i_P) = -P(i_P);
 end;
 for i_P = right-2:Nx,
 P(i_P) = 2*(1-(dx)^2*(E-V(i_P-1)))...
 *P(i_P-1)-P(i_P-2);

 P(2*mid-i_P) = -P(i_P);
 end;
 if abs(P(end)) < cutoff,
 flag2 = 1;
 break;
 elseif Pswap*P(end) < 0
 E = E - 2*(.1^prec_end);
 prec_end = prec_end + 1;
 end;
 end;
 if flag2 == 1,
 break;
 end;
 end;
 N = sqrt(sum(P.*P)*dx);
 P = P/N;
 if Ne == 1,
 P = P + Ne*2.1;
 plot(x,P,'r-');
 text(-1.9,Ne*2.1+.3,['E = ',num2str(E,3)]);
 hold on;
 drawnow;
 Ne = Ne + 2;
 elseif Ne == 3,
 P = P + Ne*2.1;
 plot(x,P,'c-');
 text(-1.9,Ne*2.1+.3,['E = ',num2str(E,3)]);
 drawnow;
 break;
 end;
end;
hold off;

Miscellanea:

A terrific applet showing the radial wavefunction for the

user’s selected quantum numbers can be found at

http://webphysics.davidson.edu/physletprob/ch10_modern/radi

al.html.

A succinct algorithm for calculating the radial

wavefunctions is given at

http://quantummechanics.ucsd.edu/ph130a/130_notes/node237.h

tml.

