Polymorphism and Separation in Hoare Type Theory

Aleksandar Nanevski Greg Morrisett Lars Birkedal
Harvard University IT University of Copenhagen
{aleks,greg}@eecs.harvard.edu birkedal@itu.dk
Abstract are tuned for specifying and reasoning about imperative programs.

However, these logics do not integratiéo the type system. Rather,
specifications, such as invariants on data structures or refinements
on types, must be separately specified as pre- and postconditions on
expressions that manipulate these data. In turn, this makes it diffi-
cult to scale the logics so that they integrate well with linguistic
abstraction mechanisms such as higher-order functions, polymor-
phism, and modules.

In previous work [26], we demonstrated a new approach that

In previous work, we proposedtéoare Type TheoryHTT) which
combines effectful higher-order functions, dependent types and
Hoare Logic specifications into a unified framework. However, the
framework did not support polymorphism, and failed to provide a
modular treatment of state in specifications. In this paper, we ad-
dress these shortcomings by showing that the addition of polymor-
phism alone is sufficient for capturing modular state specifications

in the style of Separation Logic. Furthermore, we argue that poly- . .
morphism is an essential ingredient of the extension, as the treat-SMeothly integrates dependent types and a Hoare-style logic for
ment of higher-order functions requires operations not encodable & language with higher-order functions and imperative commands
via the spatial connectives of Separation Logic. (i e., core, monomorphic ML.) The key _mechanlsm is a distin-
guished type constructor of Hoare (partial) tripleB}z:A{Q},
Categories and Subject Descriptors.3.1 [Logics and Meanings ~ which serves to simultaneously isolate and describe the effects of
of Program$: Specifying and Verifying and Reasoning about Pro- imperative commands. Intuitively, such a type can be ascribed to a
grams stateful computation if when executed in a heap satisfying the pre-
condition P, the computation diverges or results in a heap satisfy-
ing the postconditiod) and returns a value of typé. The monadic
Keywords Type Theory, Hoare Logic, Separation Logic isolation of effects is crucial for ensuring the soundness of the de-
pendent types, and makes it possible to safely abstract over refined
: computations within terms, types, and assertions.
1. Introduction As with any sufficiently rich specification system, checking
The static type systems of today’s programming languages, suchthat HTT programs respect their types is generally undecidable.
as Java and Haskell, provide a degree of lightweight specification However, type-checking in HTT is carefully designed to split into
and verification that has proven remarkably effective at eliminating two independent phases: The first performs a combination of basic
a class of coding errors. Furthermore, these type systems haveype-checking and verification-condition generation, both of which
scaled to cover and integrate with necessary linguistic features suchare decidable. The second phase must then show the validity of the
as higher-order functions, objects, and imperative references andgenerated verification-conditions. These conditions can either be
arrays. ignored, fed to an automated theorem prover, or even discharged by
Nevertheless, there is a range of errors, such as array-index-out-hand. This makes it possible to provide various levels of correctness
of-bounds and division-by-zero, which are not caught by today’s assurance, and to gracefully scale the complexity of verification.
type systems. And of course, there are higher-level correctness We believe that the HTT approach enjoys many of the benefits
issues, such as invariants or protocols on mutable data structuresand few of the drawbacks of the alternatives mentioned above. In
that fall well outside the range where types are effective. particular, we believe HTT is the right foundational framework for
An alternative approach to address these issues is to utilize amodeling emerging tools, such as ESC/Java [10, 19], SPLint [11],
form of dependentypes in conjunction with refinements (i.e., a Spec# [2], and Cyclone [16] that provide support for extended static
type theory) to provide precise specifications of these requirements.checking of programs.
Dependent types work well with higher-order features and are con- Nevertheless, if we are to model these rich languages, the cur-
venient for capturing relations on functional data structures, but rent formulation of HTT falls short in several ways. First, the lan-
do not work so well in the presence of side-effects, such as stateguage of HTT does not support polymorphism, which is neces-
updates and non-termination. Yet another approach is to considersary for Java, ML or Cyclone. Second, the approach to specify-
some form ofprogram logic such as Hoare’s original logic [12] ing program heaps—which in HTT is based on functional arrays of
or the more recent forms of Separation Logic [30, 36, 31], which Cartwright and Oppen [7] and McCarthy [23]—is itself not modu-
lar. Pre- and postconditions in HTT describe the whole heap, rather
than just the heap fragment that any particular program requires.
Furthermore, the postconditions must explicitly describe how the
Permission to make digital or hard copies of all or part of this work for personal or N€@p in which the program terminates differs from the heap in
classroom use is granted without fee provided that copies are not made or distributedwhich it started. Keeping track of both heaps in the postcondition
for profit or commercial advantage and that copies bear this notice and the full citation j5 cumbersome as it requires careful tracking of location inequal-
fonnt;i,f'séﬁ?gf'pﬁgrcg,fgc%';T)'gﬁ?;stﬁ)ﬁegﬁg}frha 10 post on servers or to fedistribute jieg (i-e., lack of aliasing.) It is much better to simply assert the
properties of the ending heap, and automatically assume that all

ICFP’06 September 16-21, 2006, Portland, Oregon, USA. eor L. X . -
Copyright@® 2006 ACM 1-59593-309-3/06/0000. . . $5.00. unspecified disjoint heap portions remain invariant throughout the

General Terms Languages, Verification

computation. This is known as the “small footprint” approach to The split between pure and impure fragments is a familiar one in
specification, and has been advocated recently by the work on Sepfunctional programming. For example, it is the driving idea behind
aration Logic. the programming language Haskell [33], which uses monads [24,
In this paper, we extend HTT with type polymorphism (includ- 17, 40], to classify impure code. It should therefore not come as a
ing abstraction over Hoare triples) and small footprints. It is in- surprise that the Hoare type in HTT is a monad, and that we admit
teresting that these two additions significantly overlapinathe the usual monadic laws [34, 25] for reasoning about the impure
presence of second-order features like polymorphism, functional code.
arrays could already define the separation connectives of spatial However, it may be interesting that HTT monads take a slightly
conjunction and implicatiorj?], that are needed to describe heap bigger role than to simply serve as type markers for effects. The
disjointness. HTT monadic judgments actually formalize the process of gen-
Not only that, but in order to accommodate higher-order func- erating the verification condition for an effectful computation by
tions, we needed additional operators that are not expressible usingcalculating strongest postconditions. If the verification condition is
the separation connectives, but that are definable in the presencerovable, then the computation matches its specification [29]. The
of polymorphism. Thus, functional arrays with polymorphism are verification condition is computed during typechecking, but it can
utilized in an essential way to obtain the small footprints. be proved separately, so that the complexity and undecidability of
An important example that becomes possible in HTT, but is proving does not have any bearing on the typechecker.
formally not admitted in Separation Logic, is naming and explicitly We also note that verification conditions are obtained from the
manipulating individual fragments of the heap. We contend that it computation in a syntax-directed and compositional manner, so
is useful to be able to do so directly. In particular, it alleviates the that an HTT computation can be seen as (part of) a proof of its
need for an additional representation of heaps in assertions as waspecificatioh — there is no need for whole-program reasoning.
used in the verification of Cheney’s garbage collection algorithm We next present the syntax of HTT and comment on the various
in Separation Logic by Birkedal et al. [5]. An additional feature constructors.

admitted by polymorphism is that HTT can support strong updates, Types A,B,C == a|bool | nat|1|Va.A|
whereby a location can point to values of different types in the Haz:A. B | ¥.X {P}e:A{Q}
course of the execution. Monotypes 7,0 == «a | bool | nat | 1| z:7.0 |

; ; ; U . XAP}e:m{Q}
Most of this paper presents and discusses the typing rules of the Assertions P,Q, R = Ida(M, N) | seleq. (H, M,N) | T | L |

extended HTT, including the important meta-theoretic properties PAQIPVQ|P>Q| P

of the system. We also sketch a call-by-value operational semantics Va:A. P | Va. P | Vheheap. P |

for the language, and a proof that the type system is sound with Jz:A. P | Ja. P | 3hcheap. P

respect to this semantics. The proof depends on the soundness ofHeaps H,G h | empty | upd. (H, M, N)

the assertion logic, which we establish using denotational methods. Elim terms KL:=xz|KM|Kt|M:A

The full technical development, including the proofs, is available Intro terms M, N, O K|etan K| ()| Az. M | Aa. M | dia E |

in the accompanying report [27]. ;rr: Ma"S;/II LN | M x N | eq(M, N)

)

: Commands ¢ u= x =alloc;(M) | z=[M], | [M] =N |
2. Syntax and overview dealloc(M) | 2 — if 2 (M, 1, Fa) |
A crucial operation in any type system is comparing types for @ = fixs (M, f.y.F)

equality. In the case of dependent types, which we use in HTT to Computations E, " ::= M |let diaz = Kin E'| ¢; ¥

express partial correctness, types can contain terms, so type equal-\éaer;%bé%rf?e?(ttexm; e })A(’ fL:A | A«
ity must compare terms as well, which is an undecidable problem oo S T T, P

in any Turing complete language (in fact, it is not even recursively
enumerable). Itis therefore crucial for HTT that we select equations Terms.Terms form the purely functional part of HTT. They are split
on terms that strike the balance between the preciseness and decidnto introduction (intro) terms and elimination (elim) terms, accord-
ability of the equality relation. In this choice, we are guided by the ing to their standard logical classification. For example, M is
decision to separate typechecking from proving of program speci- an intro term for the dependent function type, didV/ is the ap-
fications. We introduce two different notiorgefinitional equality propriate elim term. Similarlyda. M and K 7 are the intro and
which is coarse but decidable, and is employed during typecheck- elim terms for polymorphic quantification. The intro term for the
ing, andpropositional equalitywhich is fine but undecidable and unit type is(), and, as customary, there is no corresponding elim-
is used only in proving. The split into definitional and propositional ination term. The intro term for computationsdi& E. It encap-
equalities is a customary way to organize equational reasoning insulates and suspends the computafidriThe corresponding elim
type theories [13]. form activates a suspended computation. However, this elim form
Almost all of HTT design is geared towards facilitating a formu- is not a term, but a computation, and is described below. The in-
lation of a decidable definitional equality (propositional equality tro termeta,, K records thaf< should be eta expanded wheris
can be arbitrarily complex, so it does not require as much atten- substituted with a concrete monotype. This construct is needed in-
tion). For example, we split the HTT programs into two fragments: ternally during typechecking to facilitate the equational reasoning
pure and impure — precisely in order to separate the concerns abou{described in Section 3), but is not necessary at a source level.
equality. The pure fragment consists of higher-order functions, and The separation into intro and elim terms facilitates bidirectional
constructs for type polymorphism. It admits the usual term equa- typechecking [35], whereby most of the type information can be
tions of beta reduction and eta expansion. We do not include condi- omitted from the terms, and inferred automatically. When type in-
tionals into the pure fragment because they do not allow an easy useformation must be supplied explicitly, the elim terhd: A can be
of eta expansion. The impure fragment contains the constructs usu-used. In the typing rules in Section B{: A will indicate direction
ally found in first-order imperative languages: allocation, lookup, switch during bidirectional typechecking. More importantly for our
strong update, deallocation of memory, conditionals and loops (in purposes, this kind of formulation also facilitates equational rea-
HTT formulated as recursion). All of these constructs admit reason- soning via hereditary substitutions (described below), as it admits a
ing in the style of Hoare Logic by pre- and postconditions, so we
use the Hoare typ€P}x: A{Q} to classify the impure programs. 1The remaining part must, of course, certify the verification condition.

simple syntactic criterion for normality with respect to beta reduc-
tion. For example, the reader may notice that an HTT term which
does not use the constructdf: A may not contain beta redexes.
This is the primary reason why we do not use the more familiar
monadic constructseturn andbind in this presentation.

Computations Computations form the effectful fragment of HTT,

is amonotype, even i¥, P and@ contain polymorphic types. Note
that allowing polymorphism in the assertions does not change the
predicative nature of HTT. The type system will be formulated so
that logic variables and the assertions do not influence the computa-
tional behavior or equational properties of effectful computations:
if two terms of some Hoare type are semantically equal, then they
and are loosely similar to programs in a generic imperative first- aré equal under any other Hoare type to which they may belong.
order language, with several important distinctions. First, variables Predicative polymorphism (quantification over monotypes) is
in HTT are statically scoped and immutable, as customary in mod- Sufficient for modeling languages such as Standard ML, but not
ern functional programming. Second, computations can freely in- More recent languages such as Haskell. However, extending HTT
voke any kind of terms, including higher-order functions and other t© Support impredicative polymorphism seems difficult as it signifi-
suspended computations. Third, computations return a result, un-cantly compllcqtes the termination argument for norr_nallzatlon (see
like in imperative languages where programs are usually evaluatedP®low), which is a crucial component of type equality. Therefore,

for their effect.

Each computation is a semicolon-separated list of commands.
The primitive commands are as follows (wher&s always a bound
variable): (1)x = alloc-(M) allocates space in the heap and ini-
tializes it with M :7. The address of the allocated space is returned
in z, and is guaranteed to be “fresh”. (2)/]. = N updates the
heap so that the locatioi/ points to the termV:7. To perform
this operation, we must prove that the locatihis allocated, but
we need not establish that it holds a value of typd&hat is, the
operation supportstrong updates-the ability to change the con-
tents of a location to a value of arbitrary type. (8 [M], looks
up the term that the current heap assigns to the locdtigrand
binds the result tac. To perform this operation, we must prove
that the locationV/ indeed points to a term of type in the cur-
rent heap. (4fealloc(M) frees the heap space pointed to k.

To perform this operation, we must prove thidtis allocated. (5)

x = ifa(M, E1, E») is a conditional which executes the computa-
tion E; or E» depending on the value of the Boolean telim The
resulting value is stored im. (6) x = fixa(M, f.y.E) is a recur-
sion construct. It first computes the least fixpoint of the equation
f = A\y.dia E, immediately applies it to the initial valu®f, and

the resulting computation is activated to compute a result which
gets bound tac. (7) The computation that simply consists of an
intro term M is the trivial computation that just returdd as its
result. (8) The computatioiet dia x = K in E activates the com-
putation that is encapsulated and suspendef blginds the result

to z and proceeds to evaluafe achieving the sequential compo-
sition of K and E. The construct is the elimination form for the
Hoare types in HTT. A suspended computation can only be acti-
vated by another computation, and thus once we enter the effectful
fragment of the language, we cannot get out. This is a characteris-
tic property of monadic type systems [24, 40]. In the literature, the
let dia construct is often denoted &s val or bind.

Types.The types of HTT include the primitive types of Booleans
and natural numbers, unit type dependent functionBz:A. B,
Hoare triples¥.X.{P}z:A{Q}, and polymorphic type¥a. A.
We write A — B to abbreviatdIxz: A. B when B does not depend
onz, andC A to abbreviate T }x: A{T}.

The type¥. X .{P}z:A{Q} specifies an effectful computation
with a preconditionP and a postconditior), returning a result of
type A. The variabler names the return value of the computation,
and@ may depend on:. The contextsl and X list the variables
and heap variables, respectively, that may appear in BathdQ,
thus helping relate the properties of the beginning and the ending
heap. In the literature on Hoare Logic, these are known under the
name oflogic variables As usual in the literature, logic variables
can only appear in the assertions, but not in the programs. Also, in
our setting, the typel cannot contain any variables frofnand X .

The typeVa. A polymorphically quantifies over theonotype
variablea. For our purposes, it suffices to define a monotype as any
type that does not contain polymorphic quantification, except in the
assertions. For exampl®, X .{ P}x: A{Q} is a monotype whenl

we leave the treatment of impredicative polymorphism to future
work.

Heaps and locationsin this paper, we model memory locations as
natural numbers. One advantage of this approach is that it supports
some forms of pointer arithmetic which is needed for languages
such as Cyclone. We model heaps as finite functions, mapping a
location N to a pair(7, M) where is the monotype of\/. In

this case we say thd{' points toM, or thatM is the contentsof
location NV, or that the heapssignsM to the locationV.

We introduce the following syntax for heagsapty denotes the
empty heap, andpd, (H, M, N) is the heap obtained frotf by
updating the location\/ so that it points taV of type =, while
retaining all the other assignmentsat

Heap terms and variables play a prominent role in our encod-
ing of assertions about (propositional) equality and disjointness of
heaps. If heaps could hold values of polymorphic type, then en-
coding these properties would require impredicative quantification.
Consequently, we limit heaps to hold only values of monotype.

Assertions.Assertions comprise the usual connectives of classi-
cal multi-sorted first-order logic. The sorts include all the types
of HTT, but also the domain of heaps. We allow polymorphic
quantificationva. P and3a. P over monotypesld 4 (M, N) de-
notes propositional equality betweéd and N at type A, and
seleq, (H, M, N) states that the heafi at address\/ contains a
term N of monotyper.

We now introduce some derived assertions that will frequently
feature in our Hoare types.

PCOQ=PDOQAQDP

HId(H1, H2) = Va.Vz:nat.Vu:a.seleq, (Hi,z,v) CD
seleq,, (Ha, z,v)
M € H = Ja.3v:o.seleq, (H, M, v)
MgH = ~(M € H)

share(Hy, Ha, M) = Va.Vu:a.seleq, (Hi, M,v) CD
seleq,, (Ha, M, v)
splits(H, H1, H2) = Va:nat. (x ¢ Hi A share(H, Ha,x))V

(z & Ha Ashare(H, Hi,x))
HId is the heap equality/ € H iff the heapH assigns to the

location M, share states that/; and H» agree on the locatioft/,
andsplits states thafd can be split into disjoint heapd; and Ho.

We next define the assertions familiar from Separation Logic [30,
36, 31]. All of these are relative to the free varialabem, which
denotes the current heap fragment of reference.

emp = HId(mem, empty)

M +—; N = HIld(mem,upd, (empty, M, N))
Mw—,:— = Jvr.M—,v

M—— = Ja. M r—q —
M —; N = seleq, (mem, M, N)
M—; — = FJvir.M —, v

M— — = Ja. M —, —

P+ Q = 3Fhi:heap.3ha:heap. splits(mem, hi, ha)A
[h1/mem|P A [ha/mem|Q
P—Q = Vhi:heap.Vha:heap.splits(ha, h1, mem) D

[h1/mem]P D [ha/mem|Q

this(H) = HId(mem, H)

Hereemp states that the current heaggm is empty; M +— . N iff
mem consists of a single locatial which points to the terniV:;
M <, N iff mem contains at least the locatiaWl pointing to
N:7. P % @ holds iff mem can be split into two disjoint fragments
so thatP holds of one, and) holds of the otherP —« @ holds of
mem if any extension by a heap of whidh holds, produces a heap
of which @ holds.this(H) is true iff mem equalsH.

The operatioH/h] used in the above definitions substitutes
the heapH for the heap variablé into heaps and assertions. The

nation, hereditary substitutions are parametrized by a metric based
on types, which decreases as the substitution proceeds.

Space precludes us from presenting the formal definition of
hereditary substitutions here (see [27] for details), but they have
the form [M/z]% (—), and they substitute the canonical forh
for a variablex into a given argument. The superscriptanges
over{k, m, e, a,p, h} and determines the syntactic domains of the
argument (elim terms, intro terms, computations, types, assertions
and heaps, respectively). The subscriptis a putative type of

substitution commutes with most of the constructors, except that it M, and is used to ensure the termination of the substitution. We
leaves terms and types invariant. This is justified as terms and typesalso need a monadic hereditary substitutidg®y/z)a(—), and a

will not depend on free heap variables.
We will frequently writeV¥. A and3¥. A for an iterated uni-

versal (resp. existential) abstraction over the term and type vari-

ables of the contex®. Similarly, we writeVX. A and3X. A for
iterated quantification over heap variables of the coniéxt

Monadic and hereditary substitutionsThe equational theory of

monotype substitutionir/a]*(—). The later performs an on-the-
fly eta expansion with respect toof any subterms in the argument
of the formeta, K.

The substitutions are defined by nested induction, first on the
structure ofA, and then on the structure of the term being sub-
stituted into (in case of the monadic substitution, we use the sub-

HTT is based on the usual beta and eta reductions for the vari- stituted computation instead). In other words, we either go to a
ous type constructors. The most interesting equations are the onesmaller type, in which case the expressions may become larger, or
dealing with Hoare types. These equations should capture the prop-the type remains the same, but the expressions decrease. Note that
erties of sequential composition of effectful computations. To that without the restriction to predicative polymorphism, types could

end, we define the operation ofonadic substitutiofE/z:A)F,
which compose& and F’ sequentially. The operation is defined by
induction on the structure df.

(M/z:A)F = [M:A/z]|F
(let diay=Kin E/zc:A)F = letdiay=Kin(E/z:A)E
(¢; E/z:AYF = ¢;(E/x:A)F

actually grow after a substitution, hence our restriction to polymor-
phism over monotypes.

Theorem 1 (Termination of hereditary substitutions)
[M/z]4 (=), (E/z)a(—) and [T/a](—) terminate, either by re-

Now we can specify the beta and eta equations for the Hoare types Urning a result, or failing in a finite number of steps.

let dia z = (dia E):(¥. X {P}y:A{Q}) in F =3 (E/x:A)F

M:V.XA{P}lx:A{Q} =,
dia (let diay = M: 9. X {P}z:A{Q} iny)

wherey ¢ FV(M:V.X {P}x:A{Q}). The definition of monadic

substitution and the corresponding reduction and expansion are

taken directly from the work of Pfenning and Davies [34]. Pfen-

ning and Davies show that these equations are equivalent to the
standard monadic equational laws [25], with the benefit that the
monadic substitution subsumes the associativity laws of [25], thus

simplifying the equational theory.

The general strategy that HTT employs in the equational rea-
soning is to reduce the expressions to their canonical form (defined
below), and then compare the canonical forms for alpha equiva-

Example.In this example we present a polymorphic functéomp

for swapping the contents of two locations. In a simply-typed
language like ML, with a typeA ref of referencesswap can be
given the typex refx a ref—1. This type is an underspecification,

of course, as it does not describe how the function works. In HTT,
we can be more precise. Furthermore, in HTT we can use strong
updates to swap locations pointing to values of different types. One
possible definition oéwap is presented below.

swap : Va.V3.IIx:nat.Ily:nat.
mian:B{x—a m*y—gn}r:1
{x =g n*yrqym}
= Aa.AB.AxAy. dia(u = [X]a; v = [y]g;
Ve =u; [x]g = v ()

lence. This reduction is carried out during type checking, as will be The function takes two monotypesand 3, two locationsx and

explained in Section 3.
A term is in canonical form if it is beta-normal (i.e. it contains

no beta redexes), and eta-long (i.e., all of its intro subterms are

eta expanded). For example, fif(nat—nat)—(nat—nat)—nat
and g:nat—nat, then the canonical version of the terfn g is
M. f (Ay.g y) (Az. h x). This definition of canonicity accounts

y and produces a computation which looks up both locations, and
then writes them back in a reversed order.

The precondition of this computation specifies a heap in which
x andy point to valuean:« andn:3, respectively, for some logic
variablesm andn. The locations must not be aliased, due to the use
of « which forces< andy to appear in disjoint portions of the heap.

for both beta and eta equations. In order to treat polymorphism, Similar specifications that insists on non-aliasing are possible in

we also need to add a new term construetar, K which is only
used in canonical forms, and serves to record Hiahould be eta
expanded, once is substituted with a concrete monotype.

The main insight, due to Watkins et al. [41], is that conversion to

several related systems, like Alias Types [38] and ATS with stateful
views [44]. However, in HTT, like in Separation Logic, we can
include the non-aliasing case as well.

One possible specification which covers both aliasing and non-

canonical forms can be defined on (possibly) ill-typed terms, and aliasing has the preconditigx —o m * y —g n) V (x —q m

can be shown to terminate. This is important, as it will allow us

Ay —g n), with the symmetric postcondition. The second disjunct

to avoid the mutual dependency between equational reasoning andisesh instead of«, and can be true only if the heap contains exactly

typechecking, which is one of the main sources of complexity in
dependent type theories.

At the center of the development ateereditary substitu-
tions [41], which are defined only on canonical forms, and pre-

one location, thus forcing = y. This specification is interesting
because it precisely describes the smallest heap neededfoas
the heap containing onlyandy.

Another possibility is to admit an arbitrarily large heap in the

serve canonicity. For example, in places where an ordinary capture-assertions, but then explicitly state the invariance of the heap frag-

avoiding substitution creates a redex liker. M) N, a hereditary
substitution continues by immediately substitutiNgfor x in M.

This may produce another redex, that is immediately reduced ini-

ment not containing andy. Such a specification will have the pre-
condition(x < m) A (y <z n) A this(h), and postcondition
this(upds(upda (h, y, m), x, n)), whereh is a logic variable denot-

tiating another hereditary substitution and so on. To ensure termi- ing an arbitrary heap. Thus heap variables allow us to express some

of the invariance that one may express in higher-order separationize the applicationd/ N andM T, respectively, if these applica-
logic [4]. tions contain a redex. The functiespand 4, (V) eta expands the

We next illustrate hovgewap can be used in a larger program. term N with respect tod. We note that the results of eta expansion
For example, swapping the same locations twice in a row does notare invariant with respect to the possible assertions that may appear
change anything. in A, so that we can assume thatis a simple type. Herd/, N
identity : Va.V3.IIx:nat.ITy:nat. andr are assumed canonical.
h{x —qa - Ay —g - A this(h)} r : 1 {this(h)}

A;PHE=2:A.Q[E'] A; X+ P < prop[P']
AN;PHE <A QIE] AR A< typeld']

expand s, .1, (K)
Az. expand 4, (

where)M = expand 4, ()
andz ¢ FV(K)

= Ax. Ay. dia(let dia u = swap a B xy apply 4 (K, M) = KM if K isan elimterm
dia v =swap B axyin () applys(Az. N,M) = N’ whereN’ = [M/z]}(N)
This function generates a computation for swappirandy, and apply 4 (N, M) fails otherwise
then activates it twice with thiet dia construct. Here we assumed gpec(K, 7) = Kr if K is an elim term
a specification foswap that admits aliasing. spec(Aa. M, T) = [r/a]™(M)
spec(N, 1) fails otherwise
3. Type system expand,, (K) = K if a is nat or bool
The type system of HTT consists of the following judgments. expanja((;(()) = ?t)aa K
expand; =
A+ K= A[N'| F A ctx [A'] expandy, 4(K) = wherea ¢ FTV(K)
AFN < A[N'] A; X T propctx Aa.expand 4 (K «)
M

=

A X Ty =T, A b 7 < mono[7'] eXPaijo(fl;([? K: M) whereM = expand 4 (z)
. / 1a (let dlax = n
A; X'+ H <= heap [H'] expand 4 (N) = N if N is notelim

The judgments on the right deal with formation and canonicity of
variable contexts, assertion contexts, assertions, types, monotypes
and heaps. In these judgments, the output is always the canonical

version of the main input4’ is canonical forA, P’ is canonical AzAMFe= Al o AF(O<1[) "™
for P, etc). When checking assertion contexspropctx), I' is
required to be canonical, so there is no need to return the output. AzAF M < B[M] |z
The judgments on the left side of the above table are the primary Ak Az M <= Tx:A. B [Az. M']
ones, and are explicitly oriented to symbolize whether the type or AFK = z:A B[N'] AFM < A[M]
the assertion are given as input or are synthesized as output. This IIE

AEK M= [M'/z]%(B)[apply (N, M")]

is a characteristic feature of bidirectional typechecking [35], which
we here employ for both terms and computations.

For example, the judgment - K = A[N’] takes an elim
form K and input contex!\ and outputs the typd of K and the
canonical formN’. On the other hand) - N < A [N’] takes an
intro form N and input context!A and input typeA, and outputs
the canonical forniV’ if N matchesA.

The judgmentA; P - E = x:A.Q [E’] takes a computa- -
tion E, input contextA, input assertiorP, and input typed, and AF K < Blexpandg(N')]
outputs the strongest postconditigh for E with respect to the AFA<=type[A] AFM <<= A [M]
preconditionP, and the canonical fornk’ of E. Symmetrically, AFM:A= A M) ==
A; P+ E < x:A.Q[E'] takes computatiorz, input contextA,
input assertiong and@ and input typeA, and outputs the canon-
ical form E’, if Q is a postcondition (not necessarily the strongest)
for E with respect taP. The canonical forn&’ is computed using
only the beta and eta rules for the type constructors. Other kinds of ¢ gescribed before, intro terms are checked against a supplied
eqguational reasoning, like arithmetic or unrolling of recursive calls, type, and elim terms can synthesize their type. The latter holds be-
are not part of definitional equality, and hence does not factor into ¢ se elim terms are generally of the farrit; 75 - - - T, applying
the computation of canonical forms. a variabler to a sequence of intro terms or typEs Since the type

The judgmenty; X; T, = I'; formalizes the sequent calculus ¢ s declared in the context of the judgment, the type of the
for the assertion logic, which is a classical multi-sorted logic with \\hole application can always be inferred by instantiating the type
polymorphism. TheA is a variable contextX is a heap context, of z with T,
andT', 'y are sets of assertions. As usual in sequent calculi, the The typing rules now make it explicit how the typing informa-
judgment holds if for every instantiation of the variablesAn tion flows through the system. For exampl#, checks that term
and X such that the conjunction of assertionslin holds, the Az. M has the given function type, and if so, returns the canon-
disjunction of assertions ifi; holds as well.) ical form Az. M’. In TIE we first synthesize the canonical type

The input and output contexts and types in all the above judg- 17, 4. B and the canonical formV’ of the function part of the
ments are always assumed canonical. application. Then the synthesized type is used in checking the ar-
Terms.We only discuss selected rules here, and refer to the ac- gument part of the application. The result type of the whole ap-
companying technical report [27] for the treatment of the primitive plication is synthesized using hereditary substitutions in order to
typesnat andbool and their corresponding operations. We fistneed remove the dependency of the typeon the variablec. Finally,
several auxiliary functions which deal with beta reduction and eta we compute the canonical form of the whole application, using the
expansion. The functionspply , (M, N) andspec(M, 7) normal- auxiliary functionapply to reduce the terlV’ M’ should this term

Aok M < A[M]

AF Aa. M <Va. A[Aa. M)
AFK=Va.B[N'] At 1< mono|[r']
A+ KT1=[1"/a]*(B)[spec(N’,7")]
AFK=A[N'] A=B

Vi

At K = alK]
A b etag K < aletaq K]

eta

actually be a redex. Similar description applies to the rules for poly- h; andh. such thatR; holds ofh;, then E does not get stuck if

morphic quantification.

In the rule<==-, we need to synthesize the canonical type for
the ascriptionM:A. This type should clearly be the canonical
version of A, under the condition that/ actually has this type.
Thus, we first test thatl is well-formed and compute its canonical
form A’, and then proceed to chedl againstA’. If M and A’
match, we obtained the canonical versiofi of M. ThenM’ and
A’ are returned as the output of the judgment.

In the rule =<, we are checking an elim terrfk’ against
a canonical typeB. But K can already synthesize its canonical
type A, so we simply need to check that and B are actually
equal canonical types. The canonical form synthesized #bim

executed in this initial heap. Moreovel; never touched (not
even for a lookup); in other wordé,, is not in the footprint ofE.
(2) Upon termination of, the fragment; is replaced with a new
fragment which satisfieR2, while h2 remains unchanged. (3) The
split into hy and ke is not decided upon before' executes, and
need not be unique. We only know that if a split is possible, then
the execution o2 defines one such split, but which split is chosen
may depend on the run-time conditions. Whichever valieand
ho end up taking, however, we know that (2) holds.

The above requirements define what it means for the specifica-
tion in the form of Hoare typ& . X .{ R, }z: A{ R} to possess the
small footprint property. We argue next that the requirements are

the premise, may be an elim form (because it is generated by asatisfied byF if we can establish thak; P -+ E < z:A. Q, where

judgment for elim forms), but we need to use it in the conclusion
as an intro form. The switch from an elim form to the equivalent

P = this(init) A 3¥.X.(R; * T) andQ = Y¥.X.R; —o Ro.
The assertionP is related to the requirements (1) and (3).

intro form is achieved by eta expansion with respect to the supplied Indeed, P states that the initial heap can be split ifitp and i

type B. For example, ifc:nat—nat is a variable in context, then its
canonical formis\y. = y, and we could use the ruie < to derive
the judgment::nat—nat - = <= nat—nat [\y. z y].

When the typesA and B in the rule=-<« are equal to some
type variablea, we cannot eta expand the canonical forms, so
we simply remember that expansion must be done whenever

so thath; satisfiesR; and h, satisfiesT, as required. In order

to ensure progress, the typing judgment will alldwto touch

only locations whose existence can be proved. Because there is
no information available about, and its locations (knowing"
amounts to knowing nothing}; will be restricted to working with

h1 only. The split intoh; andh. is arbitrary, satisfying an aspect

instantiated with a concrete monotype (please see the definitionof (3).

of the auxiliary functionexpand). This is why we introduced the
constructokta, K which is used only in canonical termga, K

The assertiond is related to the requirements (2) and (3). After
unraveling the definition of the- operator,Q essentially states

is an intro term, because its occurrences are always generated whethat any splitintdh; andh. thatE may have induced oinit results

using the rule=-< to switch from elim into intro terms.

Of course, onceta, K is introduced, we need to be able to
typecheck it, and we use the ruea for that. Notice how this rule
insists thatiC is canonical by requiring in the premise thatequals
its own canonical form.

ComputationsThe judgmentA; P - E = z:A. Q [E’] translates
the program¥ into a corresponding binary relation on heaps.

Intuitively, the preconditionP is a relation that the translation
starts with, and the postconditigpis the relation that captures the
semantics ofF. In addition, the preconditio® has to be strong
enough to guarantee that the executionfoWill never get stuck.
The assertiong® and @ use the heap variablésit and mem to
stand for the input and the output heaps of the computations.

In order to define the small footprint semantics of the Hoare
types, we first need two new connectives. Télational composi-
tion Po@ = 3h:heap. [h/mem]P A[h/init]Q, expresses temporal
sequencing of heaps. The informal readind’af @ is that@ holds

of the current heap, which is itself obtained from another past heap

of which P holds.

Thedifference operatoon assertions is defined 8 — Rz =
Vh:heap. [init/mem](R; * this(h)) D R2 * this(h) whereR; are
assumed to have a free variatem, but notinit. The informal
reading of R1 — Ry is that the heapnem is obtained from
the initial heapinit by replacing a fragment satisfying, with a
new fragment which satisfieB,. The rest of the heapsit and

mem agrees. It is not specified, however, which particular fragment

of init is replaced. If there are several fragments satisfyfihg

then each of them could have been replaced, but the replacement

is always such that the result satisfi®s. The operator— is

used in the typing judgments to describe a difference between two
successive heaps of the computation. Notice how the definition of

—o relies on haming the hedpby means of universal quantification

in a final heap wheré,; is replaced with a fragment satisfying
R4, while hs remains unchanged. The invariancegfis precisely
what (2) requires, and the parametricity B with respect to the
splitis the remaining aspect of (3).

Before we can state the inference rules of the computation judg-
ments, we need an auxiliary functieeduce o (M, z. E) which re-
duces the terntet dia z = M in E, if it contains a redex. Herd,

M andE are assumed canonical.

reduce (K, z. E) =

let daz=KinFE
reduce (dia F,z. E) = E’
reduces (N, z. E) fails

if K isan elimterm

whereE’ = (F/xz) 4 (E)
otherwise

We can now present the typing rules for computations. We start
with the general monadic fragment, and then proceed with the rules
for the individual commands.

A;PHE = x:A.R[E'] A,z:A;init,mem; R=—Q
A;PHE < 2:A.Q[E]
AFM < AM]
A;PEM = 2:A. P Ald g (expand 4 (z), M) [M']

consq

comp

A;this(init) A 3W.X.(Ry * T) F E < 2:A.VW.X.R; —o Ry [F']
At dia E < W.X.{Ri}x:A{R2} [dia E']

{H

A+ K= U.XAR }z:A{R2} [N']
Ajinit,mem; P=3¥.X.(R1 * T)
A,z:A; Po (VU.X.Ry —o Ry) - E = y:B.Q [E]

A;Prletdiaz=KinE
= y:B. (3z:A. Q) [reducey (N', z. E’)]

{}E

The ruleconsq allows the weakening of the strongest postcondi-

in order to state its invariance. We could not define an operator with tion R into an arbitrary postconditio®, assuming thak implies

this semantics using the spatial connectivesid — alone.
Now consider a suspended computatihm £ with the Hoare
typeV.X.{R1}x:A{R2}. Intuitively, the computation and the type

Q. The rulecomp types the trivial computation that immediately
returns the result = M and performs no changes to the heap.
The precondition is simply propagated into the postcondition, but

should correspond if the following three requirements are satisfied: the postcondition must also assert the equality betwideand (the

(1) Assuming that the initial heap can be split into two disjoint parts

canonical form ofye. The rule{ }I defines the small footprint se-

mantics of Hoare types. This is achieved with using the premise
A;PFE < x:A.Q, for P andQ as discussed before.

The rule{ }E describes how a suspended computation=
{R1}z:A{R2} can be sequentially composed with another com-
putationE. The composition is meaningful if the following are sat-
isfied. First, the the assertion logic must establish that the precondi-
tion P ensures that the current heap contains a fragment satisfying
the preconditionR;, as required byK. In other words, we need
to show thatP — 3¥.X (R, * T). Second, the computatiofi

needs to check against the postcondition obtained after executing

K. The latter is taken to b® o V¥.X.R; — Ra2, expressing that
the execution of changed the heaB by replacing a fragment sat-
isfying R; with a new fragment satisfyin§>. The normal form of
the whole computation is obtained by invoking the auxiliary func-
tion reduce. We emphasize that the tyg@in the conclusion of the

{ }E rule is aninput of the typing judgments, and is by assumption
well-formed in the contexA\. In particular,z does not appear iB,

S0 no special considerations are needed passing from the premise of

signmentM’ —_.. N’. A prerequisite is to prove the sequent
P=— M' — —, thus showing thad/’ was allocated with an ar-
bitrary type (hence the update is strong).

The strongest postcondition for deallocation states that the heap
has changed by replacing the assignmeHt — — with empty.
The side condition is the sequeft=— M’ — — showing that
M’ was allocated.

The typing rule forx = ifa(M, E1, E>) first checks the two
branchesF; and E, against the preconditions stating the two
possible outcomes of the boolean expressién The respective
postconditionsP; and P, are generated, and their disjunction is
taken as a precondition for the subsequent computdtion

AFA<type[A] AF M < bool [M']
A; P A ldpooi (M, true) = By = x:A’. Py [E]]
A; P A Idboo|(M’,fa|se) FEy = x:A P [Eé]
Az:A';PLV P, FE = y:B.QE']
APt =ifa(M,E1, E2); E
= y:B. (3w:A’. Q) [x = if g (M, E{, E}); E']

the rule to the conclusion. No such assumptions are made about the

postcondition, which is an output of the judgment, so we need
to existentially abstract in the postcondition of the conclusions,
to avoid dangling variables. A similar remark applies to the rules
for the specific effectful constructs for allocation, lookup, strong
update and deallocation that we present next.

AF7T<monol[r'] A+ M <71 [M]
A,znat; P* (x — M) E = y:B.Q[E]
A; Pz =alloc,(M); E
= y:B. (3x:nat. Q) [z = alloc/ (M'); E’]

AFM<nat[M'] AF 7 << monolr]
A;init,mem; P=—= M’ —_, —
A,z:7’; PA (M — . expand/(z)) F E = y:B.Q [E']
A;Pha= M E=y:B. (Fo:r.Q) [z = [M']/; E']

AFM < nat[M'] A 7<= monol[r]
A+ N <7/ [N'] A;init,mem; P=—= M’ — —
AP o (M — =) —o (M’) N')) F E = y:B.Q[F]
A;PH[M); =N;E=y:B.Q[M'],, = N';E']

A+ M < nat[M'] Aj;init,mem; P=— M' — —
A;Po((M'+— —) —emp) F E = y:B.Q[E’]
A; P+ dealloc(M); E = y:B. Q [dealloc(M’); E']

In the case of allocationF is checked against the assertion
P x (z —,, M’), which describes the state after the allocation,
and is the strongest postcondition for allocation with respeét.to

The assertion simply states that the newly allocated memory whose

address is stored inis disjoint from any already allocated memory
described inP.

In the case of lookup, the strongest postcondition states that
the heap has not changed (i.&, still holds) but we have the
additional knowledge that the variahtestores the looked up value.
The variablex is expanded because we only consider assertions
in canonical form. In order to ensure progress, we must prove the
sequentP => M’ — . — showing that the locatios’ actually
exists in the current heap, and points to a value of an appropriate
type.

Itis important to notice that proving the sequéht= M’ <,

— may be postponed, as it does not influence the other premises
The sequent can be seen as part of the verification condition which
is generated during typechecking. This property will be true of all
the sequents involved in the computation judgments.

The strongest postcondition for update states that the heap has

changed by replacing some assignmént — — with an as-

Finally, we present the rule for recursion. The recursion con-
struct requires the body of a recursive functjpr:. F, and the term
M which is supplied as the initial argument to the recursive func-
tion. The body of the function may depend on the function itself
(variable f) and one argument (variablg. As an annotation, we
also need to present the type fifwhich is a dependent function
type Ilx: A. . X { R, }y: B{R2}, expressing thaf is a function
whose range is a computation with preconditi®nand postcondi-
tion Rs.
AFT < type[llz:A V. X {R:}y:B{R2}] AF M <= A[M']
A;init, mem; P=[M’/z]", (3¥.X.(Ry % T))
A, flle:A. U.XA{R}y:B{Ra2}, x: A;
this(init) A JU.X.(R; * T) F E < 4:B. (VU.X.R; —o Ro) [E']
A, y:[M'/z]%) (B);
Po[M'/x]h,(V¥.X.R1 —o Ry) - F = 2:C.Q [F']
A; Pty =fixp(M, fx.E); F
= 2:C. (3y:[M’ /2]7,(B).Q)
[y = fixn(lJiA.‘l/.X.{Rl}le{RQ}(M,7 f'x'El); F’]

Before M can be applied to the recursive function, and the
obtained computation executed, we need to check that the main
preconditionP implies3¥.X.(Ry * T), so that the heap contains
a fragment that satisfieR;. After the recursive call we are in a
heap that is changed according to the proposi@nX. R, — Ro,
so the computatior” following the recursive call is checked with
a preconditionP o (V¥.X.R; — R3). Of course, because the
recursive calls are started using for the argument, we need to
substitute the canonicall’ for = everywhere.

SequentsThe sequent calculus is a standard formulation of a first-
order classical multi-sorted logic with equality and universal and
existential polymorphic quantification over monotypes. The sorts
include bools, nats (in Peano axiomatization), functions and type
functions with extensionality, effectful computations and heaps.
The axiomatization of bools, nats, functions and type functions is
standard, and we currently do not consider any specific reasoning
principles about computations, except propositional equality. Here,
we only present the axioms related to heaps, and refer to [27] for
the rest of the rules.

A; X; T, seleq, (empty, M, N) =>T

. A; X; Ty =>seleq (upd.(H,M,N),M,N),T's

A; X; Fl, seleq,,_(updo(H,]\417 Nl), Mg, Ng) —
Idnat (M1, M2), seleq, (H, M2, N2),T'>

A; X;T'1,seleq, (H, M, N1),seleq, (H, M, N2) =
Id- (N1, N2), T2

The first rule states that an empty heap does not contain any as- The verification condition consists of the following sequents:
signments. The second and the third rule implement the McCarthy (1) P => a <—nat —, SO thata can be looked up, (2P = a —
axioms for functional arrays [23], relating tkeleq andupd func- — so thata can be updated, (35 =>[i + 1/¢]I = T, so that
tions. The fourth axiom asserts a version of heap functionality: a the computation obtained fronfi(i + 1) can be executed, (4)
heap may assign at most one value to a location, for each givenP; A ldnt(z,t) =1 — @, so that the fixpoint satisfies the
type. prescribed postcondition, (5% =>a — — so thata can be

We would prefer a slightly stronger fourth axiom here, which deallocated, and (& A ldnat (7,) => emp — emp Asum(r, n),
would state that a heap assigns at most one type and value toso thatsumfunc has the required postcondition. It is not too hard to
a location, instead of at most one value for each type. As an see that all these sequents are valid.
illustration, in our previous example we used the asserior=
T —a m Ay —g nto specify a heap which contains exactly one 4 Properties
location thus forcinge andy to be aliases. While = y could be]] o)
derived fromP, we cannot derive that = 8 andm = n with our In this section, we present the most characteristic properties of
weak fourth axiom. HTT. The formal development is too extensive to be included here,

Obviously, stating the full functionality of heaps requires new and the interested reader is referred to the accompanying technical
assertions for equality of types and for equality of terms at different report [27] for the complete statements of all the theorems and all
types [22], which we leave for future work. the proofs.

Example.As a second example, consider the functiomfunc that
takes an argumemntand computes the sui- - -+n. The function
first allocates: which will store the partial sums, then increments
the contents of with successive nats in a loop, untilis reached.
Thena is deallocated before its contents is returned as the final The proof of Theorem 2 exploits the fact that the typing judg-
result. ments of HTT, including the computation judgments, are syntax
We present the code feumfunc below, and annotate it with directed, so that typechecking the premises always involves type-
assertions (enclosed in braces and labeled) that are generated duthecking smaller expressions. Premises may also involve deciding
ing typechecking at the various control points. In the code, we equality of types, or computing hereditary substitutions or deciding
assumed given the ordering, and introduced the following ab- sequents of the assertion logic. As the first two kinds of premises

Theorem 2 (Relative decidability of type checking)
Given an oracle for deciding the validity of assertion logic sequents,
all the typing judgments of the HTT are decidable.

breviations: (1)if M then E else F is short forif(M, E, I); (2) are decidable, according to Theorem 1, the conclusion follows.
sum(r,n) = ldnat(2 X7, n X n+1) denoting that = 1+ - - +n; It should be possible to remove the assumption about the oracle
(4) I =i < nA3tinat.a —nae t A sum(t,) will be the loop by extending the HTT terms with certificates for the sequents, in the
invariant during the summation; (%) = a +nat — A sum(z,n) style of Proof-Carrying Code [29]. With this extension, a compu-
asserts what holds upon the exit from the loop. tation judgment of HTT will contain all the information needed to
establish its own derivation, as the derivation is completely guided
sumfunc : IIn:nat. {emp} r : nat {emp A sum(r, n)} = by the syntax of the computation. In the terminology of Martin-
An. dia(a = allocnat(0); Lof [21], the judgments beconanalytic or self-evident. Alterna-
Po:{this(init) * (a nat 0)} tively, we can say that an HTT computation can be seen as a proof
x = fix(0, f. i. of its own specification, and thus the effectful fragment of HTT

Py:{this(init) A (I * T)}
s = [a]nat;

Pz:{Pl A a —nat S}

t = if eq(i, n) then

establishes the Curry-Howard correspondence [15] between com-
putations and specification proofs.
The next lemma restates in the context of HTT the usual proper-

Ps:{Py A ldnat(i, n)} ties of Hoare Logic, like weakening of the consequent and strength-
s ening of the precedent. Also included is the frame rule from Sepa-

else ration Logic which embodies the small footprint property by stat-
Py:{Py A = Idnat(i, n)} ing that the computation cannot change any heap fragment disjoint
[a]nat = s+i+1; from the footprint.

P5:{P4 o (a Fnat = —© @ Fnat 5+|+1)}
let dia x = f (i+1)

in Lemma 3 (Properties of computations)

Po:{Ps o ([+1/i]] —o Q)} Suppose that A; P+ E < z:A. Q [E']. Then:
enél(' 1 \AVengn]i;g Cojrllsigrglr}lf A, x:A; init, mem; Q = R, then
' ; = x:A. .
P7'{E§i:r:;tlfj'}§g(§\’ mat/(t)} 2. Strengthening PrecedefifA; init, mem; R=—> P, then A; R \-
t); E<z:A.Q[E.
Ps:{Po o ([0/i]I — Q)} 3. Frame.If A + dia F < W.X.{Ri}z:A{Ry}[F'], and
dealloc(a); A, U; X, mem + R < prop[R], then A + dia FF «
Po:{Pg o (a +nat - —o emp)} U.XA{R: * R}z:A{R2 x R} [F'].

x)i 4. Preservation of Histonjf A; init, mem = R < prop [R], then

AjRoPFE < x:A. (RoQ)[E'].
The specification fosumfunc states that the function starts and
ends with an empty heap. The most interesting part of the code is We discuss here the last property from Lemma 3, which we call
the recursive loop. It introduces the fixpoint varialflevhose type Preservation of History. It essentially states that a computation does
we take to bef:Ili:nat. {I}z:nat{@}, giving the loop invariant not depend on how the heap in which it executes has been obtained,
in the precondition. The variableis the counter which drives the i.e., which sequence of computations lead to its creation. Thus, each
loop. The initial value fori is 1, as specified in the first argument preconditionP and postconditio) can always be arbitrarily pre-
of the fixpoint construct, and the loop terminates whegaches:. composed with a new assertiéh This is one of the mostimportant

properties of HTT and is indispensable in the meta-theoretic proofs, Each judgment relates an expression with its one-step reduct. The

because it captures the fact that HTT reasons about programs byinference rules of the evaluation judgments are straightforward, so

computing strongest postconditions via relational composition. we omit them here. We refer to the technical report [27] for the
complete formalization.

5. Operational semantics SoundnessPerhaps somewhat surprisingly for a program logic

In this section we discuss the operational semantics for HTT and like HTT, we formulate soundness via Preservation and Progress

the soundness of the type system with respect to the operationatheorems as often used for simpler type systems. This is a conse-

semantics. In particular, we argue thatif P + E < z:A.Q quence of our decision to formulate HTT as a type theory, rather

is derivable in the type system, then it is indeed the case that than as an ordinary Hoare Logic. Of course, our Preservation and

evaluatingE in a heap in whichP holds produces a heap in which ~ Progress theorems are significantly stronger (and also harder to

Q holds (if E terminates). prove) than corresponding theorems for simpler type systems since
The operational semantics is only defined for well-typed terms. Our types are much more expressive.

Since our types correspond to specifications, our approach is dif- Theorem 4 (Preservation)

ferent from the traditional approach of Hoare Logic but itis similar 1. if Ko <, Ky and - - Ko = A[N’], then - - K1 = A[N'].

to the approach in [6], which also only gives semantics to well- 2. if My <, My and- - Mg < A[M’], then - + My < A[M’].

specified programs. 3. if o —e p1 and - pg < 2:A. Q, then - py <= x:A. Q.

Syntax. We now present the syntactic ingredients for defining a . .

cgll-by-value Ieft-R[o-right opera)t/ional sem%ntics. g The preservation theorem states that the evaluation step on a
values ol e ()| Az M | Aa. M | dia B | well-specified term/abstract machine does not change the specifi-

cation of the result. In the case of abstract machines, after taking

fal SR -
true | false | 2| s v the step, the evaluation is still on its way to produce a value of type

Value heaps = | x,l—rv . . o

Continuati%ns ;(— . I ;;C;A. ET;,,i A, and terminate in a heap satisfyiag In the case of pure terms,
Control expressiony == kb E there is an additional claim that evaluation preserves the canonical
Abstract machines == x,k> E form—and thus the equational properties—-of the evaluated term.

o . . In other words, normalization is adequate for the operational se-
The definition of values is standard from mostly functional mantics.

programming languages. We uséo range over nats when they Before we can state the progress theorem, we need to define a
are used as pointers. rProperty of the assertion logic which we ch#ap soundness
Value heaps are assignments from nats to values, where eac

assignment s indexed by a type. Value heaps are a run-time conceppefinition 5 (Heap soundness)
—and are used in the evaluation judgments to describe the state |
which programs execute. This is in contrast to heaps from Section 2
which are used for reasoning in the assertion logic. That the two 1. if -; mem; this([x]) =1 <. —, thenl +—, v € ¥, for some
notions correspond to each other is expressed by our definition of vajue v, and

heap soundness that will be given later in this section. We will need
to convert a value heap into a heap canonical form, so we introduce
the following conversion function.

[[] = empty The clauses of the definition of heap soundness correspond to

Ix,l —+ v] = upd.([x],{, M), where- v < 7 [M] the side conditions that need to be derived in the typing rules
for the primitive commands of lookup, update and deallocation.

A continuation is a sequence of computations of the form Heap soundness essentially shows that the assertion logic correctly

he assertion logic of HTT is heap sound iff for every value heap x,

2. if -; mem; this([x]) =1 — —, thenl —, v € x for some
monotype T and a value v.

z:A.E, where E may depend on the bound variabieA. The reasons about value heaps, so that facts established in the assertion
continuation is executed by passing a value to the varialiethe logic will be true during evaluation. If the assertion logic proves
first computatior. If that computation terminates, its return value that/ <, —, then the evaluation will be able to associate a value
is passed to the second computation, and so on. v with this location, and carry out the lookup. If the assertion logic

A control expressions > £ pairs up a computatio’ and a proves thai < —, then the evaluation will be able to associate a

continuationx, so thate provides the initial value with whichthe monotyper and a valuev: with this location, and carry out the
execution ofx can start. Thus, a control expression is in a sense update or deallocation.
a self-contained computation. Control expressions are introduced Now we can state the Progress theorem, under the assumption of
because they make the call-by-value semantics of the computationheap soundness; in the following section we prove that the assertion
let dia = dia I/ in IV explicit. Evaluation of this computation |ogic of HTT is indeed heap sound.
is carried out by creating the control expressiarF’ > E; or in
other words, first push. F' onto the continuation, and proceed to Theorem 6 (Progress)
evaluateF. Suppose that the assertion logic of HTT is heap sound. Then the
An abstract maching is a pair of a value heap and a control following holds.
expressions > E. The control expression is e\(aluated against the L If- - Ko = A[N'], then either Ko = v : A or Ko <>, K1,
heap, to eventually produce a result and possibly change the heap.

Our theorems require a typing judgment for abstract machines for some K.
, / . _
in order to specify the type of the return value and the properties 2 g)m';]\]\go = A[M'], then either Mo = v or My —m M, for
1.

of the heap in which the abstract machine terminates (if it does).
Givenu = x,x > E, we writek 1 < z:A. Q if we can prove
that(is a postcondition for > E with respect to the assertidn]

3. If + xo0, ko> Eo < x:A. Q, then either Fy = v and ko = -,
or xo, ko > Eo —e X1, k1 > Eh, for some x1, k1, E1.

generated frony. Example. From the Progress and Preservation theorem it is how
Evaluation. There are three evaluation judgments in HTT; one for clear thasumfunc 10 produces a computation that, if it terminates
elimination termsk —;, K’, one for introduction terma/ —,, when executed in an empty heap, returns the value 55 and an empty

M’ and one for abstract machingsx > E —. X',k > E’. heap.

6. Heap soundness

In this section we sketch a proof that the assertion logic of HTT is
heap sound. We do so by means of a simple denotational semantics = Gjven the above, the actual definition of the semantics, is fairly
of HTT. Itis based on the observation that the operational semanticsstandard. For examplgA - Az. M <« Tla:A. B [\x. M]], is
does not depend on HTT types and, likewise, the atomic predicates
of the assertion logic do not depend on HTT types, but only on Ap. (M. [A,z:AE M < B[M]],(p,v)),

and[A; X - PAQ < prop [P AQ]], is

the underlying simple types (which we catape} obtained after

erasing assertions from HTT types. Hence we may devise a simple

semantics of the language in which types are interpreted by a [A; X F P <= prop [P][, N[A; X = Q < heap [Q]], -
domain of values, and in which assertions are interpreted as subsets A sequentA; by, ..., hx; P1, ..., Pn=Q1,...,Qm of the
of the domain of values. For simplicity, we here use a denotational assertion logic ivalid if, for all p € [A] and ally € H*,
semantics; one could also have made a model directly from the

operational semantics and modeled the type of values as ground [A; X+ PLA-- A Pa](p, 1)

contextual equivalence classes of terms, but that requires showing ClAXEQuV---VQu](pp)-
operational extensionality properties of functions, which is non-
trivial in the presence of general references.

Let pCpo be the category ab-complete partially ordered sets
(partially ordered sets such that everychain has a least upper
bound) and partial continuous functions. Note that the objects do
not necessarily have a least element. For a partial continuous func-
tion f, write f(a) | for “f(a) is defined” and writef(a) 1 for
“ f(a) is undefined.” For cpo’s{ andY’, we write X — Y for the
set of partial continuous functions fro&i to Y and X — Y for
the set of (total) continuous functions framto Y.

Let MonoTypes denote the set of mono types of HTT. List
denote the discrete cpo of natural numbersBleenote the discrete
cpo of booleans with elementsue andfalse, and letl denote the
one-element cpo with elemert Finally, let Loc be a copy ofN.
Recall thatpCpo is bilimit compact and complete. Hence there is
a canonical solution to the following recursive domain equations:

the forgetful function frompCpo to Set and then use the
powerset functo of Set.

Theorem 7 (Soundness of Assertion Logic)
All the axioms and rules of the assertion logic are sound with
respect to the semantic notion of validity.

Proof: All the standard rules for classical logic are trivially sound
since we interpret the logic as in sets. Thus it just remains to check
that the basic axioms for equality are sound. But those are all easy
to verify; the only interesting case is extensionality of functions
represented by-terms. That holds becauseterms are indeed in-
terpreted by elements il corresponding to honest functions i

Theorem 8 (Heap Soundness)
The assertion logic of HTT is heap sound.

Proof: Let x be a value heap. Here we only sketch the argument
for item 1 of heap soundness.

V. 2 1+ N+B+(V=V)+(H—(VxH) By assumption; mem; Hld(mem, [x]) = seleq,.(mem, {, —)
+ (ITaeMonoTypes V) is derivable, so by logic alsq -; - = seleq , ([x],{, —) is deriv-
H = Yrepp(Lo(L— V), able. By soundness of the assertion logic (Theorem 7) and the

definition of the semantics of the assertion logic, we have that
[; ;- =>seleq, ([x], I, —)] (*, %) is true. By definition of the in-
terpretation okeleq , this means thafiv € V. [[x]](x, *)({) = v.

By the definition of[x] and the semantics of heaps, we have that
l —a vy € X, for some valuey, as required (anflvo] * is thev

that exists).

where the ordering oE ;¢ p;,(Loc) (L — V) only relates records
(heaps) with equal domain; two records with equal domain are
ordered pointwise.

e We let MonoTypeSubst = TyVar — MonoTypes denote
the set of monotype substitutions, whéreVar denotes the set
of type variables. We usé to range over monotype substitu-
tions. Remark 9

Note that the denotational model above does not model predicates

as admissiblé subsets, but rather as all subsets. One might have

expected admissibility to show up since HTT contains a rule for
fixed points (see Section 3) but because the denotational model is

TypesA + A < type [A] are interpreted by .
Contexts- A ctx of lengthn are interpreted byA] = V™.
ContextsA; X of the form A; hq,. .., hy, are interpreted by

[A] x H™. We often use to range over elements $AA]. and
usep to range over elements &f".

Intro terms in contextA - M <« A[M] are interpreted by
elements oMonoTypeSubst — [A] — V.

Elim terms in contextA - K = A[K] are interpreted by
elements oMonoTypeSubst — [A] — V.

Computations in contexh\; P + E = z:A.Q[E] are inter-
preted by elements dflonoTypeSubst — [A] — (H —
(V x H)).

Computations in context\; P + E < z:A.Q[E] are inter-
preted by elements dffonoTypeSubst — [A] — (H —
(V x H)).

Heaps in context\; X - H <« heap[H] are interpreted by
MonoTypeSubst — [A; X] — H.
X

Propositions in contexf\; X + P <« prop [P] are interpreted
by MonoTypeSubst — P [A; X]. Here we implicitly apply

so crude (it only models the shape of HTT types, not HTT types
themselves) and since it is only used to show heap soundness, while
operational methods are used to show soundness of the typing rule
for fixed points, we do not need to restrict attention to admissible
predicates in the denotational model. We are not aware of similar
combinations of models and proof methods for models of higher-
order store in the literature.

7. Related work

There has been a significant interest recently in systems for rea-
soning about effectful higher-order functions. Honda et al. [14, 3]
present several Hoare Logics for total correctness, where specifica-
tions in the form of Hoare triples are taken as propositions. Krish-
naswami [18] proposes a version of Separation Logic for a higher-
order typed language. Similarly to HTT, Krishnaswami bases his

2A subset of a pointed cpo is admissible if it is pointed and closed under
sups of chains.

logic on a monadic presentation of the underlying programming Higher-order assertion logic. The polymorphic multi-sorted
language. Both proposals do not support polymorphism, strong up- first-order assertion logic presented in the current paper is still in-
dates, deallocation or pointer arithmetic. Both are Hoare-like Log- sufficient for realistic languages and applications. For any practical
ics, rather than type theories, which means that logic specificationsapplication, HTT needs internal means of defining new predicates,
cannot be used in the program syntax to describe the context inincluding inductive ones, and new types of data. At a minimum,
which any particular program fragment can appear. On the other one needs assertions that describe lists, trees, dags, etc. that can
hand, Honda et al. have established a notion of contextual com-be used to describe the shape of mutable data structures within the
pleteness for their framework, which we do not have. Both Honda heap. All of these are definable in higher-order logic [8, 32, 39].
et al. and Krishnaswami allow their specifications to talk about the For purposes of HTT, the higher-order logic will also require poly-
abstract type of references. In HTT, like in Separation Logic, we morphic quantification over monotypes.

use natural numbers instead, as it was not clear how to axiomatize Furthermore, higher-order assertion logic should be the appro-
guantification and induction principles over this abstract type in the priate framework for studying Cook completeness of HTT [9], as
context of HTT. Itis an interesting future work to devise a type sys- with higher-order assertions it should be possible to exactly express
tem that can use local state in the definition of abstract types. the strongest postconditions for any kind of un-annotated looping

Shao et al. [37] and Applied Type Systems (ATS) of Xi et or recursion construct of HTT.
al. [42, 44] present dependently typed systems for effectful pro-
grams, based on singleton types, but they do not allow effectful | ocal state. HTT specifications, as presented in this paper can
terms in the specifications. Both systems encode a notion of pre-only describe state that is reachable from the variables that are
and postconditions. In ATS, assertions are drawn from linear |OgiC, in scope, or from the return result of a Computation_ Local state,
and the proofs for pre- and postconditions are embedded within which, by definition, is not reachable in this way, but is implicit, and
the code. It is interesting that the properties of linear logic ac- may be shared by functions or data structures, cannot be described.
tually require the embedding of proofs and code, unlike in HTT To enrich HTT types so that local state can be described, we require
where this is optional. For most effectful commands, a precondition at least two components.
must be transformed into a suitable form (usually a linear product) First, a computation should have more than one result so that
before the postcondition can be computed at all. The proofs arejt can return the addresses of locally allocated data. Thus, we
necessary in order to guide this transformation of preconditions. will require a new type of Hoare triples, with a syntax as in
In other words, they cannot separate type-checking into a decid-\p,X.{p}A’x;A{Q}, whereA is a context of variables that ab-
able verification-condition generation phase, and a sequent validity stracts over the local data of the computation. The variables fxom
phase. On the other hand, ATS possesses a very powerful mechacan be used in the return typeand in the postconditiory). This
nism for definition of generalized algebraic datatypes [43], which extension may employ some results from the Contextual modal
we have not considered in HTT yet. type theory of [28].

Mandelbaum et al. [20] develop a theory of type refinements — Of course, if the local addresses are made explicit as the return
for reasoning about effectful higher-order functions, whose foun- result of the computation, they are not local anymore. The second
dations are very similar to ours. They use a monadic separation be-component required for a type system of local state must provide
tween pure and impure fragments, and their type refinements cor-a mechanism for existential abstraction over the above cortext
respond to pre- and postconditions, just like in HTT. There are sig- A related question is how to associate an abstract datatype (e.g.
nificant differences as well. For example, the assertion logic of [20] red-black trees) with chunks of local state.
is a very simple fragment of propositional linear logic in order to
facilitate decidable typechecking. The simplicity of this fragment
avoids the issues related to explicit proofs that we discussed aboveReferences
for [44], but it also makes it unclear if this approach could support
full-fledged state with aliasing, which seems to require quantifica- v : ;
tion in the world refinements. A related problem which the authors Iznogirmcatmn. Theory and Practicepages 11-41. Springer-Verlag,
discuss in their future work is the lack of features in linear logic to '])
express sharing. They suggest that second-order quantification over [2] M- Bamett, K. R. M. Leino, and W. Schulte. The Spec# programming
worlds will remedy the situation, and indeed, our current develop- system: An overview. IICASSIS 2004 ecture Notes in Computer

. - - Science. Springer, 2004.
ment of polymorphism for HTT could be seen as supporting this
statement. [3] M. Berger, K. Honda, and N. Yoshida. A logical analysis of aliasing

Abad and Leino (1 descrbe a logic for bjectoriented pro- [mesTatie laherarter it 1 0. any an0 . erce
grams where specifications, as m_HTT, are treated as types. On_e ICFP’O’S, pages 280-293, Tallinn, Estonia, Septembegr 5005 9
of the problems that authors describe concerns the scoping of vari-
ables; certain specifications cannot be proved because the inference [4] B. Biering, L. Birkedal, and N. Torp-Smith. BI hyperdoctrines,
rule forlet val = E in F does not allow sufficient interaction be- Higher-Order Separation Logic, and Abstraction. Technical Report
tween the specifications df and F. We have designed HTT to ITU-TR-2005-69, IT University of Copenhagen, Copenhagen,

- Denmark, July 2005.
avoid such problems.

Birkedal et al. [6] describe a dependent type system for well- [5] L. Birkedal, N. Torp-Smith, and J. C. Reynolds. Local reasoning
specified programs in idealized Algol extended with heaps. The about a copying garbage collector. Symposium on Principles of
type system includes a wide collection of higher-order frame rules, Programming Languages, POPL'0pages 220-231, Venice, ltaly,

) . - . 2004.
which are shown sound by a denotational model. A serious limita-

[1] M. Abadi and K. R. M. Leino. A logic of object-oriented programs.

—

—

tion of the type system compared to HTT is that the hedpdncit. [6] L. Birkedal, N. Torp-Smith, and H. Yang. Semantics of separation-
can only contain simple integer values. logic typing and higher-order frame rules. Sfymposium on Logic in
Computer Science, LICS’0pages 260-269, Chicago, lllinois, June
2005.
8. Future work 00 _ _
)) . [7] R. Cartwright and D. C. Oppen. Unrestricted procedure calls
In this section we describe some future work that we plan to carry in Hoare’s logic. InSymposium on Principles of Programming

out, involving higher-order assertion logic and local state. Languages, POPL 7gages 131-140, 1978.

[8] A. Church. A formulation of the simple theory of typeBhe Journal
of Symbolic Logigc5(2):56—68, Jun 1940.

[9] S. A. Cook. Soundness and completeness of an axiom system for
program verificationSIAM Journal of Computing’(1):70-90, 1978.

[10] D. L. Detlefs, K. R. M. Leino, G. Nelson, and J. B. Saxe. Extended

static checking. Compaq Systems Research Center, Research Report

159, December 1998.

[11] D. Evans and D. Larochelle. Improving security using extensible
lightweight static analysidEEE Software19(1):42-51, 2002.

[12] C. A. R. Hoare. An axiomatic basis for computer programming.
Communications of the ACM2(10):576-580, 1969.

[13] M. Hofmann.Extensional Concepts in Intensional Type TheéthD
thesis, Department of Computer Science, University of Edinburgh,
July 1995. Avaliable as Technical Report ECS-LFCS-95-327.

[14] K. Honda, N. Yoshida, and M. Berger. An observationally complete
program logic for imperative higher-order functions. Sgmposium
on Logic in Computer Science, LICS OQaages 270-279, Chicago,
lllinois, June 2005.

[15] W. A. Howard. The formulae-as-types notion of construction. In
To H.B.Curry: Essays on Combinatory Logic, Lambda Calculus and
Formalism pages 479-490. Academic Press, 1980.

[16] T. Jim, G. Morrisett, D. Grossman, M. Hicks, J. Cheney, and
Y. Wang. Cyclone: A safe dialect of C. IlSENIX Annual Technical
Conferencepages 275-288, Monterey, Canada, June 2002.

[17] S. L. P. Jones and P. Wadler. Imperative functional programming.
In Symposium on Principles of Programming Languages, PORL'93
pages 71-84, Charleston, South Carolina, 1993.

[18] N. Krishnaswami. Separation logic for a higher-order typed language.
In Workshop on Semantics, Program Analysis and Computing
Environments for Memory Management, SPACE0éges 73-82,
2006.

[19] K. R. M. Leino, G. Nelson, and J. B. SaxeSC/Java User's Manual
Compagqg Systems Research Center, October 2000. Technical Note
2000-002.

[20] Y. Mandelbaum, D. Walker, and R. Harper. An effective theory of
type refinements. Iinternational Conference on Functional Pro-
gramming, ICFP’03 pages 213-226, Uppsala, Sweden, September
2003.

[21] P. Martin-Lof. On the meanings of the logical constants and the
justifications of the logical lawsNordic Journal of Philosophical
Logic, 1(1):11-60, 1996.

[22] C. McBride. Dependently Typed Functional Programs and their
Proofs PhD thesis, University of Edinburgh, 1999.

[23] J. L. McCarthy. Towards a mathematical science of computation. In
IFIP Congresspages 21-28, 1962.

[24] E. Moggi. Computational lambda-calculus and monads. In
Symposium on Logic in Computer Science, LICS{&fyes 14-23,
Asilomar, California, 1989.

[25] E. Moggi. Notions of computation and monad#formation and
Computation93(1):55-92, 1991.

[26] A. Nanevski and G. Morrisett. Dependent type theory of stateful
higher-order functions. Technical Report TR-24-05, Harvard
University, December 2005.

[27] A. Nanevski, G. Morrisett, and L. Birkedal. Polymorphism and Sep-
aration in Hoare Type Theory. Technical Report TR-10-06, Harvard
University, April 2006. Available aittp: //www.eecs.harvard.edu/
~aleks/papers/hoarelogic/httsep.pdf.

[28] A. Nanevski, F. Pfenning, and B. Pientka. Contextual modal type
theory. Under consideration for publication in the ACM Transactions
on Computation Logic, September 2005.

[29] G. C. Necula. Proof-carrying code. 8ymposium on Principles of
Programming Languages, POPL’'9@ages 106119, Paris, January
1997.

[30] P. O'Hearn, J. Reynolds, and H. Yang. Local reasoning about
programs that alter data structures. Iternational Workshop on
Computer Science Logic, CSL'Odolume 2142 oL ecture Notes in
Computer Scieng@ages 1-19. Springer, 2001.

[31] P. W. O’'Hearn, H. Yang, and J. C. Reynolds. Separation and
information hiding. InSymposium on Principles of Programming
Languages, POPL’'0Q4%ages 268-280, 2004.

[32] L. C. Paulson. A formulation of the simple theory of types
(for Isabelle). InInternational Conference in Computer Logic,
COLOG’88 volume 417 ofLecture Notes in Computer Science
pages 246-274. Springer, 2000.

[33] S. Peyton Jones, editoHaskell 98 Language and Libraries: The
Revised RepartCambridge University Press, April 2003.

[34] F. Pfenning and R. Davies. A judgmental reconstruction of modal
logic. Mathematical Structures in Computer Scient®(4):511-540,
2001.

[35] B. C. Pierce and D. N. Turner. Local type inferencdCM
Transactions on Programming Languages and Systeg(4):1-44,
2000.

[36] J. C. Reynolds. Separation logic: A logic for shared mutable data
structures. IrSymposium on Logic in Computer Science, LICS'02
pages 55-74, 2002.

Z. Shao, V. Trifonov, B. Saha, and N. Papaspyrou. A type system for
certified binaries.ACM Transactions on Programming Languages
and System®7(1):1-45, January 2005.

F. Smith, D. Walker, and G. Morrisett. Alias types. In G. Smolka,
editor, European Symposium on Programming, ESOP@)ume
1782 ofLecture Notes in Computer Scienpages 366—381, Berlin,
Germany, 2000.

SRI International and DSTO.The HOL System: Description
University of Cambridge Computer Laboratory, July 1991.

(37]

(38]

(39]

[40] P. Wadler. The marriage of effects and monads.International
Conference on Functional Programming, ICFP;98ges 63-74,
Baltimore, Maryland, 1998.

[41] K. Watkins, I. Cervesato, F. Pfenning, and D. Walker. A concurrent
logical framework: The propositional fragment. In S. Berardi,
M. Coppo, and F. Damiani, editor§ypes for Proofs and Programs
volume 3085 olecture Notes in Computer Scienpages 355-377.
Springer, 2004.

[42] H. Xi. Applied Type System (extended abstract) TMPES’'03pages
394-408. Springer-Verlag LNCS 3085, 2004.

[43] H. Xi, C. Chen, and G. Chen. Guarded recursive datatype con-
structors. InSymposium on Principles of Programming Languages,
POPL'03 pages 224-235, New Orleans, January 2003.

[44] D. Zhu and H. Xi. Safe programming with pointers through stateful
views. InPractical Aspects of Declarative Languages, PADL’'05
volume 3350 ofLecture Notes in Computer Sciengages 83-97,
Long Beach, California, January 2005. Springer.

