Distributed Problem Solving In Spite Of Processor Failures

K.V.S. Ramarao

Technology Resources
Southwestern Bell Company
550 Maryville Centre Drive

St. Louis, MO 63141

Abstract

Processor failures not leading to a network partition
are considered and the issue of computing associative
functions in spite of processor failures is addressed.
An intuitive and fundamental result formally proved
here is that failure detection and computing associa-
tive functions are equivalent in faully networks — one
can be performed if and only if the other can be per-
Jormed. Protocols and impossibilily results in various
system models are presented in the context of comput-
tng associative functions and solving topological prob-
lems.

1 Introduction

It is important to deal with component failures in a
distributed system, and protocols operating in a dis-
tributed environment must be able to cope with fail-
ures. There are several types of failures studied in the
literature. Among these, fail-stop failure is the most
benign failure — a component fails by simply stopping.
One approach to the design of fault-tolerant protocols
is to design the protocols resilient to fail-stop failures
and then implement the fail-stop model in other failure
environments. For example, see [10] for implementing
fail-stop failures in a Byzantine failure environment.
We consider only fail-stop failures from now on.

The problem of coping with processor failures has
been extensively studied in the context of basic prob-
lems such as reaching consensus, implementing global
clocks, etc., and several interesting results and impos-
sibility proofs have been obtained. Fischer et al. [6]
consider the consensus problem in an asynchronous
system with a single faulty processor. The problem

*This research was supported in part by NSF under Grant
No. CCR-9110177 and by the Texas Advanced Technology Pro-
gram under Grant No. 9741-036.

1060-9857/92 $3.00 ©1992 IEEE

164

S. Venkatesan*

Computer Science Program
University of Texas at Dallas

Richardson, TX 75083-0688
venky@utdallas.edu

of reaching agreement among the processors is a fun-
damental problem of theoretical and practical impor-
tance in distributed systems. In an asynchronous sys-
tem, the consensus problem cannot be solved in the
presense of one faulty processor [6]. Also note that in
solving any non-trivial problem, the consensus prob-
lem is implicitly solved. Thus, it is impossible to cope
with processor failures in asynchronous systems.

The contributions made in this paper are two-fold.
The first part of the paper addresses the issue of the
existence of protocols to compute associative functions
in the presence of processor failures not leading to a
network partition, and protocols and impossibility re-
sults are presented. The second part explores the pos-
sibility of solving topological problems. In present-
ing the results, we assume that processors know the
indentities of their neighbors, processor failures may
occur at any time, a failed processor never recovers
during the execution of the protocol, the links con-
necting two non-faulty processors are non-faulty, and
the distributed system remains connected in spite of
the processor failure(s).

The organization of the paper is as follows: The
model of a distributed system is presented in Section 2.
In Section 3, some preliminary results are presented.
In Section 4, the notion of fault-tolerant computation
of associative functions, the notion of failure detec-
tion, and a proof of their equivalence are presented.
Protocols for failure detection, when possible, and im-
possibility results in the other cases are presented in
Section 5. In Section 6, some discussion on solving
topological problems in spite of processor failures is
given. Section 7 concludes the paper.

2 System Definition

A distributed system is modeled by an undirected
graph G = (V,E), where V represents the set of pro-

cessors and E represents the set of bidirectional com-
munication links. Processors at the two ends of a link
are said to be neighbors of each other. A path is a
sequence of links. The distributed system is said to
be connected if a path exists between every pair of
processors. Communication between the processors is
by message-passing only.

A protocol or a distributed algorithm is a collec-
tion of local algorithms at each participating proces-
sor. Each local algorithm consists of several steps (or
events). In a step, a processor reads a message re-
ceived from a neighbor, performs some local computa-
tion, changes its processor state, and sends a message
(or several messages) to some (or all) of its neighbors.
A processor may take a step even if it does not receive
a message. Each processor has a unique id (of length
O(log |V|) bits) associated with it, and each processor
knows its own id, the ids of its neighbors and the links
that lead to these neighbors.

The characteristics of a distributed system are cap-
tured by the following five types of system parameters
in a distributed processing system [5].

1. Processors

o Asynchronous. A processor can wait an ar-
bitrarily long but finite amount of real time
between two of its own steps.

o ®-Synchronous. There is a constant ¢ > 1
such that in any time interval in which some
processor takes ®+1 steps, every non-faulty
processor must take at least one step.

2. Communication

o Asynchronous. Message delivery time is ar-
bitrarily long but finite.

¢ A-Synchronous. There is a constant A > 1
such that every message is delivered within
A real-time steps.

3. Message Order
Messages can be delivered

e Asynchronous.
out of order.

e Synchronous. If p sends a message m; to r
at real time t; and ¢ sends a message ms to r
at real time ¢5 and if £, > ¢;, then 7 receives
m1 before my (p, g, and r are not necessarily
distinct).

4. Transmission Mechanism

165

o Point-to-point. In an atomic step, a proces-
sor can send a message to at most one pro-
cessor.

e Broadcast. In an atomic step, a processor
can broadcast a message to all of the pro-
cessors.

5. Receive/Send

o Separate. In an atomic step, a processor can-
not both receive a message and then send a
(possibly different) message (or messages).

e Atomic. Receiving a message and sending a
(possibly different) message are part of the
same atomic step.

The above mentioned five system parameters yield 32
different types of systems. Among these, the follow-
ing four cases are the only (minimal) cases in which
consensus is possible in spite of (fail-stop) failures [5]:

1. Synchronous communication and atomic re-
ceive/send (and broadcast transmission for mul-
tiple processor failures).

2. Synchronous processors and synchronous commu-
nication.

3. Synchronous processors and synchronous message
order.

4. Broadcast transmission and synchronous message
order.

For the first three cases, we show that it is possible
to cope with processor failures in the context of com-
puting associative functions while in the fourth case,
we show that it is impossible to cope with the failure
of one processor in computing associative functions.
Thus, computing associative functions is harder than
reaching consensus in faulty environments.

3 Preliminaries

We now show that as long as the distributed system
remains connected in spite of the failure of m proces-
sors, it is possible for all of the non-faulty processors
to construct V (the set of processor ids) and find the
value of |[V|. A message sent by one faulty processor
can be delivered to all of the non-faulty processors by
flooding - the sender sends messages on all of its links;
a processor, on receiving such a message, if it is not
the intended recipient, forwards it on all of its links if

procedure construct.m_graph;
{ executed by processor u }
begin
V(u) — {u} U {v | v is a neighbor of u};
E(u) « {(u,v) | v is a neighbor of u };
mark u of V(u); { all others are unmarked }
broadcast V(u) and E(u);
while unmarked processors in V(u) > m loop
wait for a message from w containing
V(w) and E(w);
V(u) — V(u) U V(w);
E(u) «— E(u) U E(w);
mark w € V(u);
endloop;
{V) =V}
{ G=(V(u),E(u)) is the complete topology if m =1 }
end;

Figure 1: Algorithm construct_m_graph

this is the first such message, and ignores the message
if this message has already been received. Note that a
message can be sent to all of the processors by flood-
ing even if the transmission is point-to-point as long
as the distributed system remains connected. Thus,
any two non-faulty processors can communicate with
each other.

Initially, a processor u initializes V(u) and E(u)
using locally known information. It also marks u €
V(u) to reflect the fact that complete information from
u has been received. It then broadcasts V(u) and
E(u). Since the distributed system remains connected
in spite of the processor failures, each message sent
by a processor will be eventually received by another
processor if the sender and the receiver are non-faulty.
When u receives V(w) and E(w) from w, it adds them
to V(u) and E(u) respectively, and marks w € V().
This step is repeated until at most m unmarked pro-
cessors remain in V(u). Algorithm construct_m_graph
in Figure 1 contains the details.

A processor terminates the execution of algorithm
construct_m_graph as soon as it receives adjacency lists
from |V| — m — 1 processors. Since at most m pro-
cessors are faulty, each non-faulty processor receives
messages from at least |V| — m — 1 processors, marks
at least m processors, and terminates algorithm con-
struct_m_graph locally.

Lemma 1 After processor u terminates algorithm
construct_m_graph, V(u) is the set of all of the (faulty
and non-faulty) processors.

166

Proof Assume for contradiction that G=(V,E) rep-
resents the topology of the distributed system and
V(u) # V. Let V" be the set of processors that
are unmarked by u at the end of algorithm con-
struct_m_graph (V"] < m). Thus, V' C V(u) C
V. Consider the resulting graph G’ =(V’, E') after re-
moving processors in V" and the edges incident on
them from G. Since G remains connected in spite of
the failures of m processors, G’ is a connected graph.
Thus, there exists an edge (w, w') of G’ such that w €
V(u) is marked by u and w’ € V—V(u). Since w is
marked, w' € V(u), a contradiction.m

Theorem 1 For m=1, algorithm construct_m_graph
constructs G=(V(u),E(u)) locally at all processors in
spite of the failure of a single processor where G is the
complete network topology.m

4 Computing Associative Functions

Protocols for a wide class of problems (distributed
deadlock detection [2], constructing global states [13],
minimum spanning tree [7], breadth first search [1],
shortest paths [9], maximum flow [4, 11], maximum
matching [14], sorting [15], median finding [12], etc.)
use the following paradigm: (a) construct a directed
spanning tree rooted at a coordinator and (b) decom-
pose the protocol into several phases such that the
following computation takes place in each phase: the
value of a function of the private values (that might
change from phase to phase) of each processor is com-
puted and a certain decision is made which advances
the computation. The computation of the function is
carried out using a convergecast technique (also known
as shout-echo [3]) to minimize the number of messages
as follows: each leaf of the spanning tree computes the
function based on its private value(s) and sends the re-
sult to its parent; an internal processor, after receiving
the results from all of its children, computes the func-
tion using these results and its own private value(s),
and sends the result to its parent. The coordinator
computes the function using the results received from
its children and its own private value(s). At the end
of each phase, the coordinator either initiates a new
phase or signals the end of the protocol. It is clear
that any associative function can be computed in this
manner.

Let us call the distributed protocols of the above
type af-based protocols (based on computation of
associative functions). Since there are exactly |V|-1
links in a spanning tree, each phase of an af-based pro-
tocol can be implemented using O(]V|) messages only

(assuming that the value of the associative function
at each processor can be represented by a constant
number of messages). A common theme in all of the
above-mentioned protocols is the repeated computa-
tion of an associative function. Our main focus in
this paper is on the problem of computing associative
functions in spite of processor (processor) failures.

Fault-tolerant Associative Function
Computation

4.1

We say that it is possible to compute an associative
function of the private values of the processors in the
presence of certain faulty processors if there exists a
distributed protocol fn with the following properties:

1. Each processor must either terminate its part of
the protocol fn after some arbitrary but finite
number of local steps (said to be non-faulty) or
take a failure step (said to be faulty).

2. The private value of each non-faulty processor
must be used in the function computation.

3. The value of the function computed by each non-
faulty processor must be the same.

We next define failure detection and show that com-
puting an associative function is possible in a dis-
tributed system if and only if failure detection is pos-
sible.

4.2 Failure detection

The failure of a processor p can be detected if there
exists a distributed protocol fd, with the following
properties:

1. Every processor starts its local algorithm of pro-
tocol fd, (denoted by fd,(g) for processor ¢) either
spontaneously or on receipt of a message from a
neighbor requesting it to start fd,(g).

2. After a finite number of steps, each processor ter-
minates its local algorithm and reaches a final
state (said to be non-faulty), or it takes a failure
step (said to be faulty).

3. Each non-faulty processor ¢ decides that p is
faulty only if ¢ will not receive any message from
p after ¢ terminates fd,(q). Processor ¢ decides
that p is non-faulty only if some processor r (not
necessarily different from g¢) receives a message
from p before r terminates fd,(r).

167

4. All of the non-faulty processors agree on the same
result. That is, all such processors either decide
that p is faulty or p is non-faulty.

Processor failure detection is posstble if there exist
protocols fd, for each p € V that satisfy the above
conditions. Note that it is possible for a processor ¢
to (locally) decide that p is faulty even after q receives
a message from p.

4.3 Equivalence of failure detection and
computing associative functions

Lemma 2 If processor failure detection is possible,
then associative functions can be computed in faulty
distributed systems.

Proof An associative function can be computed as
follows: The processors broadcast messages request-
ing the private values of all of the processors, and in
response, each processor sends its value by flooding.
Now, each processor waits for |V|—m — 1 private val-
ues, and it has its own private value. Each processor
pi does the following:

Let {qi,,...,qi,.} be the set of m processors from
which p; has not received private values. For each ¢,
processor p; starts the failure detection protocol qu-,-’

and at the same p; waits for the private value of ¢;.
When the private value of g¢; is received by p;, proces-
sor p; stores it locally. If qu‘.j terminates and reports
¢i; to be non-faulty, then p; restarts qu'.]. Processor
pi repeats this until it receives the private value of ¢;;
or qu-,- declares g¢;; to be faulty for j = 1, ..., m. Pro-
cessor p; uses its private value and all of the private
values received and computes the associative function.
To ensure that the value of the function is the same,
the leaders run a consensus protocol and broadcast the
result. Since failure detection is possible, the consen-
sus problem can be solved by using any protocol that
solves the Byzantine generals problem.

Note that the private value of each non-faulty pro-
cessor is used in computing the function. Clearly the
protocol satisfies the three rules of computing an as-
sociative function.m

Lemma 3 If associative functions can be computed
i a faully distributed system, then processor failure
deteclion is possible.

Proof To detect the failure of say p, the set theoretic
function set union is computed distributively in the
presence of a faulty processor. (Note that set union is

an associative function.) The private value of a pro-
cessor is its identifier. If the identifier p belongs to the
union, then all of the non-faulty processors infer that
p is non-faulty. If not, they infer that p must have
failed. If the identifier p is included in the result of
the function union, then p must have sent a message
(as the private value of p is known only to itself) and
it must have been received by a processor r before ter-
minating fd,(r). If p does not belong to the result of
union, then from the rule that every non-faulty pro-
cessor’s private value must be used in computing the
function, it is clear that p is faulty.m

Theorem 2 In any sysiem model, an associative
function can be computed in spite of processor failures
if and only if processor failure deteclion is possiblem

Intuitively, in the process of computing an associa-
tive function, either the private value of a processor p
must be used in computing the associative function or
p must be declared to be faulty. Thus, a non-faulty
processor cannot indefinitely delay the computation of
an associative function.

5 Failure Detection

Since the failure detection problem solves the con-
sensus problem, we consider only the following four
(minimal) cases in which consensus is possible in spite
of processor failures:

1. Synchronous communication and atomic re-
ceive/send (and broadcast transmission for mul-
tiple processor failures).

2. Synchronous processors and synchronous commu-
nication.

3. Synchronous processors and synchronous message
order.

4. Broadcast transmission and synchronous message
order.

For the first three cases, we show that it is possible
to cope with processor failures in the context of com-
puting associative functions. In §5.2, we show that it
is impossible to cope with the failure of one processor
in computing associative functions in the fourth case.

5.1 Protocols for Failure Detection

1. In a system where the communication is syn-
chronous and receive/send is atomic, the protocol

fd, is as follows: A timeout strategy can be used
by a processor p to infer if its neighbor ¢ has failed
- processor p sends a message to ¢ and waits for
an acknowledgement from ¢. Since the communi-
cation is A-synchronous, the message will be re-
ceived by ¢ within A real time steps, and since re-
ceive/send is atomic, the message will be received
and processed by ¢ and an acknowledgement can
be sent in one atomic step. Thus, p waits for 2A
real time steps for an acknowledgement. Mean-
while, if p receives an acknowledgement, then p
locally decides that ¢ has not failed, and if p does
not receive an acknowledgement, then p decides
that ¢ has failed. In either case, p sends its local
decision to all of the other processors by a broad-
cast. The above procedure is executed by every
neighbor of g. A processor that is not a neighbor
of ¢ waits for a message from one of the neighbors
of ¢ with a local decision and chooses the first de-
cision it receives. Thus, each processor has a local
decision. Now all of the processors run a consen-
sus protocol (for example, the protocol of [5]) to
agree on the common value for the result of fd,.

2. If the processors and the communication are syn-
chronous, then the traditional timeout strategy
can be used by a processor p to detect the failure
of its neighbor ¢. The protocol fd, is similar to
the protocol presented in case 1 and the details
are omitted.

3. In the third case, processors and message order
are synchronous. Each processor sends an active
message to all of its neighbors, one by one. Also,
at every other step, it sends a message to itself.
These two activities are external to the failure
detection process and are part of the “normal”
behavior of the processor. Since processors are
®-synchronous, if one processor takes ®+1 steps,
then all of the other non-faulty processors must
take at least one step in the mean time. Thus,
each processor waits until it receives |V|(® + 1)
messages sent by itself. In the mean time, if it
does not receive an active message from a neigh-
bor ¢, then by the synchrony of the processors
and the message order, it is clear that ¢ has failed.
Thus, the failure of a processor can be detected
by its neighbor(s). The rest of the steps of fd, are
similar to case 1.

5.2 Impossibility of Failure Detection

We show that it is impossible to detect processor
failures if the transmission mechanism is broadcast

and message order is synchronous, and from the equiv-
alence of failure detection and computing associative
functions, the result follows. First, we assume that a
fault-detection protocol fd, to detect the failure of ¢
exists. We then show that there exists an execution
of the protocol in which no processor terminates after
a finite number of steps.

For each processor p, let £, be the set of possible
internal states for p. Among the states in %,, there are
some states called the initial states and there are some
states called the final states. Processor p starts from
an initial state and, if it ends in a final state, it (pro-
cessor p) terminates. The communication system is
represented by a message buffer which is implemented
as an array of queues, one queue for each processor.
The following operations are possible on the message
buffer:

1. send(g,m) - append m to the end of the queue of
processor q. :

2. receive(p) - find message m at the head of the
queue for p, delete it from the queue of p and
deliver m to p (a null message is returned if the
queue is empty).

3. broadcast(m) - append a copy of message m to
the end of the queues of all of the processors.

Since messages (transmitted by a send or a broad- -

cast operation) are immediately appended to the
message queues of the appropriate processors, syn-
chronous message order is preserved by the above op-
erations. As the communication is asynchronous, the
message buffer can return a null message a finite num-
ber of times in response to a receive(p) even though
the queue of p is not empty.

The local algorithm of a processor p is represented
by a transition function 6,: T,x M — ¥ x M where
M represents a set of pairs of the form (r,m) where r
is a processor id and m is a message. The local action
of a processor p in a step (not necessarily atomic) is
as follows: it performs a receive(p) operation, receives
message m from the message buffer (communication
medium), applies the transition function, changes its
state, and sends a (possibly empty set of) message(s)
or it broadcasts a message. This action is denoted
by an event e = (p, m). Processor failure is indicated
by a failure step (p,*) where * denotes the death of
processor p. When a processor takes a failure step, all
of its subsequent steps are failure steps.

A configuration consists of the internal states of
the processors and the contents of the message buffer.
An initial configuration is a configuration in which all

169

of the processors are in one of their respective initial
states and the message buffer is empty. A final con-
figuration is a configuration in which each processor
either is in one of its final states or it took a failure
step.

A step of a distributed system takes the system
from one configuration to another configuration. An
event ¢ = (p,m) is said to be applicable to a configu-
ration if m = ¢ or m is the message at the head of the
message queue of p. Let C be a configuration and let
e be an event applicable to C. The configuration that
results from C after the event e takes place is denoted
by ¢(C). Let o be a sequence ey, ey, ...e of events.
We say that o is applicable to the configuration C if e;
is applicable to C, e, is applicable to e;(C), ..., and
ex is applicable to ex_1(...e1(C) ...). Any o that is
applicable to a configuration C is a run. A run o is
said to be a finite run if o consists of a finite number
of events. Let ¢(C) denote the resulting configuration
er(ex—1(...e1(C) ...)). A configuration C’ is said to
be reachable from C if there exists a o that is applica-
ble to C such that C’ = o(C). Any configuration that
is reachable from an initial configuration is said to be
a reachable configuration.

We say that it is possible to reach the decision f
(decision n) from a configuration C if there exists a
finite run o that is applicable to C such that ¢(C) is a
final configuration and each processor that reaches a
final state in 0(C) decides that ¢ has failed (not failed
for decision n). A configuration is f-valent (n-valent)
if the only possible decision that can be reached from
that configuration is f (decision n). Configuration C
is said to be a bivalent configuration if it is possible
to reach either of the decisions f and n by finite runs
starting from C. A reachable bivalent configuration C
is said to be a safe bivalent configuration with respect
to ¢ if there exists an initial configuration I and a run
o such that C = ¢(I) and there is no event in ¢ that
results in a message sending by g.

Lemma 4 There ezists a safe bivalent initial config-
uration with respect to q for any processor ¢.®

We now show that there exists an an infinite run for
any protocol that solves the failure detection problem.

Lemma 5 Let C be a safe bivalent configuration and
let e=(p,m) be an event applicable to C where p # q.
Let D be the set of all configurations reachable from C
by finite runs in which p and q do not take any steps.
Let E={e(d) | d € D}. E contains a safe bivalent
configuration.

Proof If e is applicable to C, then e is applicable
to each d € D also because the processors are asyn-
chronous. Assume that all of the configurations in E
are univalent configurations. Consider a configuration
cin E. Since each configuration in E is univalent, either
¢ must be an f-valent or an n-valent configuration. In
both cases, we arrive at a contradiction.

Assume first that ¢ is an f-valent configuration. Let
¢’ = (g, m) be an event such that ¢’ results in ¢ broad-
casting a message, and let e’(c) = ca be the resulting
configuration. There exists a final configuration c3
reachable from ¢, such that the decision reached is n
(to see that, note that ¢ broadcasts a message when
¢’ is applied and all of the processors will eventually
receive the message broadcast by ¢). This implies that
there exists a run in which it is possible to reach the
decision n from c¢. Thus, ¢ is not f-valent, a contra-
diction.

A similar proof applies if ¢ is n-valent. To see that
the bivalent configuration in E is safe, recall that we
started with a safe bivalent configuration, and in ar-
riving at a configuration in F, ¢ does not take any
steps.®

Intuitively, the absence of a message from ¢ can
be due to the failure of ¢ or due to the asynchrony
of ¢, and it is impossible for the other processors to
distinguish between the two cases. To prove the im-
possibility result, we construct an infinite run in which
no processor can reach a final state after a finite num-
ber of local events. The run is constructed using the
result of Lemma 5. Keep a queue of processors and
let the processor p (p # q) at the head of the queue
take a step using the message at the head of the queue
if that processor taking that step results in a bivalent
configuration. Otherwise, the result of Lemma 5 is
used to obtain a bivalent configuration in which the
last event is on the processor p. After applying the
event e = (p, m), put the processor p at the tail of the
queue. Thus, all processors other than ¢ take infinite
number of steps and no processor terminates after a
finite number of steps.

Theorem 3 Processor failures cannot be delected in
a system with broadcast transmission and synchronous
message order M

Theorem 4 It is impossible to compute an associa-
tive function with a possibly faully processor if the only
types of synchrony in the system are broadcast trans-
mission and synchronous message orderm

170

6 Discussion

While the results of the previous section have
proven that the case where both processors and com-
munication are synchronous is the only realistic case
when processor failures can be tolerated at reasonable
costs, reinforcing the intuition, note that this is not so
in solving all problems distributively. If no more than
a single processor can fail during the execution of a
protocol, then we can solve graph-theoretical prob-
lems in any system model. Intuitively, graph-theoretic
problems can be solved since the information about
the set of links incident on a processor and the id of
the processor are available to the other processors even
if p fails.

This result does not contradict the impossibility re-
sult of Fischer et al. [6] since they consider the non-
trivial consensus problem while the above protocol re-
sults in a trivial consensus protocol (where all of the
processors decide on the value say 0). For the same
reason, the impossibility result of Moran and Wolfs-
tahl [8] does not contradict the possibility of solving
any graph-theoretic problem.

Theorem 5 If the processors and communication are
asynchronous, then topological problems cannot be
solved in the presence of two or more faulty proces-
sors.

Proof Assume for contradiction that there exists a
protocol II; that solves topological problems in the
presence of two faulty processors when processors and
communication are asynchronous. Assume that II;
constructs a spanning tree. We now present a solution
to the consensus problem in spite of processor failures
in completely connected asynchronous distributed sys-
tems.

Let G'=(V',E’) represent a completely connected
network where each processor knows the identities of
its neighbors. Since G’ is completely connected, V' is
initially known to each processor u € V’. All of the
processors run II; to construct a spanning tree. The
input to II; at processor u consists of its own identity
(u) and the identities of its neighbors (and the links)
only. Protocol IT; does not know that G’ is completely
connected. After a processor completes Iy, the span-
ning tree is available locally at u. Each processor u
decides on a value 1 for the consensus problem if link
(v1, v2) belongs to the spanning tree and u decides on
value 0 otherwise, where vy and v, are the two smallest
processor indentities of V/. There are infinitely many
runs of II; in which the processors decide on value 1
and infinitely many runs in which the processors de-
cide on value 0, and all of the processors decide on the

same value for each execution of II;. Thus, there is
a solution to the consensus problem contradicting the
impossibility result of [6].m

Intuitively, in asynchronous systems, information
about a communication link between two processors
can be hidden from all of the other processors if the
two processors are slow/faulty, and it is impossible to
distinguish between a slow and a faulty processor.

Theorem 6 If the identities of the neighbors are un-
known in asynchronous systems, then constructing V
at each processor is impossible in the presence of single
faulty processor, while V can be constructed in spite of
maultiple processor failures not leading to a partition if
the identities of the neighbors are known.

Proof The proof of the first part of this theorem is
similar to the proof of Theorem 5 and is omitted.

The second part of the theorem follows from the
proof of correctness of algorithm construct.m_graph of
Section 3.m

7 Conclusions

Computing an associative function is a commonly
used paradigm in distributed systems. Thus, the main
focus of this paper is on computing associative func-
tions in spite of processor failures. We have shown
that associative functions can be computed in spite
of processor failures if and only if processor failure
detection is possible. Various models of distributed
systems are considered in the context of computing
associative functions. In each case in which it is pos-
sible to compute associative functions (in spite of pro-
cessor failures), we have presented a protocol. In one
case, we have proved that it is impossible to cope with
the failure of one processor. The only realistic case in
which it is possible to cope with processor failures is
when the processor and the communication links are
synchronous.

References

(1] AwerBucH, B., AND GALLAGER, R. Dis-
tributed BFS algorithms. In Proceedings of the
Twenty Sizth Annual Symposium on Foundations
of Computer Science (1985), pp. 250-256.

[2] CuanDY, K., Misra, J., AND Haas. Dis-
tributed deadlock detection. ACM Trans. Com-
put. Syst. 1, 2 (1983), 144-156.

171

[3] CuaNG, E. Echo algorithms: Depth parallel op-
erations on general graphs. IEEE Trans. Softw.
Eng. SE-8, 4 (1982), 391-401.

[4] CHEUNG, T. Graph traversal techniques and the
maximum flow problem in distributed computa-
tion. IEEE Trans. Softw. Eng. SE-9, 4 (1983),

504-512.

—

DoLEv, D., DwoRrk, C., AND STOCKMEYER,
L. On the minimal synchronization needed for
distributed consensus. J. ACM 34, 1 (1987), 77—
97.

FiscHER, M., LyNcH, N.; AND PATERSON, M.
Impossibility of distributed consensus with one
faulty process. J. ACM 32, 2 (1985), 374-382.

(6]

[7] GALLAGER, R., HUMBLET, P., AND SPIRA,
P. A distributed algorithm for minimum weight
spanning trees. ACM Trans. Program. Lang.

Syst. 5,1 (1983), 66-77.

—

MoRAN, S., AND WOLFSTAHL, Y. Extended im-
possibility results for asynchronous complete net-
works. Inf. Process. Lett. 26, 3 (1987).

(8]

RAMARAO, K., AND VENKATESAN, S. On find-

ing and updating shortest paths distributively.
Journal of Algorithms 13, 2 (1992), 235-257.

9]

[10] ScHNEIDER, F. Byzantine generals in action:
Implementing fail-stop processors. ACM Trans.

Comput. Syst. 2, 2 (1984), 145-154.

[11]) SEGALL, A. Decentralized maximum-flow proto-

cols. Networks 12 (1982), 213-230.

[12] SHRIRA, L., FRANCEZ, N., AND RODEH, M.
Distributed k-selection: From a sequential to
a distributed algorithm. In Proceedings of the
Second Symposium on Principles of Distributed

Computing (1983), pp. 143-153.

[13] VENKATESAN, S. Message-optimal incremental
snapshots. In Proceedings of the Ninth Interna-
tional Conference on Distributed Computing Sys-

tems (1989), IEEE, pp. 53-60.

Wu, C. An efficient distributed algorithm for
maximum matching in general graphs. Tech. rep.,
University of Illinois, Urbana, 1987.

(14]

[15] Zaks, S. Optimal distributed algorithms for sort-
ing and ranking. IEEE Trans. Comput. C-84, 4
(1985), 376-379.

