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ABSTRACT

This paper introduces a new anisotropic diffusion
algorithm for enhancing and segmenting multispectral
image data. The algorithm is based upon mean curvature
motion. Using a modified image gradient computation,
the diffusion method is further improved by allowing the
control of feature scale, and the sensitivity to heavy-
tailed noise is eliminated. For comparison, a vector
distance dissimilarity method is introduced and extended
for multi-scale processing. The experiments on remotely
sensed imagery and color imagery demonstrate the
performance of the algorithms in terms of image entropy
reduction and impulse elimination as well as visual
quality.

I. INTRODUCTION

Anisotropic diffusion [5] is a selective smoothing
technique that effectively provides intra-region
smoothing and inhibits inter-region smoothing. Thus,
anisotropic diffusion is useful as a precursor to image
segmentation and the dual problem of edge detection.
Several versions of the diffusion algorithm (e.g., [2], [5])
have been proposed for single band imagery. This paper
addresses the problem of enhancing multispectral (color
or remotely sensed) imagery that has been corrupted by
additive noise.

In [2], Alvarez, Lions, and Morel introduced a
modification of the original anisotropic diffusion
mechanism. Instead of simultaneously smoothing in
multiple directions, diffusion proceeds only in the
direction orthogonal to the local image gradient with
their approach. The partial differential equation (PDE)
that models this method has been studied for its property
of mean curvature motion (MCM). It can be shown that
the level sets of the image diffuse at a rate proportional
to the mean curvature.
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The standard anisotropic diffusion algorithms [2],
[5] are applicable only to single-band intensity images.
Though shortcomings exist, some advances in developing
anisotropic diffusion algorithms for operation on
multispectral images, such as color images, have been put
forward. Recent work in this area includes contributions
by Sapiro and Ringach [6], Chambolle [3], and Acton
and Landis [1]. We will contrast the MCM approach of
{3] and [6] with the dissimilarity measure approach of [1]
and [8]. Furthermore, we will extend these two basic
solutions with a "modified gradient" solution.

In anisotropic diffusion, the rate of smoothing is
dependent upon the local value of the diffusion
coefficient. In general, the diffusion coefficient is a
continuous, nonincreasing function of the local image
gradient magnitude. Typical implementations of the
diffusion coefficient are extremely sensitive to impulses
with high gradient magnitudes. So, one potential method
to improve the performance of anisotropic diffusion on
noisy images is to compute the image gradients using a
filtered version of the image as in [7]. In this paper, we
investigate the extension of this idea to multispectral
anisotropic diffusion algorithms.

First, we review the basic MCM algorithm and
present the modified approach. We also introduce vector
distance dissimilarity (VDD) diffusion for multispectral
imagery. The performance of MCM, VDD and the
improved versions of MCM and VDD are compared in
two example applications.

II. MODIFIED GRADIENT MEAN CURVATURE
MOTION

Let a continuous multispectral image be represented
as a function ﬁ(xl,xz) :R2 5 R™. The diffusion of the
image can be defined by the mean curvature motion PDE
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where 6. is the direction perpendicular to the image
gradient, and f is the diffusion coefficient (to be defined
shortly). The strength of this approach lies in the fact that
diffusion of the image does not occur in the direction of
maximum rate of change (which will be perpendicular to
image edges), but occurs only in the direction of
minimum rate of change. So, the image will be smoothed
in a direction parallel to edges, but not across edges. Eq.
(1) is also attractive because of its property of mean
curvature motion (MCM) -- the level sets of the solution
to this equation move in the normal direction
(corresponding to the gradient) with a rate proportional
to their mean curvature [2].

For diffusion on m-band multispectral data, define

the intensity vector G(Xx)=( ul x), u2()‘c),....urn (%)), and
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change in the multispectral image can be given by
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MCM, we need the direction of the rate of change in
addition to the magnitude. Two possible solutions, given
in {4], are 8y = (1/2)arctan(2g,5/(g1; — g22)) and 6, = 6y +
/2. Now, let 6, be the angle of the direction of the
maximum rate of change, and let A, be the maximum rate
of change. Similarly, let 8. be the angle of the direction of
the minimum rate of change, and let A. be the minimum
rate of change.

With the terms defined, the MCM diffusion of (1)
can be implemented. The diffusion coefficient in (1)
controls the rate of smoothing and is a decreasing
function of the difference (A, - A). One possible
implementation is given by

f(Ap,A_) = exp[_ﬂt:_/l.:_)_] 2)
k2

where k is a gradient magnitude threshold. Diffusion is
implemented on each multispectral band separately.
Unfortunately, the MCM algorithm is sensitive to
impulse noise. In fact, the MCM technique will actually
enhance, not eliminate, outliers in the image. To
overcome this limitation, we modify the MCM algorithm.
In this modified algorithm, an estimate image is
computed at each step for each multispectral band. The
smoothed estimate images are used in the computation of
the image gradients for diffusion. For Modified Gradient
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MCM (MGMCM), we use Gaussian-smoothed images to
compute the partial derivative terms used in (1):

3%ux',x2,n 3%l x2,0
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where s =1*g(0) and g(o) is a 2-D Gaussian kernel

of standard deviation 0. Selection of o depends on the
scale desired in the enhanced image; hence, this
improved PDE is capable of computing a true scale-space
for the original multispectral image. Note that the
diffusion mechanism operates on the unfiltered
multispectral bands — only the derivatives are computed
from the filtered imagery.

The Gaussian filter is not the only possible scale-
generating kernel in this paradigm. Successful results
have been reported for morphological filters [7]. One
possible morphological method uses the open-close filter,

s = \Uo ]§)- B, where scale is determined by the size (and

shape) of the structuring element B.

III. MODIFIED VECTOR DISTANCE
DISSIMILARITY

We are contrasting the MCM algorithm with another
multispectral anisotropic diffusion algorithm based on
the following PDE {5]

%‘tl = div[cVi] @)

where U(x, y,t) is the image intensity at location (x,y)
and time ¢, div is the divergence operator, and ¢
represents the diffusion coefficients. With this method
(which is designed for single-band intensity images),
gradient magnitudes and diffusion coefficients are
usually computed for each pixel with respect to four
neighbors (n, s, e, w). A discrete version of (4) is given
by:
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other three directions of diffusion.



A particular color (or multispectral n-tuple) may be
considered a vector in three (or n-) space, We can define
gradient approximations for multispectral images in
terms of the distance between two multispectral vectors,
or dissimilarity operators [1),[8]. For example, with an
RGB image, the gradient term in the "northern” direction
may be defined in the following Euclidean form:

(R(x, y+1,0)-R(x, 3,1))*
Vug (o y.nf = [+ (G y+10-Gx 0% (©)
+(B(x,y+1,0)-B(x, y,1))?

where R, G, and B are the red, green, and blue intensities,
respectively. The gradient magnitude terms for the other
three directions of diffusion are defined similarly.
Because these terms are used in the diffusion coefficient
only, the gradient magnitude (not the sign) is needed.
Substitution of these multispectral gradient terms into the
diffusion coefficients used in (5) constitutes the VDD
algorithm.

Of course, the VDD is limited by the same inability
to remove impulse noise and small scale features as with
the standard MCM algorithm. So, a modified gradient
VDD (MGVDD) approach can be implemented by
simply applying a scale generating filter prior to
computation of the local image gradient magnitudes. As
will be seen in the results, the modified gradient
technique has significant performance advantages.

IV. RESULTS

Figures 1 - 6 demonstrate the performance of the
MCM, MGMCM, VDD and MGVDD algorithms on a
SPOT multispectral image of the Seattle area. Figures 3
and 4 show the results of performing 50 iterations of the
MCM and the MGMCM algorithms, respectively, on the
noisy image. One may observe that the MCM image in
Figure 3 appears noisy, while the MGMCM is enhanced
and is void of corruptive noise. The MGMCM image
does not contain the small clusters of pixels, caused by
noise; thus, the MGMCM result is useful for the
segmentation and edge detection processes used in the
interpretation of the remotely sensed imagery.
Qualitatively, the VDD result (Figure 5) is not able to
reject outliers nor does it enhance the noisy image.
Although the MCM result is markedly better than the
VDD result, the MGMCM result is comparable in visual
quality to the MGVDD result (Figure 6).

The same experiment is repeated for a color imaging
application, as shown in Figures 7-12. The RGB image of
the Castle is corrupted with Gaussian-distributed additive
noise and the MCM, MGMCM, VDD and MGVDD
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results are provided. Again, the modified gradient
methods outperform the standard MCM and VDD
methods. However, one may observe the superior edge
preservation of the MGVDD approach with this man-
made scene (Figure 12).

One  quantitative indication of  smoothing
performance is the extent of reduction (or increase!) in
image entropy. Tables I and II give the image entropy for
the two examples, showing a slight reduction for
MGMCM over MCM. Accordingly, the MGVDD result
provides reduced entropy as compared to the VDD resuit.
Another measure of effectiveness is impulse elimination.
Impulses in an image are locally extreme statistical
outliers and are typically due to noise. For this
application, an impulse can be defined as a pixel with
value differing from the values of each of its four-
connected neighbors by a magnitude that is equal to or
above the standard deviation of the additive noise. Tables
I and IV reveal that the MGMCM method removes
over 80% of impulses in both examples. The MGVDD
removes nearly all of the impulses. Finally, Table V
details the computational complexity of the four
algorithms in terms of operations per pixel for each
update. The operations are classified as additions,
multiplication  operations, exponential  operations,
trigonometric operations and square root calculations.
Due to the overhead associated with computing the
diffusion direction, the MCM methods are more
expensive computationally.

We conclude that the use of the modified gradients
significantly improves the noise elimination for the MCM
and VDD diffusion techniques on multispectral data. The
improvement in smoothing and noise reduction is
demonstrated by the improvements in image quality,
image entropy reduction and impulse elimination.

Table I: Entropy for the Seattle Example

Image Entropy
Original 4.258
Noisy 7.688
MCM 7.369
MGMCM 7.260
VDD 7.682
MGVDD 7.047




Table I1: Entropy for the Castle Example

Image Entropy
Original 4.366
Noisy 7.542
MCM 7.317
MGMCM 7.269
vDD 7.525
MGVDD 7.195

Table III: Impulse Count for the Seattle Example

Image Impulse Count
Original 120
Noisy 160
MCM 105
MGMCM 28
VDD 153
MGVDD 14

Table IV: Impulse Count for the Castle Example

Image Impulse Count
Original 9
Noisy 172
MCM 57
MGMCM 23
vDD 198
MGVDD 3
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Table V: Computational Complexity
(in operations per image pixel per iteration)

Algorithm | Add. | Mult. | Exp. | Trig. SR?
MCM 82 81 1 5 1

MGMCM 106 108 1 5 1

VDD 24 17 2 0 0

MGVDD 54 44 2 0 0

(Add. = additions/subtractions/comparisons; Mult. =
multiplication/division operations; Exp. = exponential
calculations; Trig. = trigonometric operations; Sq. Rt. =
square root calculations.)

REFERENCES

[1] S.T. Acton and J. Landis, "Multispectral anisotropic
diffusion," Int. Journal of Remote Sensing, Vol. 18,
pp. 2877-2886, 1997.

[2] L. Alvarez, P.L. Lions, and J.M. Morel, “Image
selective smoothing and edge detection by nonlinear
diffusion, IL,” SIAM Journal of Numerical Analysis,
Vol. 29, pp. 845-866, 1992.

[3] A. Chambolle, “Partial differential equations and
image processing,” Proc. of the IEEE Int. Conference
on Image Processing, Austin, Texas, November, 1994.

{41 S. DiZenzo, “A note on the gradient of a multi-
image,” Computer Vision, Graphics, and Image
Processing, Vol. 33, pp. 116-125, 1986.

{5] P. Perona and J. Malik, “Scale-space and edge
detection using anisotropic  diffusion,” [EEE
Transactions on Pattern Analysis and Machine
Intelligence, Vol. 12, pp. 629-639, 1990.

[6] G. Sapiro and D. L. Ringach, “Anisotropic diffusion
of multivalued images with applications to color
filtering,” IEEE Transactions on Image Processing,
Vol. 5, pp. 1582-1586, 1996.

[71 C.A. Segall and S.T. Acton, "Morphological
anisotropic  diffusion," Proc. of the IEEE Int.
Conference on Image Processing, Santa Barbara, Ca.,
October 26-29, 1997.

[8] R. T. Whitaker, “Geometry-limited diffusion in the
characterization of geometric patches in images,”
Computer Vision, Graphics, and Image Processing:
Image Understanding, Vol. 57, pp. 111-120, 1993.



Figure 1. Original Seattle Image

Figure 5. VDD Result
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Figure 6. MGVDD Result



Figure 11. VDD Result Figure 12. MGVDD Result
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