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Abstract

This paper presents experiments, in simulation, with
a group of robots that improve their performance on
a straightforward transportation task by using rein-
forcement learning to associate input states with a
set of abstract behaviors. We show that the improve-
ment in performance is a result of the group adapt-
ing its spatio-temporal organization to the given en-
vironment. Spatio-temporal adaptation is a general
form of adaptation in that it can improve perfor-
mance over a range of different tasks and environ-
ments. Hence it increases the general applicability
and autonomy of robotic systems. Lastly, we present
two communication strategies that improve this abil-
ity to adapt by generally improving learning rates for
cooperative robots in highly dynamic domains.

1 Introduction

Adaptive capabilities in groups of robots are attrac-
tive because they can increase the applicability and
efficiency of these systems. Learning provides a way
of producing behaviors that are difficult or impos-
sible to program because of unfamiliar or complex
problem spaces. As an example of such problems,
we study the adaptation of the spatio-temporal or-
ganization of a group of robots with the aim to im-
prove the group’s performance on a straightforward
transportation task.

Behavior-Based Systems have provided examples of
how abstract behaviors and communication can pro-
vide tractable problem spaces for learning in multi-
robot systems [7]. Previous work in reinforcement
learning (RL) [13] has shown the possibility of using
communication as a general way of improving learn-
ing rates for cooperative agents. To demonstrate the
applicability of the RL methods however, it is nec-
essary to show that similar results can be achieved
in real multi-robot systems with real world data and
scalable communication.

We present experiments, in simulation, with a group
of five robots that use reinforcement learning on ab-

stract behaviors to adapt their spatio-temporal orga-
nization. This form of adaptation is general enough
to be used to improve group performance over a
range of different tasks and environments and as
such, it exemplifies the kind of capability that in-
creases the general applicability and autonomy of
robotic systems. The policies produced by the adap-
tive controllers during our experiments show that the
improved performance is indeed a result of spatio-
temporal reorganization. The learned policies also
show that the robots learn to use data relating to
the position and orientation of the other robots to
decide whether to move ahead or stop.

Lastly, we present two communication strategies de-
veloped to improve learning rates in groups of coop-
erative robots. The strategies are particularly well
suited for use in highly dynamic domains such as
multi-robot systems. The experimental data pro-
vided show that these communication strategies pro-
duce statistically significant increases in convergence
rates for both individual and group performance.

2 The Transportation Problem

In order to demonstrate how the learning and com-
munication affect the group’s performance, we stud-
ied a straightforward transportation problem where
the robots had to make their way back and forth be-
tween a source and a sink. We did not yet require
physical objects to be transported. A traversal corre-
sponded to one crossing from the source to the sink or
vice versa. Transportation is similar to foraging and
collection [1, 4, 9], but simpler as we assume that the
positions of both the source and the sink are known
to the robots, thus excluding issues of searching.

We measure individual performance on the trans-
portation task by the time taken for one traversal,
and group performance by the period between the
arrival at either the source or the sink by any of
the robots. We call this period the target time. By
providing a simple problem in an open environment,
we focus the learning on the complexity that comes
from the dynamics of robot interaction rather than



on the complexity that comes from the task or from
the environment.

3 Experimental Setup

We instantiated the transportation problem by sim-
ulating five Pioneer 2DX robots with PTZ cameras
and SICK laser range-finders traversing a six-by-
eight meter rectangular area. The source and sink
were unique beacons made from highly reflective ma-
terial, recognizable by laser. Each of the robots also
wore color markings recognizable using ActiveMe-
dia’s Color-Tracking Software (ACTS). The mark-
ings emphasized the orientation of the robot with red
on the left side, green on the right side, and yellow
at the rear. The prototype markings as they appear
on a real Pioneer are shown in Figure 1.
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Figure 1: Pioneer Robot with Color Markings

We performed the experiments in simulation on the
Player/Stage[3] software platform!. From experi-
ence, controllers written for the Stage simulator work

with little or no modification on the real Pioneers.

The experiments presented below used only local
communication in order to be scalable. Local com-
munication was implemented using a wireless com-
munication network and a Global Positioning Device
(GPS). Every message was tagged with the location
of the sender, and robots would only receive mes-
sages from senders that were within a two-meter ra-
dius. The system only used GPS to simulate local
communication. The controllers used odometry for
position estimation when the landmark beacons were
not visible. Relying strictly on local sensors increases
the applicability of our solution and ensures the scal-
ability of the control algorithms.

3.1 Reward Structure

During the experiments the robots received rewards
related to their individual efficiency every time they

1 Player is a server and protocol that connects robots, sen-
sors and control programs across a network. Stage simu-
lates a population of Player devices, allowing off-line develop-
ment of control algorithms. Player and Stage were developed
jointly at the USC Robotics Research Labs and HRL Labs
and are freely available under the GNU Public License from
http://playerstage.sourceforge.net.

arrived at the source or the sink. The reward, r,
received after a traversal of time, ¢, is given in Equa-
tion 1. The number 250 reflects the shortest possible
traversal time, giving a reward between 1.0 and 2.0.

250
7“:1+T (1)

4 Controller Architecture

We implemented a controller with three abstract
movement behaviors: stopping, wall-following and
direct target approach. These three behaviors made
use of the robots’ lower level capabilities, such as ob-
stacle avoidance and position estimation. They also
kept track of what target to visit next, the source
or the sink. The mapping of input states to these
behaviors was left to the adaptive control algorithm,
as described below. On top of the adaptive control
structure, we implemented two different communi-
cation behaviors that could be expressed in parallel
with the movement behaviors. The communication
behaviors were fixed and not available to the adap-
tive control algorithm. In Figure 2 we show the ac-
tivation and parallel expression of the main parts of
our control architecture. The horizontal arrows indi-
cate parallel behavior expression, while the vertical
arrows describe behavior activation.
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Figure 2: Behavior Activation and Expression

The Underlying Behaviors. The  pre-
programmed behaviors stopping, wall-following
and direct target approach generally steered the
robots toward their targets. The direct target
approach behavior servoed the robot directly toward
the current target. The wall following behavior
followed the boundaries of the area while moving
toward the target. Finally, the stopping behavior
froze the robot in its current position and orienta-
tion. Together, these three behaviors allowed the
robots to organize in space by learning e.g., when
to concentrate on the shortest path between the
source and the sink, when to disperse around the
boundaries of the environment, and when to stop
and wait.



4.1 The Adaptive Control Algorithm

The adaptive element of the controller decided the
behavioral policy of each individual robot controller
by relating each of the possible input states to one
of the three available movement behaviors. It used
reinforcement learning to improve the robot’s perfor-
mance according to the rewards received.

Random application of the underlying behaviors pro-
vided a baseline for performance evaluation. Hence,
the conceptual goal of the learning algorithm was to
improve on that performance rather than to develop
a transport capability from scratch. The base per-
formance was clearly suboptimal, with robots getting
in each other’s way and stopping regularly. This left
ample opportunity for the robots to learn spatial and
temporal structures that would reduce interference
and optimize performance.

The State-Action Space. The robots had three
abstract behaviors available to them: stopping, wall-
following and direct target approach. These behav-
iors were all applicable in all states.

The input state was represented as five bits. The first
bit indicated the presence of a target, the source, or
the sink. The second bit was on for relatively short
(1-30 second) periods of time at random intervals.
The additional states produced by this bit allowed
the robot to express certain behaviors for a short pe-
riod at random times independent of the rest of the
input state. This fragmentation of the input state
space was an unbiased way of increasing the sophis-
tication of learnable policies. For example, instead
of always following the walls whenever a target is not
visible, the robot can learn to approach the target di-
rectly in this state, but with short random periods of
wall following. The three final bits represented the
presence of color-blobs corresponding to the three
colored markings on the robots, indicating the pres-
ence and orientation of another robot. When several
robots were present, these bits only reported on the
visible markings of the closest one, distinguished by
the height of the visible color-blobs.

The five input bits and three behaviors made up a
state-action space of size 2°*3 = 96. In the future we
intend to enlarge this space to allow more interesting
organizational structures to emerge. However, even
with this reduced space we are able to demonstrate
both spatial and temporal adaptation as well as use
of data directly describing other robots.

The Learning Algorithm. It is difficult or im-
possible to create useful models of the complex dy-
namics of multi-robot interaction. In our scenario,
the lack of a world model limits the information that
can be communicated between robots about features

of the environment and past experiences.

To update the adaptive part of the control policy
we used naive Q(A), a model-free, off-policy, tempo-
ral difference (TD) learning algorithm with eligibility
traces. We used an accumulating rather than a re-
placing trace. Though the naive Q(A) algorithm is
not proved to converge to optimality, related algo-
rithms have shown superior performance in empiri-
cal tests [12]. The value estimate for a state, s, and
an action, a, resulting in a reward, r, and a subse-
quent state, s', is, according to naive Q()\), identical
to the estimate for standard TD-learning, as shown
in Equations 2 and 3 with learning rate, «, return
discount rate, v, and TD-error, §.

Q(s,a) — Q(s,a) + ad (2)

§ =1 +ymazpyQ(s’,b) — Q(s,a) (3)

The estimated values for a previous state, s, and
action, a,, recorded in the eligibility trace n actions
ago, is given in Equation 4 with trace decay rate, A.

Q(Sn, an) — Q(Sn,an) + a(yA)"d (4)

Action Selection. Actions were chosen by the
adaptive controller using the Boltzmann Softmax al-
gorithm. With this algorithm the probability of an
action being selected is related to its estimated value
in the current state. As the time-sensitive parameter,
7, an analog of temperature, decreases toward 0, so
the relative probability of the highest estimated value
being chosen increases. The probability of choosing
action, a, in state, s, according to the Boltzmann
Softmax algorithm is given by Equation 5.

Q(a.s)

ot
= (5)
e 22

5 Experimental Validation of Spatio-
Temporal Adaption

P(als) =

To evaluate the adaptive controller, we ran five trials
of five robots each performing two-hundred traver-
sals, a total of 1000 traversals per trial. The initial
individual performance, measured by traversal time,
had an average, T}, of 1112.5 seconds and a standard
deviation, s;, of 1023.7 seconds. These values and
the corresponding values after 50, 100, 150 and 200
traversals, ¢;, are given in columns 2 and 3 of Table 1.
The group performance, measured in average target
time, the time between the arrival at the source or

the sink by any robot, had an initial average, T}, of
245.2 seconds and a standard deviation, sg4, of 165.3



seconds. Columns 5 and 6 of Table 1 give these val-
ues and the corresponding values after 250, 500, 750
and 1000 target arrivals, 2.

ti T’z S; tg Tg Sg
0 1112.5 | 1023.7 0 245.2 | 165.3
25 | 8439 | 628.0 125 | 159.8 | 102.7
50 759.7 | 559.8 250 | 161.4 | 1304
75 | 639.6 | 445.9 375 | 133.6 | 84.4
100 | 668.3 | 504.5 500 | 139.5 | 1144
150 | 537.7 | 343.0 750 | 123.1 | 86.7
200 | 524.8 | 296.8 || 1000 | 100.0 | 72.8

Table 1: Improvement from Adaptation

The results from these experiments prove that the
robot group improved its performances by producing
traversal and target times that are lower than the
initial random behavior application by a statistically
significant amount.

5.1 The Learned Policies

The Q-tables produced during the experiments show
that the robots on average learned policies domi-
nated by the direct target approach behavior, but
with significant portions of the wall-following behav-
ior. These policies created a common circular path,
minimizing interference.

We also found evidence that the robots adapted their
temporal organization according to the presence and
orientation of other robots. Of the input states where
yellow markings where visible, i.e. states with a one
in bit four, we calculated the number of times the
stopping behavior had the highest g-value. We called
this number the stop-rate for yellow states. The stop-
rate for the yellow states was significantly lower than
the stop-rate for states in which robots were visible,
but no yellow markings. The stop-rate was also sig-
nificantly lower for yellow states than for the corre-
sponding red states and green states. This indicates
that the robots in general learned to stop only when
they saw a robot but could not see its yellow mark-
ings. Intuitively, visible yellow or rear markings in-
dicate that the other robot is facing, and likely mov-
ing, away. Hence, it will not be likely to cause an
obstruction.

6 Communication Strategies for Im-
proved Adaptability

In order to improve the adaptive capabilities demon-
strated above we developed two communication
strategies for cooperative robot learning. The ez-
pressed behavior evaluation strategy was inspired by

calls of encouragement as found in animals and hu-
mans. Such calls express the value a critic puts on
a subject’s behaviors. The tmitation strategy is in-
spired by imitation learning, short periods of interac-
tion between robots where any number of students
repeat the actions of a teacher. Matari¢ [8, 6] has
also previously used communication and imitation
in the context of reinforcement learning for groups
of robots.

6.1 Expressed Behavior Evaluation

This communication strategy presupposes the ability
to accurately estimate the current input state and
active behavior of another robot. This is in general
very difficult for real world robots. However, by hav-
ing the robots continuously communicate these two
pieces of information locally, we get the same effect
for a tolerable increase in communication. To al-
low individual rather than a broadcast feedback, the
robots also communicate a unique identifier.

Being able to give feedback implies having an inter-
nal estimate of the value of an observed state-action
pair. As the robots are homogeneous, this estimate
already exists in a robot’s own Q-table. Commu-
nicating early estimates of Q-values provides little
information, so we introduced a limitation on what
state-action combinations a robot would give feed-
back on. A feedback message was only sent when a
robot had tried all the actions in the given state and
one of the action values was significantly higher than
all the others by some given margin, ¢. The feedback
message contained only the unique identifier of the
robot that was evaluated.

When a robot received a feedback message, it treated
it as an independent estimate of the current state
and active behavior doing a full backup over its cur-
rent trace, independently of other rewards received
or backups performed in the current state. The
feedback-inspired backup uses the exceptional be-
havior margin ¢ as the TD-error, replacing § with
¢ in Equations 2 and 4 in Section 4.1.

6.2 Imitation

The second strategy was inspired by imitation learn-
ing. During imitation a student imitates the actions
of a teacher, hence sharing the state-action sequence
of a trial. Rather than physically doing the imita-
tion, this strategy communicated the state-action se-
quence of the best trial a robot had experienced so
far. The best trace was communicated at random in-
tervals averaging five seconds, providing roughly one
imitation experience per robot per trial.

Upon reception of an imitation message, the robots
went through the received trace as if they were ex-
periencing the relevant states and taking the related



ti Tl S; tg Tq Sg
0 | 1027.9 | 727.3 0 | 209.2 | 142.5
25 647.8 | 405.9 || 125 | 155.3 | 106.3
50 | 589.7 | 350.2 || 250 | 121.3 | 87.9
75 592.2 | 295.9 || 375 | 104.2 | 77.1
100 | 621.6 | 441.8 || 500 | 124.4 | 86.5

Table 2: Performance for Expr. Behavior Fval.

Tfi E S tg Tg Sg
0 | 937776 | 614.9 0 | 2373 | 153.0
25 609.9 | 316.9 || 125 | 122.7 | 94.0
50 548.9 | 321.6 || 250 | 129.1 | 89.3
75 567.0 | 378.7 || 375 | 106.5 | 86.8
100 | 565.0 | 376.3 || 500 | 116.5 | 94.9

Table 3: Performances for Imitation

actions themselves, using Equations 2, 3 and 4, but
without actually taking any actions.

7 Experimental Evaluation of the Com-
munication Strategies

In order to evaluate the contribution the communi-
cation made to the group learning, we performed five
trials of 200 traversals using each of the communica-
tion strategies and compared the learning rates to
those found for the communication-free learning ex-
periment presented in Section 5. The individual and
group performance data are presented in Tables 2
and 3, using the same format as in Table 1.

The improvements of the group performance in the
three different experiments are plotted as graphs in
Figure 3, showing that both communication strate-
gies improve on the communication-free or individual
learning. Analysis also shows that on a 95% confi-
dence level, the traversal times for the individual con-
trollers using communication are significantly better
than those of the communication-free controller after
25, 50 and 75 traversals. After 100 traversals, how-
ever, the communication-free controller has caught
up, as can be seen in Tables 2 and 3. The same
result is apparent for group performance after 125,
250 and 375 arrivals, but only on a 90% confidence
level. Only after 125 and 375 arrivals is the difference
significant on a 95% confidence level.

The stopping behavior, which was dependent on the
markings of other robots, became more pronounced
when communication took place than it was in the
communication-free case.
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Figure 3: Convergence Rates

8 Related Work

Stone and Veloso [11] use robust, low-bandwidth
communication to modify group structure in the do-
main of simulated soccer. The modifications, how-
ever, are purely switches between pre-set formations
and do not include any adaptation. The same is the
case for Unsal and Bay’s [14] work on spatial organi-
zation of swarm systems, where the group adapts to
its environment, but the individual agents are non-
adaptive. Itsuki, Hitoshi and Kazuo [5] also describe
experiments in simulated soccer. Using artificial neu-
ral networks, they demonstrate two agents learning
whether to pass or shoot in different but related sit-
uations also involving two hostile agents.

Balch and Arkin [2] demonstrate that improvement
of group behavior is possible using cooperative com-
munication in multi-agent systems, but explicitly re-
strict themselves to reactive systems. Balch [1] also
investigates the effects of different reward structures
on the diversity produced in a group of foraging, BB
robots, that adapt using RL. Matarié [7, 6, 8] has
previously shown the feasibility of group learning in
behavior space and demonstrated uses of communi-
cation and imitation for cooperative learning.

Sen, Sekaran and Hale [10] have previously shown
that group behavior can improve through learning
even in the case when the participating agents are
oblivious of each other’s existence. Tan [13] has
shown three communication strategies that improve
the learning rate in groups of cooperative agents.
These strategies are broadcast based and imply up-
dating shared data structures. As such they are un-
likely to scale up to larger groups. Like Sen et al.,
Tan’s work is also based on an abstract world, mod-
eling only simple physics.

Our work goes beyond previous work on reinforce-
ment learning by doing experiments in simulations
that are a significantly more realistic than the ab-
stract world models of Sen et al. and Tan and the



simulated soccer environment used my Stone and
Veloso, and Itsuki et al. We also add to previ-
ous work on cooperative mechanism by presenting
a new strategy for cooperation, exrpressed behavior
evaluation. This strategy goes further than previ-
ously demonstrated strategies in minimizing com-
munication for cooperative sharing of experiences.
The adaptive capabilities we present here are more
general than Matari¢’s previous uses of learning in
groups, and as such apply to a wider range of
problems and go further in increasing general robot
adaptability and autonomy.

9 Conclusion

Our experiments demonstrate the possibility of
adaptive spatio-temporal organization in groups of
real robots. This work takes one step toward pro-
viding robots with more general adaptive capabil-
ities, hence making them more applicable and au-
tonomous.

Our experiments also show that our cooperative com-
munication strategies can contribute significantly to
improving a group’s adaptability. Owur imitation
strategy is very similar to Tan’s episode exchange
strategy, and our experiments show that strategies
of this kind are useful in groups of real robots as well
as in the grid-world example Tan uses.

10 Future Work

In order to evaluate our experimental results we plan
to run tests to see whether the performance improve-
ment observed in the simulation is also observable on
groups of real robots, using up to 9 Pioneers avail-
able in our laboratory. To show the generality of
the adaptive capabilities we will also run experiments
using different environments and different tasks, ini-
tially expanding the current framework to look at
the transportation of physical objects.

As a next step we aim to enlarge the problem space
presented to the adaptive controller in order to pro-
duce more advanced organization patterns such as
lanes, territories, or bucket brigading. The work pre-
sented here is an initial step to developing these more
advanced capabilities. We also plan to investigate
the use of social structures such as hierarchies to fa-
cilitate group adaptation.
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