
Ph.D. Qualifying Reading Lists

Last	
 Update	
 April	
 10,	
 2014	

CS 6352 – Performance of Computer Systems and Networks

List of Topics:

• Properties of Poisson streams of customer arrivals.
• Analysis and performance figures of the M/M/1 queue.
• Continuous parameter Markov chains.
• Single state dependent (continuous time) Markovian queueing systems.
• Various applications of such state dependent cases in computer systems and
data communication networks.

• Generalized Little's result for multiple non-FIFO queues.
• Development and analysis of Markov chains for simple priority queues.
• Developments of Pollaczek-Khinchin mean value formula for the M/G/1 queue.
• Applications.
• Development of discrete parameter Markov chains for discrete time queues.
• Analysis of discrete parameter Markov chains.
• Evaluation of performance figures.
• Applications of discrete time queues in computer systems and data networks
• (such as, for examples, cross-bar and simple multistage switches).
• Product form solutions for networks of continuous time open and closed
• Markovian queues (unlimited buffer, state independent service rates).
• Convolution algorithm and Mean Value Analysis techniques for such closed
queuing networks.

Type of questions:
Questions will be combinations of theoretical development, analysis of given
systems, development of appropriate models and follow up analysis starting
from verbal descriptions of physical systems. In most cases, students should
attempt to solve problems from fundamental principles rather than trying to
remember and apply formulae for various special cases.

A set of helpful formulae, etc.(such as the Pollaczec-Khinchin mean value
formula and the MVA algorithm) will be supplied along with the question
paper.

The following list of references include the commonly used text book,other
reference books on queues, and a sample of books on Probability Theory.
Students are responsible for correcting errors in the reference material.

Text Book:
T. G. Robertazzi, Computer Networks and Systems: Queueing Theory and
Performance Evaluation. Springer, 2000.

Other References:
D. Gross and C. M. Harris, Fundamentals of Queueing Theory. Wiley, 1997

L. Kleinrock, Queueing Systems, Volume 1, Theory. Wiley, 1975

J. J. Higgins and S. Keller-McNulty, Concepts in Probability and Stochastic
Modeling. Duxbury Press, 1995

K.S. Trivedi, Probability and Statistics with reliability, Queueing, and
Computer Science Applications. First or Second Edition (2001, Wiley)

C. M. Grinstead and J. L. Snell, Introduction to Probability. American
Mathematical Society, 1997

Ph.D. Qualifying Reading Lists

Last	
 Update	
 April	
 10,	
 2014	

CS 6353 – Compiler Construction
List of Topics:

• Basic automata theory
o Classification of grammars and languages.

• Lexical analysis
o Regular expressions, Regular languages.

• Syntax analysis
o Context free grammars.
o Top-down parsing techniques: Recursive descent, LL(1).
o Bottom-up parsing techniques: LR parsing.

• Semantic analysis
o Synthesized attributes and inherited attributes.
o Syntax-directed translation.
o Type checking.

• Code generation
o Runtime storage management.
o Backpatching, peephole optimization.
o Register Allocation: Graph coloring.

• Optimizing techniques:
o Concepts of basic blocks, loops.
o Data flow analysis: Framework.

Textbook:
"Compilers: principles, techniques and tools".
A. Aho, R. Sethi and J. Ullman, Addison-Wesley Publishing Company.
Chapters 1-10.

Ph.D. Qualifying Reading Lists

Last	
 Update	
 April	
 10,	
 2014	

CS 6354 – Advanced Software Engineering
Overall References:
+ Software Engineering, I. Sommerville, Ed. 5, Addison-Wesley, 1996.
+ Object-Oriented Software Engineering, B. Bruegge and A.H. Dutoit,
Prentice Hall, 2000.
1. Overview of Software Engineering:
* Review of technical and management aspects of software engineering:
What is software engineering, different roles in a software
engineering project, organization of programming teams, management
and technical tools.
+ Chapter 1 of Bruegge/Dutoit
+ Chapters 1 and 2 of Sommerville.
2. Software Project Management, Organization, and Communication Issues
* Management concepts; management activities; modes and mechanisms
of project communication; project communication activities;
rationale management concepts and activities; configuration
management concepts and activities.
+ Chapters 3, 8, 10, and 11 of Bruegge/Dutoit
+ Chapters 3, 28, and 33 from Sommerville.
+ IEEE Standard for Software Project Management Plans,
IEEE Computer Society, New York, 1993.
3. Software Life-Cycle Models:
* Software life-cycle models (linear, waterfall, spiral,
transformational), identification of applications that require
each of these life-cycles.
+ Chapter 12 of Bruegge/Dutoit
+ IEEE Standard for Developing Software Life Cycle Processes,
IEEE Computer Society, New York, 1995.
4. Software Requirements Specification
* Functional and non-functional requirements, type of faults that
occur in requirements specifications and corresponding methods of
identifying them, template for writing requirements specification,
description of a requirements specification standard.
+ Chapters 4 and 5 of Bruegge/Dutoit
+ Chapters 4, 5, 6, and 7 from Sommerville.
5. Software Architecture:
* Rationale for software architecture, classes of software
architecture, examples to illustrate each class, detailed
example to demonstrate the role of software architecture
in achieving high-quality software.
+ Software Architecture, M. Shaw and D. Garlan, Prentice-Hall.
+ D. Garlan, "Research directions in software architecture,"
ACM Comp. Surveys, Vol. 27, No. 2, June 1995, pp. 257-261.
+ Chapter 13 from Sommerville.
6. Software Design:
* Design quality criteria, top-down/iterative design process,
assessment of design quality; detailed case-study to illustrate
different designs for an application; metrics for assessing designs.
+ Parnas, D. L., "On the criteria to be used in decomposing systems
into modules," Comm. of the ACM, Vol. 15, No. 12, Dec. 1972,
pp. 1053-1058.
+ Parnas, D. L., Siewiorek, D. P., "Use of the concept of transparency
in the design of hierarchically structured systems," Comm. of the
ACM, Vol. 18, No. 7, July 1975, pp. 401-408.
+ Chapters 6 and 7 of Bruegge and Dutoit
+ Chapters 12, 14, 15, 16, and 17 from Sommerville.
7. Object-Oriented Modeling and Specification:
* Object-oriented programs: Difference between abstract data

Ph.D. Qualifying Reading Lists

Last	
 Update	
 April	
 10,	
 2014	

types and objects, single and multiple inheritance, example
of applications that benefit from object-oriented design,
behavioral classes, implementation of objects to support
concurrent threads. Modeling with UML.
+ Chapter 2 of Bruegge/Dutoit
8. Software Testing:
* Structural testing (statement, decision, condition,
decision/condition, multiple condition, path coverage criteria),
Functional testing (equivalence partitioning, boundary value
testing), integration testing (description and comparison of
bottom-up, top-down and thread integration), static program
analysis, symbolic execution, automated test data generation.
+ Adrion, W. R., Brandstad, M. A., Cheriavsky, J. C., "Validation,
verification, and testing of computer software," ACM Computing
Surveys, Vol. 14, No. 2, June 1982, pp. 159-192.
+ Chapter 9 of Bruegge/Dutoit
+ IEEE Standard for Test Documentation, IEEE Standards Board,
Mar. 1991.
+ Chapters 22 and 23 from Sommerville.
9. Formal Specification
+ Suggest Ghezzi, parts of chapter 5
• Algebraic Specification:
* Abstract data type components: O- and V-functions, constructor
and destructor operations, state machine model, algebraic
specification (syntax and semantic specification), simple
specifications (rules that specify the effect of each
O-function on each V-function), specification of exceptions,
more complicated specifications (effect of constructor
operations on destructor operations), completeness of
specification. Systematic development of abstract data type
components (identification of data structure, specification
of representation invariant, mapping function for V-functions,
implementation of V-functions, implementation of initialization
operation, implementation of other O-functions, proof using
structural induction).
+ Link to Ian Sommerville's chapter on "Algebraic Specification":
http://www.comp.lancs.ac.uk/computing/resources/SE6/IG/algebraicspec.
pdf
+ Liskov, B.H., Zilles, S.N., "Specification techniques for data
abstraction," IEEE Trans. Soft. Eng., Vol. SE-1, No. 1,
March 1975, pp. 7-18.
+ Guttag, J., "Abstract data types and the development of data
structures," Comm. of the ACM, Vol. 20, No. 6, June 1977, pp. 396-
404.
+ Guttag, J., "Notes on type abstraction (version 2)," IEEE Trans.
Soft. Eng., Vol. SE-6, No. 1, Jan. 1980, pp. 13-23.
+ Kapur, D., Srivas, M., "Computability and implementability
issues in abstract data types," IJCP: 1988, pp. 33-63.
• logic based notation e.g., Z
• graphical notation e.g. Statecharts
10. Formal Verification
+Ghezzi parts of chapter 6
6.4.2 proof of correctness
6.5 symbolic execution
6.6 model checking sections
+ introduction to theorem provers
+ tutorial papers on model checking, theorem provers
• Weakest Pre-Conditions:

Ph.D. Qualifying Reading Lists

Last	
 Update	
 April	
 10,	
 2014	

* Definition, rationale, derivation of weakest preconditions for
assignment, concurrent assignment, conditional, and iterative
statements, loop invariants, simple program verification.
+ Dijkstra, E.W., "Guarded commands, nondeterminacy and formal
derivation of programs," Comm. of the ACM, Vol. 18, No. 8,
Aug. 1975, pp. 453-457.
+ Robinson, L., Levitt, K.N., "Proof techniques for hierarchically
structured programs," Comm. Of the ACM, Vol. 20, No. 4, Apr. 1977,
pp. 271-283.

Ph.D. Qualifying Reading Lists

Last	
 Update	
 April	
 10,	
 2014	

CS 6360 – Database Design

Textbook: "Fundamentals of database systems"
 by Elmasri and Navathe:

Topics

Database System Concepts and Architecture (Data models,
Schemas, Instances, Database architecture, classification)
Entity-

Relationship (ER) model, ER diagrams

The Enhanced Entity-Relationship (EER) model, EER Diagrams

Relational Data Model, Relational algebra, SQL

Relational Database Design by ER/EER-to-Relational Mapping

Database Design Theory and Normalization (Basics of
Functional Dependencies and Normalization for Relational
Databases; Algorithms for Relational Database Schema
design)

Query processing and optimization

Transaction processing concepts and theory

Concurrency Control Techniques

Database Recovery Techniques

Ph.D. Qualifying Reading Lists

Last	
 Update	
 April	
 10,	
 2014	

CS 6361 – Requirements Engineering
Topics:
Requirements Engineering: Introduction
Why RE? – error propagation in software lifecycle, cost and size
of requirements errors, aims and scope
What is RE? – What are requirements? Role of requirements and
requirements engineers
How to do RE? – types of errors, formal vs. semi-formal vs.
informal
Requirements Engineering Processes
Why process? A framework for RE process: Elicitation,
specification, validation, RE process and software lifecycle
models
Requirements Elicitation: Part I
Why is it difficult? What to elicit? How to elicit?
Requirements Elicitation: Part II
Advanced goal-directed strategy, knowledge acquisition,
data/information elicitation techniques
Scenario Analysis
Use cases, episodes, scripts, cycle of natual inquiry, abstract
vs. concrete scenario, scenario space
Requirements Analysis, Modelling and Specification: Review
Conceptual modeling perspective of basic RE process, carving the
product space
Object-Oriented Modeling:
Intelletual origins, conceptual modeling, UML overview
Enterprise Requirements & Functional Requirements: Structural
Requirements
Agent-oriented approach to enterprise modeling, ERD, i*, JSD,
SADT, IDEF
Functional Requirements: A Formal OO-RML/Telos epistemological
primitives, ontological primitives, interval calculus,
axiomatization of OO
Functional Requirements: Behavioral Requirements
Decision-oriented behavioral models, State-oriented Behavioral
models (Finite State Machines, StateCharts, PetriNets),
Function-oriented behavioral models.
Non-Functional Requirements
Types of NFRs, classification schemes, Process-oriented approach,
Product-oriented approach, Portability, Reliability, Efficiency,
Usability, Security
Main reference: Lecture Notes at
http://www.utdallas.edu/~chung/RE/contents.html
Additional References:
Articles:
Axel van Lamsweerde,
"Requirements engineering in the year 00: a research perspective",
Proc., Int. Conf. on Software Engineering (ICSE) 2000, pp. 5-19.
Axel Van Lamsweerde", "Goal-Oriented Requirements Engineering: A Guided
Tour",
Proc., Int. Symposium on Requiremens Engineering (RE'01), pp.249-261.
Sol Greenspan, John Mylopoulos, Alex Borgida, "On Formal Requirements
Modeling
Languages: RML Revisited", Proc., Int. Conf. on Software Engineering (ICSE)
1994, pp. 135-147.
Mike Wooldridge and Nick Jennings, "Software Engineering with Agents:
Pitfalls
and Pratfalls," IEEE Internet Computing, 3(3):20-27, May/June 1999.

Ph.D. Qualifying Reading Lists

Last	
 Update	
 April	
 10,	
 2014	

A. Tveit, "A Survey of Agent-Oriented Software Engineering",
Proc. of the First NTNU CSGS Conference, May, 2001
URL = http://www.jfipa.org/publications/AgentOrientedSoftwareEngineering/
Anton, A.I.; Potts, C. "The use of goals to surface requirements for evolving
systems", Proc., Int. Conf. on Software Engineering (ICSE) 1998,
pp. 157 -166
J.M. Wing, "A Specifier's Introduction to Formal Methods," IEEE Computer,
23(9):8-24, September 1990.
J.A. Hall, "Seven Myths of Formal Methods," IEEE Software, 7(5):11-19,
September 1990.
J.P. Bowen and M.G. Hinchey, "Seven More Myths of Formal Methods,"
IEEE Software, 12(4):34-41, July 1995.
Books:

A. M. Davis, Software Requirements: Objects, Functions, & States
Prentice Hall: Englewood Cliffs, 1993.
P. Loucopoulos and V. Karakostas, System Requirements Engineering,
McGraw-Hill, 1995.
M. Jackson and T. DeMarco, Software Requirements and Specifications,
Addison-Wesley, 1995.
R. H. Thayer and M. Dortman, Software Requirements Engineering: 2nd edition,
IEEE Computer Society Press, 1998.
I. Sommerville and P. Sawyer, Requirements Engineering - A Good Practice
Guide, Wiley, 1997.
D. Gause and G. Weinberg, Exploring Requirements, Dorset House, 1989.
J. Martin and J. Odell, Object-Oriented Methods: A Foundation, Prentice-Hall,
1995.
J. Rumbaugh, I. Jacobson and G. Booch, The Unified Modeling Language
Reference
Manual, Addison-Wesley, 1998.
L. Chung, B. Nixon, E. Yu and J. Mylopoulos, Non-Functional Requirements in
Software Engineering, Kluwer Academic Publishing, 2000.

Ph.D. Qualifying Reading Lists

Last	
 Update	
 April	
 10,	
 2014	

CS	
 6362	
 –	
 Software	
 Architecture	
 and	
 Design	

	
 Topics:	

Introduction	
 to	
 Software	
 Architecture	
 Classical	

Module	
 Interconnection	

Languages	
 Abstract	
 DataTypes	
 and	
 Objects	
 Module	

Decomposition	
 Issues	

Data	
 Flow	

Repositories	
 Events	

Process	
 Control	

JavaBeans	

Client	
 Server	

Middleware:	
 	
 CORBA,	
 OLE/DCOM,	
 J2EE/J2ME,	
 .Net	
 Patterns	

	
 Main	
 reference:	
 Lecture	
 Notes	
 at	
 http://www.utdallas.edu/~chung/SA/contents.html	

Articles:	

• Mary	
 Shaw,	
 Paul	
 Clements,	
 “The	
 Golden	
 Age	
 of	
 Software	
 Architecture,”	
 IEEE	
 Software,	
 Vol.23,	

no.	
 2,	
 pp.	
 31-­‐39,	
 Mar./Apr.2006	

• Paul	
 Clements,	
 Mary	
 Shaw,	
 “”The	
 Golden	
 Age	
 of	
 Software	
 Architecture	
 Revisited,	
 “	
 IEEE	

Software,	
 vol.	
 26,	
 no.	
 4,	
 pp.	
 70-­‐72,	
 July/August,	
 2009.	

• Hofmeister,	
 C.,	
 Kruchten,	
 P.,	
 Nord,	
 R.,	
 Obbink,	
 H.,	
 Ran,	
 A.,	
 &	
 America,	
 P.	
 (2207).	
 A	
 General	

Model	
 of	
 Software	
 Architecture	
 Design	
 derived	
 from	
 Five	
 Industrial	
 Approaches,	
 Journal	
 of	

Systems	
 &	
 Software,	
 80(1),	
 106-­‐126.	

• Hassan	
 Gomma,	
 “Advances	
 in	
 Software	
 Design	
 Methods	
 for	
 Concurrent,	
 Real-­‐Time	
 and	

Distributed	
 Application,”	
 in	
 proceedings	
 The	
 Third	
 International	
 Conference	
 on	
 Software	

Engineering	
 Advances,	
 2008,	
 pp.	
 451-­‐456.	

• Kendall	
 Scott,	
 The	
 Unified	
 Process	
 Explained.	
 	
 	
 ISBN	
 0-­‐201-­‐74204-­‐7,	
 2002,	
 best	
 practices	
 in	

Architecture	
 and	
 Design.	
 	
 	

• Advanced	
 Design	
 Patterns.	
 Re-­‐use	
 	

M-­‐A.	
 Laverdiere;	
 A.	
 Mourad;	
 A.	
 Hanna;	
 M.	
 Debbabi;	
 “Security	
 Design	
 Patterns:	
 Survey	
 and	

Evaluation”,	
 in	
 Canadian	
 Conference	
 on	
 Electrical	
 and	
 Computer	
 Engineering,	
 May	
 2006,	
 pp.	

1605	
 –	
 1608	
 	

David	
 Kalinsky,	
 “Design	
 Patterns	
 for	
 High	
 Availability”,	
 March	
 13,	
 2003	
 	

URL:	
 http://www.eetimes.com/story/OEG20020729S0030	

Ph.D. Qualifying Reading Lists

Last	
 Update	
 April	
 10,	
 2014	

• Ashraf	
 Armoush,	
 Falk	
 Salewski,	
 Stefan	
 Kowaleski,	
 “Design	
 Pattern	
 Representation	
 for	
 Saftey-­‐
Critical	
 Embedded	
 Systems”,	
 JSEA	

• Glen	
 B.	
 Alleman,	
 “Exception	
 Handling	
 in	
 CORBA	
 Environments,	
 The	
 Late	
 Introduction	
 of	

Distributed	
 Exception	
 Handling	
 in	
 JAVA	
 TM,	
 CORBA-­‐Based	
 COTS	
 Application	
 Domains”,	
 2000.	

	

Representation	

• Nenad	
 Medvidovic.	
 Modeling	
 software	
 architectures	
 in	
 unified	
 modeling	
 language.	
 ACM	

Transactions	
 on	
 Software	
 Engineering	
 and	
 Methodology,	
 11(1):2-­‐57,	
 January	
 2002.	

• Nenad	
 Medvidovic	
 and	
 Richard	
 N.	
 Taylor.	
 A	
 classification	
 and	
 comparison	
 framework	
 for	

software	
 architecture	
 description	
 language.	
 IEEE	
 Transactions	
 on	
 Software	
 Engineering,	

26(1):70-­‐93,	
 January	
 2000.	
 	

• P.	
 Clements,	
 Comparing	
 the	
 SEI’s	
 Views	
 and	
 Beyond	
 Approach	
 for	
 Documenting	
 Software	

Architectures’	
 with	
 ANSI-­‐IEEE	
 1471-­‐2000	

• Grady	
 Booch,	
 James	
 Rumbaugh,	
 and	
 Ivar	
 Jacobson,	
 Unified	
 Modeling	
 Language	
 User	
 Guide,	
 (2nd	

Edition),	
 Advanced	
 UML	
 topics,	
 Sections	
 3,	
 5,	
 and	
 6.	

• Mugurel	
 T.	
 Ionita,	
 Henk	
 Obbink	
 and	
 Dieter	
 Hammer,	
 Scenario-­‐Based	
 Architecture	
 Evaluation	

Methods:	
 An	
 overview,	
 International	
 Conference	
 on	
 Software	
 Engineering	
 2002	
 (ICSE’02),	

Orlando,	
 Florida.	

• Hans-­‐Peter	
 Hoffmann,	
 UML	
 2.0-­‐Based	
 Systems	
 Engineering	
 Using	
 a	
 Model-­‐Driven	
 Development	

Approach,	
 2005,	
 available	
 at	
 http://www.stsc.hill.af.mil/crosstalk/2005/11/0511Hoffman.pdf	

• Michel,	
 M.M.	
 Gala-­‐Edeen,	
 G.H.,	
 “Detecting	
 inconsistencies	
 between	
 software	
 architecture	

views”,	
 in	
 proceedings	
 International	
 Conference	
 on	
 Computer	
 Engineering	
 &	
 Systems,	
 2009.	

ICCES	
 2009.	
 pp.	
 429-­‐434	

• Pengcheng	
 Zhang,	
 Henry	
 Muccini	
 and	
 Bixin	
 Li,	
 “A	
 classification	
 and	
 comparison	
 of	
 model	

checking	
 software	
 architecture	
 techniques”,	
 2009.	

• Jeannette	
 M.	
 Wing	
 and	
 Mandanna	
 Vaziri-­‐Farahani,	
 “A	
 case	
 study	
 in	
 model	
 checking	
 software	

systems”,	
 Science	
 of	
 Computer	
 Programming	
 28	
 (1997)	
 pp.	
 273-­‐299.	

Books:	

1) Mary	
 Shaw	
 and	
 David	
 Garlan,	
 Software	
 Architecture:	
 Perspectives	
 on	
 an	
 Emerging	
 Discipline,	

Prentice	
 Hall,	
 1996.	

2) L.	
 Bass,	
 P.	
 Clements	
 &	
 R.	
 Kazman,	
 Software	
 Architecture	
 in	
 Practice,	
 Addison	
 Wesley,	
 1998.	

3) A.	
 W.	
 Brown	
 (Editor),	
 Component-­‐Based	
 Software	
 Engineering,	
 IEEE	
 Computer	
 Society,	
 1996.	

4) Eric	
 Gamma,	
 Richard	
 Helm,	
 Ralph	
 Johnson	
 and	
 John	
 Vlissides,	
 Design	
 Patterns:	
 Elements	
 of	

Reusable	
 Object-­‐Oriented	
 Software,	
 Eric	
 Gamma,	
 Richard	
 Helm,	
 Ralph	
 Johnson	
 and	
 John	

Vlissides,	
 Addison-­‐Wesley,	
 1994.	

5) Wolfgang	
 Pree,	
 Design	
 Patterns	
 for	
 Object-­‐Oriented	
 Software	
 Development,	
 Addison-­‐Wesley	

Longman,	
 1995.	

Ph.D. Qualifying Reading Lists

Last	
 Update	
 April	
 10,	
 2014	

6) I.	
 Singh,	
 B.	
 Stearns,	
 M.	
 Johnson,	
 The	
 Enterprise	
 Team,	
 Designing	
 Enterprise	
 Applications	
 with	
 the	

J2EE	
 Platform,	
 2/E,	
 Addison	
 Wesley	
 &	
 Benjamin	
 Cummings,	
 2002.	

7) Randy	
 Otte,	
 Paul	
 Patrick	
 and	
 Mark	
 Roy,	
 Understanding	
 CORBA:	
 The	
 Common	
 Object	
 Request	

Broker	
 Architecture,	
 Prentice	
 Hall,	
 1996.	

8) Robert	
 Orfali,	
 Dan	
 Harkey	
 and	
 Jeri	
 Edwards,	
 The	
 Essential	
 Client/Server	
 Architecture:	
 Survivor's	

Guide,	
 John	
 Wiley	
 &	
 Sons,	
 1995.	

Ph.D. Qualifying Reading Lists

Last	
 Update	
 April	
 10,	
 2014	

CS 6363 – Design and Analysis of Computer Algorithms
The exam will test knowledge of:
1. major techniques for algorithm design (as listed below);
2. methods to prove algorithm correctness and to analyze its running time;
3. Basic knowledge of NP-Completeness.
NOTE: You should know more than just the algorithms; you are responsible for
proving correctness, including all necessary supporting lemmas, and are
responsible for proving the correctness of any statements about the
asymptotic
running times. In addition, you should know the stated subject matter well
enough to enable you to provide solutions for closely related questions.
Most topics (and knowledge) required are in the CS6363 textbook:
Introduction to algorithms, Second edition, Cormen, Leiserson, Rivest and
Stein.
General topics:
Introduction, recurrences and Master Theorem (Theorem 4.1, the proof is not
required)
Divide-and-Conquer algorithms
Linear time median selection algorithm (Section 9.3, pp. 189-192)
Closest pair of points in the plane (Section 33.4, pp. 957-961)
Permutation networks (Problem 27-3, page 722)
Sorting Networks (Chapter 27)
Multiplication of large integers (Section 7.1, page 219-223, and
Problems 7.2, 7.3, page 250, of "Fundamentals of Algorithms, by
Brassard and Bratley, Prentice Hall Publ.)
Note: students should be able to design divide-and-conquer algorithms
for various problems beside those mentioned above
Dynamic Programming
Matrix Chain Order (Section 15.2, pp. 331-338)
Longest Common Subsequence Algorithm (Section 15.4, pp. pp. 350-355.)
All pairs shortest paths (Section 25.2, pp. 629-634)
0/1-knapsack problem (Problem 16.2-2, page 384)
Greedy Method
Huffman's code algorithm (Section 16.3, pp. 385-392)
Minimum spanning tree (Chapter 23)
Single Source Shortest Paths (e.g. Dijkstra's algorithm)
(Chapter 24, up to page 601)
Maximum flow (Chapter 26, up to page 668)
Graph algorithms (Chapter 22)
NP-Completeness (Chapter 34, specifically 3SAT, VERTEX COVER, INDEPENDENT
SET,
CLIQUE, 3COLOR, HAMILTON CIRCUIT (both directed and undirected), as well
as definitions and properties of polynomial time reducibilities.)
Linear programming: (Chapter 29, pp. 770-789 and pp. 804-807.)

Ph.D. Qualifying Reading Lists

Last	
 Update	
 April	
 10,	
 2014	

CS 6364 – Artificial Intelligence
Text:
S. Russell & P. Norvig. Artificial Intelligence, A Modern Approach, Second
Edition 2002.
Problem solving by search:
Uninformed (Blind) Search and Heuristic (Informed) Search
Problem formulation; Uninformed search strategies: Depth-First Search,
Breadth-First Search, Ununiform-Cost Search, Iterative-Deepening.
Informed Search strategies: Greeedy Best-First Search, A*, IDA*.
Heuristic Functions: heuristic domination, inventing admissible heuristics.
Adversary Search (Game Trees)
How to design computer programs that play games intelligently. The MIN/MAX
and
the ALPHA/BETA-Pruning algorithms, their complexity and efficient
implementations.
Knowledge Representation
Propositional logic. Syntax, semantics and inference in prepositional logic
as
well as reasoning patterns. First Order Logic: syntax and semantics.
Resolution in FOL.
Probabilistic reasoning
Modeling uncertainties with probabilities. Inference using Full Joint
Distributions. Bayes’ Rule. Naïve-Bayesian Reasoning.
Bayesian Networks / Belief Networks
Representation of knowledge in uncertain domains. Semantics of Bayesian
Networks. Exact inference in Baysian Networks: inference by enumeration;
PolyTree Bayesian networks..

Ph.D. Qualifying Reading Lists

Last	
 Update	
 April	
 10,	
 2014	

CS 6367 – Software Testing, Validation, and Verification
Textbook: Software Testing by Paul Jorgensen, 2nd Edition, CRC.
Part 1: Requirements-Based Testing, Inspections
Introduction, Approaches to Reliability, Requirements-based
Testing strategies (Equivalence Partitioning, Boundary value
Analysis, Cause-Effect graphing), Valid and Reliable testing
strategies and the Fundamental Theorem of testing,
the Partition Testing Model, Random/Statistical testing.
Software Inspections and related approaches.
Textbook: Ch 1, 3, 5-8
Myers: The Art of Software Testing, Wiley.
Goodenough + Gerhart, "Toward a Theory of Test Data Selection",
IEEE Trans. on Software Engineering, June 1975.
Hamlet+Taylor, "Partition Testing Does Not Inspire Confidence",
IEEE TSE, Dec. 1990.
Wheeler, Brykczynski, Meeson, "Software Inspection: An Industry
Best Practice", IEEE Computer Society Press.
Part 2: Program Proofs
Predicate calculus, validity, theoretical limitations,
deduction systems, the Resolution method. Verification
of Programs (Flowchart Programs, Inductive Assertions,
Termination, Programs with Arrays, extensions).
Manna: Mathematical Theory of Computation, McGraw-Hill.
Chapter 2: Predicate Calculus
Chapter 3: Verification of Programs
Part 3: Structural, Fault-Based Testing Strategies
Structural Testing, Statement, Branch, Predicate, Base-Path,
Path Testing, Variations of Path Testing, Data-Flow Testing,
Domain Testing, Mutation Analysis, other methods. Evaluations
of testing strategies, inclusion, test set size. Integration
testing; Object-oriented Testing
Textbook: Ch. 9-11, 13, 16-20
DeMillo, Lipton, Sayward, "Hints on Test Data Selection: Help
for the Practicing Programmer", IEEE Computer, April 1978.
Musa, "Operational Profiles in Software Reliability Engineering",
IEEE Software, March 1993.
Ntafos, "A Comparison of Some Structural Testing Strategies",
IEEE TSE, June 1988.
White, Cohen, “A domain strategy for Computer Program Testing”,
IEEE-TSE, May 1980.
Part 4: Reliability Estimation
Failure rate estimation from test outcomes, error-seeding,
reliability growth models.
Notes on Reserve in Library
References:
Lyu: Handbook of Software Reliability Engineering, IEEE Computer
Society Press, Mc Graw Hill.
Musa: Software Reliability Engineering, McGraw-Hill.

Ph.D. Qualifying Reading Lists

Last	
 Update	
 April	
 10,	
 2014	

CS 6371 – Advanced Programming Languages
Topics:
Programming with Functions; Lambda Calculus and ML programming;
Logic programming; Unification and backtracking; Search tree; Programming in
Prolog;
Abstract Syntax; Definite Clause Grammars; Grammar Classifications;
Sets, functions, domains; Domain Theory: Primitive and Compound Domains;
Denotational Definition of Programming Languages; Semantics of Imperative
Languages; Recursive Functions; Monotonicity, Continuity,
and Fix-points;
Introduction to semantics of Logic Programming Languages,
Verification of Programs, Partial Evaluation; Interpretation and Automatic
Compilation;
Axiomatic Semantics: Hoare's Axiomatization of partial correctness
References:
Denotational Semantics by D.A. Schmidt.
Elements of ML Programming, Jeffrey D. Ullman, ML97 Edition
The Art of Prolog, L. Sterling and E. Shapiro. MIT Press, 1997.
Also see the following web page for more details:
http://www.utdallas.edu/~gupta/courses/apl/

Ph.D. Qualifying Reading Lists

Last	
 Update	
 April	
 10,	
 2014	

CS 6375 – Machine Learning (Syllabus updated Oct 2006)
Topics: Decision Tree Learning, Artificial Neural Networks, Evaluating
Hypotheses, Bayesian Learning, Computational Learning Theory,
Instance-Based Learning, Markov Decision Processes, Reinforcement
Learning, Support Vector Machines, Bagging, Boosting, Hidden Markov
Models, and Clustering.
References:
Artificial Intelligence (second edition) by Stuart Russell and Peter
Norvig, Prentice Hall, 2003.
Machine Learning by Tom Mitchell, McGraw Hill, 1997.

Ph.D. Qualifying Reading Lists

Last	
 Update	
 April	
 10,	
 2014	

CS 6378 – Advanced Operating Systems (Material in red with
strikethrough is no longer in the syllabus)

Clocks and Event Ordering
 1. Lamport - Time, Clocks and the Ordering of Events in a
Distributed System (1978)
 2. Fidge - Logical Time in Distributed Computing Systems
(1991)

Causal Message Ordering
 3. Raynal, Schiper & Toueg - The causal ordering
abstraction and a simple way to implement it (1991)

Consistent Global Snapshots
 4. Chandy & Lamport - Distributed Snapshots: Determining
Global States of Distributed Systems (1985)

Termination Detection
 5. Huang - Detecting Termination of Distributed
Computations by External Agents (1989)

Distributed Mutual Exclusion
 6. Ricart & Agrawala - An Optimal Algorithm for Mutual
Exclusion in Computer Networks (1981)
 7. Maekawa - A sqrtN Algorithm for Mutual Exclusion in
Decentralized Systems (1985)
 8. Raymond - A Tree-Based Algorithm for Distributed Mutual
Exclusion (1989)

Clock Synchronization
 9. Cristian - Probabilistic Clock Synchronization (1989)
10. Gusella & Zatti - The Accuracy of the Clock
Synchronization Achieved by TEMPO in Berkeley UNIX 4.3BSD
(1989)
11. Mills - Improved Algorithms for Synchronizing Computer
Network Clocks (1995)

Agreement Protocols
12. Fischer - The Consensus Problem in Unreliable
Distributed Systems (1983)

Fault Tolerance and Data Consistency
13. Koo & Toueg - Checkpointing and Rollback-Recovery for
Distributed Systems (1987)
14. Bernstein, Hadzilacos & Goodman - Distributed Recovery

Ph.D. Qualifying Reading Lists

Last	
 Update	
 April	
 10,	
 2014	

(1987)
15. Jajodia & Mutchler - A Hybrid Replica Control Algorithm
Combining Static and Dynamic Voting (1989)

File System
16. Ghemawat, Gobioff & Leung - The Google File System
(2003)
17. DeCandia et al. - Dynamo: Amazon's highly available
key-value store (2007)

Ph.D. Qualifying Reading Lists

Last	
 Update	
 April	
 10,	
 2014	

CS 6385 – Algorithmic Aspects of Telecommunication Networks
Chapters 2, 3, 5, 6, 7, 10 from
Robert S. Cahn, "Wide Area Network Design", Morgan Kaufmann, 1998.
AND
Chapters 1-4 from
Thomas G. Robertazzi, "Planning Telecommunication Networks",
IEEE Press, 1999.

Ph.D. Qualifying Reading Lists

Last	
 Update	
 April	
 10,	
 2014	

CS 6388 – Software Project Planning and Management
Management Functions
_	
 Kerzner. Project Management: a Systems Approach to Planning, Scheduling
and Controlling. Van Nostrand Reinhold, 1994, Chapters 5 and 3
Planning
_	
 IEEE Std 1058-1998, IEEE Standard for Software Project Management Plans
_	
 Chambers & Associates Pty, Ltd. Concept: Work Breakdown Structure
(www.chambers.com.au/Sample_p/wbs_cncp.htm)
Defining the Software Process
_	
 W. Humphrey, Managing The Software Process, Addison Wesley, 1990,
Chapter 13
_	
 W. Humphrey and M. I. Kellner. “Software Process Modeling: Principles of
Entity Process Models”. Proceedings of the 11th International
Conference on Software Engineering, IEEE, 1989
Organizing and Staffing the Project Office and Team
_	
 Kerzner, Chapter 4
_	
 COCOMO
Network Scheduling Techniques
_	
 Kerzner, Chapter 12
Risk Management
_	
 Elaine Hall, Managing Risk, Addison Wesley, 1998
Pricing and Estimating
_	
 USC COCOMOII Reference Manual, 2000
_	
 International Function Point Users Group web site:
(http://www.ifpug.org.ifpug)
Software Quality Assurance
_	
 J. Sanders and E. Curran, Software Quality: A Framework for Success in
Software Development and Support, Addison Wesley, 1998
Software Configuration Management
_	
 S. J. Ayer and F. S. Patrinostro, Software Configuration Management:
Identification, Accounting, Control and Management, McGraw Hill, 1992
The SEI Capability Maturity Model
_	
 The Software Engineering Institute, The Capability Maturity Model,
Addison Wesley, 1995. Chapters 1-5

Ph.D. Qualifying Reading Lists

Last	
 Update	
 April	
 10,	
 2014	

CS 6390 – Advanced Computer Networks
General topics:
(1) Transport and Routing (including multicasting) protocols,
(2) Quality of service and Weighted Fair Queuing
(3) Mobile IP/Wireless Data,
(4) IPv6,
(5) MPLS,
(6) Peer-to-peer applications.
(7) Voice over IP
Reading List
1. Reference book (Computer Networks by Peterson and Davie).
2. Design Philosophy of the DARPA Internet Protocols, D. Clark, Proc. of ACM SIGCOMM '88.
3. An Architecture for Wide-Area Multicast Routing, S. Deering, D. Estrin, D. Farinacci, V.
Jacobson, C.-G. Liu, and L. Wei, Proc. of ACM SIGCOMM'94.
4. Multicast Routing in Datagram Internetworks and Extended LANS, S. Deering and D.
Cheriton, ACM Transactions on Computer Systems, Vol 8 No 2, May 1990, pp. 85-110.
5. The Stable Paths Problem and Interdomain Routing, T. Griffin, B. Shepherd, and G.
Wilfong, IEEE/ACM Transactions on Networking, Vol 10 No 2, April 2002.
6. Mobile IP, C. Perkins, IEEE Communications Magazine, Vol 35, No. 5, May 1997.
7. Mobility Support in IPV6, C. Perkins, D. Johnson, ACM Mobicom 1996.
8. IP Multicast Channels: EXPRESS Support for Large-scale Single-source Applications, H.
Holbrook and D. Cheriton, SIGCOM 1999.
9. Congestion Avoidance and Control, V. Jacobson and M. Karels, Proc. ACM SIGCOMM '88.
10. Random Early Detection Gateways for Congestion Avoidance, S. Floyd and V. Jacobson,
IEEE/ACM Transactions on Networking, Vol. 1, No. 4, pp. 397-413, August 1993.
11. Equation-Based Congestion Control for Unicast Applications, S. Floyd, M. Handley, J. Padhye,
and J. Widmer, Proc. of ACM SIGCOMM '00, Aug. 2000.
12. Chord: A Scalable Peer-to-peer Lookup Protocol for Internet Applications, I Stoica, R
Morris, D Liben-Nowell, D R. Karger, M. F Kaashoek, F Dabek, H Balakrishnan, ACM SIGCOMM 2001.
13. SOS: Secure Overlay Services, A. Keromytis, V. Misra, and D. Rubenstein (Columbia University), ACM
SIGCOMM, Pittsburgh, PA, USA, August 2002.
14. SIFF: A Stateless Internet Flow Filter to Mitigate DDoS Flooding Attacks, Abraham Yaar, Adrian
Perrig, Dawn Xiaodong Song, IEEE Symposium on Security and Privacy 2004
NOTE: You can find most of these papers at:
http://www.utdallas.edu/%7Eksarac/courses/Papers/
The paper may also be found in the IEEE/IEE Xplore database and in the ACM Digital library, available
from UTD’s library webpage http://www.utdallas.edu/library/collections/journals.htm	

