
Technical Report
Number 581

Computer Laboratory

UCAM-CL-TR-581
ISSN 1476-2986

Axioms for bigraphical structure

Robin Milner

February 2004

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom
phone +44 1223 763500

http://www.cl.cam.ac.uk/

c© 2004 Robin Milner

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http://www.cl.cam.ac.uk/TechReports/

Series editor: Markus Kuhn

ISSN 1476-2986

Axioms for bigraphical structure

Robin Milner

University of Cambridge, The Computer Laboratory,
J J Thomson Avenue, Cambridge CB3 0FD, UK

February 2004

Abstract. This paper axiomatises the structure of bigraphs, and proves that the
resulting theory is complete. Bigraphs are graphs with double structure, represent-
ing locality and connectivity. They have been shown to represent dynamic theories
for the π-calculus, mobile ambients and Petri nets, in a way that is faithful to each
of those models of discrete behaviour. While the main purpose of bigraphs is to
understand mobile systems, a prerequisite for this understanding is a well-behaved
theory of the structure of states in such systems. The algebra of bigraph structure
is surprisingly simple, as the paper demonstrates; this is because bigraphs treat
locality and connectivity orthogonally.

1 Introduction
The diagram shows a bigraph, suppressing some of its detail. The ovals and circles are
nodes which may be nested, and each node has ports which may be linked. The links
are a partition of all the ports in a bigraph. Some links are external, shown here with
wires escaping from the top of the diagram. When this bigraph is inserted in another
(insertion will be represented by categorical composition) it will be placed in some

1

region of that host graph, and each external link joined to some link of the host in a
way that does not depend on the placing. Thus the independence of the linking and the
placing of nodes, already illustrated by the way links cross boundaries in the diagram,
is also respected by the operation of composing bigraphs.

The bigraphical model [16, 9] arises from a long-term effort beginning with action
calculi [14, 6] to provide a theory common to different process calculi, and to base
this theory on the topographical ideas that appear to pervade these calculi. These ideas
are especially evident in the calculus of mobile ambients [1]; less obviously, they have
also been found to inform the π-calculus [18]. A contributory effort [21, 2, 13, 12, 15]
has been to unify the treatment of labelled transition systems by treating the labels as
contexts, especially graphical contexts. Recently this unification has recovered exist-
ing behavioural theories for the π-calculus [8] and for mobile ambients [7], and has
contributed to that for Petri nets [17].

In the categorical treatment of transition labels as contexts, the definition of a tran-
sition a L

. a′ of an agent a specifies, among other things, that the composition L ◦a
(a in context L) performs a reaction; in other words, a and L may collaborate to per-
form it. This immediately suggests a categorical formulation in which the arrows are
bigraphs, and the objects are interfaces explaining what kind of ‘hole’ in L will be oc-
cupied by the agent a, and what links will connect a to L. Considering static structure
alone, this recalls Lawvere’s categorical treatment of algebraic theories [11], in which
the objects are simply finite ordinals and the arrows are tuples of terms; composition
then is substitution of terms for variables in other terms. In bigraphs, term substitution
is replaced by a more ramified notion of graph substitution.

The topic of this paper is to axiomatise the resulting structure of bigraphs. The jus-
tification for such a specific topic is threefold. First, the work already cited gives ample
evidence that a graphical structure combining topography with connectivity has wide
application in computer science; for as we have seen it brings unity to at least three
models of discrete dynamics, each of which has already many applications. Second,
it appears that the algebraic treatment of such dual structures has not been previously
addressed; yet the behaviour of systems whose connectivity and topography are both
reconfigurable may be so complex that their dynamics cannot be properly understood
without a complete and rigorous treatment of their statics. Bigraphs are just one pos-
sible treatment of such dual structure, but it is likely that their static theory can be
modified for other treatments. Third, as we shall see, dual structures seem to require a
novel kind of normal form which is essential to a proof of axiomatic completeness.

We begin in Section 2 with an example, which illustrates the dynamic subtlety of
a quite simple real-life system with mobile structure. In Section 3 we set up bigraphs
as a category, and in Section 4 we explore their algebra enough to be able to propose
the notion of discrete normal form (DNF). Section 5 introduces axioms, based upon
those of a strict symmetric monoidal category, and proves their completeness using
DNF. Section 6 introduces an alternative, connected normal form (CNF), that appears
closer to process calculi and to programming languages, but uses a form of product that
lends itself less well to axiomatisation. Finally, the concluding section mentions some
related work and open problems.

2

A
A

A

A

R
R R

B

C

y z

C

C

G

Figure 1: A bigraph G showing agents interacting in a structured environment

2 An example of bigraphs
The bigraph G in Figure 1 is a snapshot of part of a system in which people and things
are interrelated and interacting. A bigraph consists principally of nodes, shown here
with bold outlines. The nodes may be nested, and they have ports which may be
connected by links. Each link many connect many ports; for example, all the A-nodes
are joined by a single link represented by a forking bent line. The term ‘bigraph’
connotes this double structure of nesting and linking. The nesting of nodes imposes no
constraint upon the linkage of their ports.

Every node is assigned a control (A, B, . . .) which represents what kind of node
it is and determines its arity, i.e. how many ports it has. In our example, the arities of
A, B, C and R are 2, 1, 2 and 0 respectively. Here A-nodes represent agents, people
equipped with mobile phones; the link among them indicates that they are conducting
a conference call. If an agent is in a room (R) it may also be plugged in to a computer
C. The computers in all rooms of a building (B) may be connected by a network, part
of the building’s infrastructure.

Our bigraph represents only part of a total (host) system. Some links have names;
these are the open links that may be connected to other parts of the host. On the other
hand the closed links, such as those joining three agents to their computers or two
computers to the building, cannot be connected to other parts.

Every bigraph has a width; this one has width 2, shown by the two dotted rectangles,
called regions. Nodes in the same region cannot be located within different nodes of
the host; on the other hand, different regions may be arbitrarily far apart in the host.

As in all computing structures, some aspects of the behaviour of a subsystem can
be analysed independently of its position within, or linkage to, its host system. In this
case, we can imagine analysing the exchange of information among the four agents, and
how it relates to their interaction with their computers, even though we know neither
what building is occupied by the fourth agent, nor what other agents in the host are also

3

y

A
R

x

z

C

B

H

Figure 2: A host context H

taking part in the conference call (via the open link y).
Figure 2 illustrates a host bigraph H , which G may inhabit. H is a contextual

bigraph, in two ways. It has two holes, the grey squares, which may be inhabited by a
bigraph with two regions (such as G). It also has two inner names, y and z, for linking
to an inhabitant bigraph via its corresponding outer names. We draw a bigraph’s inner
names below it, and its outer names above it. An inner name cannot be associated
with a particular hole, because the corresponding link in an inhabitant belongs to no
particular one of its regions; a link has no location (though each of its ports does).

Figure 3 shows the result H ◦G of inserting G into the context H . We now know
more about the conference call; it is being conducted by three people in one of the
two buildings and two in the other. But we do not know what further context H ◦G
may inhabit; via its open link x the conference call could involve inhabitants of further
buildings. It may not be obvious at first that the bigraph in Figure 3 represents the
insertion of G into H (to see it, first place each region of G in the proper hole of H and
then join homonymous inner and outer names); the reason is that placing and linking
are in a sense orthogonal. This will be reflected in our mathematical formulation.

Before leaving our example, let us use it to illustrate the distinction between the
structure (statics) and the activity (dynamics) of a system. Hitherto we have discussed
only the structure of our example, and this paper addresses only the statics of bigraphs.
But they admit a dynamical theory too, involving ways in which bigraphs may recon-
figure their own placing and linking. In our example an agent may leave the conference
call by severing itself from the link x, or may initiate further calls. Also, an agent may
enter a room while talking; this could result in its connection to the computer installed
in that room — a kind of dynamic binding. The dynamical theory of bigraphs has been
somewhat developed [9], and shown to model behaviour in the π-calculus [8], mobile
ambients [7] and Petri nets [17], in each case making a theoretical contribution to those
disciplines.

4

A
A

A

R
R

B

x

C

C

H ◦G

RA

B

C

A

R

C

Figure 3: H ◦G, the partial system G embedded in host context H

3 Definitions
In this section we define the notion of bigraph formally, in terms of the constituent
notions of place graph and link graph. We shall organise bigraphs as the arrows of a
partial strict symmetric monoidal category whose objects are a simple form of interface.
(We explain in a footnote immediately below what ‘partial’ means.) To prepare for the
demonstration of a complete algebraic theory in the following section, we shall show
how every bigraph can be expressed in a normal form that is unique up to isomorphism,
in terms of elementary bigraphs.

Notation We use ‘ ◦ ’, ‘id’ and ‘⊗’ for composition, identity and tensor product in a
category. IdS denotes the identity function on a set S, and ∅S the empty function from
∅ to S. We use S] T for union of sets S and T known or assumed to be disjoint, and
f] g for union of functions with domains known or assumed to be disjoint. We often
interpret a natural number m as a finite ordinal m = {0, 1, . . . ,m−1}. We denote by
~x a finite sequence {xi | i ∈ m}. We presuppose a denumerable set X of names.

Definition 3.1 (signature) A signatureK is a set whose elements are called controls.
For each control K ∈ K it provides a finite ordinal ar(K), an arity.

In refinements of the theory a signature may carry further information, such as a sign
and/or a type for each port. The sign may be used, for example, to enforce the re-
striction that each negative port is connected to exactly one positive port, as in action
calculi [2, 14]. Another possible refinement is a kind assigned to each node, determin-
ing the controls of the nodes it may contain. (An extreme case would be atomic nodes,
which may contain no other nodes at all.)

5

Definition 3.2 (interface) An interface I = 〈m,X〉 consists of a finite ordinal m
called a width, a finite set X ⊂ X called a name set.1

We are now ready to define bigraphs. We shall first define a concrete bigraph to be
the combination of two constituents, a place graph and a link graph.

Definition 3.3 (concrete bigraph) A concrete bigraph over the signature K takes
the form G = (V,E, ctrl , GP, GL) : I→ J where the interfaces I = 〈m,X〉 and
J = 〈n, Y 〉 are its inner and outer faces. Its first two components V and E are finite
sets of nodes and edges respectively. The third component ctrl : V →K, a control map,
assigns a control to each node. The remaining two are:

GP = (V, ctrl , prnt) : m→n a place graph
GL = (V,E, ctrl , link) : X→Y a link graph .

We shall define the composition, identities and tensor product of bigraphs in terms of
these operations on their constituents. Let us take place graphs first.

Definition 3.4 (place graph) A place graph G = (V, ctrl , prnt) : m→n has an
inner width m and an outer width n, both finite ordinals; a finite set V of nodes with a
control map ctrl : V →K; and a parent map prnt : m] V →V] n. The parent map
is acyclic, i.e. prntk(v) 6= v for all k > 0 and v ∈ V .

The acyclicity condition makes the parent map prnt represent a forest of n unordered
trees. The widthsm and n ofG : m→n index its sites 0, . . . ,m−1 and roots 0, . . . , n−1
respectively. The sites and nodes —i.e. the domain of prnt— are called places. Two
places are siblings if they have the same parent. A node or root is barren if it has no
children.

The sites and roots provide the means of composing the forests of two place graphs;
each root i of the first is planted in site i of the second. Figure 4 shows a simple example
of composing place graphs; note the correspondence between the sites of H and the
roots of G. Formally, let Gi = (Vi, ctrl i, prnt i) : mi→mi+1 (i = 0, 1) be place
graphs with V0 ∩ V1 = ∅. Then G1 ◦G0

def
= (V, ctrl , prnt) where V = V0] V1,

ctrl = ctrl0] ctrl1, and

prnt = (IdV0
] prnt1) ◦ (prnt0] IdV1

) .

The identity place graph at m is idm
def
= (∅, ∅K, Idm) : m→m.

The tensor product of two place graphsG : k→ ` andH : m→nwith disjoint node
sets is G⊗H : k+m→ `+n. It consists simply of placing the two forests side-by-side,
and we need not define it more formally.

We turn now to link graphs.
1We saw informally in the previous section that names are used to link bigraphs together. A more abstract

presentation would dispense with alphabetic names entirely, representing them positionally — as in abstract
treatments of the λ-calculus. This is perfectly possible here. Indeed, the word ‘partial’ used above would
then be redundant; it refers to the fact that the tensor product of interfaces is defined only when their name
sets are disjoint, and that condition is unnecessary with positional notation. We prefer alphabetic names here;
it makes little difference to the mathematics, and allows a much more lucid connection to be made to process
calculi.

6

0 0H G H ◦G0

u0 u2

1

u3

u1

u2u0 v0

v1u3u1

v0

v1

01

Figure 4: Composing two place graphs

x y

H

z

y G zx y H ◦G
v0

v1

u1 u2 u3

v′2

u0

u2 u3u1

y

u0

v0 v1

e1
e2 e1

e0

e2

e0

Figure 5: Composing two link graphs

Definition 3.5 (link graph) A link graph G = (V,E, ctrl , link) : X→Y has finite
sets X of inner names, Y of outer names, V of nodes and E of edges. It also has a
function ctrl : V →K called the control map, and a function link : X] P →E] Y
called the link map, where the disjoint sum P

def
=
∑
v∈V ar(ctrl(v)) is the set of ports

of G.

The inner names X and ports P are the points of G, and the edges E and outer names
Y its links. A link is idle if it has no preimage under the link map. A link graph is lean
if it has no idle edges. An outer name is an open link, an edge is a closed link. A point
(i.e. an inner name or port) is open if its link is open, otherwise closed. Two distinct
points are peers if they are in the same link.

It may seem superfluous to admit the possibility of an idle link, especially one that
is open, because it represents an outer name y that ‘names’ nothing. But the dynamic
rules of a bigraphical system allow such a name to arise. In the π-calculus it arises
when a communication on the channel y has occurred and no further use of this channel
remains. A similar situation can give rise to a barren root in a place graph.

Figure 5 shows a simple example of composing link graphs. Formally, let Gi =
(Vi, Ei, ctrl i, link i) : Xi→Xi+1 (i = 0, 1) be two link graphs with V0 ∩ V1 = E0 ∩
E1 = ∅. Then G1 ◦G0

def
= (V,E, ctrl , link) where V = V0] V1, ctrl = ctrl0] ctrl1,

E = E0] E1 and

link = (IdE0
] link1) ◦ (link0] IdP1

) .

7

We can describe the composite link map link of G1 ◦G0 as follows, considering all
possible arguments p ∈ X0] P0] P1:

link(p) =





link0(p) if p ∈ X0] P0 and link0(p) ∈ E0

link1(x) if p ∈ X0] P0 and link0(p) = x ∈ X1

link1(p) if p ∈ P1 .

The identity link graph at X is idX
def
= (∅, ∅, ∅K, IdX) : X→X .

The tensor product of two link graphs G : W →X and H : Y →Z can be formed
provided that their node sets and edge sets are disjoint and that W ∩ Y = X ∩ Z = ∅.
It is G⊗H : W] Y →X] Z, and consists simply of the union of their link maps.

We are now ready to define the category that is the main object of study in this
paper. Recall that in Definition 3.3 a concrete bigraph G : 〈m,X〉→〈n, Y 〉 consists of
a combination of a place graph GP : m→n and a link graph GL : X→Y having the
same node set and control map. We shall write such a combination as G = 〈GP, GL〉.
Definition 3.6 (monoidal category of bigraphs) The composition of two concrete
bigraphs G = 〈GP, GL〉 : I→ J and H = 〈HP, HL〉 : J→K with disjoint node sets
and disjoint edge sets is

H ◦G def
= 〈HP ◦GP, HL ◦GL〉 : I→K .

Two concrete bigraphs G0 and G1 are said to be lean-support equivalent, G0 m G1, if
they differ only by a bijection between their nodes and between their non-idle edges;
idle edges are ignored. An abstract bigraph consists of a m-equivalence class of con-
crete bigraphs. Composition and identity of abstract bigraphs are given by

[H]m ◦ [G]m
def
= [〈HP ◦GP, HL ◦GL〉]m

id〈m,X〉
def
= [〈idm, idX〉]m .

The tensor product of two interfaces with disjoint name sets is

〈m,X〉 ⊗ 〈n, Y 〉 def
= 〈m+n,X] Y 〉 .

The tensor product of two abstract bigraphs F : H→ I and G : J→K, where H ⊗ J
and I ⊗K are defined, is given by

[F]m ⊗ [G]m
def
= [〈FP ⊗GP, F L ⊗GL〉]m : H ⊗ J→ I ⊗K .

Figure 6 shows the composition of two bigraphs; they are the combinations of the
place graphs and link graphs composed in Figures 4 and 5. The labelling of sites in H ,
indicates where each root of a client bigraph (such as G) should be planted. For clarity,
nodes are identified in the figure; in an abstract bigraph these identifiers are forgotten.

The reader may wonder whether the algebra of bigraphs can be factored into two
separate algebras, one for placing and the other for linking. But in each of these sep-
arate algebras the identity of nodes would have been forgotten (just as in ordinary
algebra the identity of subterms is forgotten when one term is substituted in another),
and we have seen that the combination of a place graph with a link graph to form a
bigraph depends crucially on the identity of nodes. Much of the subtlety of bigraph
algebra stems from how this combination interacts with the algebraic operations of
composition and tensor product.

8

H

y

G

y

H ◦G

v0

v1

u2 u3u0

u1

u2

v1

v0

u3
u0

u1

zyx

y zx

0
1

Figure 6: Composing two bigraphs

4 Algebra and discrete normal form
In this section we give the elementary bigraphs from which all others can be formed
by composition and tensor product. We then define a normal form for bigraphical
expressions, called discrete normal form (DNF), and show how each bigraph can be
expressed in DNF uniquely (up to isomorphism).

To avoid too many parentheses in expressions we shall often represent composition
by juxtaposition; it binds tightly, for example G1G2 ⊗G3 means (G1 ◦G2)⊗G3.

There are two degenerate forms of interface: a place interface 〈m, ∅〉, and a link
interface 〈0, X〉. We write them as m and X (or just x if X = {x}) respectively.
The fully degenerate form is the origin ε

def
= 〈0, ∅〉, which is of course the unit for

tensor product on interfaces. An important class of bigraphs are the ground bigraphs
G : ε→ I , those whose inner face is the origin. If G is ground then it has no holes or
inner names; indeed there is no useful composition GF , since (by the properties of a
strict monoidal category) it can be written as a product G⊗ F .

A placing is a bigraph m→n with no nodes. All placings can be expressed in
terms of three kinds:

1 : ε→ 1 a barren root
merge : 2→ 1 map two sites to one root
γm,n : m+n→n+m swap m with n places.

We use π, ρ to range over permutations, those placings generated by composition and
tensor product from the γm,n. For all m ≥ 0 we can define mergem : m→ 1, which
merges m sites, as follows:

merge0
def
= 1

mergem+1
def
= merge(id1 ⊗mergem) .

9

Note that merge1 = id1, and hence merge2 = merge .
A linking or wiring is a bigraph X→Y , which necessarily has no nodes. All

linkings can be expressed in terms of two kinds:

/x : x→ ε closure
y/X : X→ y substitution x 7→ y (all x ∈ X) .

x

y

xkx1

a substitution y/Xa closure /x

A closure just closes a single link. For X = {x1, . . . , xk} we define the multiple
closure /X def

= /x1 ⊗ · · · ⊗ /xk. For X = X1] · · ·] Xn and Y = {y1, . . . , yn}, a
multiple substitution σ : X→Y is defined by y1/X1 ⊗ · · · ⊗ yn/Xn. A substitution
need not be surjective. We write Y : ε→Y for the empty substitution, or just y : ε→ y
if Y = {y}; these are the duals of closures. We shall use ω to range over linkings, σ, τ
over substitutions, and α, β over the bijective substitutions, which we call renamings.

Permutations π and renamings α together generate all isomorphisms in the category
of bigraphs; in fact every isomorphism takes the form π ⊗ α.

The only other elementary bigraph is a discrete ion K~x : 1→〈1, {~x}〉, for any se-
quence ~x = x1, . . . , xk of distinct names where k = ar(K).

K

x0 xn−1

a discrete ion K~x

We now turn to the first of our normal forms. It depends on two important concepts:

Definition 4.1 (prime, discrete) An interface is prime if it has unit width. It takes the
form 〈1, X〉, which we shall often abbreviate to 〈X〉. A bigraph G : I→ J is prime if
J is prime and I has no names. A bigraph is discrete if every link is open and contains
exactly one point.

Thus a discrete ion is an instance of a prime discrete bigraph. More generally we define
a discrete molecule M to be a prime discrete bigraph having a single outermost node.

Figure 7 shows an example of a discrete bigraph. Note that is consists just of dis-
crete ions in a topographical arrangement. It is in fact the discretisation of the bigraph
G from Figure 5; by composing it with a linking we recover G.

We shall now express this insight in a general form. We identify four levels of
structure in bigraphs, as four forms of expression. At each level, the expression is
unique up to certain isomorphisms. Taken in reverse order, these forms represent the
expression of any bigraph G in discrete normal form (DNF). The following proposition

10

Figure 7: A discrete bigraph

treats P , D, α etc as expressions for bigraphs, but equality ‘=’ is semantical; for
example P = P ′ means not that P and P ′ are identical expressions but that they
denote the same bigraph. We omit a proof of the proposition; it follows routinely from
the formal definitions in the preceding section.

Proposition 4.2 (discrete normal form)

1. A discrete molecule M may be expressed as

M = (K~x ⊗ idY)P

where P is prime and discrete. Any other such expression of M takes the form
(K~x ⊗ idY)P ′ where P ′ = P .

2. A discrete prime P may be expressed as

P = (mergen+k ⊗ idY)(idn ⊗M0 ⊗ · · · ⊗Mk−1)π

where each Mi is a discrete molecule. Any other such expression of P takes the
form (mergen+k⊗idY)(idn⊗M ′0⊗· · ·⊗M ′k−1)π′, where there exist ρ, ρi (i ∈ k)
and ρ′ such that M ′i = Mρ(i)ρi and (idn ⊗ ρ0 ⊗ · · · ⊗ ρn−1)π′ = (idn ⊗ ρ′)π.

Moreover if `i is the inner width ofMi for each i ∈ k and ~̀= `0, . . . , `k−1, then
ρ′ = ρ~̀ as defined in Lemma 5.2.

3. A discrete bigraph D with outer width n may be expressed as

D = (P0 ⊗ · · · ⊗ Pn−1)π ⊗ α

where each Pi is prime and discrete. Any other such expression of D takes the
form (P ′0 ⊗ · · · ⊗ P ′n−1)π′ ⊗ α where P ′i = Piρi and (ρ0 ⊗ · · · ⊗ ρn−1)π′ = π
for certain permutations ρi.

4. A bigraph G with outer width n may be expressed as

G = (idn ⊗ ω)D

where D is discrete. Any other such expression of G takes the form (idn⊗ω′)D′
where ω′ = ωα and (idn ⊗ α)D′ = D for some renaming α.

11

This proposition details the isomorphisms that allow variation of expression at each
level. For example, consider a discrete bigraph D : 〈m,X〉→〈n, Y 〉. Each inner name
x ∈ X is linked to a distinct name y ∈ Y , and has no peers; this fully determines the
renaming α. There are no links between regions of a discrete bigraph, so D is indeed
a product of primes. However, the order of sites within each prime Pi may be chosen
arbitrarily, and the product needs to be composed with a permutation correspondingly
chosen to yield the correct order among all the sites of D.

Unique factorisation of a discrete bigraph D into primes justifies our definition of
‘prime’; unicity would fail without the constraint that a prime has no inner names.

5 Axioms and completeness
We now address the question: What set of axioms is complete for equations between
bigraph expressions, in the sense that every valid equation is provable? Recall that we
are considering expressions built by composition, identities and tensor product from
the six classes of constants:

1 merge γm,n /x x/Y K~x

where the ~x are distinct. The answer to our question turns out to be rather simple. First,
we must extend the symmetries γm,n to arbitrary interfaces by defining

γI,J
def
= γm,n ⊗ idX]Y where I = 〈m,X〉, J = 〈n, Y 〉 .

The axioms are shown in Table 1. The categorical axioms are standard for a strict
symmetric monoidal category. But note that the tensor product is defined only when
interfaces have disjoint name sets; thus the equations are required to hold only when
both sides are defined. What is remarkable is that no axioms are required on ions except
a simple renaming axiom (needed only because names are treated positionally). Thus
bigraphs are a rather free structure.

In what follows we shall use E = F , instead of the more verbose � E = F , to
mean that the two expressions denote the same bigraph; when we are talking of equality
inferred from the axioms we always write ` E = F .

The soundness of our axioms, i.e. that ` E = F implies E = F , is obvious and no
formal proof is needed. We shall say that the axiomatic theory is complete for bigraph
expressions in a class E if E = F implies ` E = F for all E,F ∈ E . We shall
prove completeness for increasingly large classes E , culminating in the full class. We
often talk of a class generated by certain elementary expressions; this means the class
formed from those elements by composition, identities and product.

Preliminaries
In this subsection we prove some useful lemmas, including completeness for place ex-
pressions and link expressions, those generated from placings and linkings respectively,
and thence for ion-free expressions. We also introduce linearity, a syntactic property
that matches discreteness.

12

CATEGORICAL AXIOMS:
A id = A = idA
A(BC) = (AB)C

A⊗ idε = A = idε ⊗A
A⊗ (B ⊗ C) = (A⊗B)⊗ C

(A1 ⊗B1)(A0 ⊗B0) = (A1A0)⊗ (B1B0)
γI,ε = idI

γJ,IγI,J = idI⊗J
γI,K(A⊗B) = (B ⊗A)γH,J (A : H→ I,B : J→K)

LINK AXIOMS:
/y ◦ y/x = /x
/y ◦y = idε

z/(Y]y) ◦ (idY ⊗ y/X) = z/(Y]X)

PLACE AXIOMS:
merge(1⊗ id1) = id1 (unit)

merge(merge ⊗ id1) = merge(id1 ⊗merge) (associative)
mergeγ1,1 = merge (commutative)

NODE AXIOMS:
(id1 ⊗ α)K~x = Kα(~x) .

Table 1: Axioms for bigraph equality

13

Lemma 5.1

1. ` mergemπ = mergem

2. ` mergek(mergem0
⊗ · · · ⊗mergemk−1

) = mergem, where m =
∑
imi.

Since permutations are generated by the γm,n the axiom γI,K(A⊗B) = (B⊗A)γH,J
can be iterated to push a permutation through any product of primes, as follows:

Lemma 5.2 Let Pi : mi→〈1, Xi〉 be prime expressions for i ∈ n, with X = X0]
· · ·] Xn−1, and let π be a permutation on n. Then there exists a permutation which
we denote by π ~m, dependent only on π and ~m, such that

` (π ⊗ idX)(P0 ⊗ · · · ⊗ Pn−1) = (Pπ(0) ⊗ · · · ⊗ Pπ(n−1))π ~m .

We are now ready to prove some special instances of completeness.

Lemma 5.3 The theory is complete for place expressions.

Proof First, it is standard in strict symmetric monoidal categories that the categorical
axioms are complete for the permutation expressions π generated from the γm,n.

Next we show for every place expression E that

` E = (mergem0
⊗ · · · ⊗mergemk−1

)π

for some k ≥ 0 and permutation expression π. The proof is by structural induction on
expressions. For the inductive step, if it holds for E and F then it immediately holds
for E ⊗ F , and to show it for EF amounts to a simple use of Lemmas 5.1 and 5.2.

Now suppose F is another place expression with E = F and

` F = (mergen0
⊗ · · · ⊗mergen`−1

)π′

Then we must have k = `, mi = ni, and π′ = (ρ0 ⊗ · · · ⊗ ρk−1)π for some ρi. Then
this equation is provable by completeness for permutation expressions. We also have
` mergemiρi = mergemi from Lemma 5.1, so we deduce ` E = F as required.

Lemma 5.4 The theory is complete for link expressions.

Proof First we show for every link expression E that ` E = Ê, where Ê is a link
normal form consisting of a product of zero or more terms of the three types

/y x/Y /x ◦x/Y

where in the second type Y may be any set, but in the third type Y must contain at
least two members. (This type represents a closed link between two or more inner
names.) Again the proof is by structural induction on E, and the only case needing
careful attention is to show that if the property hold for E and F then it holds for EF .
So consider ÊF̂ , and consider the terms y/Z of the second type in F̂ . Each term in Ê
composes with a subset of these terms, and each of these compositions can be proved

14

by the axioms equal to a term that is again one of the three types. This yields the normal
form ÊF . We leave details to the reader.

Since our axioms are sound, if E = F then also Ê = F̂ . But our normal form is
such that two of them denoting the same bigraph must contain exactly the same terms,
perhaps differently ordered. So ` Ê = F̂ , hence ` E = F as required.

Lemma 5.5 The theory is complete for ion-free expressions.

Proof By an easy structural induction on expressions we can prove that ` E =
EP ⊗ EL, the product of a place expression and a link expression. If E = F we
then deduce that EP = FP and EL = F L, since EP and FP are essentially the place
graphs of the two bigraphs; similarly with their link graphs. Hence ` EP = FP and
` EL = F L by Lemmas 5.3 and 5.4, and finally ` E = F as required.

In order to reduce our completeness problem to one for discrete bigraphs we need
a syntactic version of DNF. A discrete bigraph has many syntactic expressions; in
particular, we shall show that it has a linear expression, defined as follows:

Definition 5.6 (linear) A bigraph expression is linear if it contains no substitution
elements except linear ones, those of the form y/x.

Clearly all sub-expressions of a linear expression are linear; thus linearity is amenable
to structural induction. For example:

Lemma 5.7 If E is linear then ` E = E ′⊗α where E′ is linear without inner names.

Proof By structural induction. The proof for elements and the inductive step for
product are easy. It remains to show that if the property holds for E and F then it holds
for EF . Let EF be linear with ` E = E′ ⊗ α and ` F = F ′ ⊗ β, where E′ and F ′

have no inner names. We have ` α = α0 ⊗ α1, where the domains of α0, α1 are the
outer names of F and β respectively. Then ` EF = (E ′ ⊗ α0)F ′ ⊗ α1β, which is of
the required form.

We end this subsection with a first approximation to a provable normal form for arbi-
trary bigraph expressions:

Proposition 5.8 (underlying linear expression) For any expressionG of outer width
m there exist ω and linear E such that ` G = (idm ⊗ ω)E.

Proof Again by structural induction, and we need only look at the inductive step for
composition. Consider GH , and assume that for some linear E and F

` G = (idm ⊗ ω)E and ` H = (idn ⊗ ω′)F .

Then by Lemma 5.7 we have ` E = E ′ ⊗ α where E′ has no inner names. Hence

` GH = (idm ⊗ ω)(E′ ⊗ αω′)F
= (idm ⊗ ω(idY ⊗ αω′))(E′ ⊗ idX)F

where X and Y are the outer names of F and E ′ respectively. This is of the required
form, since (E′ ⊗ idX)F is linear.

15

Provable normal forms
We are interested in four increasingly general kinds of expression: those that denote re-
spectively discrete molecules, discrete primes, discrete bigraphs and arbitrary bigraphs.
We now set out to prove that every expression of each kind can be proved equal to the
corresponding kind of DNF, defined as follows (as suggested in the previous section):

Definition 5.9 (discrete normal forms) There are four kinds of DNF: MDNFs M for
discrete molecules, PDNFs P for discrete primes, DDNFs D for discrete bigraphs and
BDNFs B for bigraphs:

MDNF: M ::= (K~x ⊗ idY)P
PDNF: P ::= (mergen+k ⊗ idY)(idn ⊗M0 ⊗ · · · ⊗Mk−1)π
DDNF: D ::= (P0 ⊗ · · · ⊗ Pn−1)π ⊗ α
BDNF: B ::= (idn ⊗ ω)D .

We begin with a lemma showing that normal forms are provably closed under isomor-
phism, in a certain sense:

Lemma 5.10 Let B : I→ I ′ be a BDNF. If ι and ι′ are isomorphisms on I and I ′

respectively, then ` ι′Bι = B′ for some BDNF B′.
The analogous property holds also for DDNF, PDNF and MDNF.

We omit the proof, which depends upon Lemma 5.2; it uses induction on the number of
ions in an expression. Our next lemma uses a more complex instance of this technique,
and shows that DNFs are provably closed under certain compositions:

Lemma 5.11 Let C : `→〈m,Z〉 be a product of PDNFs. Then

1. If M : m→〈Y 〉 is a MDNF then ` (M ⊗ idZ)C = M ′ for some MDNF M ′.

2. If P : m→〈Y 〉 is a PDNF then ` (P ⊗ idZ)C = P ′ for some PDNF P ′.

3. If D : m→〈n, Y 〉 is a DDNF then ` DC = D′ for some DDNF D′.

Proof We first prove (1) and (2) by simultaneous induction on the number n of ions
in P or M . Assume both parts hold for < n ions.

For (1) with n ions, let M be (K~x ⊗ idW)P for PDNF P : m→〈W 〉. Then

` (M ⊗ idZ)C = (K~x ⊗ idW]Z)(P ⊗ idZ)C

where P has n−1 ions. We may therefore apply (2) to P , yielding the required result.
For (2) with n ions, let P be (mergeh+k ⊗ idY)(idh ⊗M0 ⊗ · · · ⊗Mk−1)π. Now

C is a product Q0⊗· · ·⊗Qm−1 of PDNFs, and by Lemma 5.2 we may push π through
it to get, for some π′,

` (P ⊗ idZ)C = (mergeh+k⊗ idY]Z)(id〈h,Z〉⊗
⊗

i∈k
Mi)(Qπ(0)⊗· · ·⊗Qπ(m−1))π

′ .

16

Now the sequence of Qj can be factored into products C ′, C0 . . . , Ck−1 with outer
names Z ′, Z0, . . . Zk−1, where Z ′]⊎i Zi = Z, yielding

` (P ⊗ idZ)C = (mergeh+k ⊗ idY]Z)(C ′ ⊗
⊗

i∈k
(Mi ⊗ idZi)Ci)π

′

Since eachMi has at most n ions we can apply (1) to each (Mi⊗idZi)Ci. Furthermore,
using Lemma 5.1(2), the merge in each prime factor of C ′ may be combined with the
outer merge. Together, these manipulations provably yield a DPNF P ′, as required.
This concludes the inductive proof of (1) and (2).

To prove (3), note that D takes the form (P0 ⊗ · · · ⊗ Pn−1)π ⊗ α. We first push
π through C by Lemma 5.2; then we apply (2) to n forms (Pi ⊗ idZi)Ci; the result is
then provably equal to a DDNF D′ using Lemma 5.10.

We are now ready for our main result on provable normal forms:

Proposition 5.12 (provable normal forms) Let E be a linear expression.

1. If E denotes a discrete molecule then ` E = M for some MDNF M .

2. If E denotes a discrete prime then ` E = P for some PDNF P .

3. If E denotes a discrete bigraph then ` E = D for some DDNF D.

4. If G is any expression then ` G = B for some BDNF B.

Proof We first prove (3) by structural induction. The base case (elementary linear ex-
pressions) and the case for tensor product of two linear expressions are straightforward.
For the case of a composition, suppose the result holds for linear E0 and E1; we wish
to prove it forE0E1. By assumption we have ` Ei = Di for DDNF Di (i = 0, 1). Now
D1 has the form Cπ⊗β, where C is a product of PDNFs, and we have ` D0 = D′0⊗α
where D′0 is DDNF and α is composable with β. Hence

` E0E1 = D′0Cπ ⊗ αβ = D ⊗ αβ

where D is a DDNF by Lemma 5.11, so we are done.
For (2), we first note from (1) that ` E = D, a DDNF. But since D has outer width

1 and no inner names, by inspection of the DDNF structure of we find (with the help of
Lemma 5.10) that ` D = P , a PDNF, and we are done.

For (3), we first note from (2) that ` E = P , a PDNF. But since P denotes a
molecule, as in the previous case we find that ` D = M , a MDNF, and we are done.

Finally, (4) follows directly from (3) and Proposition 5.8.

Completeness
We are now ready to prove completeness. We first need an inductive argument to prove
it for linear expressions, and full completeness then follows directly.

Proposition 5.13 (linear completeness) If E and E ′ are linear expressions and E =
E′ then ` E = E′.

17

Proof We first prove completeness for prime linear expressions, by induction on the
number of ions in E (and hence also in E ′). Assume that this holds for < n ions.

First we prove the result when E and E ′, with n ions, denote a discrete molecule.
In this case, by Proposition 5.12(1) and Proposition 4.2(1), we have provable MDNFs

` E = (K~x ⊗ idY)P
` E′ = (K~x ⊗ idY)P ′

where P = P ′ are PDNFs with < n ions. By the induction hypothesis we have ` P =
P ′, and it follows that ` E = E′.

Now we extend the result to whenE andE ′, with n ions, denote any discrete prime.
By Proposition 5.12(2) and Proposition 4.2(2) we have provable PDNFs

` E = (mergen+k ⊗ idY)(idn ⊗M0 ⊗ · · · ⊗Mk−1)π
` E′ = (mergen+k ⊗ idY)(idn ⊗M ′0 ⊗ · · · ⊗M ′k−1)π′

where Mi, M ′i , π and π′ satisfy the conditions set out in Proposition 4.2(2). But these
discrete molecules have no more than n ions, so we apply the above result to obtain
provable equality of certain MDNFs and then, with the help of Lemma 5.1(1), provable
equality for the two displayed PDNFs; hence again ` E = E ′. This completes the
inductive proof of the proposition for prime linear expressions.

Finally suppose that E and E′ are any linear expressions. By Proposition 5.12(3)
and Proposition 4.2(3) we have provable DDNFs

` E = (P0 ⊗ · · · ⊗ Pn−1)π ⊗ α
` E′ = (P ′0 ⊗ · · · ⊗ P ′n−1)π′ ⊗ α′

where the Pi and P ′i are PDNFs such that P ′i = Piρi and (ρ0 ⊗ · · · ⊗ ρn−1)π′ = π
for certain permutations ρi. But with the help of Lemma 5.10 our inductive argument
shows that the former equation is provable; the latter is also provable by Lemma 5.3. It
follows immediately that ` E = E ′.

Theorem 5.14 (completeness) If G = G′ then ` G = G′.

Proof By Proposition 5.12(4) and Proposition 4.2(4) we have provable DDNFs

` G = (idn ⊗ ω)E
` G′ = (idn ⊗ ω′)E′

whereE andE′ are DDNFs such thatE = (idn⊗α)E′ and ωα = ω′ for some renaming
α. But Proposition 5.13, with Lemma 5.10, shows that the former equation is provable,
and the latter is also provable by Lemma 5.4. It follows that ` G = G′.

18

R′R

in

amb

amb

amb

amb

x y yx

1

0

0
1

Figure 8: A reaction rule for mobile ambients

6 Programming and connected normal form
The completeness of the axiom system in Table 1 depends primarily on two things:
first, that all linking can be exposed at the outermost level of an expression; second, that
we have a strict symmetric monoidal category of bigraphs, with a tensor that is partial
on objects. Crucial to the tensor is that it is bifunctorial, i.e. (A1 ⊗ B1)(A0 ⊗ B0) =
(A1A0)⊗ (B1B0); this axiom underlies most of our manipulations.

Thus the discrete normal form, DNF, has been crucial for the proof of completeness.
Despite this mathematical significance, DNF is not so convenient for programming,
or more generally for the practical description of systems. As a striking example of
this, let us consider the calculus of mobile ambients [1], which can be formulated
within bigraphs. Ambients are regions within which local activity may occur, and
their mobility is capture by certain reaction rules. one of them (slightly simplified) is
illustrated in Figure 8.

It means that if any part of a bigraph matches the redex R (with anything in the
holes), then this part of the graph can be replaced by the reactum R′ (keeping the same
things in the holes). The in agent in R asks that its host ambient, the left-hand oval,
should migrate into the ambient to which the in node is pointing (i.e. the right-hand
oval), and should carry along all its contents with it. R′ represents the result of this
migration.

In this paper we are not concerned with the dynamics, only with the statics of
bigraphs. So here let us use the redex R just as an example of a realistic bigraph. Let
us write down what R would look like in DNF, slightly simplified:

R = (merge ⊗ idx ⊗ y/{yz})((ambx ⊗ idy)merge(id1 ⊗ iny1)⊗ ambz) .

Compare this with the following alterative:

R = ambx(id1 | iny1) | amby .

This alternative, with a little sugaring, corresponds exactly to the standard notation of
the ambient calculus. Instead of DNF it uses the connected normal form (CNF) which
we shall shortly define in terms of the prime parallel product ‘|’, which combines

19

tensor product, merging and substitution. CNF resembles parallel composition in other
process calculi; for example, the (only) reaction rule of a simplified π-calculus takes
the form

xy.P |x(z) .Q .P | {y/z}Q .

Here, a sender and receiver are placed side-by-side (compare tensor product) in the
same region (compare merge) and sharing the channel name x (compare substitution).

Parallel product
We now formally define the operation of parallel product ‘ ‖ ’ on bigraphs of arbitrary
width. It resembles tensor product. but allows names to be shared. Thus on interfaces
it is always defined:

〈m,X〉 ‖ 〈n, Y 〉 def
= 〈m+n,X ∪ Y 〉 .

On bigraphs with disjoint inner names it is alway defined. Suppose that X0 ∩X1 = ∅,
and let Gi : 〈mi, Xi〉→〈ni, Yi〉 for i = 0, 1; then we define the parallel product of
G0 and G1 in terms of tensor product. First we disjoin their outer names by applying
renamings αi : Yi→Y ′i with Y ′0 ∩ Y ′1 = ∅. Then setting σ = α−1

0 ∪ α−1
1 we define

G0 ‖G1
def
= σ(α0G0 ⊗ α1G1) : 〈m0+m1, X0]X1〉→〈n0+n1, Y0 ∪ Y1〉 .

Just like ⊗ this product is associative, with unit idε. It is defined more often than ⊗,
and when both products are defined they are equal. But unlike ⊗ it is not bifunctorial;
instead it satisfies

(G1 ‖H1)(G0 ⊗H0) = (G1G0) ‖ (H1H0)

which suggests that, algebraically, ‖ does not stand well by itself; it needs ⊗ to be
present as an auxiliary.

Before defining CNF we need another operator, the prime parallel product ‘ | ’,
which always creates a prime, even on non-prime arguments. (In contrast, if G0 and
G1 are prime then G0 ‖G1 has width 2). It is defined simply by

G0 |G1
def
= merge(G0 ‖G1) .

It is again associative; it has the prime 1 as a unit. Again, it is not bifunctorial but
satisfies

(G1 |H1)(G0 ⊗H0) = (G1G0) | (H1H0) .

This operator agrees strongly with the homonymous operator in process calculi; in-
deed, when we translate either the π-calculus or the calculus of mobile ambients into
bigraphs, ‘ | ’ in the calculus is encoded by ‘ | ’ in bigraphs. The difference is that those
calculi do not in general have categorical composition; their processes correspond to
those bigraphs whose inner face is ε. However, the dynamic theory of bigraphs [9]
allows us to derive labelled transition systems where, in each transition G L

.G′, the
label L is itself a bigraphs (normally a little one) such that L ◦G is defined. Treating la-
bels as composable entities is essential to the uniform behavioural theory that bigraphs
provide.

20

Connected normal form
The key distinction of the parallel products is that they allow sharing of names. This
sharing is induced by the substitution σ used in their definition. Thus, by using them
instead of tensor product, we are pushing substitutions inwards as far as possible. The
key to connected normal form, then, is to push all linking inwards as far as possible,
including closures. This is a close parallel to the good advice often given to program-
mers, to declare their variables in as small a scope as possible. With this in mind, we
are ready for our last definition:

Definition 6.1 (connected normal forms) There are three kinds of CNF: MCNFs M
for molecules, PCNFs P for primes and BCNFs B for bigraphs:

MCNF: M ::= (/Z | id1)(K~x | idY)P
PCNF: P ::= (/Z | id1)(idn |M0 | · · · |Mk−1)π
BCNF: B ::= (/Z ‖ idn)(σ ‖ (P0 ‖ · · · ‖Pn−1)π) .

The names ~x need not be distinct in the MCNF. Moreover, in each case any closed name
z ∈ Z must occur in at least two members of the ensuing product (‖ or |).

Many of the technical properties of DNF are shared by CNF. First, every molecule
(resp. prime, bigraph) can be expressed by a MCNF (resp. PCNF, BCNF). Second, these
expressions are unique up to certain isomorphisms, which are almost exactly as de-
scribed in Proposition 4.2.

However, we leave open the question of a complete axiomatisation expressed in
terms of the parallel products instead of the tensor product. Even if it exists it is un-
likely to be as simple, because the bifunctorial property of the tensor product is absent.
This does not alter the fact that the CNFs appear to be simpler. I conjecture that a pro-
gramming language for bigraphs may well be based firmly on CNFs but with added
notational convenience, just as existing process calculi are based. Moreover, the con-
version to CNF is not hard and can be done whenever necessary for theoretical analysis.

7 Related and further work
The algebraic formulation of bigraphs arises from a category in which the objects are
interfaces and the arrows are graphs, following Lawvere’s paradigm for algebraic the-
ories [11]. It is interesting and non-trivial to explore the relationship between this
treatment —particularly as it affects dynamic theory— with that of graph-rewriting us-
ing the double pushout construction [3], where the objects are graphs and the arrows
are graphs embeddings. The Lawvere approach is closer to the algebraic tradition in
process calculi; we are keen to adopt it both for comparison with these calculi and
because the algebraic approach to concurrent processes has been fruitful. But a link
between the two approaches has been identified [4], and indeed the techniques for de-
riving behavioural congruences has been transferred [5] from the algebraic framework
to the embedding framework. More remains to be done to discover the relative bene-
fits of the approaches, both in allowing different kinds of graph and in analysing real
systems in practice.

21

Process calculi, extended with stochastics, are becoming successful in modelling
biological processes, for example signal transduction in cells [20]. Recently, as one
might expect, explicitly topographic models such as mobile ambients are being em-
ployed in this way [19]. This link with biology is encouraging, and also valuable as a
test for the wider applicability of process models arising from computer science. Also,
as our opening example suggests, there is a strong incentive to build topographical
calculi that can model the phenomena of ubiquitous computing, where mobile commu-
nicating automata (both macro- and microscopic) will abound [10].

Let us now turn to possible variations and developments in bigraph theory. The
present definition is not canonical. For example, for some purposes we may wish to
consider bigraphs whose regions (nodes) may overlap one another. For example, one
node may represent a physical location, say San Francisco, and an overlapping node
may represent the University of California which has separate campuses in many Cal-
ifornian cities. Can bigraphs respond to this challenge? At one level, it is easy; we
simply generalise place graphs from forests of trees to directed (acyclic) graphs. How-
ever, the impact of this change on our algebra is not obvious. It should be remarked,
though, that the computational models we have studied do not need this extra feature.

Another variation is to consider polygraphs, where there may be more than two
orthogonal structures. Indeed this may be the way to cope with overlapping nodes; for
we may consider nodes to be structured both by nesting of physical regions (such as
San Francisco) and by nesting of virtual regions (such as the University of California),
without either form of locality constraining the other. Indeed the dynamic theory of
bigraphs [10] does not exclude this, since it relies on categorical concepts developed
separately for each of the orthogonal structures. But again, the impact on algebraic
theory is not yet clear.

Within our present theory, much refinement is possible and is being examined. The
first is to do with local names, or localised links. Once the theory is developed one
can constrain the independence of linking and placing by introducing bound names,
those that confine a link to within a certain place. This is needed for modelling es-
tablished process calculi, and has turned out [8, 9] that the refined theory can readily
be embedded in the pure theory. We conjecture that the present algebraic theory can
be simply adapted to the refined theory. From the algebraic viewpoint an even more
obvious refinement is to introduce sorting, allowing both the regions and the names of
to be many-sorted. This has already been employed in modelling Petri nets [17] and
the full π-calculus [7].

To conclude: the algebraic treatment of mobile processes with explicit regions has
considerably potential, and the purpose of the present paper has been to apply tra-
ditional algebraic methodology to the static structure of such processes, and thus to
provide a firm basis for the supervening dynamical theory.

22

References
[1] Cardelli, L. and Gordon, A.D. (2000), Mobile ambients. Foundations of System

Specification and Computational Structures, LNCS 1378, pp140–155.

[2] Cattani, G.L., Leifer, J.J. and Milner, R. (2000), Contexts and Embeddings
for closed shallow action graphs. University of Cambridge Computer Labora-
tory, Technical Report 496. [Submitted for publication.] Available at http:
//pauillac.inria.fr/˜leifer.

[3] Ehrig, H. (1979) Introduction to the theory of graph grammars. Graph Grammars
and their Application to Computer Science and Biology, LNCS 73, Springer Ver-
lag, pp1–69.

[4] Ehrig, H. (2002) Bigraphs meet double pushouts. EATCS Bulletin 78, October
2002, pp72–85.

[5] Ehrig, H. and König, B. (2004) Deriving bisimulation congruences in the DPO
approach to graph rewriting. Proc. FOSSACS 2004, Barcelona.

[6] Gardner, P.A. (2000), From process calculi to process frameworks. Proc. CON-
CUR 2000, 11th International Conference on Concurrency Theory, pp69–88.

[7] Jensen, O.H. (2004). Forthcoming PhD Thesis.

[8] Jensen, O.H. and Milner, R. (2003), Bigraphs and transitions. In 30th SIGPLAN-
SIGACT Symposium on Principles of Programming Languages.

[9] Jensen, O.H. and Milner, R. (2004), Bigraphs and mobile processes (revised).
Technical Report UCAM-CL-TR-580, University of Cambridge Computer Lab-
oratory.

[10] Kwiatkowska, M., Milner, R. and Sassone, V. (2004), Theories for the global
ubiquitous computer. Bulletin of thew European Association for Theortical Com-
puter Science, to appear.

[11] Lawvere, F.W. (1963), Functorial semantics of algebraic theories. Proc. Nat.
Acad. Sci. 50, pp869–872.

[12] Leifer, J.J. (2001), Operational congruences for reactive systems. PhD Disserta-
tion, University of Cambridge Computer Laboratory. Distributed in revised form
as Technical Report 521. Available from http://pauillac.inria.fr/
˜leifer.

[13] Leifer, J.J. and Milner, R. (2000), Deriving bisimulation congruences for reactive
systems. Proc. CONCUR 2000, 11th International Conference on Concurrency
theory, pp243–258. Available at http://pauillac.inria.fr/˜leifer.

[14] Milner, R. (1996), Calculi for interaction. Acta Informatica 33, pp707–737.

23

[15] Milner, R. Bigraphical reactive systems: basic theory. Technical Report 503,
University of Cambridge Computer Laboratory (2001). Available from http:
//www.cl.cam.ac.uk/users/rm135.

[16] Milner, R. (2001) Bigraphical reactive systems. Proc. 12th International Confer-
ence on Concurrency Theory, LNCS2154, pp16–35.

[17] Milner, R. (2004), Bigraphs for Petri nets. To appear in Proc. Advance Course in
Petri Nets, Eichstätt, 2003, Lecture Notes in Computer Science, Springer Verlag.

[18] Milner, R., Parrow, J. and Walker D. (1992), A calculus of mobile processes, Parts
I and II. Journal of Information and Computation, Vol 100, pp1–40 and pp41–77.

[19] Regev, A., Panina, E., Silverman, W., Cardelli, L. and Shapiro, E. (2004), BioAm-
bients: an abstraction for biological compartments. Theoretical Computer Sci-
ence, to appear.

[20] Priami, C., Regev, A., Silverman, W. and Shapiro, E. (2001), Application of a
stochastic name-passing calculus to rerpesentation and simulation of molecular
processes. Information Processing Letters 80, pp25–31.

[21] Sewell, P. (1998), From rewrite rules to bisimulation congruences. Proc CON-
CUR’98, LNCS 1466, pp269–284. Full version to appear in Theoretical Com-
puter Science 272.

24

